Computability and Complexity Theory

Computability and complexity

- Computability theory
 - What problems can be solved on a computer?
 - What is a computable function?
 - Decidable vs. undecidable problems
- Complexity theory
 - How much time and memory is needed to solve a problem?
 - Tractable vs. intractable problems

What is a computable function?

Non-trivial question → various formalizations, e.g.

General recursive functions
 Gödel/Herbrand/Kleene 1936

 $-\lambda$ -calculus Church 1936

μ-recursive functions
 Gödel/Kleene 1936

- Turing machines Turing 1936

- Post systems Post 1943

- Markov algorithms Markov 1951

Unlimited register machines
 Shepherdson-Sturgis 1963

. . .

• All these approaches have turned out to be equivalent.

Church-Turing thesis

The class of intuitively computable functions is equal to the class of Turing computable functions.

Turing machine

Depending on the symbol scanned and the state of the control, in each step the machine

- changes state,
- prints a symbol on the cell scanned, replacing what is written there,
- · moves the head left or right one cell.

Formal definition

- $M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F)$
- Q is the finite set of states.
- Γ is the finite alphabet of allowable *tape symbols*.
- # $\in \Gamma$ is the blank.
- $\Sigma \subset \Gamma \setminus \{\#\}$ is the set of *input symbols*.
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the *next move function* (possibly undefined for some arguments)
- $q_0 \in Q$ is the *start state*.
- $F \subseteq Q$ is the set of *final (accepting) states.*

Recognizing languages

- *Instantaneous description:* $\alpha_l q \alpha_r$, where
 - q is the current state,
 - − $\alpha_l\alpha_r$ ∈ Γ^* is the string on the tape up to the rightmost nonblank symbol,
 - the head is scanning the leftmost symbol of α_r .
- *Move:* $\alpha_l q \alpha_r \vdash \alpha'_l q' \alpha'_r$, by one step of the machine.
- Language accepted

$$L(M) = \{ w \in \Sigma^* \mid q_0 w \vdash^* \alpha_l q \alpha_r, \text{ for some } q \in F \text{ and } \alpha_l, \alpha_r \in \Gamma^* \}$$

• *M* may not halt, if *w* is not accepted.

Example

Turing machine

$$M = (\{q_0, ..., q_4\}, \{0, 1\}, \{0, 1, X, Y, \#\}, \delta, q_0, \#, \{q_4\})$$

accepting the language $L = \{0^n 1^n \mid n \ge 1\}$

Example computation

Recursive languages

• A language $L \subseteq \Sigma^*$ is *recursively enumerable* if L = L(M), for some Turing machine M.

$$w \longrightarrow \boxed{\mathsf{M}} \longrightarrow \left\{ egin{array}{ll} \mathsf{yes}, & \mathsf{if} \ w \in L \\ \mathsf{no}, & \mathsf{if} \ w
ot\in L \\ M \ \mathsf{does} \ \mathsf{not} \ \mathsf{halt}, & \mathsf{if} \ w
ot\in L \\ \end{array} \right.$$

• A language $L \subseteq \Sigma^*$ is *recursive* if L = L(M) for some Turing machine M that halts on all inputs $w \in \Sigma^*$.

$$w \longrightarrow \boxed{M} \longrightarrow \begin{cases} \text{yes,} & \text{if } w \in L \\ \text{no,} & \text{if } w \notin L \end{cases}$$

• **Lemma.** *L* is recursive iff both *L* and $\overline{L} = \Sigma^* \setminus L$ are recursively enumerable.

Enumerating languages

- An *enumerator* is a Turing machine *M* with extra output tape *T*, where symbols, once written, are never changed.
- *M* writes to *T* words from Σ^* , separated by \$.
- Let $G(M) = \{ w \in \Sigma^* \mid w \text{ is written to } T \}$.

Some results

- **Lemma.** For any finite alphabet Σ , there exists a Turing machine that generates the words $w \in \Sigma^*$ in canonical ordering (i.e., $w \prec w' \Leftrightarrow |w| < |w|$ or |w| = |w| and $w \prec_{lex} w'$).
- **Lemma.** There exists a Turing machine that generates all pairs of natural numbers (in binary encoding). *Proof:* Use the ordering (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...
- **Proposition.** L is recursively enumerable iff L = G(M), for some Turing machine M.

Computing functions

- Unary encoding of natural numbers: $i \in \mathbb{N} \mapsto \underbrace{|| \dots |}_{i \text{ times}} = |^i$ (binary encoding would also be possible)
- *M* computes $f: \mathbb{N}^k \to \mathbb{N}$ with $f(i_1, ..., i_k) = m$:
 - Start: $|^{i_1} 0|^{i_2} 0 \dots |^{i_k}$
 - End: |^m
- f partially recursive:

$$i_1, \dots, i_k \longrightarrow \boxed{\mathsf{M}} \longrightarrow \left\{ \begin{array}{l} \text{halts with } f(i_1, \dots, i_k) = m, \\ \text{does not halt, i.e., } f \text{ undefined.} \end{array} \right.$$

• f recursive:

$$i_1, \dots, i_k \longrightarrow \boxed{\mathbf{M}} \longrightarrow \text{halts with } f(i_1, \dots, i_k) = m.$$