6. Object Oriented Programming

AlDaBi Praktikum

Enrico Siragusa
WS 2011/12

Summary

Programming paradigms
OOP in C++

P-A5 in OOP

Remarks for P-Aufgabe

Fundamental Programming Styles

PROGRAMMING PARADIGMS

Imperative Paradigm

Computation in terms of statements changing the program state
— Data constitutes the program state

Programmers describe how to obtain a result by executing instructions
— A program can be seen as a recipe

Procedures are reusable blocks of statements
— Procedures are also called subroutines or functions

The result of a procedure depends on current program state
— Problem: Program state is globally exposed

Imperative languages abstract from machine language
— Fortran, Pascal and C abstract from Assembly

Declarative Paradigms

Functional Programming Paradigm

— Based on Lambda calculus

— Computation as the evaluation of mathematical functions

— Functions are stateless so their result only depends on input arguments
— Iteration via recursion

— Lisp, Haskell and Ocaml are functional languages

Logical Programming Paradigm
— Computation in terms of logical statements which have to be satisfied
— Prolog and SQL are logical languages

OOP Paradigm

Computation in terms of interacting objects
— Objects are physical or abstract entities with one precise role
— Objects have a well defined behaviour
— Obijects hold private information
— Objects interact with other objects exposing their functionalities

Programmers design a set of objects modeling the problem at hand
— Humans see the world as composed of objects

Addresses software conception, mantainance and extensibility
— An object is the smallest modular unity, extensible and reusable

Modern programming languages support OOP
— Java and C++ were explicitely designed for OOP

Main Principles of OOP

Abstraction
— Functionality is provided via an interface as in abstract data types
— Complexity of implementation is confined to the object

Encapsulation
— The internal state of an object is hidden to the outer world
— An object can only be inspected or manipulated via its methods
— Methods insure the integrity of the object’s internal state

Inheritance

— Allows reutilization and extensibility of objects

Polymorphism

— Provides subtype specialization of objects

Example of OOP Modeling

e Specifications
— Program an application managing a parking
— Compute at any time the total gain if all cars leave the parking

— Parking fee only depends on car brand

* Responsibilities

— Parking: contains vehicles
— Car: the car itself
— Brand: the car brand

— BrandPricer: fixes the fee depending on the car brand

Example taken from lecture ,La programmation objet “ of Rémi Forax, WS07, Univ. Paris-Est MLV

Example of OOP Modeling (Il)

Objects Relationships

Association

— Generic relationship between
two objects

— Objects providing or using
other objects

Aggregation
— ,Has a“ relationship
— Occurs in containers

Composition
— ,,0wns a“ relationship

— Owned object does not exist
outside of owner object

: Brand
Brtin.dPrlcer i _>-name : string
etPrice
+9 ey +setName()
+getName()
Parking
-cars : vector<Car> Car
+park() ears -idPlate : string
+leave() -brand : Brand&
+getGain()

Car

-idPlate : string
-brand : Brand&

Engine

OOP IN C++

Classes and Objects

A class defines the implementation of a set of objects

— In C++ classes are implemented as data structures

class Car { };

-

struct Car { };

— Classes have default private visibility (see next slide)

An object is an instance of a class

— a, b, c are all instances of class Car

p
void main() {

Car a;
Car b;
Car c;

}

A\,

~N

Members and Visibility

* Properties of an object are held inside class memberds
* Visibility of class members can be limited

— Keyword private limits visibility to the class

— Keyword protected limits visibility to subclasses

~ ~ s) _
class Car { volid main() {
private: Car c;
string idPlate; // OK
protected: c.BrandName = "BMW”;
unsigned seats; // Compile Error
public: c.seats = 5;
string brandName; // Complle-Error
}; cout << c.1idPlate;
4
}
\ y,
\

* Visibility keyword applies also to methods (see next slide)

Methods and Accessors

class Car { A
private:

string idPlate;
public:

string getIdPlate() {
return this->idPlate;

}
bool setIdPlate(string &idPlate) {

if (!idPlate.empty())
return false;

this->idPlate

return true;

idPlate;

/

Methods are functions having an implicit argument called this
The keyword this provides a pointer to the owner object

-

int main() {
Car c;
// Returns false
c.setIdPlate("");
// Returns true
c.setIdPlate(”B ER 5");
// Prints B ER 5
cout << c.getIdPlate();

/

Methods perform simple operations on the object, no monster code here!

Static Methods and Members

Stateless methods and perstistent members can be declared static

— Static methods can be called at any time without object instantiation

— Static members exist prior to object instantiation

— Static members are shared by all object instances!

-

\

struct Class {
static bool state;
static bool getState()
{ return state }
static void setState(bool state)
{ Class::state state }

}i

bool Class::state false;

~

Take care while using static keyword!

.

}

void main() {

// Returns false
Class::getState();
Class::setState(true);
// Returns true
Class::getState();
Class c;

// Returns true
c.getState();

Method Overloading

 Methods (and functions) can be overloaded
— Two functions can have the same name but different signatures
— The compiler chooses the most adherent signature
— Overloading is not performed on return value!

p " /void main() {
struct Class { // Prints 1
static void m(int a) { cout << ”1” } Class::m(5);
static bool m(char a) { cout << ”2" } // Prints 2
static void m(double a, double b) Class::m((char)5);
{ cout << ”3” } // Prints 3
}; Class::m(3.1, 2);
\. J }
\.

 QOverload methods only if they share a common semantic
e QOperators are implemented as methods and can be overloaded as well

Constructors and Destructor

* |[nitial object state is set up by special methods called constructors
* Default empty constructor can be overloaded
* Eventual deallocation of any internal resources is done by the destructor

~

class Car {

private:
string idPlate;

public:
// Default constructor
Car() {}
// Custom constructor
Car(string & idPlate)

: idPlate(idPlate) {}

// Default destructor

~Car() {}

void main() {
Car c(”"B ER 5");

}

}i

Inheritance

Inheritance consists of three concepts

— Structural inheritance of methods and members

— Subtyping
— Method overloading

p
struct Car {

void refill() {}
void drive() {}
}i

struct ElectricCar

A\,

: Car {}

-

void main() {
ElectricCar e;
e.drive();

}

The derived class ElectricCar

\

— Inherits methods refill and drive from Car

— |s a subtype of class Car

— Has the ability to specialize and extend class Car

Subtyping

* Problem: Can we park ElectricCar cars in a Parking for Car cars?

— Yes we can! ©

struct Parking { R void main() {
vector<Car> cars; Parking p(2);
Parking(unsigned places) { Car c;
cars.resize(places); p.park(0, c);
}
void park(unsigned place, Car &car) { ElectricCar e;
cars[place] = car; p.park(1l, e);
}
Car & leave(unsigned place) { Car & b = p.leave(l);
return cars[place]; b.drive();
} }
}i
/AN

.

Note: due to space constraints, class Parking is not implemented as it should be!

The Delegation Problem

Problem: Consider the following code:
struct Car { A
void refill() { cout << "Gas Please”; }
void drive() {
if (tank.empty())
this->refill();
}
}i
struct ElectricCar: Car {
void refill() { cout << "Energy Please”; }
}i
. /

Class ElectricCar should overload method refill in order to specialize it

The Delegation Problem (lI)

 What happens here?

e.drive();

ElectricCar e;]

e Qutcome: Gas Please (!)
e Why?
— Method drive is defined in the base class Car
— Car does not know the derived class ElectricCar

4)
void drive() {

// this refers to a pointer of type Car
this->refill();

Virtual Methods

Solution: virtual

\
struct Car {
virtual void refill() { ... }
}i
ElectricCar e;
// Prints “Energy Please”
e.drive();
/

.

Static methods cannot be declared virtual

Such behavior of objects is called polymorphism

— Etymology from Ancient Greek poly (many) + morph (form) + -ism.

How virtual works?

* Principle: Objects hold a pointer to a virtual table which has pointers to
the overloaded methods

Objects VTables Methods
Car
ElectricCar e 0 refill
_ 3 Car::refill
Pointer { .1 drive

ElectricCar::refill

ElectricCar

Car::drive

0 refill

Abstract Classes

* Classes only having virtual methods are called abstract
— They serve as interface and base type for different concrete classes

— They cannot be instantiated

\

struct Abstract {
// 0 or NULL indicate a null pointer
virtual void method() = 0;

}i

struct Derived : Abstract {
void method() { /* Implemented */ }

}i

// Compile Error
Abstract a;

// OK

Derived d;

. s

P-A5 IN OOP

Entities and Responsibilities

ReadMapper

— Maps reads sequentially
gGramindex

— Indexes the genome

Finder

— Finds pieces in the genome
Verifier

— Verifies hits

FileReader and MultiFileReader

— Read input files
MatchesWriter

— Writes results

Class Diagram

<<use>>

<<use>>

ReadMapper Class

Members

Genome
Genome Index
Reads
Matches

Methods

Load genome using FileReader
Load reads using MultiFileReader

Index genome using gGramindex
Map reads using Finder and Verifier
Write results using MatchesWriter

ReadMapper

-genome : string
-genomelndex : qGramlIndex*
-reads : TReads

-mismatches : unsigned
-matches : TMatches

-getReadsLength()
#indexGenome()
#mapRead()
+ReadMapper()
+loadGenome()
+loadReads()
+writeResults()
+mapReads()

gGramlindex Class

Members
— Values of q, alphabet size
— Tables dir and suftab
— Precomputed values for:
— Ordinal value
— Powers of g
Methods
— Constructor building the index
— Lookup a g-gram
— Getter for text position from suftab position
— All other methods are private!

gGramlndex

-g : unsigned

-alphabetSize : unsigned
-ordValue : vector<unsigned>
-gPow : vector<unsigned>
-dir : vector<unsigned>
-suftab : vector<unsigned>
-textBegin : iterator

-initOrdValue()
-initQPow()
-build()
-getHash()
-getNextHash()
+qGramindex()
+lookup()
+getPosition()

Finder Class

e Members

— gGram Index Finder

-index : qGramlIndex&

— Current suftab range -suftabRange : SuftabRange

— Current position in suftab SnEIPES § Uinslghiee
+Finder()
* Methods +find()
. +getMatch()
— Find a pattern
— Get a match for the found pattern
suftabRange
<<Typedef>>

SuftabRange

Verifier Class

Members

— Text boundaries Verifier

-textBegin : iterator

— Maximum distance -textEnd : iterator

— Current distance -match : iterator
-distance : unsigned
— Current match position -maxDistance : unsigned
+Verifier()
Methods +getMatch()
. . . . +getDistance
— Verify a hit stopping as soon as possible +8erify() J

— Getters for
— Current distance
— Current match position

FileReader Classes

Members

— Input stream is protected
Methods

— Constructor takes file name
— Load loads the file

— MultiFileReader specializes file loading

FileReader

#file : ifstream

+FileReader()
+~FileReader()
+load()

T

MultiFileReader

+MultiFileReader()
+load()

REMARKS FOR P-AUFGABE

A DFA Ais a 5-tuple (Q, 5, 6, q,, F)

Tips for Aufgabe 6

Number of states | Q|
* 9

Initial state q,
0

Final states F
8

Alphabet symbols 5

* aehrtvw

* Other ASCII symbols reset the
automata into state q

Transition function 6 : Qx2 > Q

* Row i defines all explicit transitions
for state i

e Automaton matching ,whatever”
9

0

8
aehrtvw
0000001
0020000
3000000
0000400
0500000
0000060
0700000
0008000
0001000

Class Diagram for Aufgabe 6

