
6 Q-gram filters for ε-matches

This exposition was developed by Clemens Gröpl. It is based on:

• Kim R. Rasmussen, Jens Stoye, Eugene W. Myers: Efficient q-Gram Filters for Finding All ε-Matches over a
Given Length, Journal of Computational Biology, Volume 13, Number 2, 2006, pages 296–308. (Originally
presented at GCB 2004 and RECOMB 2005.) [RSM06]

6.1 Motivation

Comparison of large genomic sequences can be speeded up a lot if filtering techniques are applied. The key
observation is that a local alignment of high sequence similarity must contain at least a few short exact matches.

The idea of using q-grams for fast filtering is not new. A q-gram is a substring of length q. Programs like
BLAST use q-grams which occur in both sequences as seeds for a local alignment search.

It has also been observed that combining the idea of seeds with a combinatorial argumentation based on
some form of the pigeon hole principle can be used to discard large parts of the input sequences from further
consideration, because they cannot contain a good local alignment.

We can distinguish three kinds of algorithms.

When applied for finding highly similar regions, the classical exact algorithms (e. g. Smith-Waterman) will
spend most of the time verifying that there is no match between a given pair of regions. The running times
(typically the product of sequence lengths) are infeasible for genome size sequences.

Heuristics like BLAST typically employ a q-gram index to locate seeds and perform a verification for the
candidate regions located in this way. However, BLAST might fail to recognize an existing match, unless the
filtering parameters are set very stringent. Thus one has to trade off sensitivity against speed.

A filter is an algorithm that allows us to discard large parts of the input, but is guaranteed not to loose any
significant match. The trade-off to be considered for filtering algorithms is thus only whether the additional
effort is payed off by the saving of time spent for verifications.

In this lecture, we will consider the problem of finding matches of low error rate ε and a given minimum
length n0.

The cost measure will be the edit distance (Levenshtein distance). That is, the distance between two strings
is the number of insertions, deletions, and substitutions needed to transform one into the other.

The SWIFT algorithm is an improvement of the QUASAR algorithm by Burkhardt et. al.. Note, however,
that QUASAR uses an absolute error threshold rather than an error rate. Using an error rate is more appropriate
since the length of a local alignment is not known in advance.

The filter has been successfully applied for the fragment overlap computation in sequence assembly and for
BLAST-like searching in EST sequences.

6.2 Definitions

As usual, let A and B denote strings over a finite alphabet Σ, let |A| be the length of A, let A[i] be the i-th letter
of A, and let A[p..q] be the substring starting at position p and ending with position q of A, thus A[i..i] consists
of the letter A[i]. A substring of length q > 0 of A is a q-gram of A.

The (unit cost) edit distance between strings A and B is the minimum number of edit operations (insertion,
deletion, substitution) in an alignment of A and B. It is denoted by dist(A,B).

The edit distance can be computed by the well-known Needleman-Wunsch algorithm. It computes in
O(|A||B|) time an edit matrix E(i, j) := dist(A[1..i],B[1.. j]). The letter A[i] corresponds to the step from row i − 1
to i, so it is natural to visualize the letters between the rows and columns of the edit matrix, etc..

An ε-match is a local alignment for substrings (α, β) with an error rate of at most ε. That is, dist(α, β) ≤ ε
∣∣∣β∣∣∣.

(Note the ‘asymmetry’ in the definition of error rate.)

The problem can now be formally stated as follows:
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Given a target string A and a query string B, a minimum match length n0 and a maximum error rate
ε > 0;

Find all ε-matches (α, β) where α and β are substrings of A and B, respectively, such that

1.
∣∣∣β∣∣∣ ≥ n0 and

2. dist(α, β) ≤ bε
∣∣∣β∣∣∣c.

6.3 q-gram filters for ε-matches

A q-hit is a pair (i, j) of indices such that A[i..i + q − 1] = B[ j.. j + q − 1].

The basic idea of the q-gram method is as follows:

1. Find (enumerate) all q-hits between the query and the target strings.

2. Identify regions (in the Cartesian product of the strings) that have “enough” hits.

3. Such candidate regions are then subjected to a closer examination.

The concrete methods differ in the shape and the size of the regions.

The following lemma relates ε-matches (α, β) to parallelograms of the edit matrix. For a moment, we assume
that the length of β is known, so that we can work with an absolute bound on the distance.

An n× e parallelogram of the edit matrix consists of entries from n+1 consecutive rows and e+1 consecutive
diagonals.

Lemma 1. Let α and β be substrings of A and B, respectively, and assume that
∣∣∣β∣∣∣ = n and dist(α, β) ≤ e. Then

there exists an n × e parallelogram P such that

1. P contains at least T(n, q, e) := (n + 1) − q(e + 1) q-hits,

2. the B-projection of the parallelogram is pB(P) = β,

3. the A-projection pA(P) of the parallelogram is contained in α.

The A- and B-projections are defined as illustrated below.

The A-projection pA(P) of a parallelogram P is defined as the substring of A between the last column of the
first row of P and the first column of the last row of P.

The B-projection pB(P) of a parallelogram P is defined as the substring of B between the first and the last
row of P.

(Note: these figures are taken from the RECOMB and GCB version, which uses the transposed matrix of
the JCB article.)
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Clearly, a q-hit (i, j) corresponds to q + 1 consecutive entries of the edit matrix along the diagonal j − i. A
q-hit is contained in a parallelogram if its corresponding matrix entries are.

The proof of Lemma 1 is straightforward: Consider the path of an optimal alignment of α and β. At each
row except for the last q ones, we have a q-gram unless there is an edit operation among the next q edges. Each
edit operation can ‘destroy’ at most q q-hits.

So the case where
∣∣∣β∣∣∣ is fixed was easy. Next we consider ε-matches for

∣∣∣β∣∣∣ ≥ n0. The following lemma is
the combinatorial foundation of the SWIFT algorithm.

Lemma 2. Let α and β be substrings of A and B, respectively, and assume that
∣∣∣β∣∣∣ ≥ n0 and dist(α, β) ≤ ε

∣∣∣β∣∣∣. Let
U(n, q, ε) := T(n, q, bεnc) = (n + 1)− q(bεnc+ 1) and assume that the q-gram size q and the threshold τ have been
chosen such that

q < d1/εe and τ ≤ min
{
U(n0, q, ε),U(n1, q, ε)

}
,

where n1 :=
⌈
(bεn0c + 1)/ε

⌉
.

Then there exists a w × e parallelogram P such that:

1. P contains at least τ q-hits whose projections intersect α and β,

2. w = (τ − 1) + q(e + 1),

3. e =

⌊
2τ + q − 3

1/ε − q

⌋
,

4. if
∣∣∣β∣∣∣ ≤ w, then pB(P) contains β, otherwise β contains pB(P).

The purpose of Lemma 2 is as follows. Given parameters ε and n0, we can choose suitable values for
q, τ, w, and e using Lemma 2. Then we enumerate all parallelograms P with enough hits according to these
parameters. All relevant ε-matches can be found in these regions.

Proof of Lemma 2. The lemma is proven in three steps:

1. Assuming there is an ε-match (α, β) of length
∣∣∣β∣∣∣ = n ≥ n0, show that there are at least τ q-hits in the

surrounding n × bεnc parallelogram.

2. Argue that there is a w × e parallelogram that contains at least τ q-hits, where w and e do not depend on
n ≥ n0.

3. Determine the dimensions w and e of such a parallelogram.

. . . details omitted . . .
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6.4 Algorithm

The SWIFT algorithm relies on the q-gram filter for ε-matches of length n0 or greater. Using the parameters
obtained from Lemma 2, it searches for all w × e parallelograms which contain a sufficient number of q-grams.

In the preprocessing step, we construct a q-gram index for the target sequence A. The index consists of
two tables:

1. The occurrence table is a concatenation of the lists L(G) := { i | A[i..i + q − 1] = G } for all q-grams G ∈ Σq

in A.

2. The lookup table is an array indexed by the natural encoding of G to base |Σ|, giving the start of each list
in the occurrence table.

Once the q-gram index is built, the w × e parallelograms containing τ or more q-hits can be found using a
simple sliding window algorithm.

The idea is to split the (fictitious) edit matrix into overlapping bins of e+1 diagonals. For each bin we count
the number of q-hits in the w × e parallelogram that is the intersection of the diagonals of the corresponding
bin and the rows of the sliding window W j := B[ j.. j + w].

As the sliding window proceeds to W j+1, the bin counters are updated to reflect the changes due to the
q-grams leaving and entering the window.

Whenever a bin counter reaches τ, the corresponding parallelogram is reported. Overlapping parallelo-
grams can be merged on the fly.

The space requirement for the bins is reduced by searching for somewhat larger parallelograms of size
w × (e + ∆). Then each bin counts for e + ∆ + 1 diagonals, and successive bins overlap by e diagonals. While
this will lead to more verifications, it reduces the number of bins which have to be maintained. In practice, ∆
is set to a power of 2, and bin indices are computed with fast bit-operations.
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Each ‘candidate’ parallelogram must be checked for the presence of an ε-match. This can be done trivially
by dynamic programming. Alternatively, one can use the knowledge about the q-grams in the ε-match to
construct an alignment by sparse dynamic programming.
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6.5 Results
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7 Applications of 2nd-Gen Sequencing

This exposition was developed by David Weese. It is based on:

1. Rasmussen, K., Stoye, J. and Myers, E. W. (2006). Efficient q-gram filters for finding all ε-matches over a given
length, J. Comp. Biol.

2. Weese, D., Emde, A., Rausch, T., Döring, A. and Reinert, K. (2009). RazerS - Fast Read Mapping with
Sensitivity Control, Genome Res.

7.1 Second-generation sequencing technologies

Introduction
Sensitivity Calculation

The Algorithm
Results

Motivation

Second-generation sequencing technologies

454 FLX/Roche Solexa/Illumina SOLiD/ABI

Sequencing
approach

pyrophosphate
release

bridge amplification ligation

Read lengths 400–500bp 36bp 35bp or 25bp (MP)

Mate pairs yes yes yes

Output/Run 400–600Mbp in 10h > 1.5Gbp in 2.5d 3–4Gbp in 6d

Accuracy
depends on

homopolymer length
(> 6 problematic)

nucleotide position
in the read

nucleotide position
in the read

GS FLX Titanium
Series

Genome Analyzer 2 SOLiD System 2.0
Analyzer

Weese D, Emde AK, Rausch T, Döring A, and Reinert K RazerS - Fast Read Mapping with Sensitivity Control

7.2 Second-generation sequencing applications

Resequencing

De novo assembly

Metagenomics Epigenetics

Alt. splicing

ChIP-Seq

RNA-SequencingGenome Assembly

Expression Profiling

DNA Methylation

Genome Comparison

SNPs

RearrangementsmicroRNA
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7.3 Motivation

Fundamental to almost all of these applications is the following problem:

Problem 1 (Read Mapping Problem). Given a set of read sequences R, a reference sequence G, and a distance
k ∈N. Find all pairs (r, g) with r ∈ R, g is substring of G and dist(r, g) ≤ k.

Common distance measures are Hamming distance or edit distance.
The pairs (r, g) are called matches of r.

(Some of the) Existing Read Mapping Tools:

Introduction
Sensitivity Calculation

The Algorithm
Results

Motivation

Related Work

Eland Maq Soap Seqmap Zoom Shrimp RazerS

filtering technique two-seed
pigeonhole

two-seed
pigeonhole

two-seed
pigeonhole

two-seed
pigeonhole

multiple
gapped seeds

q-gram
counting

q-gram
counting

distance measure
in filtering step Hamming Hamming Hamming both Hamming both both

distance measure
in mapping step Hamming

Hamming
(Smith-Wa. for
second mate)

Hamming
(optionally with
one gap)

Hamming or
edit with at
most 5 errors

Hamming or
edit with at
most one gap

Smith-
Waterman

either edit or
Hamming

supported read
length ≤ 32 ≤ 127 ≤ 60 arbitrary ≤ 63 arbitrary arbitrary

sensitivity
full sensitivity
only for up to 2
errors

full sensitivity

depends on
setting, no
switch to
guarantee full
sensitivity

full sensitivity
switch to
guarantee full
sensitivity

no help for
parameter
choice, default
will be lossy for
most settings

arbitrarily
adjustable

can output all
(suboptimal) hits no no no yes yes yes yes

Weese D, Emde AK, Rausch T, Döring A, and Reinert K RazerS - Fast Read Mapping with Sensitivity Control

Observation 2 (Sharpness). The q-gram Lemma is sharp. The worst case occurs if the k errors are equidistantly
distributed.

The error probability increases with the nucleotide
position for Illumina, SOLiD, and Sanger sequencing.

Observation 3. The worst case occurrence probability
is very small.
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a posteriori
quality based

Drosophila melanogaster reads (NCBI short read archive,
SRR001815, Illumina tech.)

Why not increasing t or q to increase filtration specificity and reduce runtime?
How many matches would be lost?

Definition 4. Sensitivity is the probability that a true match is classified as potential match:

P(#matching q-grams ≥ t | #errors ≤ k)

Loss Rate = 1 − Sensitivity
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7.4 How to calculate the sensitivity

Let pRi be the probability of a sequencing error at nucleotide position i.

We could enumerate all configurations of e = 0, . . . , k errors and sum up the occurrence probs of those with ≥ t
matching q-grams.

genome ACAAAGTCCGACAAGTTT

|||| | |||||| ||||

read ACAATGACCGACACGTTT match with 3 replacements

The occurrence probability would be pm1pm2pm3pm4pR5pm6pR7pm8 . . . p
m
13pR14pm15pm16pm17pm18, with pmi = 1 − pRi .

The enumeration would take Ω
((

n
k

)k
)

time. Not feasible for n = 200 and k = 20 errors.

7.5 Definitions

• Considering mismatches only (Hamming distance)
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• Considering mismatches and indels (edit distance)
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|read| ≤ |T| ≤ |read| + #errors

• Substrings Mq are called q-matches

• A q-match corresponds to a common q-gram

7.6 DP Approach (Hamming)

• Much more efficient than the full enumeration

• Recursive enumeration of all error configurations explicitly storing only the last q positions

• DP-Matrix R with R(i, e, t,T2)
i = 1st transcript length 0, . . . , |read| − q
e = number of errors 0, . . . , k
t = threshold 0, . . . , r − q + 1

T2 = 2nd transcript of length q T2 ∈ ∆q where ∆ = {M, R}

• Contains the sum of occurrence probabilities of transcripts T1
s.t. T1 contains e letters R, T1T2 contains ≥ t substrings Mq

�� ��

� ���������
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The sum of occ. probs. of all transcripts T1 ...

�� ��

� �

T1 contains e errors
T1T2 contains ≥ t substrings Mq

... can be computed recursively from

��� ���

��� �

� with x ∈ {M, R}
T′1 = T1[1..i − 1]
T′2 = T2[1..q − 1]

T′1 contains
e, if x = M

e − 1, if x = R
errors

T′1xT′2 contains ≥
t − 1, if T2 = Mq

t, else
substrings Mq

Lemma 5 (Hamming distance, ungapped).

R(0, e, t,T2) =

1, if e = 0, t ≤ δ(T2)
0, else

R(i, e, t,T2) = pMi · R(i − 1 , e , t − δ(T2), MT2[1..q − 1])
+ pRi · R(i − 1 , e − 1 , t − δ(T2), RT2[1..q − 1])

δ(T) :=

1, if T = Mq

0, else

We devised a DP algorithm that calculates the sensitivities for all e = 0, . . . , k and t = 1, . . . , tmax in
O(n · k · tmax · 2q).

The recursion can be extended to gapped shapes and edit distance.
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7.7 Filtration

Consider dotplots between genome and reads.

A match with k indels is covered by at most k + 1 consecutive diagonals.
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Cover the dot plots with parallelograms of w diagonals with w ≥ k + 1 ...

... and an overlap of k diagonals.
Every possible sequence of k + 1 diagonals resides in a parallelogram.
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Search common q-grams while scanning the genome from left ...

... to right.
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Potential matches are contained in parallelograms with ≥ t common q-grams.

Optimizations as suggested in [RasStoMye05]:

• Associate every parallelogram with a counter

• Reuse counters after (|r| − w − q) q-gram sliding steps

• Choose parallelogram width, s.t. they begin at multiples of a power of 2→ Fast bit-shift reveals counter
number of a diagonal

Differences compared to Swift:

• not local, but semi-global alignment

• parallelograms are not opened or closed, they are verified as a whole

7.8 Verification

• Edit Distance

– Parallelograms are verified with bit-vector algorithm by [Myers99]

– It exploits hardware parallelism of bit-operations:
A 64-bit CPU calculates 64 DP cells in 14 arithmetic/logic operations

– Returns the end position of a true match in the genome

– Can be modified to also return the beginning

• Hamming Distance

– Scan each diagonal until k + 1 mismatches occur

– Every diagonal with ≤ k mismatches is a true match
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7.9 Filtration Parameter Choice

Automatically choose filtering parameters (shape Q and threshold t) to ...

• achieve a certain sensitivity level

• minimize the running time of the mapping procedure

Therefore precompute the loss rates for ...

• read lengths from 24 to 100

• error rates up to 10%

• a typical Illumina error profile [Dohm08]
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Parameters for larger reads are extrapolated from precalculations with the same error rate.

Parameter tables can be recomputed with user-specific error distribution from:

• Quality based probabilities: Transform the average base call quality value for each position into a
probability value.

• A posteriori probabilities: Map a small subset of reads and determine the position dependent error
frequency.

For instance, parameters of 50bp reads can be recalculated within 10min using the DP algorithm.

7.10 Paired-End Read Mapping

Given a library size µ and a tolerated deviation δ, we want to find all paired-end matches with

• an insertion size between µ − δ and µ + δ,

• each mate matches with up to k errors.

Paired-end reads are sequenced from different strands and ”look at each other”.
There are two symmetries:

������

������

������

������

������
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������

������ ������

������ ������

Search read 1 and the reverse-complemented read 2 on the same strand.

���� � �� ���� � ��

Scan one strand with two Swift filters from left . . .

���� � �� ���� � ��

. . . to right.
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���� � �� ���� � ��

µ-∂

����

2∂

Keep their distance and record the potential
matches of the trailing filter in a fifo.

���� � �� ���� � ��

µ-∂

����

2∂

Each true paired-end match is recognized as a Swift 2
potential match and a potential mate match in the fifo.

Implementation:

• As optimization use a last-seen-at table for Swift 1 potential matches.

• Output a true match with minimal errors and a minimal library deviation.

7.11 Results

The following datasets were used:

Read sets1 from the NCBI short read archive:

• 10,760,364 × 36bp reads of Drosophila melanogaster (SRR001815)

• 7,894,743 × 2 × 76bp reads of a human HapMap individual (SRR006387) trimmed to 63bp (Zoom’s limit)

Reference genomes:

• Drosophila melanogaster genome from FlyBase, Release 5.9

• Human genome from NCBI, Build 36.3

Verification of Expected Sensitivity:

1In both sets, the Illumina technology was used.
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1. Simulated reads

• Simulate reads using a positional error model [Dohm08]

• Group them according number of errors

• Empirical sensitivity is the proportion that could be mapped back to origin

2. Real data

• Map Drosophila reads lossless and keep those, that map uniquely

• Group them according number of errors

• Determine positional error model

• Empirical sensitivity is the proportion that could be mapped back to origin

For different filtration settings (q = 8...14, t = 1...20) we calculated the estimated loss rate and compared it with the
empirical loss rate.

1. Simulated reads

2. Real data
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Short Read Experiments:

1. Drosophila, Hamming distance 2

• Map Drosophila reads onto the Drosophila genome with ≤ 2 mismatches

• Shrimp uses Smith-Waterman verifier → we adapted the scores (mismatch = 0, match = 1, gap penalties =
−1000, score threshold = 34).

2. Drosophila, edit distance 2.

• As in experiment (1) allowing also indels

• Shrimp computes local alignments→ no scoring scheme for semi-global edit distance alignments

• We emulated edit distance with (mismatch = −1, match = 1, gap penalties = −1, score threshold = 32)

3. Human, Hamming distance 5.

• Map HapMap reads onto the human genome with ≤ 5 mismatches

• Adapted Shrimp scores as in experiment (1)
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Short Read Mapping

experiment RazerS100 RazerS99 Zoom Shrimp SeqMap Soap Maq

(1)

1M
time (min) 2.13 1.63 1.47 15.3 6.70 9.27 4.10
space (GB) 1.31 1.30 0.72 0.68 6.56 0.67 0.60
mapped reads 505,506 503,595 505,506 505,084 505,059 506,476 503,999(605K)

all
time (min) 10.6 5.55 7.80 145 12.8 116 9.68
space (GB) 4.10 3.92 3.77 5.80 11.1 0.67 5.36
mapped reads 5,353,287 5,335,554 5,353,287 5,349,007 5,348,776 5,414,337 5,338,676(6.5M)

(2)

1M
time (min) 12.3 5.92 32.7 13.6 15.5
space (GB) 0.48 0.53 0.72 0.68 8.38 - -
mapped reads 512,477 511,695 512,139 515,080 512,477

all
time (min) 163 68.45 267 146 abort
space (GB) 4.58 4.59 3.77 5.90 - -
mapped reads 5,431,142 5,424,088 5,427,589 5,486,467

(3)

1M
time (h) 3.14 0.40 26.1 10.7 48.8 3.88 2.43
space (GB) 1.14 1.86 1.27 6.10 8.10 6.20 0.70
mapped reads 352,725 351,767 352,617 352,742 349,721 354,020 323,893(362K)

all
time (h) 25.4 1.95 45.3 > 3 d abort 33.8 5.74
space (GB) 5.60 6.13 2.89 6.2 4.38
mapped reads 3,102,320 3,095,435 3,091,063 3,133,920 2,817,561(3.0M)

Weese D, Emde AK, Rausch T, Döring A, and Reinert K RazerS - Fast Read Mapping with Sensitivity ControlPaired-end read mapping onto unmasked human chromosome 21

• 2 × 1,000,000 and 2 × 7,894,743 reads of length 63

• up to 5 mismatches

• full and 99% sensitivity

Introduction
Sensitivity Calculation

The Algorithm
Results

Verification of Expected Sensitivity
Runtime and Space Consumption
Conclusion

Paired-End Mapping

Paired-end read mapping onto unmasked human chromosome 21

I 2× 1,000,000 and 2× 7,894,743 reads of length 63

I up to 5 mismatches

I full and 99% sensitivity

RazerS100 RazerS99 Zoom Maq

P
ai
re
d
-e
n
d 1M

time (min) 36.1 6.45 3.38 11.5
space (GB) 1.28 3.13 2.59 0.85
mapped pairs 26,923 26,828 14,018 19,025(28.5K)

all
time (min) 71.4 47.5 22.2 72.9
space (GB) 10.8 12.5 20.5 4.72
mapped pairs 241,308 240,385 129,704 167,015(238K)

Weese D, Emde AK, Rausch T, Döring A, and Reinert K RazerS - Fast Read Mapping with Sensitivity Control

Read mapping onto unmasked human chromosome 21

• 500,000 simulated 125bp and 250bp reads

• up to 8% errors, full and 99% sensitivity
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Large Read Mapping

Read mapping onto unmasked human chromosome 21

I 500,000 simulated 125bp and 250bp reads

I up to 8% errors

I full and 99% sensitivity

RazerS100 RazerS99 Shrimp100 Shrimp99 Maq

H
am

m
in
g 125bp

time (min) 8.53 4.15 9.61 h 60.9 4.54
space (GB) 0.80 1.54 1.93 4.48 0.38
mapped 500,000 499,991 500,000 499,991 405,377

250bp
time (min) 14.7 6.65 32.9 h 160
space (GB) 1.26 2.00 1.46 2.61 -
mapped 500,000 500,000 500,000 500,000

ed
it

125bp
time (min) 65.0 23.7 9.44 h 61.6
space (GB) 0.74 1.71 0.84 4.50 -
mapped 500,000 500,000 500,000 500,000

250bp
time (min) 55.8 39.6 14.7 h 28.5 h
space (GB) 1.21 2.18 1.38 5.45 -
mapped 500,000 499,940 500,000 499,940

Weese D, Emde AK, Rausch T, Döring A, and Reinert K RazerS - Fast Read Mapping with Sensitivity Control7.12 Second-generation sequencing applications

Resequencing

De novo assembly

Metagenomics Epigenetics

Alt. splicing

ChIP-Seq

RNA-SequencingGenome Assembly

Expression Profiling

DNA Methylation

Genome Comparison

SNPs

RearrangementsmicroRNA
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7.13 RNA-Sequencing

How RNA-Seq works:

• RNA isolatation

• Reverse transcription to cDNA

• Fragmentation

• (Size selection)

• Sequencing

RNA-Seq applications:

• Expression profiling: Quantify gene expression levels

• Alternative splicing: Which mRNAs are generated from the same gene?

• microRNA: Where is the genomic source, which genes are regulated?

7.14 RNA-Seq - Alternative Splicing

Transcription

Splicing

Translation

DNA

pre-mRNA

mRNA

protein

5' UTR 3' UTR
Open reading

frame

Exon

Introns

Promoter
Enhancers

Exon Exon Exon Exon

Two approaches two determine splice variants:

1. Cut the genome at known splice sites and map mRNA reads onto combinations of merged genome fragments

2. Map as many mRNA reads as possible onto the genome and use coverage and known introns to detect new splice
sites. Proceed as above.
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Second Approacha:

• Map reads

• Assemble uniquely mapped reads

• Generate possible splices

• Try to map the non-uniquely mapped reads onto splices

aTrapnell C, Pachter L, Salzberg SL. (2009) TopHat: discovering splice junc-
tions with RNA-Seq, Bioinformatics

[19:40 21/4/2009 Bioinformatics-btp120.tex] Page: 1106 1105–1111

C.Trapnell et al.

While the QPALMA pipeline has organizational similarities to
TopHat, there are major differences. First, QPALMA uses a training
step that requires a set of known junctions from the reference
genome. Second, the QPALMA pipeline’s initial mapping phase
uses Vmatch (Abouelhoda et al., 2004), a general-purpose suffix
array-based alignment program. Vmatch is a flexible, fast aligner,
but because it is not designed to map short reads on machines
with small main memories, it is substantially slower than other
specialized short-read mappers. De Bono et al. report that Vmatch
maps reads at around 644 400 reads per CPU hour against the
120 Mbp Arabidopsis thaliana genome. QPALMA’s runtime appears
to be dominated by its splice site scoring algorithm; its authors
estimate that mapping 71 million RNA-Seq reads to A.thaliana
would take 400 CPU hours, which is ∼180 000 reads per CPU hour.

In this article, we describe TopHat, a software package that
identifies splice sites ab initio by large-scale mapping of RNA-Seq
reads. TopHat maps reads to splice sites in a mammalian genome at
a rate of ∼2.2 million reads per CPU hour. Rather than filtering out
possible splice sites with a scoring scheme, TopHat aligns all sites,
relying on an efficient 2-bit-per-base encoding and a data layout
that effectively uses the cache on modern processors. This strategy
works well in practice because TopHat first maps non-junction
reads (those contained within exons) using Bowtie (http://bowtie-
bio.sourceforge.net), an ultra-fast short-read mapping program
(Langmead et al., 2009). Bowtie indexes the reference genome
using a technique borrowed from data-compression, the Burrows–
Wheeler transform (Burrows and Wheeler, 1994; Ferragina and
Manzini, 2001). This memory-efficient data structure allows Bowtie
to scan reads against a mammalian genome using around 2 GB of
memory (within what is commonly available on a standard desktop
computer). Figure 1 illustrates the workflow of TopHat.

2 METHODS
TopHat finds junctions by mapping reads to the reference in two phases. In the
first phase, the pipeline maps all reads to the reference genome using Bowtie.
All reads that do not map to the genome are set aside as ‘initially unmapped
reads’, or IUM reads. Bowtie reports, for each read, one or more alignment
containing no more than a few mismatches (two, by default) in the 5′-most s
bases of the read. The remaining portion of the read on the 3′ end may have
additional mismatches, provided that the Phred-quality-weighted Hamming
distance is less than a specified threshold (70 by default). This policy is
based on the empirical observation that the 5′ end of a read contains fewer
sequencing errors than the 3′ end. (Hillier et al., 2008). TopHat allows Bowtie
to report more than one alignment for a read (default = 10), and suppresses
all alignments for reads that have more than this number. This policy allows
so called ‘multireads’ from genes with multiple copies to be reported, but
excludes alignments to low-complexity sequence, to which failed reads often
align. Low complexity reads are not included in the set of IUM reads; they
are simply discarded.

TopHat then assembles the mapped reads using the assembly module
in Maq (Li et al., 2008). TopHat extracts the sequences for the resulting
islands of contiguous sequence from the sparse consensus, inferring them
to be putative exons. To generate the island sequences, Tophat invokes the
Maq assemble subcommand (with the -s flag) which produces a compact
consensus file containing called bases and the corresponding reference bases.
Because the consensus may include incorrect base calls due to sequencing
errors in low-coverage regions, such islands may be a ‘pseudoconsensus’:
for any low-coverage or low-quality positions, TopHat uses the reference
genome to call the base. Because most reads covering the ends of exons will
also span splice junctions, the ends of exons in the pseudoconsensus will

Fig. 1. The TopHat pipeline. RNA-Seq reads are mapped against the whole
reference genome, and those reads that do not map are set aside. An initial
consensus of mapped regions is computed by Maq. Sequences flanking
potential donor/acceptor splice sites within neighboring regions are joined
to form potential splice junctions. The IUM reads are indexed and aligned
to these splice junction sequences.

initially be covered by few reads, and as a result, an exon’s pseudoconsensus
will likely be missing a small amount of sequence on each end. In order to
capture this sequence along with donor and acceptor sites from flanking
introns, TopHat includes a small amount of flanking sequence from the
reference on both sides of each island (default = 45 bp).

Because genes transcribed at low levels will be sequenced at low coverage,
the exons in these genes may have gaps. TopHat has a parameter that controls
when two distinct but nearby exons should be merged into a single exon.
This parameter defines the length of the longest allowable coverage gap in
a single island. Because introns shorter than 70 bp are rare in mammalian
genomes such as mouse (Pozzoli et al., 2007), any value less than 70 bp for
this parameter is reasonable. To be conservative, the TopHat default is 6 bp.

To map reads to splice junctions, TopHat first enumerates all canonical
donor and acceptor sites within the island sequences (as well as their
reverse complements). Next, it considers all pairings of these sites that could
form canonical (GT–AG) introns between neighboring (but not necessarily
adjacent) islands. Each possible intron is checked against the IUM reads for
reads that span the splice junction, as described below. By default, TopHat
only examines potential introns longer than 70 bp and shorter than 20 000 bp,
but these default minimum and maximum intron lengths can be adjusted
by the user. These values describe the vast majority of known eukaryotic
introns. For example, more than 93% of mouse introns in the UCSC known
gene set fall within this range. However, users willing to make a small
sacrifice in sensitivity will see substantially lower running time by reducing
the maximum intron length. To improve running times and avoid reporting
false positives, the program excludes donor–acceptor pairs that fall entirely
within a single island, unless the island is very deeply sequenced. An example
of a ‘single island’ junction is illustrated in Figure 2. The gene shown has
two alternate transcripts, one of which has an intron that coincides with the
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7.15 Genome Comparison

• Sequence paired-end reads of an unknown genome (sample)

• Map them onto a known reference genome (target)

• Search for small mutations (SNPs) or large structural variations (rearrangements) between them
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A deletion in the sample induces pairs of reads to be farther apart than predicted.

Inversions, deletions, translocations can also be detected.23

2Korbel JO, Urban AE, Affourtit JP, et al. (2007) Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome, Science
3Bashir A, Volik S, Collins C, Bafna V, Raphael BJ. (2008) Evaluation of paired-end sequencing strategies for detection of genome rearrangements

in cancer, PLoS computational biology
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7.16 Other applications

ChIP-Sequencing4
Metagenomics5
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