Advanced Algorithms in Bioinformatics (P4) Sequence and Structure Analysis

Freie Universität Berlin, Institut für Informatik
David Weese, Sandro Andreotti
Sommersemester 2011

3. Exercise sheet, 27. April 2011

Discussion: 4. May 2011

Exercise 1.

Show that the following observation holds for the bitvectors used in Myer's algorithm with text t and pattern p :

$$
D 0_{i, j} \Leftrightarrow\left(p_{i}=t_{j}\right) \text { OR } V N_{i, j-1} \text { OR } H N_{i-1, j}
$$

Exercise 2.

The following lemma is central to the PEX algorithm:
Lemma 1. Let O cc match P with k errors, $P=p^{1}, \ldots, p^{j}$ be a concatenation of subpatterns, and a_{1}, \ldots, a_{j} be nonnegative integers such that $A=\sum_{i=1}^{j} a_{i}$. Then, for some $i \in 1, \ldots, j$, Occ includes a substring that matches p^{i} with $\left\lfloor a_{i} k / A\right\rfloor$ errors.

1. Following this Lemma show by formal substitution:
(a) Let $O c c$ match P with k errors and $P=p^{1}, \ldots, p^{k+1}$ be a concatenation of subpatterns. Then at least one of the p^{i} matches $O c c$ exactly, for some $i \in 1, \ldots, k+1$.
(b) Let $O c c$ match P with $2 k+1$ errors and $P=p^{1}, \ldots, p^{k+1}$ be a concatenation of subpatterns. Then at least one of the p^{i} matches $O c c$ with at most one error, for some $i \in 1, \ldots, k+1$.
2. Prove Lemma 1.

Exercise 3.

Find the pattern $P=$ filter in the text $T=$ pex_hierarchical_verification_filter with at most $k=2$ errors. Compare the verification costs of non-hierarchical filtering directly following Lemma 1 (split pattern into $k+1$ subpatterns and search for perfect matches) and the PEX algorithm.

Exercise 4.

The following lemma is central to the (ungapped) Quasar algorithm. Prove it.
Lemma 2. Let P and S be strings of length w with at most k differences. Then P and S share at least $w+1-(k+1) q$ common q-grams.

