11.1 Compressing the FM Index

This exposition has been developed by David Weese. It is based on the following sources, which are all recommended reading:

- 1. P. Ferragina, G. Manzini (2000) *Opportunistic data structures with applications*, Proceedings of the 41st IEEE Symposium on Foundations of Computer Science
- 2. P. Ferragina, G. Manzini (2001) *An experimental study of an opportunistic index*, Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, pp. 269-278
- 3. Johannes Fischer (2010), Skriptum VL Text-Indexierung, SoSe 2010, KIT
- 4. A. Andersson (1996) *Sorting and searching revisited*, Proceedings of the 5th Scandinavian Workshop on Algorithm Theory, pp. 185-197

11.2 RAM Model

From now on we assume the *RAM model* in which we model a computer with a CPU that has registers of w bits which can be modified with logical and arithmetical operations in O(1) time. The CPU can directly access a memory of at most 2^w words.

In the following we assume $n \le 2^w$ so that it is possible to address the whole input. To have a more precise measure, we count memory consumptions in bits. The uncompressed suffix array then does not require O(n) memory but $O(n \log n)$ bits, as $\lceil \log_2 n \rceil$ bits are required to represent any number in [1..n].

11.3 Tables of the FM Index

Let *T* be a text of length *n* over the alphabet Σ and $\sigma = |\Sigma|$ be the alphabet size. We have seen, that for the algorithms **count** and **locate** we need *L* and the tables *C* and **Occ**. Without compression their memory consumption is as follows:

- $L = T^{\text{bwt}}$ is a string of length *n* over Σ and requires $O(n \log \sigma)$ bits
- *C* is an array of length σ over [0..*n*] and requires $O(\sigma \log n)$ bits
- Occ is an array of length $\sigma \times n$ over [0..*n*] and requires $O(\sigma \cdot n \log n)$ bits
- *pos* (if every row is marked) is a suffix array of length *n* over [1..n] and requires $O(n \log n)$ bits

We will present approaches to compress *L*, Occ and *pos*, but omit to compress *C* assuming that σ and log *n* are tolerably small.

11.4 Compressing L

Burrows and Wheeler proposed a move-to-front coding in combination with Huffman or arithmetic coding. In the context of the move-to-front encoding each character is encoded by its index in a list, which changes over the course of the algorithm. It works as follows:

- 1. Initialize a list Y of characters to contain each character in Σ exactly once
- 2. Scan *L* with $i = 1, \ldots, n$
 - (a) Set R[i] to the number of characters preceding character L[i] in the list Y
 - (b) Move character L[i] to the front of Y

R is the MTF encoding of *L*. *R* can again be decoded to *L* in a similar way (Exercise).

Algorithm **move_to_front(L)** shows the pseudo-code of the move-to-front encoding. The array *M* maintains for every alphabet character the number preceding characters in *Y* instead of using *Y* directly.

```
(1) // move_to_front(L)
(2) for j = 1 to \sigma do
     M[j] = j - 1
(3)
 (4) od
 (5) for i = 1 to n do
        // ord maps a character to its rank in the alphabet
 (6)
        x = \operatorname{ord}(L[i])
 (7)
        R[i] = M[x];
 (8)
        for j = 1 to \sigma do
(9)
            if M[j] < M[x] then M[j] = M[j] + 1; fi
(10)
(11)
        od
        M[x] = 0;
(12)
(13) od
(14) return R;
```

Observation 1. The BWT tends to group characters together so that the probability of finding a character close to another instance of the same character is increased substantially:

final				
char	sorted rotations			
(L)				
a	n to decompress. It achieves compression			
0	n to perform only comparisons to a depth			
0	n transformation} This section describes			
0	n transformation} We use the example and			
0	n treats the right-hand side as the most			
а	n tree for each 16 kbyte input block, enc			
а	n tree in the output stream, then encodes			
i	n turn, set \$L[i]\$ to be the			
i	n turn, set \$R[i]\$ to the			
0	n unusual data. Like the algorithm of Man			
a	n use a single set of probabilities table			
е	n using the positions of the suffixes in			
i	n value at a given point in the vector \$R			
е	n we present modifications that improve t			
е	n when the block size is quite large. Ho			
i	n which codes that have not been seen in			
i	n with \$ch\$ appear in the {\em same order			
i	n with \$ch\$. In our exam			
0	n with Huffman or arithmetic coding. Bri			
0	n with figures given by Bell~\cite{bell}.			

Observation 2. The move-to-front encoding replaces equal characters that in *L* are "close together" by "small values" in *R*. In practice, the most important effect is that zeroes tend to occur in runs in R. These can be compressed using an order-0 compressor, e.g. the Huffman encoding.

i	L[i]	R[i]	Y_{next}	
			aeio	
1	а	0	aeio	
2	0	3	oaei	
3	0	0	oaei	
4	0	0	oaei	
5	0	0	oaei	
6	а	1	aoei	
7	а	0	aoei	
8	i	3	iaoe	
9	i	0	iaoe	
10	0	2	oiae	
11	а	2	aoie	
12	e	3	eaoi	
13	i	3	ieao	
14	e	1	eiao	
15	e	0	eiao	
16	i	1	ieao	
17	i	0	ieao	

The Huffman encoding builds a binary tree where leaves are alphabet characters. The tree is balanced such that for every node the leaves in the left and right subtree have a similar sum of occurrences.

Left and right childs are labeled with 0 and 1. The labels on the paths to each leaf define its bit code. The more frequent a character the shorter its bit code. The final sequence H is the bitwise concatenation of bit codes of characters from left to right in R.

The final sequence of bits *H* is:

L = aooooaaii... R = 030001030...H = 0100001100100...

One property of the MTF coding is that the whole prefix R[1..i-1] is required to decode character R[i], the same holds for H. Thus the random accesses to L in algorithm **locate** would take O(n) time. To avoid decompressing from the beginning of H we divide L into blocks of equal length ℓ and compress each block separately.

However, this approach still takes $O(n/\ell)$ time to access *L*. By a simple trick we can determine L[i] using the Occ function. Clearly, the values Occ(c, i) and Occ(c, i-1) differ only for c = L[i]. Thus we can determine both L[i] and Occ(L[i], i) using σ Occ-qeries, which we will see take in sum $O(\sigma)$ time. Using wavelet trees this time can even be reduced to $O(\log \sigma)$.

11.5 Compressing Occ

We reduce the problem of counting the occurrences of a character in a prefix of *L* to counting 1's in a prefix of a bitvector. Therefore we construct a bitvector B_c of length *n* for each $c \in \Sigma$ such that:

$$B_c[i] = \begin{cases} 1 & \text{if } L[i] = c \\ 0 & \text{else} \end{cases}$$

Definition 3. For a bitvector *B* we define $rank_1(B, i)$ to be the number of 1's in the prefix B[1..i]. $rank_0(B, i)$ is defined analogously.

As each 1 in the bitvector B_c indicates an occurrence of c in L, it holds:

$$Occ(c, i) = rank_1(B_c, i)$$

We will see that it is possible to answer a rank query of a bitvector of length *n* in constant time using additional tables of o(n) bits. Hence the σ bitvectors are an implementation of Occ that allows to answer Occ queries in constant time with an overall memory consumption of $O(\sigma n + o(\sigma n))$ bits. Given a bitvector B = B[1..n]. We compute the length $\ell = \lfloor \frac{\log n}{2} \rfloor$ and divide *B* into blocks of length ℓ and superblocks of length ℓ^2 .

- 1. For the *i*-th superblock we count the number of 1's from the beginning of *B* to the end of the superblock in $M'[i] = rank_1(B, i \cdot \ell^2)$. As there are $\lfloor \frac{n}{\ell^2} \rfloor$ superblocks, M' can be stored in $O\left(\frac{n}{\ell^2} \cdot \log n\right) = O\left(\frac{n}{\log n}\right) = o(n)$ bits.
- 2. For the *i*-th block we count the number of 1's from the beginning of the overlapping superblock to the end of the block in $M[i] = rank_1(B[1 + k\ell..n], (i k)\ell)$ where $k = \lfloor \frac{i-1}{\ell} \rfloor \ell$ is the number of blocks left of the overlapping superblock. *M* has $\lfloor \frac{n}{\ell} \rfloor$ entries and can be stored in $O(\frac{n}{\ell} \cdot \log \ell^2) = O(\frac{n \log \log n}{\log n}) = o(n)$ bits.

3. Let *P* be a precomputed lookup table such that for each possible bitvector *V* of length ℓ and $i \in [1..\ell]$ holds $P[V][i] = rank_1(V, i)$. *V* has $2^{\ell} \times \ell$ entries of values at most ℓ and thus can be stored in

$$O\left(2^{\ell} \cdot \ell \cdot \log \ell\right) = O\left(2^{\frac{\log n}{2}} \cdot \log n \cdot \log \log n\right) = O\left(\sqrt{n}\log n \log \log n\right) = o(n)$$

bits.

We now decompose a rank-query into 3 subqueries using the precomputed tables. For a position *i* we determine the index $p = \lfloor \frac{i-1}{\ell} \rfloor$ of next block left of *i* and the index $q = \lfloor \frac{p-1}{\ell} \rfloor$ of the next superblock left of block *p*. Then it holds:

$$rank_1(B, i) = M'[q] + M[p] + P[B[1 + p\ell..(p+1)\ell]][i - p\ell]$$

Note that $B[1 + p\ell..(p + 1)\ell]$ fits into a single CPU register and can therefore be determined in O(1) time. Thus a rank-query can be answered in O(1) time.

11.6 Compressing pos

To compress *pos* we mark only a subset of rows in the matrix \mathcal{M} and store their text positions. Therefore we need a data structure that efficiently decides wether a row $\mathcal{M}_i = T[j]$ is marked and that retrieves *j* for a marked row *i*.

If we would mark every η -th row in the matrix ($\eta > 1$) we could easily decide whether row *i* is marked, e. g. iff $i \equiv 1 \pmod{\eta}$. Unfortunately this approach still has worst-cases where a single *pos*-query takes $O\left(\frac{\eta-1}{\eta}n\right)$ time (excercise).

Instead we mark the matrix row for every η -th text position, i. e. for all $j \in [0, \lceil \frac{n}{\eta} \rceil)$ row i with $\mathcal{M}_i = T^{(1+j\eta)}$ is marked with the text position $pos(i) = 1 + j\eta$. To determine whether a row is marked we could store all marked pairs $(i, 1 + j\eta)$ in a hash map or a binary search tree with key i. Ferragina and Manzini proposed a different approach. They marked every η -th text position for $\eta = \Theta(\log^2 n)$ and divided the matrix in buckets of η adjacent rows. For each marked row they recorded the row offset to the first row of the bucket. This offset takes $O(\log \eta) = O(\log \log n)$ bits.

As each bucket has at most η marked rows they use a *packet B-tree* (Appendix) of $u = O(\log^2 n)$ keys of size $k = O(\log \log n)$ bits. This B-tree supports membership queries in $O(\log_{w/k} u) = O\left(\frac{\log \log n}{\log \log \log \log n}\right) = O(1)$ time.

Each packet B-tree uses space proportional to the number of stored keys. Hence the *pos* data structure has an overall space consumption of $O(\frac{n}{\eta}(\log \log n + \log n))$ bits since with each marked row \mathcal{M}_i they also keep the value *pos*(*i*) using $O(\log n)$ bits.

11.7 Appendix: Packed B-tree

A packed B-tree (Andersson 1996) is a balanced search tree whose nodes store keys of k bits length. Inner nodes store $t = \lfloor \frac{w}{k+1} \rfloor$ keys $y_1 < y_2 < \ldots < y_t$ in sorted order and have t + 1 children. It is easy to see that searching a node in a tree of u leaves then takes $O(\log t \cdot \log_{t+1} u)$ as the tree height is $O(\log_{t+1} u)$ and at each level, the search chooses the child pointer (subtree) whose separation values are on either side of the search value in $O(\log t)$ (binary search on node keys).

The main trick of the packed B-tree is to replace the binary search of the child pointer by a bit-parallel comparison of all the keys in constant time. Let the sorted keys $y_1 < ... < y_t$ of a node be stored in a register Y ascending from left to right each separated by a 1 bit. Let X be a register with a similar layout storing t copies of the search key x each separated by a 0 bit. For the difference Y - X holds that the bit at the separating position left of node key y_i is 0 iff $y_i < x$. If we clear all but the separating bits by logically AND'ing (Y - X) with a corresponding mask M, the result contains a sequence of r 0 bits followed by t - r 1 bits, where r is the rank of x among the keys y_1, \ldots, y_t .

Lemma 4. The rank of x among the keys of a node can be determined in O(1).

Proof: *M* can be precomputed. *X* can be computed from the search key *x* by X = x * (M >> t). We compute (Y - X) AND *M* in *O*(1). The rank of *x* can then be determined in *O*(1) by looking up the result in a precomputed lookup table.

Hence, the whole packed B-tree search takes $O(\log_{t+1} u) = O(\log_{w/k} u)$ time.