
11.1 Compressing the FM Index

This exposition has been developed by David Weese. It is based on the following sources, which are all
recommended reading:

1. P. Ferragina, G. Manzini (2000) Opportunistic data structures with applications, Proceedings of the 41st IEEE
Symposium on Foundations of Computer Science

2. P. Ferragina, G. Manzini (2001) An experimental study of an opportunistic index, Proceedings of the 12th
ACM-SIAM Symposium on Discrete Algorithms, pp. 269-278

3. Johannes Fischer (2010), Skriptum VL Text-Indexierung, SoSe 2010, KIT

4. A. Andersson (1996) Sorting and searching revisited, Proceedings of the 5th Scandinavian Workshop on
Algorithm Theory, pp. 185-197

11.2 RAM Model

From now on we assume the RAM model in which we model a computer with a CPU that has registers of w
bits which can be modified with logical and arithmetical operations in O(1) time. The CPU can directly access
a memory of at most 2w words.

In the following we assume n ≤ 2w so that it is possible to address the whole input. To have a more precise
measure, we count memory consumptions in bits. The uncompressed suffix array then does not require O(n)
memory but O(n log n) bits, as dlog2 ne bits are required to represent any number in [1..n].

11.3 Tables of the FM Index

Let T be a text of length n over the alphabet Σ and σ = |Σ| be the alphabet size. We have seen, that for
the algorithms count and locate we need L and the tables C and Occ. Without compression their memory
consumption is as follows:

• L = Tbwt is a string of length n over Σ and requires O(n log σ) bits

• C is an array of length σ over [0..n] and requires O(σ log n) bits

• Occ is an array of length σ × n over [0..n] and requires O(σ · n log n) bits

• pos (if every row is marked) is a suffix array of length n over [1..n] and requires O(n log n) bits

We will present approaches to compress L, Occ and pos, but omit to compress C assuming that σ and log n are
tolerably small.

11.4 Compressing L

Burrows and Wheeler proposed a move-to-front coding in combination with Huffman or arithmetic coding. In
the context of the move-to-front encoding each character is encoded by its index in a list, which changes over
the course of the algorithm. It works as follows:

1. Initialize a list Y of characters to contain each character in Σ exactly once

2. Scan L with i = 1, . . . ,n

(a) Set R[i] to the number of characters preceding character L[i] in the list Y

(b) Move character L[i] to the front of Y

R is the MTF encoding of L. R can again be decoded to L in a similar way (Exercise).

Algorithm move to front(L) shows the pseudo-code of the move-to-front encoding. The array M maintains
for every alphabet character the number preceding characters in Y instead of using Y directly.

Compressing the FM Index, by David Weese, May 26, 2011, 23:36 11001

(1) // move to front(L)
(2) for j = 1 to σ do
(3) M[j] = j − 1
(4) od
(5) for i = 1 to n do
(6) // ord maps a character to its rank in the alphabet
(7) x = ord(L[i])
(8) R[i] = M[x];
(9) for j = 1 to σ do

(10) if M[j] < M[x] then M[j] = M[j] + 1; fi
(11) od
(12) M[x] = 0;
(13) od
(14) return R;

Observation 1. The BWT tends to group characters together so that the probability of finding a character close
to another instance of the same character is increased substantially:

final
char sorted rotations
(L)
a n to decompress. It achieves compression
o n to perform only comparisons to a depth
o n transformation} This section describes
o n transformation} We use the example and
o n treats the right-hand side as the most
a n tree for each 16 kbyte input block, enc
a n tree in the output stream, then encodes
i n turn, set $L[i]$ to be the
i n turn, set $R[i]$ to the
o n unusual data. Like the algorithm of Man
a n use a single set of probabilities table
e n using the positions of the suffixes in
i n value at a given point in the vector $R
e n we present modifications that improve t
e n when the block size is quite large. Ho
i n which codes that have not been seen in
i n with ch appear in the {\em same order
i n with ch. In our exam
o n with Huffman or arithmetic coding. Bri
o n with figures given by Bell˜\cite{bell}.

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

6

Observation 2. The move-to-front encoding replaces equal characters that in L are ”close together” by ”small
values” in R. In practice, the most important effect is that zeroes tend to occur in runs in R. These can be
compressed using an order-0 compressor, e.g. the Huffman encoding.

i L[i] R[i] Ynext

aeio

1 a 0 aeio

2 o 3 oaei

3 o 0 oaei

4 o 0 oaei

5 o 0 oaei

6 a 1 aoei

7 a 0 aoei

8 i 3 iaoe

9 i 0 iaoe

10 o 2 oiae

11 a 2 aoie

12 e 3 eaoi

13 i 3 ieao

14 e 1 eiao

15 e 0 eiao

16 i 1 ieao

17 i 0 ieao

. . .

The Huffman encoding builds a binary tree where leaves are alphabet characters. The tree is balanced such
that for every node the leaves in the left and right subtree have a similar sum of occurrences.

11002 Compressing the FM Index, by David Weese, May 26, 2011, 23:36

character 0 1 2 3

occurrences in R 10 3 2 5

0

3

1 2

0 1

0 1

0 1

x bit code of x
0 0
1 110
2 111
3 10

Left and right childs are labeled with 0 and 1. The labels on the paths to each leaf define its bit code. The more
frequent a character the shorter its bit code. The final sequence H is the bitwise concatenation of bit codes of
characters from left to right in R.

The final sequence of bits H is:

L = aooooaaii...

R = 030001030...

H = 0100001100100...

One property of the MTF coding is that the whole prefix R[1..i−1] is required to decode character R[i], the same
holds for H. Thus the random accesses to L in algorithm locate would take O(n) time. To avoid decompressing
from the beginning of H we divide L into blocks of equal length ` and compress each block separately.

However, this approach still takes O(n/`) time to access L. By a simple trick we can determine L[i] using the
Occ function. Clearly, the values Occ(c, i) and Occ(c, i − 1) differ only for c = L[i]. Thus we can determine both
L[i] and Occ(L[i], i) using σ Occ-qeries, which we will see take in sum O(σ) time. Using wavelet trees this time
can even be reduced to O(log σ).

11.5 Compressing Occ

We reduce the problem of counting the occurrences of a character in a prefix of L to counting 1’s in a prefix of
a bitvector. Therefore we construct a bitvector Bc of length n for each c ∈ Σ such that:

Bc[i] =

{
1 if L[i] = c
0 else .

Definition 3. For a bitvector B we define rank1(B, i) to be the number of 1’s in the prefix B[1..i]. rank0(B, i) is
defined analogously.

As each 1 in the bitvector Bc indicates an occurrence of c in L, it holds:

Occ(c, i) = rank1(Bc, i) .

We will see that it is possible to answer a rank query of a bitvector of length n in constant time using additional
tables of o(n) bits. Hence the σ bitvectors are an implementation of Occ that allows to answer Occ queries in
constant time with an overall memory consumption of O(σn + o(σn)) bits. Given a bitvector B = B[1..n]. We
compute the length ` =

⌊ log n
2

⌋
and divide B into blocks of length ` and superblocks of length `2.

B
blocks

superblocks

. . .

. . .

. . .

`2 `

1. For the i-th superblock we count the number of 1’s from the beginning of B to the end of the superblock
in M′[i] = rank1(B, i · `2). As there are

⌊
n
`2

⌋
superblocks, M′ can be stored in O

(
n
`2 · log n

)
= O

(
n

log n

)
= o(n)

bits.

2. For the i-th block we count the number of 1’s from the beginning of the overlapping superblock to the
end of the block in M[i] = rank1

(
B[1 + k`..n], (i − k)`

)
where k =

⌊
i−1
`

⌋
` is the number of blocks left of the

overlapping superblock. M has
⌊

n
`

⌋
entries and can be stored in O

(
n
` · log `2

)
= O

(n log log n
log n

)
= o(n) bits.

Compressing the FM Index, by David Weese, May 26, 2011, 23:36 11003

3. Let P be a precomputed lookup table such that for each possible bitvector V of length ` and i ∈ [1..`] holds
P[V][i] = rank1(V, i). V has 2` × ` entries of values at most ` and thus can be stored in

O

(
2` · ` · log `

)
= O

(
2

log n
2 · log n · log log n

)
= O

(√
n log n log log n

)
= o(n)

bits.

We now decompose a rank-query into 3 subqueries using the precomputed tables. For a position i we determine
the index p =

⌊
i−1
`

⌋
of next block left of i and the index q =

⌊ p−1
`

⌋
of the next superblock left of block p. Then it

holds:
rank1(B, i) = M′[q] + M[p] + P

[
B[1 + p`..(p + 1)`]

][
i − p`

]
.

Note that B[1 + p`..(p + 1)`] fits into a single CPU register and can therefore be determined in O(1) time. Thus
a rank-query can be answered in O(1) time.

11.6 Compressing pos

To compress pos we mark only a subset of rows in the matrixM and store their text positions. Therefore we
need a data structure that efficiently decides wether a rowMi = T[j] is marked and that retrieves j for a marked
row i.

If we would mark every η-th row in the matrix (η > 1) we could easily decide whether row i is marked, e. g. iff
i ≡ 1 (mod η). Unfortunately this approach still has worst-cases where a single pos-query takes O

(
η−1
η n

)
time

(excercise).

Instead we mark the matrix row for every η-th text position, i. e. for all j ∈
[
0..d n

η e

)
row i with Mi = T(1+ jη)

is marked with the text position pos(i) = 1 + jη. To determine whether a row is marked we could store all
marked pairs (i, 1 + jη) in a hash map or a binary search tree with key i. Ferragina and Manzini proposed a
different approach. They marked every η-th text position for η = Θ(log2 n) and divided the matrix in buckets
of η adjacent rows. For each marked row they recorded the row offset to the first row of the bucket. This offset
takes O(log η) = O(log log n) bits.

As each bucket has at most η marked rows they use a packet B-tree (Appendix) of u = O(log2 n) keys of size
k = O(log log n) bits. This B-tree supports membership queries in O(logw/k u) = O

(log log n
log log n−log log log n

)
= O(1)

time.

Each packet B-tree uses space proportional to the number of stored keys. Hence the pos data structure has an
overall space consumption of O

(
n
η (log log n + log n)

)
bits since with each marked rowMi they also keep the

value pos(i) using O(log n) bits.

11.7 Appendix: Packed B-tree

A packed B-tree (Andersson 1996) is a balanced search tree whose nodes store keys of k bits length. Inner nodes
store t =

⌊
w

k+1

⌋
keys y1 < y2 < . . . < yt in sorted order and have t + 1 children. It is easy to see that searching a

node in a tree of u leaves then takesO(log t · logt+1 u) as the tree height isO(logt+1 u) and at each level, the search
chooses the child pointer (subtree) whose separation values are on either side of the search value in O(log t)
(binary search on node keys).

The main trick of the packed B-tree is to replace the binary search of the child pointer by a bit-parallel comparison
of all the keys in constant time. Let the sorted keys y1 < . . . < yt of a node be stored in a register Y ascending
from left to right each separated by a 1 bit. Let X be a register with a similar layout storing t copies of the
search key x each separated by a 0 bit. For the difference Y − X holds that the bit at the separating position
left of node key yi is 0 iff yi < x. If we clear all but the separating bits by logically AND’ing (Y − X) with a
corresponding mask M, the result contains a sequence of r 0 bits followed by t − r 1 bits, where r is the rank of
x among the keys y1, . . . , yt.

11004 Compressing the FM Index, by David Weese, May 26, 2011, 23:36

Lemma 4. The rank of x among the keys of a node can be determined in O(1).

Proof: M can be precomputed. X can be computed from the search key x by X = x ∗ (M >> t). We compute
(Y−X) AND M inO(1). The rank of x can then be determined inO(1) by looking up the result in a precomputed
lookup table.

Hence, the whole packed B-tree search takes O(logt+1 u) = O(logw/k u) time.

	Compressing the FM Index
	RAM Model
	Tables of the FM Index
	Compressing L
	Compressing Occ
	Compressing pos
	Appendix: Packed B-tree

