10.1 Burrows-Wheeler transform

This exposition has been developed by David Weese. It is based on the following sources, which are all
recommended reading:

1. M. Burrows and D. J. Wheeler (1994) A Block-sorting Lossless Data Compression Algorithm, SRC Research
Report 124

2. G. Navarro and V. Mdkinen (2007) Compressed Full-Text Indexes, ACM Computing Surveys 39(1), Article
no. 2 (61 pages), Section 5.3

3. D. Adjeroh, T. Bell, and A. Mukherjee (2008) The Burrows-Wheeler Transform: Data Compression, Suffix
Arrays and Pattern Matching, Springer

10.2 Motivation

We have seen the suffix array to be an efficient data structure for exact string matching in a fixed text. However,
for large texts like the human genome of about 3 billion basepairs, the text and the suffix array alone would
consume 15 Gb of memory. To solve the exact string matching in optimal O(m + p) time (m=pattern length,
p=number of occurrences) we would need an enhanced suffix array of 3 - (1 + 4 + 4 + 4) Gb = 39 Gb of memory.

Both cases exceed the amount of physical memory of a typical desktop computer, therefore we need a different
data structure with a smaller memory footprint. Burrows and Wheeler proposed in 1994 a lossless compression
algorithm (now used in bzip2). The algorithm transforms a given text into the so called Burrows-Wheeler
transform (BWT), a permutation of the text that can be back transformed. The transformed text can in general
be better compressed than the original text as in the BWT equal characters tend to form consecutive runs which
can be compressed using run-length encoders.

We will see that it is possible to conduct exact searches using only the compressed BWT and some auxiliary
tables.

10.3 Definitions

We consider a string T of length n. For i, j € IN we define:
o [ijl:==1{i,i+1,...,}}

[i..j) = [i.j—1]
T[] is the i-th character of T.

Tli..j] :== T[{]T[i + 1] ... T[j] is the substring from the i-th to the j-th character

We start counting from 1,i.e. T = T[1..n]

|T| denotes the string length, i.e. [T| = n

The concatenation of strings X, Y is denoted as X - Y, e.g. T = T[1..i] - T[i + 1..n] for i € [1..n)

Definition 1 (cyclic shift). Let T = T[1..n] be a text over the alphabet * that ends with unique character T[n] = $,
which is the lexicographically smallest character in X. The i-th cyclic shift of T is T[i..n] - T[1..i — 1] for i € [1..n]
and denoted as T®.

Example 2. T = mississippi$
TO = mississippi$
T® = ssissippi$mi

TM = $mississippi

The FM Index, by David Weese, July 11, 2011, 11:18 10001

10.4 Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT) can be obtained by the following steps:

1. Form a conceptual matrix M whose rows are the 7 cyclic shifts of the text T
2. Lexicographically sort the rows of M.
3. Construct the transformed text T""! by taking the last column of M.
The transformed text T""! in the last column is also denoted as L (last). Notice that every row and every column

of M, hence also the transformed text L is a permutation of T. In particular the first column of M, call it F
(first), is obtained by lexicographically sorting the characters of T (or, equally, the characters of L).

Example 3. Form M and sort rows lexicographically:

F L
mississippi$ $mississipp i
ississippi$m i$mississipp
ssissippi$mi ippifmississ
sissippif$mis issippi$mis s
issippif$miss ississippi$m
ssippi$missi sort mississippi §
sippi$missis = pi$mississip
ippifmississ ppifmississ i
ppifmississi sippi$missi s
pifmississip sissippi$mi s
i$mississipp ssippi$miss i
$mississippi s sissippi$m i

The transformed string L usually contains long runs of identical symbols and therefore can be efficiently
compressed using move-to-front coding, in combination with statistical coders.

10.5 Constructing the BWT

Note that when we sort the rows of M we are essentially sorting the suffixes of T. Hence, there is a strong
relation between the matrix M and the suffix array A of T.

i TO i T® A TI[A[j].n]
1 mississippi$ 12 $mississippi 12§
2 ississippi$m 11 i$mississipp 11 i
3 ssissippi$mi 8 ippi$mississ 8 ippi$
4 sissippi$mis 5 issippif$miss 5 issippi$
5 issippi$miss 2 ississippi$m 2 ississippi$
6 ssippi$missi sort 1 mississippi$ = 1 mississippi$
7 sippi$missis = 10 pi$mississip 10 pi$
8 ippif$mississ 9 ppi$mississi 9 ppi$
9 ppifmississi 7 sippi$missis 7 sippi$
10 pi$mississip 4 sissippi$mis 4 sissippi$
11 i$mississipp 6 ssippi$missi 6 ssippi$
12 $mississippi 3 ssissippi$mi 3 ssissippi$
Lemma 4. The Burrows-Wheeler transform T"! can be constructed from the suffix array A of T. It holds:
o] = { TIA[]-1] i Ali]>1
$ else

Proof: Since T is terminated with the special character $, which is lexicographically smaller than any other
character and occurs only at the end of T, a comparison of two shifts ends at latest after comparing a $. Hence
the characters right of the $ do not influence the order of the cyclic shifts and they are sorted exactly like the
suffices of T. For each suffix starting at position A[] the last column contains the preceding character at position
Ali] = 1 (or n resp.).

10002 The FM Index, by David Weese, July 11, 2011, 11:18

Corollary 5. The Burrows-Wheeler transform of a text of length n can be constructed in O(n) time.
Corollary 6. The i-th row of M contains the Alil-th cyclic shift of T, i.e. M; = TAD,

10.6 Reverse transform

One interesting property of the Burrows-Wheeler transform T°"! is that the original text T can be reconstructed
by a reverse transform without any extra information. Therefore we need the following definition:

Definition 7 (L-to-F mapping). Let M be the sorted matrix of cyclic shifts of the text T. LF is a function
LF : [1..n] — [1..n] that maps the rank of a cyclic shift X to the rank of X" which is X shifted by one to the right:

LF() = f & My =M

LF represents a one-to-one correspondence between elements of F and elements of L, and L[i] = F[LF[{]] for all
i € [1..n]. Corresponding characters stem from the same position in the text. That can be concluded from the
following equivalence:

Mg =M™

TALD = @A™

TWIfD) = T(Al+n-1)
Alfl=Alll+(n-1) (mod n)

LF() = f

t1¢0¢Q

Example 8. T = mississippi$. It holds LF(1) = 2 as the cyclic shift in row 1 of M shifted by one to the right
occurs in row 2. LF(2) = 7 as the cyclic shift in row 2 of M shifted by one to the right occurs in row 7. For the
same reason holds LF(7) = 8

i LF@)

T2 § mississi 1 2
Tav m;\ [p] . 7
i ppifmissjf s 3 9

i ssippi s 4 10

i ssi m 5 6

m yfsissippi $ 6 1

700 @ i$missis @ 7 8
T® @mt i 8 3
s ippifmissi s 9 11

s issippi$mi s 10 12

s sippi$miss i 1 4

S sissippi$m i 12 5

Thus the first character in row f stems from position A[f] in the text. That is the same position the last character
in row [stems from. One important observation is that the relative order of two cyclic shifts that end with the
same character is preserved after shifting them one to the right.

Observation 9 (rank preservation). Let i, j € [1..n] with L[i] = L[j]. If i < j then LF[i] < LF[j] follows.
Proof: From L[i] = L[j] and i < j follows M;[1..n — 1] <, M;[1..n —1]. Thus holds:

LiE]-Mi[l.n—=1] <. L[jI-M;[1l.n-1]
M < MO
i lex]
MiFip < Mo
LF[]] < LF[f]

D

The FM Index, by David Weese, July 11, 2011, 11:18 10003

Observation [J] allows to compute the LF-mapping without using the suffix array as the i-th occurrence of a
character « in L is mapped to the i-th occurrence of a in F.

Example 10. T = mississippi$. The L-to-F mapping preserves the relative order of indices of matrix rows
that end with the same character. The increasing sequence of all indices 3 < 4 < 9 < 10 of rows that end with s
is mapped to the increasing and contiguous sequence 9 < 10 < 11 < 12.

F L i LF(@)

$ mississipp i 1 2

i $mississip p 2 7

i ppifmissis 3 9

i ssippi$mi 4 10

1 ssissipfi 5

m issi 6 1

pi$ 7

p 8 3
9 11

% 10 12
(pg%(i 11 4
sissippifm i 12 5

Definition 11. Let T be a text of length n over an alphabet ~ and L the BWT of T.

e Let C: X — [0..n] be a function that maps a character ¢ € X to the total number of occurrences in T of the
characters which are alphabetically smaller than c.

e LetOcc: X x[1..n] — [1..n] be a function that maps (c, k) € X X [1..n] to the number of occurrences of ¢ in
the prefix L[1..k] of the transformed text L.

Theorem 12. For the L-to-F mapping LF of a text T holds:
LF(i) = C(L[7]) + Occ(L[i], i)

Proof: Let & = L[i]. Of all occurrences of the character « in L, Occ(L[7], i) gives index of the occurrence at
position i starting counting from 1. C(L[i]) + j is the position of the j-th occurrence of a in F starting counting
from 1. With j = Occ(L[i], i) the j-th occurrence of a in L is mapped to the j-th occurrence of a in F.

How can we back-transform L to T? With the L-to-F mapping we reconstruct T from right to left by cyclic
shifting by one to the right beginning with T® and extracting the first characters. That can be done using the

following properties:

o The last character of T is $, whose only occurrence in F is F[1], thus M; = T is T shifted by one to the
right.
o Miray = T = 701 ig T shifted by 2 to the right. Therefore F[LF(1)] is the character before the last

onein T.

e The character T[n —i] is F[LF(LF(...LF(1)...)].

i times LF

For the reverse transform we need F and the functions C and Occ. C and F can be obtained by bucket sorting
L. LF only uses values Occ(L[{], i) which can be precomputed in an array of size n by a sequential scan over L.
The pseudo-code for the reverse transform of L = T°"! is given in algorithm reverse_transform. We replaced F
by L using F[LF(i)] = L[i] and F[1] = §.

Example 13. Reverse transform L = ipssm$pissii of lengthn = 12 over the alphabet = = {$, i,m, p, s}. First, we
count the number of occurrences 1, of every character @ € L in L and compute the partial sums C(a) = Y5, 11
of characters smaller than a to obtain C.

10004 The FM Index, by David Weese, July 11, 2011, 11:18

1) // reverse_transform(L,Occ,C)
@i=1j=nc=$%;
3 while (j > 0) do

WL

4@ Tljfl=¢

(5) c=L[i];

(6) i =C(c) + Occ(c, 0);
7) ji=ji-1

® od

) return T;

F is the concatenated sequence of runs of n, many characters « in increasing order:

F — $"s . i”i . m”m . p”p . Sns
= $iiiimppssss

For every i we precompute Occ(L[i], i) by sequentially scanning L and counting the number of occurrences of
L[i] in L up to position i. That can be done during the first run, where we determine the values n,.

1 2 3 5 6 10 1

i 4 7 8 9
Occ(Lfil,d |1 1 1 2 1 1 2 2 3 4

Begin in row i = 1:
Extract the character T[n] = F[1] = §
T = $

Proceed with row i = LF(i):
i=CL[1])+Occ(L[1],)=1+1=2
Extract the character T[n — 1] = F[2] = 1
T= i$

Proceed with row i = LF(i):
i=C(L[2])+Occ(L[2],2) =6+1=7
Extract the character T[n — 2] = F[7] = p
T= pi$

Proceed with row i = LF(i):

i=C(L[7]) + Occ(L[7],7) =6+2=38
Extract the character T[n — 3] = F[8] = p
T = ppi$

Proceed with row i = LF(i):
i=C(L[8])+ Occ(L[8],8)=1+2=3
Extract the character T[n — 4] = F[3] = 1
T= ippi$

Proceed with row i = LF(i):
i=C(L[3])+ Occ(L[3],3)=8+1=9
Extract the character T[n — 5] = F[9] = s
T= sippi$

Proceed with row i = LF(i):

i=C(L[9]) + Occ(L[9],9) =8+3 =11
Extract the character T[n — 6] = F[11] = s
T= ssippi$

Proceed with row i = LF(i):

i=C(L[11]) + Occ(L[11],11) =1+3 =4
Extract the character T[n — 7] = F[4] = 1
T= issippi$

Proceed with row i = LF(i):

i=C(L[4]) + Occ(L[4],4)=8+2=10
Extract the character T[n — 8] = F[10] = s
T = sissippi$

12

4

The FM Index, by David Weese, July 11, 2011, 11:18 10005

Proceed with row i = LF(i):

i =C(L[10]) + Occ(L[10],10) =8+4 =12
Extract the character T[n — 9] = F[12] = s
T = . ssissippi$

Proceed with row i = LF(i):

i=C(L[12]) + Occ(L[12],12) =1+4 =5
Extract the character T[n — 10] = F[5] = 1
T = .ississippi$

Proceed with row i = LF(i):

i=C(L[5]) + Occ(L[5],5)=5+1=6
Extract the character T[1] = F[6] = m

T =mississippi$

10.7 Backward search

This exposition has been developed by David Weese. It is based on the following sources, which are all
recommended reading:

1. P. Ferragina, G. Manzini (2000) Opportunistic data structures with applications, Proceedings of the 41st IEEE
Symposium on Foundations of Computer Science

2. P. Ferragina, G. Manzini (2001) An experimental study of an opportunistic index, Proceedings of the 12th
ACM-SIAM Symposium on Discrete Algorithms, pp. 269-278

For a pattern P = P[1..m] we want to count the number of occurrences in a text T = T[1..m] given its Burrows-
Wheeler transform L = T?*. If we would have access to the conceptual matrix M we could conduct a binary
search like in a suffix array. However, as we have direct access to only F and L we need a different approach.

Ferragina and Manzini proposed a backward search algorithm that searches the pattern from right to left by
matching growing suffixes of P. It maintains an interval of matches and transforms the interval of matches of
a suffix of P to an interval of the suffix which is one character longer. At the end, the length of the interval of
the whole pattern P equals the number of occurrences of P.

Occurrences can be represented as intervals due to the following observation:

Observation 14. For every suffix of P[j..m] of P the matrix rows M; with prefix P[j..m] form a contiguous block.
Thus there are a, b € [1..m] such that i € [a..b] & M;[1..m — j+ 1] = P[j..m].

Proof: That is direct consequence of the lexicographical sorting of cyclic shifts in M. Note that [a..b] = 0 for
a>b.

Consider [a;..b;] to be the interval of matrix rows beginning with P; = P[j..m]. In that interval we search cyclic
shifts whose matching prefix is preceded by ¢ = P[j — 1] in the cyclic text, i. e. matrix rows that end with c. If
we shift these rows by 1 to the right they begin with P[j — 1..m] and determine the next interval [a;_1..b; 1].

Matrix rows that end with c are occurrences of c in L[a;..b;]. The L-to-F mapping of the first and last occurrence
yields a;-1 and b (rank preservation, lemma 9).

The L-to-F mapping maps the i-th c in L to the i-th ¢ in F. How to determine i for the first and last c in L[a;..b;]
without scanning ?

In L are Occ(c, a; — 1) occurrences of ¢ before the first occurrence in L[a;..b;], hence:

ir = 0cc(c,aj—1)+1

i; the number of the last occurrence of ¢ in L[a;..b;] equals the number of occurrences of ¢ in L[1..b;]:

i = Occ(c, b))

Now, we can determine a;_; and b; 1 by:

C(c) + Oce(c,aj— 1) + 1
C(c) + Occ(c, b))

aj_1
bj1

10006 The FM Index, by David Weese, July 11, 2011, 11:18

1) // count(P[1..m])
@ i=mua=1,b=mn

3 while (a<b) A (i =1))do

4 ¢ = P[i];

(5) a=C()+0Occ(c,a—-1)+1;

(6) b = C(c) + Occ(c, b);

(7) i=i—1;

(8 od

9 if (b < a) then return "not found”;
(10) else return “found (b — a + 1) occurrences”;
) fi

Algorithm count computes the number of occurrences of P[1..m] in T[1..n]:
Example 15. T = mississippi$. Search P = ssi.

Initialization: We begin with the empty suffix € which is a prefix of every suffix, hence we initialize a,,.1 = 1
and by,41 = n.

F

a, — $ mississipp

o

-

$mississip

-

ppif$missis

-

ssippi$mis
ssissippi$
ississippi
ifmississi
pi$mississ

ippi$missi

w n H T ».v B n n T

issippi$mi

-

sippi$miss

w n n n B T B =

M-

by — sissippif$m

Searching P5: From all matrix rows we search those beginning with the last pattern character P[3] = i. From
Occ(x, 0) = 0 and Occ(x, n) = n, follows a,, = C(x) + 1 and b,, = C(x + 1).

F L F L

a; — $ mississipp $ mississipp i

i $mississip p $mississip p

i ppi$missis s [i] ppismissis s

i ssippifmis s ssippif$mis s

i ssissippi$ m ssissippi$ m

m ississippi $ m ississippi $

p i$mississi p = p i$mississi p

p pi$mississ p pifmississ i

s ippifmissi s s ippifmissi s

S issippi$mi s s issippi$mi s

s sippi$miss s sippif$miss i

by — S sissippi$m S sissippi$m i
a; =1 a3 =C(i)+1=1+1
by =12 by=C@A)+n;=1+4

Searching P,: From all rows beginning with P3 we search those beginning with P[2] = s. In L we count the
s’s in the part before the interval (=0) and including the interval (=2) to L-to-F map the first and last s in the
interval.

The FM Index, by David Weese, July 11, 2011, 11:18 10007

F L F L
$ mississipp 1 $ mississipp i
a — i $mississip p i $mississip p
i ppifmissis |E| i ppifmissis s
i ssippi$mis IEl i ssippi$mis s
by — i ssissippi$ m i ssissippi$ m
m ississippi $ m ississippi $
p ifmississi p = p if$mississi p
p pifmississ i p pifmississ i
s ippifmissi s |E| ippifmissi s
s issippifmi s |E| issippi$mi s
s sippifmiss i s sippif$miss i
s sissippi$m i S sissippi$m i
a; =2 a, =C(s)+0Occ(s, 1)+1=8+0+1
by =5 b, = C(s) + Occ(s,5) =8 +2

Searching P;: From all matrix rows beginning with P, we search those beginning with P[1] = s.

F L F L
$ mississipp 1 $ mississipp i
i $mississip p i $mississip p
i ppifmissis s i ppifmissis s
i ssippif$mis s i ssippi$mis s
i ssissippi$ m i ssissippi$ m
m ississippi $ m ississippi $
p i$mississi p = p iSmississi p
p pifmississ i p pifmississ i
a — s ippif$missi |E| s ippifmissi s
b, — s issippi$mi s issippi$mi s
s sippifmiss i sippifmiss i
s sissippifm i |E| sissippifm i
a =9 a; =C(s)+0Occ(s,8)+1=8+2+1
b, =10 by = C(s) + Occ(s,10) =8 + 4

Found the interval for P: [a;..D;] is the interval of matrix rows with prefix P, thus P has b; —a; +1 = 2 occurrences
in the text T.

$mississippi
i$mississipp
ippi$mississ
issippi$miss
ississippi$m
mississippi$
pi$mississip
ppif$mississi
sippif$missis
sissippi$mis
am - ssippif$missi
by — ssissippi$mi

{11211
b1=12

10008 The FM Index, by David Weese, July 11, 2011, 11:18

10.8 Locate matches

We have seen how to count occurrences of a pattern P in the text T, but how to obtain their location in the text?
Algorithm count determines the indexes a,a + 1, ..., b of matrix rows with prefix P. As cyclic shifts correspond
to the suffixes of T, with a suffix array A of T we would be able to get the corresponding text position pos(i) of
the suffix in row i. It holds pos(i) = A[i].

We will now see that it is not necessary to have given the whole suffix array of 4n bytes of memory. It suffices
to have a fraction of the suffix array available to compute pos(i) for every i € [1..n].

The idea is as following. We logically mark a suitable subset of rows in the matrix. For the marked rows we
explicitly store the start positions of the suffixes in the text. If i is marked row pos(i) is directly available. If i is
not marked, the algorithm locate uses the L-to-F-mapping to find the row i; = LF(i) orresponding to the suffix
T[pos(i) — 1..n]. This procedure is iterated v times until we reach a marked row i, for which pos(i,) is available;
then we set pos(i) = pos(i,) + v.

For a row i, algorithm locate determines the location of the corresponding occurrence in T[1..n].

@ // locate(i)

@i =i

3 v=0;

4 while (row 7’ is not marked) do
®) c=L[I"]);

[

(6) i’ = C(c) + Occ(c, i');
7) v=0v+1;

(8 od

(9) return pos(i’) + v;

locate(i) is called for every i = [a..b], where [a..b] is interval of occurrences computed by count(P). We call the
conjunction of both algorithms and their required data structures the FM Index.

	Burrows-Wheeler transform
	Motivation
	Definitions
	Burrows-Wheeler transform
	Constructing the BWT
	Reverse transform
	Backward search
	Locate matches

