
8.1 Linear time suffix array construction

This exposition has been developed by David Weese. It is based on the following sources, which are all
recommended reading:

1. J. Kärkkäinen, P. Sanders (2003) Simple linear work suffix array construction, In Proc. ICALP ’03. LNCS
2719, pp. 943–955

2. J. Kärkkäinen, P. Sanders, S. Burkhardt (2006) Linear work suffix array construction, Journal of the ACM,
53(6): 918–936

8.2 Definitions

We consider a string T of length n. For i, j ∈N0 we define:

• [i.. j] := {i, i + 1, . . . , j}

• [i.. j) := [i.. j − 1]

• T[i] is the i-th character of T.

• T[i.. j] := T[i]T[i + 1] . . .T[j] is the substring from the i-th to the j-th character

• We start counting from 0, i. e. T = T[0..n − 1]

• |T| denotes the string length, i. e. |T| = n

• The concatenation of strings X,Y is denoted as X · Y, e. g. T = T[0..i − 1] · T[i..n − 1] for i ∈ [1..n)

8.3 Lexicographical naming

Definition 1. Given a set of stringsS. A mapφ : S → [0..|S|) is called lexicographical naming if for every X,Y ∈ S
holds: X <lex Y⇔ φ(X) < φ(Y). We call φ(X) the name or rank of X.

The skew algorithm uses the following lemma to reduce the lex. relation of concatenated strings to the relation
of the concatenation of names.

Lemma 2. Given a setS ⊆ Σt of strings having length t and a lex. namingφ forS. Let X1, . . . ,Xk ∈ S and Y1, . . . ,Yl ∈ S

be strings from S. The lexicographical relation of the concatenated strings X1 ·X2 · · ·Xk and Y1 · Y2 · · ·Yl equals the lex.
relation of the strings of names:

X1 · X2 · · · · Xk <lex Y1 · Y2 · · ·Yl
⇔ φ(X1)φ(X2) . . . φ(Xk) <lex φ(Y1)φ(Y2) . . . φ(Yl)

8.4 Outline of the skew algorithm

1. Construct the suffix array A12 of the suffixes starting at positions i . 0 (mod 3). This is done by a recursive
call of the skew algorithm for a string of two thirds the length.

2. Construct the suffix array A0 of the remaining suffixes using the result of the first step.

3. Merge the two suffix arrays into one.

Linear time suffix array construction, by David Weese, June 19, 2011, 15:14 8001

8.5 Step 1: Construct the suffix array A12

We consider a text T of length n and want to create the suffix array A12 for suffixes T[i..n − 1] where 0 < i < n
and i . 0 (mod 3).

In order to call the suffix array algorithm recursively we construct a new text T′ whose suffix array can be used
to derive A12. This is done as follows:

1. (a) Lexicographically name all triples T[i..i + 2]

(b) Construct a text T′ of triple names

(c) Construct suffix array A′ of T′ (recursively)

(d) Transform A′ into A12

8.6 Step 1a: Lexicographically name triples

A triple is a substring of length 3. In the following we only consider triples T[i..i + 2] with i . 0 (mod 3). Let
$ be a character that is not contained in T and less than every other character. We append $$$ to T to obtain
well-defined triples even for i ∈ [n − 2..n]

G A C C C A C C A C C $ $ $

τ1 τ4 τ7 τ10

τ2 τ5 τ8

≡ 1 (mod 3) triples

≡ 2 (mod 3) triples

We lexicographically sort the triples using 3 passes of radix sort. Hereafter we assign τi the lex. rank of the
triple T[i..i + 2]. The τi are now lexicographical names of the triples.

Example (T = GACCCACCACC): Initialize list of triple start positions with
〈
i | i ∈

[
1..n+(n0−n1)

)
∧i . 0 (mod 3)

〉
=

〈1, 2, 4, 5, 7, 8, 10〉. Sort list with radix sort:

i T[i..i + 2]
1 ACC

2 CCC

4 CAC

5 ACC

7 CAC

8 ACC

10 C$$

radix
pass
−→ i T[i..i + 2]

10 C$$
1 ACC
2 CCC
4 CAC
5 ACC
7 CAC
8 ACC

radix
pass
−→ i T[i..i + 2]

10 C$$
4 CAC
7 CAC
1 ACC
2 CCC
5 ACC
8 ACC

radix
pass
−→ i T[i..i + 2] τi

1 ACC 0
5 ACC 0
8 ACC 0

10 C$$ 1
4 CAC 2
7 CAC 2
2 CCC 3

8.7 Step 1b: Construct T′

T′ = t1t2 is the concatenation of strings t1 and t2 of triple names with

t1 = τ1τ4 . . . τ1+3n0

t2 = τ2τ5 . . . τ2+3n2

with n j =
⌈ n− j

3

⌉
n j for j ∈ {0, 1, 2} is the number of triples starting at positions i ≡ j (mod 3) that overlap with the first n text
characters.

The last triple of t1 and t2 possibly ends with $. To ensure that t1 always ends with a separating $, we in case
n ≡ 1 (mod 3)⇔ n0 − n1 = 1 include the extra triple $$$ into the set of triples (in Step 1a) and append its name
to t1 . Therefore t1 contains n1 + (n0 − n1) = n0 triples names.

Now, there is a one-to-one correspondence between suffixes of T′ and the (possibly empty) suffixes T[i..n − 1]
with i . 0 (mod 3).

Example (T = GACCCACCACC): Construct T′ =
〈
τ1+3i | i ∈ [0..n0)

〉
·

〈
τ2+3i | i ∈ [0..n2)

〉

8002 Linear time suffix array construction, by David Weese, June 19, 2011, 15:14

n = 11
n0 =

⌈
11
3

⌉
= 4

n2 =
⌈

11−2
3

⌉
= 3

T′ = τ1 τ4 τ7 τ10 τ2 τ5 τ8

= 0 2 2 1 3 0 0

=̂ ACC CAC CAC C$$ CCC ACC ACC

8.8 Step 1c: Construct the suffix array A′ of T′

T′ is a string of length
⌈

2n−1
3

⌉
over the alphabet [0..|T′|). We recursively use the skew algorithm to construct the

suffix array A′ of T′.

If the names τi are unique amongst the triples, A′ can be directly be derived from T′without recursion (Exercise).

Example (T = GACCCACCACC):

T′ = 0 2 2 1 3 0 0

A′[0] = 6 =̂ 0 =̂ ACC

A′[1] = 5 =̂ 00 =̂ ACCACC

A′[2] = 0 =̂ 0221300 =̂ ACCCACCACC$$...

A′[3] = 3 =̂ 1300 =̂ C$$...

A′[4] = 2 =̂ 21300 =̂ CACC$$...

A′[5] = 1 =̂ 221300 =̂ CACCACC$$...

A′[6] = 4 =̂ 300 =̂ CCCACCACC

8.9 Step 1d: Transform A′ into A12

Suffixes starting at j in t2 start at i = j+n0 in T′ and one-to-one correspond to suffixes starting at 2+3 j = 2+3(i−n0)
in T. Hence they are in correct lex. order.

Suffixes starting at i in t1 one-to-one correspond to suffixes starting at 1 + 3i in T. The t2-tail has no influence
on their order due to the unique triple at the end of t1.

Transform A′ into A12 such that:

A12[i] =

{
1 + 3A′[i] if A′[i] < n0
2 + 3(A′[i] − n0) else

Example (T = GACCCACCACC):

A′[0] = 6 −→ A12[0] = 8
A′[1] = 5 −→ A12[1] = 5
A′[2] = 0 −→ A12[2] = 1
A′[3] = 3 −→ A12[3] = 10
A′[4] = 2 −→ A12[4] = 7
A′[5] = 1 −→ A12[5] = 4
A′[6] = 4 −→ A12[6] = 2

8.10 Step 2: Derive A0 from A12

Extract suffixes Ti with i ≡ 1 (mod 3) from A12 and store i− 1 in A0 in the same order. Use a radix pass to stably
sort A0 by the first suffix character.

This gives the correct lexicographical order as for i < j either

T
[
A0[i]

]
< T

[
A0[j]

]
or

T
[
A0[i]

]
= T

[
A0[j]

]
∧ T

[
A0[i] + 1..n − 1

]
<lex T

[
A0[j] + 1..n − 1

]
holds.

Linear time suffix array construction, by David Weese, June 19, 2011, 15:14 8003

Example (T = GACCCACCACC):

A12 = 8 5 1 10 7 4 2

A0 = 0 9 6 3

A0[0] = 0 =̂ GACCCACCACC

A0[1] = 9 =̂ CC

A0[2] = 6 =̂ CCACC

A0[3] = 3 =̂ CCACCACC

radix
pass
−→ A0[0] = 9 =̂ CC

A0[1] = 6 =̂ CCACC
A0[2] = 3 =̂ CCACCACC
A0[3] = 0 =̂ GACCCACCACC

8.11 Step 3: Merge A12 and A0 into suffix array A

The two sorted suffix arrays are merged by scanning them simultaneously and comparing the suffixes from A0

and A12. If n ≡ 1 (mod 3), the first suffix of A12 must be skipped.

To determine the lex. rank of a suffix in A12 we construct the inverse R12 of A12 such that R12[A12[i]] = i. Two
suffixes i ∈ A0 and j ∈ A12 can be compared using:

Case 1: i ≡ 0 (mod 3) and j ≡ 1 (mod 3)

T[i..n − 1] <lex T[j..n − 1] ⇔

(
T[i] < T[j]

)
∨(

T[i] = T[j] ∧ R12[i + 1] < R12[j + 1]
)

The rank comparison is possible as i + 1 ≡ 1 (mod 3) and j + 1 ≡ 2 (mod 3).

Case 2: i ≡ 0 (mod 3) and j ≡ 2 (mod 3)

T[i..n − 1] <lex T[j..n − 1] ⇔

(
T[i..i + 1] <lex T[j.. j + 1]

)
∨(

T[i..i + 1] =lex T[j.. j + 1] ∧ R12[i + 2] < R12[j + 2]
)

The rank comparison is possible as i + 2 ≡ 2 (mod 3) and j + 2 ≡ 1 (mod 3).

Example (T = GACCCACCACC):

0 1 2 3 4 5 6 7 8 9 10 11 12
T G A C C C A C C A C C $ $

R12 3 7 6 2 5 1 4 0
↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

If n ≡ 1 (mod 3), skip the first element of A12 (this is not the case).

Compare T8 with T9:
T[8..9] = AC <lex CC = T[9..10] ⇒ A[0] = 8

A = 8

↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

Compare T5 with T9:
T[5..6] = AC <lex CC = T[9..10] ⇒ A[1] = 5

A = 8 5

8004 Linear time suffix array construction, by David Weese, June 19, 2011, 15:14

↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

Compare T1 with T9:
T[1] = A < C = T[9] ⇒ A[2] = 1

A = 8 5 1

↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

Compare T10 with T9:
T[10] = C = C = T[9] ∧

R12[11] = 0 < 4 = R12[10] ⇒ A[3] = 10

A = 8 5 1 10

↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

Compare T7 with T9:
T[7] = C = C = T[9] ∧

R12[8] = 1 < 4 = R12[10] ⇒ A[4] = 7

A = 8 5 1 10 7

↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

Compare T4 with T9:
T[4] = C = C = T[9] ∧

R12[5] = 2 < 4 = R12[10] ⇒ A[5] = 4

A = 8 5 1 10 7 4

↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

Compare T2 with T9:
T[2..3] = CC =lex CC = T[9..10] ∧

R12[4] = 6 > 0 = R12[11] ⇒ A[6] = 9

A = 8 5 1 10 7 4 9

↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

Linear time suffix array construction, by David Weese, June 19, 2011, 15:14 8005

Compare T2 with T6:
T[2..3] = CC =lex CC = T[6..7] ∧

R12[4] = 6 > 1 = R12[8] ⇒ A[7] = 6

A = 8 5 1 10 7 4 9 6

↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

Compare T2 with T3:
T[2..3] = CC =lex CC = T[3..4] ∧

R12[4] = 6 > 2 = R12[5] ⇒ A[8] = 3

A = 8 5 1 10 7 4 9 6 3

↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

Compare T2 with T0:
T[2..3] = CC <lex GA = T[0..1] ⇒ A[9] = 2

A = 8 5 1 10 7 4 9 6 3 2

↓

A12 = 8 5 1 10 7 4 2
A0 = 9 6 3 0

↑

All characters of A12 were read. Fill up A with the remainder of A0.

A = 8 5 1 10 7 4 9 6 3 2 0

Done. The resulting suffix array is:

A[0] = 8 =̂ ACC

A[1] = 5 =̂ ACCACC

A[2] = 1 =̂ ACCCACCACC

A[3] = 10 =̂ C

A[4] = 7 =̂ CACC

A[5] = 4 =̂ CACCACC

A[6] = 9 =̂ CC

A[7] = 6 =̂ CCACC

A[8] = 3 =̂ CCACCACC

A[9] = 2 =̂ CCCACCACC

A[10] = 0 =̂ GACCCACCACC

8.12 Linear running time

Assuming that |Σ| = O(n), the running time T (n) of the whole skew-algorithm is the sum of:

• A recursive part which takes T (2n
3) time.

• A non-recursive part which takes O(n) time.

Thus it holds: T (n) = T (2n
3) + O(n) and T (n) = O(1) for n ≤ 3.

Lemma 3. The running time of the skew algorithm is T (n) = O(n).

Proof: Exercise.

8006 Linear time suffix array construction, by David Weese, June 19, 2011, 15:14

8.13 Difference Covers

The key idea of the skew algorithm is to

1. recursively sort a subset I ⊂ R of congruence class ring R

2. deduce the sorting of the remaining classes R \ I.

3. merge I and R \ I

In the original skew algorithm holds R = Z3 = {3Z, 1 + 3Z, 2 + 3Z} and I = {1 + 3Z, 2 + 3Z}. Step 3 was feasible
because for every x ∈ I and y ∈ R \ I there was a ∆ ∈N such that (x + ∆) ∈ I and (y + ∆) ∈ I.

The recursion depth of the skew algorithm heavily depends on λ = |I|

|R|
the factor the text length decreases with.

Is it possible to find I and R yielding a smaller λ and such that step 2 and 3 are still feasible?

Definition 4. For a set of congruence classes R = {mZ, 1 + mZ, . . . , (m− 1) + mZ}we call I to be difference cover
if for any z ∈ R there exist a, b ∈ I such that a − b = z.

Lemma 5. Step 3 of the skew algorithm is feasible for any m, if I is a difference cover of R.

Proof: For any x, y ∈ R there exist a, b ∈ I such that a − b = z with z = x − y. For ∆ := a − x holds

(x + ∆) = x + (a − x) = a ⇒ (x + ∆) ∈ I

and
(y + ∆) = y + (a − x) = a − (x − y) = a − z = b ⇒ (y + ∆) ∈ I .

By combinatorics the size of a set R that is covered by I is limited to:

|R| ≤ 2 ·
(
|I|

2

)
+ 1 = |I|2 − |I| + 1

We call I a perfect difference cover if |R| = |I|2 − |I|+ 1 holds. The following table shows perfect difference covers
in bold:

|I| R minimal difference cover λ
2 Z3 {1, 2} 0,6666. . .
3 Z7 {1, 2, 4} 0,4285. . .
4 Z13 {1, 2, 4, 10} 0,3076. . .
5 Z21 {1, 2, 7, 9, 19} 0,2380. . .
6 Z31 {1, 2, 4, 9, 13, 19} 0,1935. . .
7 Z39 {1, 2, 17, 21, 23, 28, 31} 0,1794. . .
8 Z57 {1, 2, 10, 12, 15, 36, 40, 52} 0,1403. . .
9 Z73 {1, 2, 4, 8, 16, 32, 37, 55, 64} 0,1232. . .
10 Z91 {1, 2, 8, 17, 28, 57, 61, 69, 71, 74} 0,1098. . .
11 Z95 {1, 2, 6, 9, 19, 21, 30, 32, 46, 62, 68} 0,1157. . .
12 Z133 {1, 2, 33, 43, 45, 49, 52, 60, 73, 78, 98, 112} 0,0902. . .

A next greater perfect difference cover is I = {1 + 7Z, 2 + 7Z, 4 + 7Z} for R = Z7 = {7Z, 1 + 7Z, . . . , 6 + 7Z}. It
can be used with the following modifications to the original skew algorithm saving ≈ 20% of running time:

1. Recursively sort the suffixes starting at i ≡ 1, 2, 4 (mod 7).

2. Deduce the sorting of the remaining classes: 4→ 3 and 1→ 0→ 6→ 5.

3. Merge the suffixes of the 5 congruence class sets {0}, {1, 2, 4}, {3}, {5}, {6}. The necessary shift values ∆ for
any x, y ∈ R are:

x, y 0 1 2 3 4 5 6
0 0 1 2 1 4 4 2
1 1 0 0 1 0 3 3
2 2 0 0 6 0 6 2
3 1 1 6 0 5 6 5
4 4 0 0 5 0 4 5
5 4 3 6 6 4 0 3
6 2 3 2 5 5 3 0

Linear time suffix array construction, by David Weese, June 19, 2011, 15:14 8007

8.14 C++ Implementation (DC3)

Source code excerpt from http://www.mpi-sb.mpg.de/˜sanders/programs/suffix/:

// find the suffix array SA of s[0..n-1] in {1..K}ˆn

// require s[n]=s[n+1]=s[n+2]=0, n>=2

void suffixArray(int* s, int* SA, int n, int K) {

int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;

int* s12 = new int[n02 + 3]; s12[n02]= s12[n02+1]= s12[n02+2]=0;

int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;

int* s0 = new int[n0];

int* SA0 = new int[n0];

// generate positions of mod 1 and mod 2 suffixes

// the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1

for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) s12[j++] = i;

// lsb radix sort the mod 1 and mod 2 triples

radixPass(s12 , SA12, s+2, n02, K);

radixPass(SA12, s12 , s+1, n02, K);

radixPass(s12 , SA12, s , n02, K);

// find lexicographic names of triples

int name = 0, c0 = -1, c1 = -1, c2 = -1;

for (int i = 0; i < n02; i++) {

if (s[SA12[i]] != c0 || s[SA12[i]+1] != c1 || s[SA12[i]+2] != c2) {

name++; c0 = s[SA12[i]]; c1 = s[SA12[i]+1]; c2 = s[SA12[i]+2];

}

if (SA12[i] % 3 == 1) { s12[SA12[i]/3] = name; } // left half

else { s12[SA12[i]/3 + n0] = name; } // right half

}

// recurse if names are not yet unique

if (name < n02) {

suffixArray(s12, SA12, n02, name);

// store unique names in s12 using the suffix array

for (int i = 0; i < n02; i++) s12[SA12[i]] = i + 1;

} else // generate the suffix array of s12 directly

for (int i = 0; i < n02; i++) SA12[s12[i] - 1] = i;

// stably sort the mod 0 suffixes from SA12 by their first character

for (int i=0, j=0; i < n02; i++) if (SA12[i] < n0) s0[j++] = 3*SA12[i];

radixPass(s0, SA0, s, n0, K);

// merge sorted SA0 suffixes and sorted SA12 suffixes

for (int p=0, t=n0-n1, k=0; k < n; k++) {

#define GetI() (SA12[t] < n0 ? SA12[t] * 3 + 1 : (SA12[t] - n0) * 3 + 2)

int i = GetI(); // pos of current offset 12 suffix

int j = SA0[p]; // pos of current offset 0 suffix

if (SA12[t] < n0 ?

leq(s[i], s12[SA12[t] + n0], s[j], s12[j/3]) :

leq(s[i],s[i+1],s12[SA12[t]-n0+1], s[j],s[j+1],s12[j/3+n0]))

{ // suffix from SA12 is smaller

SA[k] = i; t++;

if (t == n02) { // done --- only SA0 suffixes left

for (k++; p < n0; p++, k++) SA[k] = SA0[p];

}

} else {

SA[k] = j; p++;

if (p == n0) { // done --- only SA12 suffixes left

for (k++; t < n02; t++, k++) SA[k] = GetI();

}

}

}

delete [] s12; delete [] SA12; delete [] SA0; delete [] s0;

}

http://www.mpi-sb.mpg.de/~sanders/programs/suffix/

	Linear time suffix array construction
	Definitions
	Lexicographical naming
	Outline of the skew algorithm
	Step 1: Construct the suffix array A12
	Step 1a: Lexicographically name triples
	Step 1b: Construct T'
	Step 1c: Construct the suffix array A' of T'
	Step 1d: Transform A' into A12
	Step 2: Derive A0 from A12
	Step 3: Merge A12 and A0 into suffix array A
	Linear running time
	Difference Covers
	C.06ex++ Implementation (DC3)

