8.1 Linear time suffix array construction

This exposition has been developed by David Weese. It is based on the following sources, which are all recommended reading:

- 1. J. Kärkkäinen, P. Sanders (2003) *Simple linear work suffix array construction*, In Proc. ICALP '03. LNCS 2719, pp. 943–955
- 2. J. Kärkkäinen, P. Sanders, S. Burkhardt (2006) *Linear work suffix array construction*, Journal of the ACM, 53(6): 918–936

8.2 Definitions

We consider a string *T* of length *n*. For $i, j \in \mathbb{N}_0$ we define:

- $[i..j] := \{i, i + 1, ..., j\}$
- [*i*..*j*) := [*i*..*j* − 1]
- *T*[*i*] is the *i*-th character of *T*.
- T[i..j] := T[i]T[i + 1] ... T[j] is the substring from the *i*-th to the *j*-th character
- We start counting from **0**, i. e. T = T[0..n 1]
- |T| denotes the string length, i. e. |T| = n
- The concatenation of strings X, Y is denoted as $X \cdot Y$, e.g. $T = T[0..i 1] \cdot T[i..n 1]$ for $i \in [1..n)$

8.3 Lexicographical naming

Definition 1. Given a set of strings S. A map $\phi : S \to [0..|S|)$ is called *lexicographical naming* if for every $X, Y \in S$ holds: $X <_{lex} Y \Leftrightarrow \phi(X) < \phi(Y)$. We call $\phi(X)$ the *name* or *rank* of X.

The skew algorithm uses the following lemma to reduce the lex. relation of concatenated strings to the relation of the concatenation of names.

Lemma 2. Given a set $S \subseteq \Sigma^t$ of strings having length t and a lex. naming ϕ for S. Let $X_1, \ldots, X_k \in S$ and $Y_1, \ldots, Y_l \in S$ be strings from S. The lexicographical relation of the concatenated strings $X_1 \cdot X_2 \cdots X_k$ and $Y_1 \cdot Y_2 \cdots Y_l$ equals the lex. relation of the strings of names:

 $\begin{array}{rcl} X_1 \cdot X_2 \cdots X_k & <_{lex} & Y_1 \cdot Y_2 \cdots Y_l \\ \Leftrightarrow & \phi(X_1)\phi(X_2) \ldots \phi(X_k) & <_{lex} & \phi(Y_1)\phi(Y_2) \ldots \phi(Y_l) \end{array}$

8.4 Outline of the skew algorithm

- 1. Construct the suffix array A^{12} of the suffixes starting at positions $i \neq 0 \pmod{3}$. This is done by a recursive call of the skew algorithm for a string of two thirds the length.
- 2. Construct the suffix array A^0 of the remaining suffixes using the result of the first step.
- 3. Merge the two suffix arrays into one.

8.5 *Step 1:* Construct the suffix array A^{12}

We consider a text *T* of length *n* and want to create the suffix array A^{12} for suffixes T[i..n - 1] where 0 < i < n and $i \neq 0 \pmod{3}$.

In order to call the suffix array algorithm recursively we construct a new text T' whose suffix array can be used to derive A^{12} . This is done as follows:

- 1. (a) Lexicographically name all triples T[i..i + 2]
 - (b) Construct a text T' of triple names
 - (c) Construct suffix array *A*′ of *T*′ (recursively)
 - (d) Transform A' into A^{12}

8.6 Step 1a: Lexicographically name triples

A *triple* is a substring of length 3. In the following we only consider triples T[i..i + 2] with $i \neq 0 \pmod{3}$. Let \$ be a character that is not contained in T and less than every other character. We append \$\$\$ to T to obtain well-defined triples even for $i \in [n - 2..n]$

We lexicographically sort the triples using 3 passes of radix sort. Hereafter we assign τ_i the lex. rank of the triple T[i..i + 2]. The τ_i are now *lexicographical names* of the triples.

Example (T = **GACCCACCACC)**: Initialize list of triple start positions with $\langle i \mid i \in [1..n + (n_0 - n_1)) \land i \neq 0 \pmod{3} \rangle = \langle 1, 2, 4, 5, 7, 8, 10 \rangle$. Sort list with radix sort:

T[i : j = 0]	pass									
I[11 + 2]		i	T[ii + 2]	$\xrightarrow{\text{pass}}$	i	T[ii + 2]	pass	i	T[ii + 2]	$ au_i$
ACC	_	10	C\$ \$		10	C \$ \$		1	ACC	0
CCC		1	ACC		4	CAC		5	ACC	0
CAC		2	сс с		7	CAC		8	ACC	0
ACC		4	CAC		1	ACC		10	C\$\$	1
CAC		5	ACC		2	с с с		4	CAC	2
ACC		7	CAC		5	ACC		7	CAC	2
C\$\$		8	ACC		8	ACC		2	C CC	3
	I [1t + 2] ACC CCC CAC ACC CAC ACC CAC ACC CS\$	$\begin{array}{ccc} \underline{I[11+2]} & \longrightarrow \\ \underline{ACC} & \\ CCC & \\ CAC & \\ ACC & \\ CAC & \\ ACC & \\ CS$ \end{array}$	$ \begin{array}{ccc} 1[ll+2] & \longrightarrow & l \\ \hline ACC & & 10 \\ CCC & & 1 \\ CAC & & 2 \\ ACC & & 4 \\ CAC & & 5 \\ ACC & & 7 \\ C\$\$ & 8 \end{array} $	$\begin{array}{ccccccc} 1[ll+2] & \longrightarrow & l & l[ll+2] \\ \hline ACC & & 10 & C\$\$ \\ CCC & & 1 & ACC \\ CAC & & 2 & CCC \\ ACC & & 4 & CAC \\ CAC & & 5 & ACC \\ ACC & & 7 & CAC \\ C\$\$ & & 8 & ACC \end{array}$	$\begin{array}{cccccc} 1[ll+2] & \longrightarrow & l & 1[ll+2] & \longrightarrow \\ \hline ACC & & 10 & C\$\$ & & \\ CCC & 1 & ACC & & \\ CAC & 2 & CCC & & \\ ACC & 4 & CAC & & \\ CAC & 5 & ACC & & \\ ACC & 7 & CAC & & \\ C\$\$ & 8 & ACC & & \\ \end{array}$	$\begin{array}{ccccccc} 1[ll+2] & \longrightarrow & l & 1[ll+2] & \longrightarrow & l \\ \hline 10 & C\$\$ & & \hline 10 \\ CCC & 1 & ACC & & 4 \\ CAC & 2 & CCC & & 7 \\ ACC & 4 & CAC & & 1 \\ CAC & 5 & ACC & & 2 \\ ACC & 7 & CAC & & 5 \\ C\$\$ & & 8 & ACC & & 8 \end{array}$	$\begin{array}{ccccccccc} 1[\iotal+2] & \longrightarrow & \iota & I[\iotal+2] & \longrightarrow & \iota & I[\iotal+2] \\ \hline ACC & & 10 & C\$\$ & & \hline 10 & C\$\$ & \\ CCC & & 1 & ACC & & 4 & CAC \\ CAC & & 2 & CCC & & 7 & CAC \\ ACC & & 4 & CAC & & 1 & ACC \\ CAC & & 5 & ACC & & 2 & CCC \\ ACC & & 7 & CAC & & 5 & ACC \\ C\$\$ & & 8 & ACC & & 8 & ACC \end{array}$	$\begin{array}{ccccccc} 1[11+2] & \longrightarrow & 1 & 1[11+2] & \longrightarrow & 1 & 1[11+2] & \longrightarrow \\ \hline 10 & C\$\$ & & 10 & C\$\$ & & 10 & C\$\$ & & \\ \hline CCC & 1 & ACC & & 4 & CAC & & \\ CAC & 2 & CCC & 7 & CAC & & \\ ACC & 4 & CAC & & 1 & ACC & & \\ CAC & 5 & ACC & & 2 & CCC & & \\ ACC & 7 & CAC & & 5 & ACC & & \\ CS\$ & 8 & ACC & 8 & ACC & & \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

8.7 *Step 1b:* Construct *T'*

 $T' = t_1 t_2$ is the concatenation of strings t_1 and t_2 of triple names with

$$t_1 = \tau_1 \tau_4 \dots \tau_{1+3n_0}$$
 with $n_j = \left\lceil \frac{n-j}{3} \right\rceil$
 $t_2 = \tau_2 \tau_5 \dots \tau_{2+3n_2}$

 n_j for $j \in \{0, 1, 2\}$ is the number of triples starting at positions $i \equiv j \pmod{3}$ that overlap with the first *n* text characters.

The last triple of t_1 and t_2 possibly ends with \$. To ensure that t_1 always ends with a separating \$, we in case $n \equiv 1 \pmod{3} \Leftrightarrow n_0 - n_1 = 1$ include the extra triple \$\$\$ into the set of triples (in Step 1a) and append its name to t_1 . Therefore t_1 contains $n_1 + (n_0 - n_1) = n_0$ triples names.

Now, there is a one-to-one correspondence between suffixes of T' and the (possibly empty) suffixes T[i..n - 1] with $i \neq 0 \pmod{3}$.

Example (T = **GACCCACCACC):** Construct $T' = \langle \tau_{1+3i} | i \in [0..n_0) \rangle \cdot \langle \tau_{2+3i} | i \in [0..n_2) \rangle$

$$n = 11$$

$$n_{0} = \begin{bmatrix} \frac{11}{3} \end{bmatrix} = 4$$

$$n_{2} = \begin{bmatrix} \frac{11}{3} \end{bmatrix} = 3$$

$$T' = \tau_{1} \quad \tau_{4} \quad \tau_{7} \quad \tau_{10} \quad \tau_{2} \quad \tau_{5} \quad \tau_{8}$$

$$= 0 \quad 2 \quad 2 \quad 1 \quad 3 \quad 0 \quad 0$$

$$\widehat{=} \quad \text{ACC} \quad \text{CAC} \quad \text{CAC} \quad \text{C$$$} \quad \text{CCC} \quad \text{ACC} \quad \text{ACC}$$

8.8 *Step 1c:* Construct the suffix array *A*′ of *T*′

T' is a string of length $\left\lceil \frac{2n-1}{3} \right\rceil$ over the alphabet [0..|T'|). We recursively use the skew algorithm to construct the suffix array *A'* of *T'*.

If the names τ_i are unique amongst the triples, A' can be directly be derived from T' without recursion (Exercise). Example (T = GACCCACCACC):

	T'	=	0	2	2	1	3	0	0	
$\begin{array}{l} A'[0] &= \\ A'[1] &= \\ A'[2] &= \\ A'[3] &= \\ A'[4] &= \\ A'[5] &= \\ A'[6] &= \end{array}$	6 5 0 3 2 1 4	((((((0 00 13 21 22 30	213 00 300 130 0	00 0	((((((AC AC C C C C A C A C A	CCAC CCAC CCCA CCA CCA CCA CCAC	CC ACCACC\$\$ S\$ ACC\$\$ CACC	

8.9 Step 1d: Transform A' into A^{12}

Suffixes starting at *j* in t_2 start at $i = j + n_0$ in *T'* and one-to-one correspond to suffixes starting at $2+3j = 2+3(i-n_0)$ in *T*. Hence they are in correct lex. order.

Suffixes starting at *i* in t_1 one-to-one correspond to suffixes starting at 1 + 3i in *T*. The t_2 -tail has no influence on their order due to the unique triple at the end of t_1 .

Transform A' into A^{12} such that:

$$A^{12}[i] = \begin{cases} 1 + 3A'[i] & \text{if } A'[i] < n_0 \\ 2 + 3(A'[i] - n_0) & \text{else} \end{cases}$$

Example (*T* = **GACCCACCACC**):

8.10 *Step 2:* Derive A^0 from A^{12}

Extract suffixes T_i with $i \equiv 1 \pmod{3}$ from A^{12} and store i - 1 in A^0 in the same order. Use a radix pass to stably sort A^0 by the first suffix character.

This gives the correct lexicographical order as for i < j either

$$T[A^{0}[i]] < T[A^{0}[j]] \text{ or } T[A^{0}[i]] = T[A^{0}[j]] \land T[A^{0}[i] + 1..n - 1] <_{lex} T[A^{0}[j] + 1..n - 1] \text{ holds.}$$

Example (*T* = **GACCCACCACC**):

 $A^{12} = 8 5 1 10 7 4 2$ $A^{0} = 0 9 6 3$

					radix					
$A^{0}[0]$	=	0	Ê	GACCCACCACC	$\xrightarrow{\text{pass}}$	$A^{0}[0]$	=	9	Ê	c c
$A^{0}[1]$	=	9	Ê	CC		$A^{0}[1]$	=	6	Ê	CACC
$A^{0}[2]$	=	6	Ê	CCACC		$A^{0}[2]$	=	3	Ê	CACCACC
$A^{0}[3]$	=	3	Ê	CCACCACC		$A^{0}[3]$	=	0	Ê	GACCCACCACC

8.11 Step 3: Merge A^{12} and A^{0} into suffix array A

The two sorted suffix arrays are merged by scanning them simultaneously and comparing the suffixes from A^0 and A^{12} . If $n \equiv 1 \pmod{3}$, the first suffix of A^{12} must be skipped.

To determine the lex. rank of a suffix in A^{12} we construct the inverse R^{12} of A^{12} such that $R^{12}[A^{12}[i]] = i$. Two suffixes $i \in A^0$ and $j \in A^{12}$ can be compared using:

Case 1: $i \equiv 0 \pmod{3}$ and $j \equiv 1 \pmod{3}$

$$T[i..n-1] <_{lex} T[j..n-1] \iff (T[i] < T[j]) \lor (T[i] = T[j] \land R^{12}[i+1] < R^{12}[j+1])$$

The rank comparison is possible as $i + 1 \equiv 1 \pmod{3}$ and $j + 1 \equiv 2 \pmod{3}$.

Case 2: $i \equiv 0 \pmod{3}$ and $j \equiv 2 \pmod{3}$

$$\begin{split} T[i..n-1] <_{\text{lex}} T[j..n-1] & \Leftrightarrow \quad \left(T[i..i+1] <_{\text{lex}} T[j..j+1]\right) \quad \lor \\ & \left(T[i..i+1] =_{\text{lex}} T[j..j+1] \; \land \; R^{12}[i+2] < R^{12}[j+2]\right) \end{split}$$

The rank comparison is possible as $i + 2 \equiv 2 \pmod{3}$ and $j + 2 \equiv 1 \pmod{3}$.

Example (*T* = **GACCCACCACC**):

If $n \equiv 1 \pmod{3}$, skip the first element of A^{12} (this is not the case).

Compare T_8 with T_9 : $T[8..9] = AC <_{lex} CC = T[9..10] \implies A[0] = 8$

A = 8

Compare T_5 with T_9 : $T[5..6] = AC <_{lex} CC = T[9..10] \implies A[1] = 5$ 8003

A = 8 5

↓ $A^{12} = 8 5 1 10 7 4 2$ $A^0 = 9 \ 6 \ 3$ 0 ↑ Compare T_1 with T_9 : $T[1] = \mathbf{A} < \mathbf{C} = T[9] \implies A[2] = 1$ A = 8 5 1 \downarrow $A^{12} = 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2$ $A^0 = 9 \ 6 \ 3 \ 0$ î Compare T_{10} with T_9 : T[10] = C = C =T[9] Λ $R^{12}[11] = 0 < 4 = R^{12}[10]$ A[3] = 10 \Rightarrow A = 8 5 1 10↓ A^{12} = 8 5 1 10 7 4 2 $A^0 = 9 \ 6 \ 3 \ 0$ ↑ Compare T_7 with T_9 : T[7] = C = C =T[9] Λ $R^{12}[8] = 1 < 4 = R^{12}[10]$ \Rightarrow A[4] = 7A = 8 5 1 10 7T $A^{12} = 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2$ $A^0 = 9 \ 6 \ 3 \ 0$ ↑ Compare T_4 with T_9 : T[4] = C = C =T[9] Λ $R^{12}[5] = 2 < 4 = R^{12}[10]$ \Rightarrow A[5] = 4A = 8 5 1 10 7 4Ţ $A^{12} = 8 5 1 10 7 4 2$ $A^0 = 9 \ 6 \ 3 \ 0$ ↑ Compare T_2 with T_9 : $T[2..3] = CC =_{lex} CC = T[9..10]$ Λ $R^{12}[4] = 6 > 0 = R^{12}[11] \implies A[6] = 9$ A = 8 5 1 10 7 4 9↓ $A^{12} = 8 5 1 10 7 4 2$ $A^0 = 9 \ 6 \ 3 \ 0$ Î

Compare T_2 with T_6 : $T[2..3] = CC =_{lex} CC = T[6..7]$ Λ $R^{12}[4] = 6$ $1 = R^{12}[8]$ \Rightarrow A[7] = 6> A = 8 5 1 10 7 4 9 6 $A^{12} = 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2$ $A^0 = 9 \ 6 \ 3$ 0 1 Compare T_2 with T_3 : $T[2..3] = CC =_{lex} CC = T[3..4]$ Λ $R^{12}[4] = 6$ > 2 = $R^{12}[5]$ \Rightarrow A[8] = 3A = 8 5 1 10 7 4 9 6 3 $A^{12} = 8 5 1 10 7 4 2$ $A^0 = 9 \ 6 \ 3$ 0 î Compare T_2 with T_0 : $T[2..3] = \mathsf{CC} <_{\mathsf{lex}} \mathsf{GA} = T[0..1] \quad \Rightarrow \quad A[9] = 2$ A = 8 5 1 10 7 4 9 6 3 2 $A^{12} = 8 5 1 10 7 4 2$ $A^0 = 9 \ 6 \ 3 \ 0$

All characters of A^{12} were read. Fill up A with the remainder of A^0 .

A = 8 5 1 10 7 4 9 6 3 2 0

1

Done. The resulting suffix array is:

```
A[0] = 8
                       \widehat{=} ACC
                       \widehat{=} ACCACC
 A[1] =
                5
                       \widehat{=} ACCCACCACC
 A[2]
          =
                1
                10 = C
 A[3]
          =
                7
                        \widehat{=} CACC
 A[4]
          =
                        \widehat{=} CACCACC
 A[5] =
                4
                      \begin{array}{c} = & \mathsf{CACCACC} \\ \widehat{=} & \mathsf{CC} \\ \widehat{=} & \mathsf{CCACC} \\ \widehat{=} & \mathsf{CCACCACC} \end{array}
 A[6] = 9
 A[7] = 6
 A[8] = 3
                      \widehat{=} CCCACCACC
 A[9] = 2
A[10] = 0
                     \widehat{=} GACCCACCACC
```

8.12 Linear running time

Assuming that $|\Sigma| = O(n)$, the running time $\mathcal{T}(n)$ of the whole skew-algorithm is the sum of:

- A recursive part which takes $\mathcal{T}(\frac{2n}{3})$ time.
- A non-recursive part which takes *O*(*n*) time.

Thus it holds: $\mathcal{T}(n) = \mathcal{T}(\frac{2n}{3}) + O(n)$ and $\mathcal{T}(n) = O(1)$ for $n \leq 3$.

Lemma 3. The running time of the skew algorithm is $\mathcal{T}(n) = O(n)$. **Proof:** Exercise.

8.13 Difference Covers

The key idea of the skew algorithm is to

- 1. recursively sort a subset $I \subset \mathcal{R}$ of congruence class ring \mathcal{R}
- 2. deduce the sorting of the remaining classes $\mathcal{R} \setminus I$.
- 3. merge *I* and $\mathcal{R} \setminus I$

In the original skew algorithm holds $\mathcal{R} = \mathbb{Z}_3 = \{3\mathbb{Z}, 1+3\mathbb{Z}, 2+3\mathbb{Z}\}$ and $\mathcal{I} = \{1+3\mathbb{Z}, 2+3\mathbb{Z}\}$. Step 3 was feasible because for every $x \in \mathcal{I}$ and $y \in \mathcal{R} \setminus \mathcal{I}$ there was a $\Delta \in \mathbb{N}$ such that $(x + \Delta) \in \mathcal{I}$ and $(y + \Delta) \in \mathcal{I}$.

The recursion depth of the skew algorithm heavily depends on $\lambda = \frac{|I|}{|\mathcal{R}|}$ the factor the text length decreases with. Is it possible to find I and \mathcal{R} yielding a smaller λ and such that step 2 and 3 are still feasible?

Definition 4. For a set of congruence classes $\mathcal{R} = \{m\mathbb{Z}, 1 + m\mathbb{Z}, \dots, (m-1) + m\mathbb{Z}\}$ we call I to be *difference cover* if for any $z \in \mathcal{R}$ there exist $a, b \in I$ such that a - b = z.

Lemma 5. Step 3 of the skew algorithm is feasible for any *m*, if *I* is a difference cover of *R*.

Proof: For any $x, y \in \mathcal{R}$ there exist $a, b \in I$ such that a - b = z with z = x - y. For $\Delta := a - x$ holds

 $(x + \Delta) = x + (a - x) = a \implies (x + \Delta) \in \mathcal{I}$

and

$$(y + \Delta) = y + (a - x) = a - (x - y) = a - z = b \implies (y + \Delta) \in I$$

By combinatorics the size of a set \mathcal{R} that is covered by \mathcal{I} is limited to:

$$|\mathcal{R}| \le 2 \cdot \binom{|\mathcal{I}|}{2} + 1 = |\mathcal{I}|^2 - |\mathcal{I}| + 1$$

We call I a *perfect difference cover* if $|\mathcal{R}| = |I|^2 - |I| + 1$ holds. The following table shows perfect difference covers in bold:

$ \mathcal{I} $	${\mathcal R}$	minimal difference cover	λ
2	\mathbb{Z}_3	{1,2}	0,6666
3	\mathbb{Z}_7	{1, 2, 4}	0,4285
4	\mathbb{Z}_{13}	{1, 2, 4, 10}	0,3076
5	\mathbb{Z}_{21}	{1, 2, 7, 9, 19}	0,2380
6	\mathbb{Z}_{31}	{1, 2, 4, 9, 13, 19}	0,1935
7	\mathbb{Z}_{39}	{1, 2, 17, 21, 23, 28, 31}	0,1794
8	\mathbb{Z}_{57}	{1, 2, 10, 12, 15, 36, 40, 52}	0,1403
9	\mathbb{Z}_{73}	{1, 2, 4, 8, 16, 32, 37, 55, 64}	0,1232
10	\mathbb{Z}_{91}	$\{1, 2, 8, 17, 28, 57, 61, 69, 71, 74\}$	0,1098
11	\mathbb{Z}_{95}	{1, 2, 6, 9, 19, 21, 30, 32, 46, 62, 68}	0,1157
12	\mathbb{Z}_{133}	$\{1, 2, 33, 43, 45, 49, 52, 60, 73, 78, 98, 112\}$	0,0902

A next greater perfect difference cover is $I = \{1 + 7\mathbb{Z}, 2 + 7\mathbb{Z}, 4 + 7\mathbb{Z}\}$ for $\mathcal{R} = \mathbb{Z}_7 = \{7\mathbb{Z}, 1 + 7\mathbb{Z}, \dots, 6 + 7\mathbb{Z}\}$. It can be used with the following modifications to the original skew algorithm saving $\approx 20\%$ of running time:

- 1. Recursively sort the suffixes starting at $i \equiv 1, 2, 4 \pmod{7}$.
- 2. Deduce the sorting of the remaining classes: $4 \rightarrow 3$ and $1 \rightarrow 0 \rightarrow 6 \rightarrow 5$.
- 3. Merge the suffixes of the 5 congruence class sets {0}, {1, 2, 4}, {3}, {5}, {6}. The necessary shift values Δ for any $x, y \in \mathcal{R}$ are:

х, у	0	1	2	3	4	5	6
0	0	1	2	1	4	4	2
1	1	0	0	1	0	3	3
2	2	0	0	6	0	6	2
3	1	1	6	0	5	6	5
4	4	0	0	5	0	4	5
5	4	3	6	6	4	0	3
6	2	3	2	5	5	3	0

8.14 C++ Implementation (DC3)

Source code excerpt from http://www.mpi-sb.mpg.de/~sanders/programs/suffix/:

```
// find the suffix array SA of s[0..n-1] in {1..K}^n
// require s[n]=s[n+1]=s[n+2]=0, n>=2
void suffixArray(int* s, int* SA, int n, int K) {
    int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;
    int* s12 = new int[n02 + 3]; s12[n02]= s12[n02+1]= s12[n02+2]=0;
   int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;
   int* s0 = new int[n0];
    int* SA0 = new int[n0];
   // generate positions of mod 1 and mod 2 suffixes
    // the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1
   for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) s12[j++] = i;
    // lsb radix sort the mod 1 and mod 2 triples
   radixPass(s12 , SA12, s+2, n02, K);
    radixPass(SA12, s12, s+1, n02, K);
   radixPass(s12 , SA12, s , n02, K);
    // find lexicographic names of triples
    int name = 0, c0 = -1, c1 = -1, c2 = -1;
    for (int i = 0; i < n02; i++) {
        if (s[SA12[i]] != c0 || s[SA12[i]+1] != c1 || s[SA12[i]+2] != c2) {
           name++; c0 = s[SA12[i]]; c1 = s[SA12[i]+1]; c2 = s[SA12[i]+2];
        if (SA12[i] % 3 == 1) { s12[SA12[i]/3]
                                                   = name; } // left half
                              { s12[SA12[i]/3 + n0] = name; } // right half
        else
    }
    // recurse if names are not yet unique
    if (name < n02) {
        suffixArray(s12, SA12, n02, name);
        // store unique names in s12 using the suffix array
        for (int i = 0; i < n02; i++) s12[SA12[i]] = i + 1;</pre>
   } else // generate the suffix array of s12 directly
        for (int i = 0; i < n02; i++) SA12[s12[i] - 1] = i;
   // stably sort the mod {\tt 0} suffixes from SA12 by their first character
    for (int i=0, j=0; i < n02; i++) if (SA12[i] < n0) s0[j++] = 3*SA12[i];</pre>
    radixPass(s0, SA0, s, n0, K);
    // merge sorted SA0 suffixes and sorted SA12 suffixes
    for (int p=0, t=n0-n1, k=0; k < n; k++) {
#define GetI() (SA12[t] < n0 ? SA12[t] * 3 + 1 : (SA12[t] - n0) * 3 + 2)</pre>
        int i = GetI(); // pos of current offset 12 suffix
        int j = SA0[p]; // pos of current offset 0 suffix
        if (SA12[t] < n0 ?
                            s12[SA12[t] + n0], s[j],
            leg(s[i],
                                                           s12[j/3]) :
            leq(s[i],s[i+1],s12[SA12[t]-n0+1], s[j],s[j+1],s12[j/3+n0]))
        { // suffix from SA12 is smaller
            SA[k] = i; t++;
            if (t == n02) { // done --- only SA0 suffixes left
                for (k++; p < n0; p++, k++) SA[k] = SA0[p];
            3
        } else {
            SA[k] = j; p++;
            if (p == n0) { // done --- only SA12 suffixes left
                for (k++; t < n02; t++, k++) SA[k] = GetI();
            }
        }
    }
    delete [] s12; delete [] SA12; delete [] SA0; delete [] s0;
}
```