8.1 Linear time suffix array construction

This exposition has been developed by David Weese. It is based on the following sources, which are all recommended reading:

1. J. Kärkkäinen, P. Sanders (2003) Simple linear work suffix array construction, In Proc. ICALP '03. LNCS 2719, pp. 943-955
2. J. Kärkkäinen, P. Sanders, S. Burkhardt (2006) Linear work suffix array construction, Journal of the ACM, 53(6): 918-936

8.2 Definitions

We consider a string T of length n. For $i, j \in \mathbb{N}_{0}$ we define:

- $[i . . j]:=\{i, i+1, \ldots, j\}$
- $[i . . j):=[i . . j-1]$
- $T[i]$ is the i-th character of T.
- $T[i . . j]:=T[i] T[i+1] \ldots T[j]$ is the substring from the i-th to the j-th character
- We start counting from 0, i. e. $T=T[0 . . n-1]$
- $|T|$ denotes the string length, i. e. $|T|=n$
- The concatenation of strings X, Y is denoted as $X \cdot Y$, e.g. $T=T[0 . . i-1] \cdot T[i . . n-1]$ for $i \in[1 . . n)$

8.3 Lexicographical naming

Definition 1. Given a set of strings \mathcal{S}. A map $\phi: \mathcal{S} \rightarrow[0 .|\mathcal{S}|)$ is called lexicographical naming if for every $X, Y \in \mathcal{S}$ holds: $X<_{\text {lex }} Y \Leftrightarrow \phi(X)<\phi(Y)$. We call $\phi(X)$ the name or rank of X.

The skew algorithm uses the following lemma to reduce the lex. relation of concatenated strings to the relation of the concatenation of names.

Lemma 2. Given a set $\mathcal{S} \subseteq \Sigma^{t}$ of strings having length tand a lex. naming ϕ for \mathcal{S}. Let $X_{1}, \ldots, X_{k} \in \mathcal{S}$ and $Y_{1}, \ldots, Y_{l} \in \mathcal{S}$ be strings from \mathcal{S}. The lexicographical relation of the concatenated strings $X_{1} \cdot X_{2} \cdots X_{k}$ and $Y_{1} \cdot Y_{2} \cdots Y_{l}$ equals the lex. relation of the strings of names:

$$
\begin{array}{rrrl}
X_{1} \cdot X_{2} \cdots X_{k} & <_{l e x} & Y_{1} \cdot Y_{2} \cdots Y_{l} \\
\Leftrightarrow & \phi\left(X_{1}\right) \phi\left(X_{2}\right) \ldots \phi\left(X_{k}\right) & <_{l e x} & \phi\left(Y_{1}\right) \phi\left(Y_{2}\right) \ldots \phi\left(Y_{l}\right)
\end{array}
$$

8.4 Outline of the skew algorithm

1. Construct the suffix array A^{12} of the suffixes starting at positions $i \not \equiv 0(\bmod 3)$. This is done by a recursive call of the skew algorithm for a string of two thirds the length.
2. Construct the suffix array A^{0} of the remaining suffixes using the result of the first step.
3. Merge the two suffix arrays into one.

8.5 Step 1: Construct the suffix array A^{12}

We consider a text T of length n and want to create the suffix array A^{12} for suffixes $T[i . . n-1]$ where $0<i<n$ and $i \neq 0(\bmod 3)$.
In order to call the suffix array algorithm recursively we construct a new text T^{\prime} whose suffix array can be used to derive A^{12}. This is done as follows:

1. (a) Lexicographically name all triples $T[i . . i+2]$
(b) Construct a text T^{\prime} of triple names
(c) Construct suffix array A^{\prime} of T^{\prime} (recursively)
(d) Transform A^{\prime} into A^{12}

8.6 Step 1a: Lexicographically name triples

A triple is a substring of length 3 . In the following we only consider triples $T[i . . i+2]$ with $i \neq 0(\bmod 3)$. Let $\$$ be a character that is not contained in T and less than every other character. We append $\$ \$ \$$ to T to obtain well-defined triples even for $i \in[n-2 . . n]$

We lexicographically sort the triples using 3 passes of radix sort. Hereafter we assign τ_{i} the lex. rank of the triple $T[i . . i+2]$. The τ_{i} are now lexicographical names of the triples.
Example $(T=$ GACCCACCACC $)$: Initialize list of triple start positions with $\left\langle i \mid i \in\left[1 . . n+\left(n_{0}-n_{1}\right)\right) \wedge i \neq 0(\bmod 3)\right\rangle=$ $\langle 1,2,4,5,7,8,10\rangle$. Sort list with radix sort:

i	$T[i . . i+2]$	$\xrightarrow[\substack{\text { radix } \\ \text { pass }}]{ }$	i	$T[i . . i+2]$	$\xrightarrow[\substack{\text { radix } \\ \text { pass }}]{\substack{\text { an }}}$	i	$T[i . . i+2]$	$\xrightarrow[\substack{\text { radix } \\ \text { pase }}]{\substack{\text { an }}}$	i	$T[i . . i+2]$	τ_{i}
1	ACC		10	C\$\$		10	C\$\$		1	ACC	0
2	CCC		1	ACC		4	CAC		5	ACC	0
4	CAC		2	CCC		7	CAC		8	ACC	0
5	ACC		4	CAC		1	ACC		10	C\$\$	1
7	CAC		5	ACC		2	CCC		4	CAC	2
8	ACC		7	CAC		5	ACC		7	CAC	2
10	C\$\$		8	ACC		8	ACC		2	CCC	3

8.7 Step 1b: Construct T^{\prime}

$T^{\prime}=t_{1} t_{2}$ is the concatenation of strings t_{1} and t_{2} of triple names with

$$
\begin{array}{lll}
t_{1}=\tau_{1} \tau_{4} \ldots \tau_{1+3 n_{0}} & \text { with } & n_{j}=\left\lceil\frac{n-j}{3}\right\rceil \\
t_{2}=\tau_{2} \tau_{5} \ldots \tau_{2+3 n_{2}} &
\end{array}
$$

n_{j} for $j \in\{0,1,2\}$ is the number of triples starting at positions $i \equiv j(\bmod 3)$ that overlap with the first n text characters.
The last triple of t_{1} and t_{2} possibly ends with $\$$. To ensure that t_{1} always ends with a separating $\$$, we in case $n \equiv 1(\bmod 3) \Leftrightarrow n_{0}-n_{1}=1$ include the extra triple $\$ \$ \$$ into the set of triples (in Step 1a) and append its name to t_{1}. Therefore t_{1} contains $n_{1}+\left(n_{0}-n_{1}\right)=n_{0}$ triples names.
Now, there is a one-to-one correspondence between suffixes of T^{\prime} and the (possibly empty) suffixes $T[i . . n-1]$ with $i \not \equiv 0(\bmod 3)$.
Example ($T=$ GACCCACCACC): Construct $T^{\prime}=\left\langle\tau_{1+3 i} \mid i \in\left[0 . . n_{0}\right)\right\rangle \cdot\left\langle\tau_{2+3 i} \mid i \in\left[0 . . n_{2}\right)\right\rangle$

$$
\begin{array}{rllllll}
n & = & 11 \\
n_{0} & = & \left\lceil\frac{11}{3}\right\rceil=4 & & \\
n_{2} & = & \left\lceil\frac{11-2}{3}\right\rceil=3 & & \\
T^{\prime} & = & \tau_{1} & \tau_{4} & \tau_{7} & \tau_{10} & \tau_{2} \\
\tau_{5} & \tau_{8} \\
& = & 0 & 2 & 2 & 1 & 3 \\
0 & 0 \\
& \equiv & \mathrm{ACC} & \mathrm{CAC} & \mathrm{CAC} & \mathrm{C} \$ \$ & \mathrm{CCC} \\
& \mathrm{ACC} & \mathrm{ACC}
\end{array}
$$

8.8 Step 1c: Construct the suffix array A^{\prime} of T^{\prime}

T^{\prime} is a string of length $\left\lceil\frac{2 n-1}{3}\right\rceil$ over the alphabet $\left[0 . .\left|T^{\prime}\right|\right)$. We recursively use the skew algorithm to construct the suffix array A^{\prime} of T^{\prime}.
If the names τ_{i} are unique amongst the triples, A^{\prime} can be directly be derived from T^{\prime} without recursion (Exercise).
Example ($T=$ GACCCACCACC):

$$
\begin{array}{rl}
T^{\prime} & = \\
0 & 2
\end{array} 2 \begin{array}{llll}
& 1 & 3 & 0
\end{array} 0
$$

8.9 Step 1d: Transform A^{\prime} into A^{12}

Suffixes starting at j in t_{2} start at $i=j+n_{0}$ in T^{\prime} and one-to-one correspond to suffixes starting at $2+3 j=2+3\left(i-n_{0}\right)$ in T. Hence they are in correct lex. order.
Suffixes starting at i in t_{1} one-to-one correspond to suffixes starting at $1+3 i$ in T. The t_{2}-tail has no influence on their order due to the unique triple at the end of t_{1}.
Transform A^{\prime} into A^{12} such that:

$$
A^{12}[i]= \begin{cases}1+3 A^{\prime}[i] & \text { if } A^{\prime}[i]<n_{0} \\ 2+3\left(A^{\prime}[i]-n_{0}\right) & \text { else }\end{cases}
$$

Example ($T=$ GACCCACCACC):

$$
\begin{aligned}
& A^{\prime}[0]=6 \quad \longrightarrow \quad A^{12}[0]=8 \\
& A^{\prime}[1]=5 \quad \longrightarrow \quad A^{12}[1]=5 \\
& A^{\prime}[2]=0 \quad \longrightarrow \quad A^{12}[2]=1 \\
& A^{\prime}[3]=3 \quad \longrightarrow \quad A^{12}[3]=10 \\
& A^{\prime}[4]=2 \quad \longrightarrow \quad A^{12}[4]=7 \\
& A^{\prime}[5]=1 \quad \longrightarrow \quad A^{12}[5]=4 \\
& A^{\prime}[6]=4 \quad \longrightarrow \quad A^{12}[6]=2
\end{aligned}
$$

8.10 Step 2: Derive A^{0} from A^{12}

Extract suffixes T_{i} with $i \equiv 1(\bmod 3)$ from A^{12} and store $i-1$ in A^{0} in the same order. Use a radix pass to stably sort A^{0} by the first suffix character.

This gives the correct lexicographical order as for $i<j$ either

$$
\left.\left.\begin{array}{rl}
T\left[A^{0}[i]\right. \\
T\left[A^{0}[i]\right.
\end{array}\right]<T\left[A^{0}[j]\right] \quad \begin{array}{c}
\text { or } \\
\end{array}\right]\left[A^{0}[j]\right] \quad \wedge \quad T\left[A^{0}[i]+1 . n-1\right] \quad<_{\text {lex }} T\left[A^{0}[j]+1 . . n-1\right] \text { holds. }
$$

Example ($T=$ GACCCACCACC):

$$
\left.\begin{array}{rl}
A^{12} & = \\
8 & 5
\end{array} \begin{array}{llllll}
1 & 10 & 7 & 4 & 2 \\
A^{0} & = & & 0 & 9 & 6
\end{array}\right) 3
$$

$$
\begin{aligned}
& A^{0}[0]=0 \widehat{\equiv} \text { GACCCACCACC } \\
& A^{0}[1]=9 \widehat{\equiv} \text { CC } \\
& A^{0}[2]=6 \widehat{\equiv} \text { CCACC } \\
& A^{0}[3]=3 \widehat{\equiv} \text { CCACCACC }
\end{aligned}
$$

8.11 Step 3: Merge A^{12} and A^{0} into suffix array A

The two sorted suffix arrays are merged by scanning them simultaneously and comparing the suffixes from A^{0} and A^{12}. If $n \equiv 1(\bmod 3)$, the first suffix of A^{12} must be skipped.
To determine the lex. rank of a suffix in A^{12} we construct the inverse R^{12} of A^{12} such that $R^{12}\left[A^{12}[i]\right]=i$. Two suffixes $i \in A^{0}$ and $j \in A^{12}$ can be compared using:
Case 1: $i \equiv 0(\bmod 3)$ and $j \equiv 1(\bmod 3)$

$$
\begin{aligned}
T[i . . n-1] \ll_{\text {lex }} T[j . n-1] \Leftrightarrow & (T[i]<T[j]) \vee \\
& \left(T[i]=T[j] \wedge R^{12}[i+1]<R^{12}[j+1]\right)
\end{aligned}
$$

The rank comparison is possible as $i+1 \equiv 1(\bmod 3)$ and $j+1 \equiv 2(\bmod 3)$.
Case 2: $i \equiv 0(\bmod 3)$ and $j \equiv 2(\bmod 3)$

$$
\begin{aligned}
T[i . . n-1]<_{\operatorname{lex}} T[j . . n-1] \Leftrightarrow & \left(T[i . . i+1]<_{\operatorname{lex}} T[j . . j+1]\right) \vee \\
& \left(T[i . . i+1]=_{\operatorname{lex}} T[j . . j+1] \wedge R^{12}[i+2]<R^{12}[j+2]\right)
\end{aligned}
$$

The rank comparison is possible as $i+2 \equiv 2(\bmod 3)$ and $j+2 \equiv 1(\bmod 3)$.
Example ($T=$ GACCCACCACC):

	0	1	2	3	4	5	6	7	8	9	10	11	12
T	G	A	C	C	C	A	C	C	A	C	C	$\$$	$\$$
R^{12}		3	7		6	2		5	1		4	0	
	A^{12}	$=$	8	5	1	10	7	4	2				
	A^{0}	$=$	9	6	3	0							

If $n \equiv 1(\bmod 3)$, skip the first element of A^{12} (this is not the case).

Compare T_{8} with T_{9} :
$T[8 . .9]=\mathrm{AC}<_{\text {lex }} \mathrm{CC}=T[9 . .10] \quad \Rightarrow \quad A[0]=8$

$$
\begin{gathered}
A=8 \\
\\
\left.A^{12}=\begin{array}{ccccccc}
\\
A^{0} & 5 & 1 & 10 & 7 & 4 & 2 \\
A^{0} & = & 6 & 3 & 0 & & \\
\uparrow & & & & & & \\
&
\end{array}\right]
\end{gathered}
$$

Compare T_{5} with T_{9} :
$T[5 . .6]=\mathrm{AC}<_{\text {lex }} \mathrm{CC}=T[9 . .10] \quad \Rightarrow \quad A[1]=5$

$$
A=85
$$

$$
\begin{array}{rl}
A^{12} & = \\
A^{0} & =8 \\
& 5 \\
9 & 6
\end{array} \begin{aligned}
& \downarrow \\
& \\
& \uparrow
\end{aligned}
$$

Compare T_{1} with T_{9} :
$T[1]=\mathrm{A}<\mathrm{C}=T[9] \quad \Rightarrow \quad A[2]=1$

$$
\begin{gathered}
A=8 \\
\\
\\
A^{12}=\begin{array}{llllllll}
8 & 5 & 1 & 10 & 7 & 4 & 2 \\
A^{0} & = & 9 & 6 & 3 & 0 & & \\
& \uparrow
\end{array}
\end{gathered}
$$

Compare T_{10} with T_{9} :

$$
\begin{array}{rlrrr}
T[10] & =C & =C & T[9] & \wedge \\
R^{12}[11] & =0<4 & =R^{12}[10] & \Rightarrow A[3]=10
\end{array}
$$

$$
\begin{array}{rl}
A & = \\
8 & 5 \\
& 1 \\
10 & \\
A^{12} & = \\
A^{0} & = \\
& 8 \\
9 & 5 \\
6 & 1 \\
3 & 10 \\
& \uparrow
\end{array}
$$

Compare T_{7} with T_{9} :

$$
\begin{array}{rlrr}
T[7] & =C & =C & =T[9]
\end{array} \stackrel{\wedge}{ } \begin{aligned}
& =
\end{aligned}
$$

$$
\left.\begin{array}{rl}
A & = \\
& 8 \\
& 5 \\
& 1
\end{array}\right) 10
$$

Compare T_{4} with T_{9} :

$$
\begin{array}{rlrr}
T[4] & =C & =C[9] & \wedge \\
R^{12}[5] & =2<4 & =R^{12}[10] & \Rightarrow A[5]=4
\end{array}
$$

$$
\begin{aligned}
& A=\begin{array}{llllll}
8 & 5 & 1 & 10 & 7 & 4
\end{array} \\
& \left.\begin{array}{rl}
A^{12} & = \\
A^{0} & = \\
& 8 \\
9 & 5 \\
& 6 \\
& 3
\end{array}\right)
\end{aligned}
$$

Compare T_{2} with T_{9} :

$$
\begin{aligned}
& T[2.3]=C C=T[9 . .10] \wedge \\
& R^{12}[4]=6>0 \quad \Rightarrow \quad R^{12}[11] \Rightarrow A[6]=9 \\
& A=\begin{array}{lllllll}
8 & 5 & 1 & 10 & 7 & 4 & 9
\end{array} \\
& A^{12}=\begin{array}{llllllll}
\\
8 & 5 & 1 & 10 & 7 & 4 & 2
\end{array} \\
& A^{0}=9 \begin{array}{lll}
9 & 6 & 0 \\
\uparrow
\end{array}
\end{aligned}
$$

Compare T_{2} with T_{6} :

$$
\begin{aligned}
& T[2.3]=\mathrm{CC}={ }_{\text {lex }} \mathrm{CC}=T[6 . .7] \wedge \\
& R^{12}[4]=6>1=R^{12}[8] \quad \Rightarrow \quad A[7]=6 \\
& A=\begin{array}{llllllll}
8 & 5 & 1 & 10 & 7 & 4 & 9 & 6
\end{array} \\
& A^{12}=8 \quad 5 \quad 1 \quad 10 \quad 7 \quad 4 \quad 2 \\
& A^{0}=9630 \\
& \uparrow
\end{aligned}
$$

Compare T_{2} with T_{3} :

$$
\begin{array}{rlrlll}
T[2.3] & =C C & =_{\text {lex }} & C C & T[3.4] & \wedge \\
R^{12}[4] & =6 & > & 2 & =R^{12}[5] & \Rightarrow A[8]=3
\end{array}
$$

$$
\begin{aligned}
& A=\begin{array}{lllllllll}
8 & 5 & 1 & 10 & 7 & 4 & 9 & 6 & 3
\end{array} \\
& A^{12}=8 \quad 5 \quad 1 \quad 10 \quad 7 \quad 4 \quad 2 \\
& A^{0}=9630
\end{aligned}
$$

Compare T_{2} with T_{0} :
$T[2.3]=\mathrm{CC}<_{\text {lex }} \mathrm{GA}=T[0 . .1] \quad \Rightarrow \quad A[9]=2$

$$
\begin{gathered}
A=8
\end{gathered} \begin{array}{ccccccccc}
A & 1 & 10 & 7 & 4 & 9 & 6 & 3 & 2 \\
A^{12} & = & 8 & 5 & 1 & 10 & 7 & 4 & 2
\end{array}
$$

All characters of A^{12} were read. Fill up A with the remainder of A^{0}.

$$
A=\begin{array}{llllllllllll}
& 8 & 5 & 1 & 10 & 7 & 4 & 9 & 6 & 3 & 2 & 0
\end{array}
$$

Done. The resulting suffix array is:

$$
\begin{aligned}
& A[0]=8 \widehat{\mathrm{ACC}} \\
& A[1]=5 \widehat{\mathrm{ACCACC}} \\
& A[2]=1 \widehat{\equiv} \text { ACCCACCACC } \\
& A[3]=10 \widehat{\mathrm{E}} \\
& A[4]=7 \widehat{ } \text { CACC } \\
& A[5]=4 \widehat{\equiv} \text { CACCACC } \\
& A[6]=9 \widehat{\equiv} C C \\
& A[7]=6 \widehat{\equiv} \text { CCACC } \\
& A[8]=3 \widehat{\equiv} \text { CCACCACC } \\
& A[9]=2 \widehat{\equiv} \text { CCCACCACC } \\
& A[10]=0 \widehat{\equiv} \text { GACCCACCACC }
\end{aligned}
$$

8.12 Linear running time

Assuming that $|\Sigma|=O(n)$, the running time $\mathcal{T}(n)$ of the whole skew-algorithm is the sum of:

- A recursive part which takes $\mathcal{T}\left(\frac{2 n}{3}\right)$ time.
- A non-recursive part which takes $O(n)$ time.

Thus it holds: $\mathcal{T}(n)=\mathcal{T}\left(\frac{2 n}{3}\right)+\mathcal{O}(n)$ and $\mathcal{T}(n)=O(1)$ for $n \leq 3$.

Lemma 3. The running time of the skew algorithm is $\mathcal{T}(n)=O(n)$.
Proof: Exercise.

8.13 Difference Covers

The key idea of the skew algorithm is to

1. recursively sort a subset $\mathcal{I} \subset \mathcal{R}$ of congruence class ring \mathcal{R}
2. deduce the sorting of the remaining classes $\mathcal{R} \backslash I$.
3. merge I and $\mathcal{R} \backslash I$

In the original skew algorithm holds $\mathcal{R}=\mathbb{Z}_{3}=\{3 \mathbb{Z}, 1+3 \mathbb{Z}, 2+3 \mathbb{Z}\}$ and $\mathcal{I}=\{\mathbf{1}+3 \mathbb{Z}, \mathbf{2}+3 \mathbb{Z}\}$. Step 3 was feasible because for every $x \in \mathcal{I}$ and $y \in \mathcal{R} \backslash I$ there was a $\Delta \in \mathbb{N}$ such that $(x+\Delta) \in I$ and $(y+\Delta) \in \mathcal{I}$.
The recursion depth of the skew algorithm heavily depends on $\lambda=\frac{|I|}{|\mathcal{R}|}$ the factor the text length decreases with. Is it possible to find I and \mathcal{R} yielding a smaller λ and such that step 2 and 3 are still feasible?

Definition 4. For a set of congruence classes $\mathcal{R}=\{m \mathbb{Z}, 1+m \mathbb{Z}, \ldots,(m-1)+m \mathbb{Z}\}$ we call \mathcal{I} to be difference cover if for any $z \in \mathcal{R}$ there exist $a, b \in I$ such that $a-b=z$.
Lemma 5. Step 3 of the skew algorithm is feasible for any m, if \mathcal{I} is a difference cover of \mathcal{R}.
Proof: For any $x, y \in \mathcal{R}$ there exist $a, b \in \mathcal{I}$ such that $a-b=z$ with $z=x-y$. For $\Delta:=a-x$ holds

$$
(x+\Delta)=x+(a-x)=a \quad \Rightarrow \quad(x+\Delta) \in I
$$

and

$$
(y+\Delta)=y+(a-x)=a-(x-y)=a-z=b \quad \Rightarrow \quad(y+\Delta) \in \mathcal{I}
$$

By combinatorics the size of a set \mathcal{R} that is covered by \mathcal{I} is limited to:

$$
|\mathcal{R}| \leq 2 \cdot\binom{|\mathcal{I}|}{2}+1=|\mathcal{I}|^{2}-|\mathcal{I}|+1
$$

We call \mathcal{I} a perfect difference cover if $|\mathcal{R}|=|\mathcal{I}|^{2}-|\mathcal{I}|+1$ holds. The following table shows perfect difference covers in bold:

$\|\mathcal{I}\|$	\mathcal{R}	minimal difference cover	λ
2	\mathbb{Z}_{3}	\{1,2\}	0,6666...
3	\mathbb{Z}_{7}	\{1,2,4\}	0,4285. . .
4	\mathbb{Z}_{13}	\{1, 2, 4, 10\}	0,3076...
5	\mathbb{Z}_{21}	\{1, 2, 7, 9, 19\}	0,2380...
6	\mathbb{Z}_{31}	\{1, 2, 4, 9, 13, 19\}	0,1935...
7	\mathbb{Z}_{39}	$\{1,2,17,21,23,28,31\}$	0,1794...
8	\mathbb{Z}_{57}	\{1, 2, 10, 12, 15, 36, 40, 52\}	0,1403...
9	\mathbb{Z}_{73}	\{1, 2, 4, 8, 16, 32, 37, 55, 64\}	0,1232...
10	\mathbb{Z}_{91}	\{1, 2, 8, 17, 28, 57, 61, 69, 71, 74\}	0,1098...
11	\mathbb{Z}_{95}	$\{1,2,6,9,19,21,30,32,46,62,68\}$	0,1157...
12	\mathbb{Z}_{133}	$\{1,2,33,43,45,49,52,60,73,78,98,112\}$	0,0902...

A next greater perfect difference cover is $\mathcal{I}=\{\mathbf{1}+7 \mathbb{Z}, 2+7 \mathbb{Z}, 4+7 \mathbb{Z}\}$ for $\mathcal{R}=\mathbb{Z}_{7}=\{7 \mathbb{Z}, 1+7 \mathbb{Z}, \ldots, 6+7 \mathbb{Z}\}$. It can be used with the following modifications to the original skew algorithm saving $\approx 20 \%$ of running time:

1. Recursively sort the suffixes starting at $i \equiv 1,2,4(\bmod 7)$.
2. Deduce the sorting of the remaining classes: $4 \rightarrow \mathbf{3}$ and $1 \rightarrow \mathbf{0} \rightarrow \mathbf{6} \rightarrow \mathbf{5}$.
3. Merge the suffixes of the 5 congruence class sets $\{0\},\{1,2,4\},\{3\},\{5\},\{6\}$. The necessary shift values Δ for any $x, y \in \mathcal{R}$ are:

x, y	0	1	2	3	4	5	6
0	0	1	2	1	4	4	2
1	1	0	0	1	0	3	3
2	2	0	0	6	0	6	2
3	1	1	6	0	5	6	5
4	4	0	0	5	0	4	5
5	4	3	6	6	4	0	3
6	2	3	2	5	5	3	0

8.14 C++ Implementation (DC3)

Source code excerpt from http://www.mpi-sb.mpg.de/~sanders/programs/suffix/

```
// find the suffix array SA of s[0..n-1] in {1..K}^n
// require s[n]=s[n+1]=s[n+2]=0, n>=2
void suffixArray(int* s, int* SA, int n, int K) {
    int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;
    int* s12 = new int[n02 + 3]; s12[n02]= s12[n02+1]= s12[n02+2]=0;
    int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;
    int* s0 = new int[n0];
    int* SAQ = new int[n0];
    // generate positions of mod 1 and mod 2 suffixes
    // the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1
    for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) s12[j++] = i;
    // lsb radix sort the mod 1 and mod 2 triples
    radixPass(s12 , SA12, s+2, n02, K);
    radixPass(SA12, s12 , s+1, n02, K);
    radixPass(s12 , SA12, s , n02, K);
    // find lexicographic names of triples
    int name = 0, c0 = -1, c1 = -1, c2 = -1;
    for (int i = 0; i < n02; i++) {
        if (s[SA12[i]] != cQ || s[SA12[i]+1] != c1 || s[SA12[i]+2] != c2) {
            name++; c0 = s[SA12[i]]; c1 = s[SA12[i]+1]; c2 = s[SA12[i]+2];
        }
        if (SA12[i] % 3 == 1) { s12[SA12[i]/3] = name; } // left half
        else { s12[SA12[i]/3 + n0] = name; } // right half
    }
    // recurse if names are not yet unique
    if (name < n02) {
        suffixArray(s12, SA12, n02, name);
        // store unique names in s12 using the suffix array
        for (int i = 0; i < n02; i++) s12[SA12[i]] = i + 1;
    } else // generate the suffix array of s12 directly
        for (int i = 0; i < n02; i++) SA12[s12[i] - 1] = i;
    // stably sort the mod 0 suffixes from SA12 by their first character
    for (int i=0, j=0; i < n02; i++) if (SA12[i] < n0) s0[j++] = 3*SA12[i];
    radixPass(s0, SAO, s, n0, K);
    // merge sorted SAQ suffixes and sorted SA12 suffixes
    for (int p=0, t=n0-n1, k=0; k < n; k++) {
#define GetI() (SA12[t] < n0 ? SA12[t] * 3 + 1 : (SA12[t] - n0) * 3 + 2)
    int i = GetI(); // pos of current offset 12 suffix
    int j = SAQ[p]; // pos of current offset 0 suffix
        if (SA12[t] < n0 ?
            leq(s[i], s12[SA12[t] + n0], s[j], s12[j/3]) :
            leq(s[i],s[i+1],s12[SA12[t]-n0+1], s[j],s[j+1],s12[j/3+n0]))
        { // suffix from SA12 is smaller
            SA[k] = i; t++;
            if (t == n02) { // done --- only SAO suffixes left
                for (k++; p < nO; p++, k++) SA[k] = SAQ[p];
            }
        } else {
            SA[k] = j; p++;
            if (p == n 0) { // done --- only SA12 suffixes left
                        for (k++; t < n02; t++, k++) SA[k] = GetI();
            }
        }
    }
    delete [] s12; delete [] SA12; delete [] SAQ; delete [] s0;
}
```

