
7 Suffix arrays

This exposition was developed by Clemens Gröpl and Knut Reinert. It is based on the following sources, which
are all recommended reading:

1. Simon J. Puglisi, W. F. Smyth, and Andrew Turpin, A taxonomy of suffix array construction algorithms,
ACM Computing Surveys, Vol. 39, Issue 2, to appear (2007). [PST07]

2. Udi Manber, Gene Myers: Suffix arrays: A new method for online string searching, SIAM Journal on
Computing 22:935-48,1993

3. Kasai, Lee, Arimura, Arikawa, Park: Linear-Time Longest-Common-Prefix Computation in Suffix Arrays
and Its Applications, CPM 2001

4. Mohamed Ibrahim Abouelhoda, Stefan Kurtz, Enno Ohlebusch: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2 (2004) 53-86.

5. Dan Gusfield: Algorithms in strings, trees and sequences, Cambridge, pages 94ff.

7.1 Introduction

Exact string matching is a basic step used by many algorithms in computational biology: Given a pattern
P = P[1 .. m], and a text S = S[1 .. n], we want to find all occurences of P in S.

This can readily be done with exact string matching algorithms in time O(m+n). These algorithms perform
some kind of preprocessing of the pattern. In this way it is often possible to exclude portions of the text from
consideration (e. g. the Horspool algorithm can shift the search window by m positions if a verification fails).
But as long as m = O(1), the running time for this class of algorithms cannot be o(n).

In order to achieve a truly sublinear search time, we have to preprocess the text. Preprocessing the text is
useful in scenarios where the text is relatively constant over time (e. g. a genome), and we will search for many
different patterns.

Even if the text is very long, we do not need to scan it completely for every query. The running time can
be as low as O(m + p), where p is the number of occurrences. Here we will see algorithms to achieve a search
time of O(m + p + log n). In practice, the extra log n factor is counterbalanced by a good caching behavior.

In this lecture we introduce one such preprocessing, namely the construction of a suffix array.

Suffix arrays are closely related to suffix trees. A good reference for suffix trees is the book of Gusfield. In
1990, Manber and Myers introduced suffix arrays as a space efficient alternative to suffix trees.

Both suffix trees and suffix arrays require O(n) space, but whereas a recent, tuned suffix tree implementation
requires 13-15 Bytes per character (Kurtz, 1999), for suffix arrays, as few as 5 + o(1) bytes are sufficient (with
some tricks).

Definition 1. Given a text S of length n, the suffix array for S, often denoted suftab, is an array of integers of
range 1 to n specifying the lexicographic ordering of the suffixes of the string S.

It will be convenient to assume that S[n] = $, where $ is smaller than any other letter.

That is, suftab[j] = i if and only if S[i ..n] is the j-th suffix of S in ascending lexicographical order. We will
write Si := S[i ..n].

We will assume that n fits into 4 bytes of memory. (That is, n < 232 = 4 294 967 296.) Then the basic form of
a suffix array needs only 4n bytes.

The suffix array can be computed by sorting the suffixes, as illustrated in the following example.

Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45 7001

7.2 Example

The text is S = abaababbabbb$, n = 13. The suffix array is:

Suffixes Ordered suffixes
i Si i suftab[i] Ssuftab[i]

1 abaababbabbb$ 1 13 $
2 baababbabbb$ 2 3 aababbabbb$
3 aababbabbb$ 3 1 abaababbabbb$
4 ababbabbb$ 4 4 ababbabbb$
5 babbabbb$ 5 6 abbabbb$
6 abbabbb$ 6 9 abbb$
7 bbabbb$ 7 12 b$
8 babbb$ 8 2 baababbabbb$
9 abbb$ 9 5 babbabbb$

10 bbb$ 10 8 babbb$
11 bb$ 11 11 bb$
12 b$ 12 7 bbabbb$
13 $ 13 10 bbb$

It is tempting to confuse suftab [i] with S suftab [i] since there is a one-to-one correspondence, but of course the
two are completely different concepts.

Compare this to the suffix tree, which is obtained by merging common prefixes of the suffixes Si in a trie.
(Note: The string in the figure has no trailing $. Some suffixes are not numbered; their paths lead to internal
nodes.)

a b

a b a b

a b
a

b

a b

a ba b a b

b
a
b
b
a
b
b
b

b
a
b
b
a
b
b
b

b
a
b
b
a
b
b
b

b
a
b
b
b

b
b
b

b
b
b

b
b
b

S = abaababbabbb

1 2

3

4

56

7

89

10

b

7.3 Why another algorithm?

The suffix array can be constructed in (essentially) 4n space by sorting the suffix indices using any sorting
algorithm. (Exercise: How much would a simple quicksort cost?) But such an approach fails to take advantage
of the fact that we are sorting a collection of related suffixes. We cannot get an O(n) time algorithm in this way.

Alternatively, we could first build a suffix tree in linear time, then transform the suffix tree into a suffix
array in linear time (exercise: work out the details), and finally discard the suffix tree. Of course, sufficient
memory has to be available to construct the suffix tree. Thus this approach fails for large texts.

Over the last 15 years or so, there have been hundreds of research articles published on the construction

7002 Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45

and application of suffix trees and suffix arrays. A recent survey on suffix array construction algorithms is
[PST07]. In the introduction, Puglisi, Smyth, and Turpin write:

It has been shown that

• practical space-efficient suffix array construction algorithms (SACAs) exist that require worst-case time
linear in string length;

• SACAs exist that are even faster in practice, though with supralinear worstcase construction time
requirements;

• any problem whose solution can be computed using suffix trees is solvable with the same asymptotic
complexity using suffix arrays.

Thus suffix arrays have become the data structure of choice for many, if not all, of the string processing
problems to which suffix tree methodology is applicable.

[PST07]

In [PST07] running times for 17 SACAs are listed. Today the original construction proposed by Manber
and Myers is about 30 times slower than the fastest SACA known so far. The race is not finished yet, new
algorithms and implementations are being developed and it is hard to predict where this will eventually lead
to. Therefore we will not discuss a SACA in full detail in this lecture but only mention a few basic ideas.

One such idea is prefix doubling. It is the fundament of the original MM algorithm (1990). A modified
version by Larsson and Sadakane (1999) is ‘only’ a factor 3 slower than the currently best one.

7.4 Prefix doubling

In order to construct the suffix array we have to cleverly sort the n suffixes S1, . . . ,Sn.

A prefix-doubling algorithm will not sort the suffixes completely in a single stage. Instead, it proceeds in
dlog2(n + 1)e stages.

In the first stage the suffixes are arranged into groups or buckets according to their first symbol. Thus they
are ordered with repect to their prefixes of length 1.

We say that the suffixes are in ≤h-order if they are ordered lexicographically according to the first h letters
(=h and <h are defined accordingly).

Inductively, the algorithm partitions the buckets of the preceeding stage (≤h) further by sorting according
to twice the number of symbols (≤2h). We will number the stages 1, 2, 4, 8, . . . to indicate the number of affected
symbols. After the h-th stage, the suffixes are sorted according to ≤h order, and all suffixes in a bucket have a
common prefix of length h.

Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45 7003

We are done when h ≥ n. Each stage takes O(n) time. Thus the total running time is O(n log n).

The key observation is:

• In order to refine the ordering of an h-bucket to a ≤2h-order, it suffices to look at the h positions following
the (common) prefix of length h;

• These positions are the prefixes of other suffixes and have been ≤h-sorted already.

This technique has become known as prefix doubling.

Let us summarize this idea:

Observation 2 (Karp, Miller, Rosenberg (1972)).
Let Si and S j be two suffixes belonging to the same bucket after the h-th step, that is Si =h S j. We need to
compare the next h symbols. But the next h symbols of Si (respectively, S j) are exactly the first h symbols of Si+h
(respectively, S j+h). By assumption we already know the relative order of Si+h and S j+h according to ≤h.

For this approach to work it is necessary that we can access the≤h-rank of a suffix (i. e., its position according
to the ≤h-order). Therefore the inverse of the current suftab table is stored in another table sufinv.

These two tables (suftab, sufinv) together amount to the 8n bytes required by the Manber-Myers algorithm.

7.5 Searching

After constructing our suffix array we have the table suftab which gives us in sorted order the suffixes of
S. Suppose now we want to find all instances of a string P = p1, . . . , pm of length m < n in S.

Let
LP = min{k : P ≤m S suftab [k] or k = n + 1}

and
RP = max{k : S suftab [k] ≤m P or k = 0}.

Since suftab is in ≤m order, it follows that P matches a suffix Si if and only if i = suftab [k] for some k ∈ [LP,RP].
Hence a simple binary search can find LP and RP. Each comparison in the search needs O(m) character
comparisons, and hence we can find all instances in the string in time O(m log n).

This is the simple code piece to search fo LP.
(1) if P ≤m S suftab [1]
(2) then LP = 1;
(3) else if P >m S suftab [n]
(4) then LP = n + 1;
(5) else
(6) (L,R) = (1,n);
(7) while R − L > 1 do
(8) M = d(L + R)/2e;
(9) if P ≤m S suftab [M]

(10) then R = M;
(11) else L = M;
(12) fi
(13) od
(14) LP = R;
(15) fi
(16) fi

For example if we search for P = aca in the text S = acaaacatat$ then LP = 3 and RP = 4. We find the value LP
and RP respectively, by setting (L,R) to (1,n) and changing the borders of this interval based on the comparison
with the suffix at position d(L+R)/2e e.g. we find LP with the sequence: (1, 11)⇒ (1, 6)⇒ (1, 4)⇒ (1, 3)⇒ (2, 3).
Hence LP = 3.

7004 Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45

1 aaacatat$
2 aacatat$
3 acaaacatat$
4 acatat$
5 atat$
6 at$
7 caaacatat$
8 catat$
9 tat$

10 t$
11 $

The binary searches each need O(log n) steps. In each step we need to compare m characters of the text
and the pattern in the ≥m operations. This leads to a running time of O(m log n).

Can we do better?

While the binary search continues, let L and R denote the left and right boundaries of the current search
interval. At the start, L equals 1 and R equals n. Then in each iteration of the binary search a query is made at
location M = d(R + L)/2e of suftab .

We keep track of the longest prefixes of S suftab (L) and S suftab (R) that match a prefix of P. Let l and r denote
the prefix lengths respectively and let mlr = min(l, r).

Then we can use the value mlr to accelerate the lexicographical comparison of P and the suffix S suftab [M].
Since suftab is ordered, it is clear that all suffixes between L and R share the same prefix. Hence we can start
the first comparison at position mlr + 1.

In practice this trick already brings the running time to O(m + log n) in most cases, however one can
construct examples that still need time O(m · log n) (exercise).

We call an examination of a character of P redundant if that character has been examined before. The goal
is to limit the number of redundant character comparisons to O(1) per iteration of the binary search.

The use of mlr alone does not suffice: In the case that l , r, all characters in P from mlr + 1 to max(l, r)
will have already been examined. Thus all comparisons to these characters are redundant. We need a way to
begin the comparisons at the maximum of l and r.

To do this we introduce the following definition.

Definition 3. lcp (i, j) is the length of the longest common prefix of the suffixes specified in positions i and j of
suftab .

For example for S = aabaacatat the lcp (1, 2) is the length of the longest common prefix of aabaacata and
aacata which is 2.

With the help of the lcp information, we can achieve our goal of one redundant character comparison per
iteration of the search. For now assume that we know lcp (i, j),∀i, j.

How do we use the lcp information? In the case of l = r we compare P to suftab [M] as before starting from
position mlr + 1, since in this case the minimum of l and r is also the maximum of the two and no redundant
character comparisons are made.

If l , r, there are three cases. We assume w.l.o.g. l > r.

Case 1: lcp (L,M) > l.
Then the common prefix of the suffixes S suftab [L] and S suftab [M] is longer than the common prefix of P and
S suftab [L].

Therefore, P agrees with the suffix S suftab [M] up through character l. Or to put it differently, characters l + 1
of S suftab [L] and S suftab [M] are identical and lexically less than character l + 1 of P.

Hence any possible starting position must start to the right of M in suftab . So in this case no examination
of P is needed. L is set to M and l and r remain unchanged.

Case 2: lcp (L,M) < l.
Then the common prefix of suffix suftab [L] and suftab [M] is smaller than the common prefix of suftab [L] and
P.

Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45 7005

Therefore P agrees with suftab [M] up through character lcp (L,M). The lcp (L,M) + 1 characters of P and
and suftab [L] are identical and lexically less than the character lcp (L,M) + 1 of suftab [M].

Hence any possible starting position must start left of M in suftab . So in this case again no examination of
P is needed. R is set to M, r is changed to lcp (L,M), and l remains unchanged.

Case 3: lcp (L,M) = l.
Then P agrees with suftab [M] up to character l. The algorithm then lexically compares P to suftab [M] starting
from position l+1. In the usual manner the outcome of the compare determines which of L and R change along
with the corresponding change of l and r.

Illustration of the three cases

case 1) case 2) case 3)

P = a b c d e m n P = a b c d e m n P = a b c d e m n

lcp(L,M) lcp(L,M) lcp(L,M)

l l l

L -> a b c d e f g.... L -> a b c d e f g... L -> a b c d e f g....

M -> a b c d e f g.... M -> a b c d g g.... M -> a b c d e g....

R -> a b c w x y z.... R -> a b c w x y z... R -> a b c w x y z....

r r r

Then the following theorem holds:

Theorem 4. Using the lcp values, the search algorithm does at most O(m + log n) comparisons and runs in that time.

Proof: Exercise. Use the fact that neither l nor r decrease in the binary search, and find a bound for the
number of redundant comparisons per iteration of the binary search.

7.6 Computing the lcp values

We now know how to search fast in a suffix array under the assumption, that we know the lcp values for all
pairs i, j.

But how do we compute the lcp values? And which ones? Computing them all would require too much
time and, worse, quadratic space!

We will now first dicuss, which lcp values we really need, and then how to compute them. For the
computation give in more detail a newer, simple O(n) algorithm to compute the lcp values given the suffix
array suftab .

In the appendix we also sketch Myers’ proposal for computing the lcp values during the construction of
the suffix array.

We first observe that indeed we only need the lcp values of L and R that we encounter in the binary search
for LP and RP. However, the set of pairs (i, j) which can be considered is contained in a binary search tree which
does not depend on P, and has linear size.

Observation 5. Only O(n) many lcp values are needed for the lcp based search in a suffix array.

Example: n = 9

(1,9)

(1,5) (5,9)

(1,3) (3,5) (5,7) (7,9)

(1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9)

We get those values in a two step procedure:

7006 Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45

1. Compute the lcp values for pairs of suffixes adjacent in suftab using an array height of size n.

2. For the fixed binary search tree used in the search for LP and RP compute the lcp values for its internal
nodes using the array height . (exercise *)

(*) The value at an internal node is the minimum of its successors (why?)

Hence the essential thing to do is to compute the array height , i.e. the lcp values of adjacent suffixes in
suftab .

7.7 The Kasai et al. algorithm

An elegant, short algorithm for computing the height array in linear time is due to Toru Kasai, Gunho Lee,
Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park (presented at CPM 2001).

The array height is defined by

height (k) = lcp (S suftab [k−1],S suftab [k]) .

That is, it contains the lcp values of all adjacent suffixes in the suffix array suftab .

We can compute the lcp values contained in the binary search tree in linear time and space, once we have
height values.

The Kasai et al. algorithm uses the inverse of the suffix array, that is, the array sufinv with the defining
property

sufinv [suftab [i]] = i .

Clearly, sufinv can be computed in one linear scan over suftab , if it is not available yet.

It is important to keep the “semantics” of suftab and sufinv in mind. Perhaps the following diagram is
useful:

sufinv [i] = j ⇔
Suffix Si has rank j
in lexicographic order

m m

suftab [j] = i ⇔
j-th lowest Suffix in
lexicographic order is Si

The algorithm computes the height values of the suffixes Si in order of decreasing length. Thus the main
loop runs over i = 1, . . . ,n.

Let p := sufinv (i). The height value for Si depends on Si and its predecessor in suftab ; we have

height (p) = lcp (S suftab (p−1),S suftab (p)) = lcp (Sk,Si) ,

with k := suftab (p − 1).

i suftab [i]
p − 1 k

p i

The algorithm keeps track of the last height value computed, h. Initially, we have h = 0. Then height (p)
is computed in the straight-forward way:

(1) while S[i + h] = S[k + h] do
(2) h++;
(3) od
(4) height [sufinv [i]] = h;

From now on, we assume that the last h has been computed correctly.

Now the algorithm proceeds to Si+1.

Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45 7007

But in fact height (sufinv (i)) and height (sufinv (i+1)) are closely related. Namely, if h = height (sufinv (i)) >
0, then

lcp (Si,S suftab [sufinv [i]−1]) = h > 0

and hence,
lcp (Si+1,S suftab [sufinv [i]−1]+1) = h − 1 .

Moreover,
Si ≥lex. S suftab [sufinv [i]−1]

implies
Si+1 ≥lex. S suftab [sufinv [i]−1]+1 ,

because the first letters were the same.

Now, how does this relate to height (sufinv (i + 1)) ?

Let p′ := sufinv (i + 1). By the preceeding observation, we have found a position q′ < p′ such that

lcp (S suftab [q′],S suftab [p′]) ≥ h − 1 ,

namely, q′ := sufinv [suftab [sufinv [i] − 1] + 1]. But we cannot assert that q′ is the immediate predecessor of p′.

i suftab [i]
p − 1 k k = suftab [sufinv [i] − 1]

p i p = sufinv [i]
...
...

q′ k + 1 q′ = sufinv [suftab [sufinv [i] − 1] + 1]
... (maybe q′ < p′ − 1)

p′ i + 1 p′ = sufinv [i + 1]

Yet the following observation helps. We have

h − 1 ≤ lcp (S suftab [q′],S suftab [p′])
= min

k′∈[q′,p′−1]
lcp (S suftab [k],S suftab [k+1])

≤ lcp (S suftab [p′−1],S suftab [p′])
= height (p′) .

In other words, the next height value to be computed (belonging to Si+1) is at most one less than the preceeding
one (belonging to Si).

7.8 The algorithm

The following algorithm computes the array height following the above discussion in time O(n):

(1) GetHeight(S, suftab)
(2) for i = 1 to n do
(3) sufinv [suftab [i]] = i;
(4) od
(5) h = 0;
(6) for i = 1 to n do
(7) if sufinv [i] > 1
(8) then
(9) k = suftab [sufinv [i] − 1];

(10) while S[i + h] = S[k + h] do
(11) h++;
(12) od
(13) height [sufinv [i]] = h;
(14) if h > 0 then h = h − 1; fi
(15) fi
(16) od

7008 Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45

The above algorithm uses only linear time. In the loop in line 6 we iterate from 1 to n. In the loop is a while
loop in line 10 that increases the height (i.e. the lcp value of adjacent suffixes). Since the height is maximally
n and since in line 14 we decrease h by at most 1 per iteration of the main loop, it follows that the while loop
can increase h at most 2n times in total.

7.9 Example

The example was prepared using Stefan Kurtz’s programs mkvtree and vstree2tex, see www.vmatch.de. (Sorry
for index shifts!)

i suftab [i] height [i] S suftab [i]

0 2 aaacatat$

1 3 aacatat$

2 0 1 acaaacatat$

3 4 acatat$

4 6 atat$

5 8 at$

6 1 caaacatat$

7 5 catat$

8 7 tat$

9 9 t$

10 10 $

i sufinv [i] Si

0 ∗ 2 acaaacatat$

1 6 caaacatat$

2 0 aaacatat$

3 1 aacatat$

4 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

i = 0: sufinv [i] = 2, k = suftab [sufinv [i] − 1] = suftab [1] = 3. We compare S0 and S3 and get height [2] = 1.

i suftab [i] height [i] S suftab [i]

0 2 aaacatat$

1 3 aacatat$

2 0 1 acaaacatat$

3 4 acatat$

4 6 atat$

5 8 at$

6 1 0 caaacatat$

7 5 catat$

8 7 tat$

9 9 t$

10 10 $

i sufinv [i] Si

0 2 acaaacatat$

1 ∗ 6 caaacatat$

2 0 aaacatat$

3 1 aacatat$

4 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

i = 1: sufinv [i] = 6, k = suftab [sufinv [i] − 1] = suftab [5] = 8. We compare S1 and S8 and get height [6] = 0.

i suftab [i] height [i] S suftab [i]

0 2 -/- aaacatat$

1 3 aacatat$

2 0 1 acaaacatat$

3 4 acatat$

4 6 atat$

5 8 at$

6 1 0 caaacatat$

7 5 catat$

8 7 tat$

9 9 t$

10 10 $

i sufinv [i] Si

0 2 acaaacatat$

1 6 caaacatat$

2 ∗ 0 aaacatat$

3 1 aacatat$

4 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

i = 2: sufinv [i] = 0. There is no height value in the first row.

Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45 7009

i suftab [i] height [i] S suftab [i]

0 2 aaacatat$

1 3 2 aacatat$

2 0 1 acaaacatat$

3 4 acatat$

4 6 atat$

5 8 at$

6 1 0 caaacatat$

7 5 catat$

8 7 tat$

9 9 t$

10 10 $

i sufinv [i] Si

0 2 acaaacatat$

1 6 caaacatat$

2 0 aaacatat$

3 ∗ 1 aacatat$

4 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

i = 3: sufinv [i] = 1, k = suftab [sufinv [i] − 1] = suftab [0] = 2. We compare S3 and S2 and get height [1] = 2.

i suftab [i] height [i] S suftab [i]

0 2 aaacatat$

1 3 2 aacatat$

2 0 1 acaaacatat$

3 4 3 acatat$

4 6 atat$

5 8 at$

6 1 0 caaacatat$

7 5 catat$

8 7 tat$

9 9 t$

10 10 $

i sufinv [i] Si

0 2 acaaacatat$

1 6 caaacatat$

2 0 aaacatat$

3 1 aacatat$

4 ∗ 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

i = 4: sufinv [i] = 3, k = suftab [sufinv [i] − 1] = suftab [2] = 0. We compare S4 and S0. We start at
h = lcp (S3,S2) − 1 = 1. Observe that S4 > S0 > S3 in lex. order. We get height [3] = 3.

i = 5: sufinv [i] = 7. We can skip the first height [3] − 1 = 3 − 1 = 2 letters from comparison. [. . .]

The final result is:

i suftab [i] height [i] S suftab [i]

0 2 aaacatat$

1 3 2 aacatat$

2 0 1 acaaacatat$

3 4 3 acatat$

4 6 1 atat$

5 8 2 at$

6 1 0 caaacatat$

7 5 2 catat$

8 7 0 tat$

9 9 1 t$

10 10 0 $

i sufinv [i] Si

0 2 acaaacatat$

1 6 caaacatat$

2 0 aaacatat$

3 1 aacatat$

4 3 acatat$

5 7 catat$

6 4 atat$

7 8 tat$

8 5 at$

9 9 t$

10 10 $

Our overall strategy for constructing and searching a suffix array could then be as follows:

• Construct the suffix array for S in time O(n log n). (Linear time constructions are possible)

• Compute the height array (for adjacent positions) in linear time.

• Precompute the search tree for the binary search and annotate its internal nodes with lcp values in time
O(n). (exercise)

• Support O(log n + m) queries by adapting the searches for LP and RP.

7010 Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45

7.10 Summary

• Suffix arrays are a space efficient alternativ to suffix trees.

• They can be built in time O(n log n).

• Simple searches can be conducted in time O(m log n). However the simple mlr heuristic perofrms already
well in practice (time O(m + log n).

• The lcp values can be computed in linear time, given a suffix array.

• Using the lcp values the search in suffix arrays can be speeded up to O(m + log n).

7.11 Appendix: Manber-Myers algorithm

The Manber-Myers algorithm stores the result in the table suftab and, in addition, uses in another array
Bh of boolean values to demarcate the partitioning of the suffix array into buckets. Each bucket initially holds
the suffixes with the same first symbol.

The algorithm uses some auxiliary boolean tables. These are stored as higher-order bits in the other tables
and thus do not require additional memory allocation. However, the range of feasible n is reduced to 231 if this
implementation technique is used.

The algorithm needs (essentially) 8n bytes and runs in O(n log n) time.

[PST07]

Attention: There is an index shift in the following presentation, suftab starts at position 0.

If we look at the example acbaacatat$, we have the following after stage 1 (extra space separates the
h-buckets):

i Bh [i] suftab [i]

0 1 0=acbaacatat$
1 0 3=aacatat$
2 0 4=acatat$
3 0 6=atat$
4 0 8=at$

5 1 2=baacatat$

6 1 1=cbaacatat$
7 0 5=catat$

8 1 7=tat$
9 0 9=t$

10 1 10=$

Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45 7011

The idea is now the following: Let Si be the first suffix in the first bucket (i.e. suftab [0] = i), and consider
Si−h.

Since Si starts with the smallest h-symbol string, Si−h should be the first in its 2h bucket. Hence we move
Si−h to the beginning of its bucket and mark this fact. Remember this:

The algorithm scans the suffixes Si as they appear in ≤h-order. For each Si, it moves Si−h to the next available
place in its h-bucket.

Altogether, we maintain three integer arrays suftab , sufinv and count , and two boolean arrays Bh and
B2h , all with n + 1 elements.

At the start of stage h, suftab [i] contains the start position of the i-th smallest suffix (according to the first
h symbols).

sufinv [i] is the inverse of suftab, i. e.

suftab [sufinv [i]] = i .

Bh [i] is 1 iff suftab [i] contains the leftmost suffix of an h-bucket.

(The actual implementation of count , Bh , and B2h uses bits and currently unused entries from suftab
and sufinv .)

If we look at the example acbaacatat$, we have the following:

i Bh [i] sufinv [i] suftab [i]

0 1 0 0=acbaacatat$
1 0 6 3=aacatat$
2 0 5 4=acatat$
3 0 1 6=atat$
4 0 2 8=at$

5 1 7 2=baacatat$

6 1 3 1=cbaacatat$
7 0 8 5=catat$

8 1 4 7=tat$
9 0 9 9=t$

10 1 10 10=$

In stage 2h we reset sufinv [i] to point to the leftmost cell of the h-bucket containing the i-th suffix, rather
than to the suffix’s precise place in the bucket. In our example we get:

i Bh [i] sufinv [i] suftab [i]

0 1 0 0=acbaacatat$
1 0 6 3=aacatat$
2 0 5 4=acatat$
3 0 0 6=atat$
4 0 0 8=at$

5 1 6 2=baacatat$

6 1 0 1=cbaacatat$
7 0 8 5=catat$

8 1 0 7=tat$
9 0 8 9=t$

10 1 10 10=$

In each doubling step, suftab is scanned in increasing order, one bucket at a time. Let l and r mark the left
and right boundary of the h-bucket currently being scanned. For every l ≤ i ≤ r, we do the following:

7012 Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45

1. Let Ti := suftab [i] − h. (If Ti is negative we do nothing.)

2. Increment count [sufinv [Ti]].

3. Set sufinv [Ti] = sufinv [Ti] + count [sufinv [Ti]] − 1.

4. Mark this by setting B2h [sufinv [Ti]] to 1.

Now sufinv [i] is correct with respect to ≤2h. The old ≤h-ordering is still available in suftab . The suftab is
updated at the end of the 2h stage. In the following example, we show the future positions of the suffixes a
field new st (not used by the algorithm).

We indicate the current position with a “*”. The auxiliary array count is initialized to 0 for all i. After the
initialization:

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
* 0 1 0 0 0 0=acbaacatat$

1 0 0 0 6 3=aacatat$
2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$
5 1 0 0 6 2=baacatat$
6 1 0 0 0 1=cbaacatat$
7 0 0 0 8 5=catat$
8 1 0 0 0 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

Nothing happens since 0 − 1 < 0.

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 0 0 0 0=acbaacatat$

* 1 0 0 0 6 3=aacatat$
2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$
5 1 1 1 6 5 2=baacatat$
6 1 0 0 0 1=cbaacatat$
7 0 0 0 8 5=catat$
8 1 0 0 0 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

S2 is moved to the front of its bucket, i. e. it stays were it is: T1 = 2 and sufinv [2] = 5, hence increment count [5],
set sufinv [2] = 5 + count [5] − 1 = 5, and B2h [5] = 1.

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 1 0 0=acbaacatat$
1 0 0 0 6 0 3=aacatat$

* 2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$
5 1 1 1 6 5 2=baacatat$
6 1 0 0 0 1=cbaacatat$
7 0 0 0 8 5=catat$
8 1 0 0 0 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45 7013

S3 is moved to the front of its bucket, i. e. to position 0: T2 = 3 and sufinv [3] = 0, hence increment count [0],
set sufinv [3] = 0 + count [0] − 1 = 0, and B2h [0] = 1.

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 1 0 0=acbaacatat$
1 0 0 0 6 0 3=aacatat$
2 0 0 0 5 4=acatat$

* 3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$
5 1 1 1 6 5 2=baacatat$
6 1 1 1 0 1=cbaacatat$
7 0 0 0 8 6 5=catat$
8 1 0 0 0 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

S5 is moved to the front of its bucket, i. e. to position 6: T3 = 5 and sufinv [5] = 6, hence increment count [6],
set sufinv [5] = 6 + count [6] − 1 = 6, and B2h [6] = 1.

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 1 0 0=acbaacatat$
1 0 0 0 6 0 3=aacatat$
2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$

* 4 0 0 0 0 8=at$
5 1 1 1 6 5 2=baacatat$
6 1 1 1 0 1=cbaacatat$
7 0 0 0 8 6 5=catat$
8 1 1 1 0 8 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

S7 is moved to the front of its bucket, i. e. to position 8: T4 = 7 and sufinv [7] = 8, hence increment count [8],
set sufinv [7] = 8 + count [8] − 1 = 8, and B2h [8] = 1.

Now we have scanned the first bucket. Next we scan the bucket again, find all moved suffixes in all
buckets and update the B2h bitvector so that it points only to the leftmost positions of the 2h-buckets.

To do that B2h is set to false in the interval [sufinv [a] + 1, b − 1] where a is every position marked in B2h
and

b = min
{
j : j > sufinv [a] and(Bh [j] or not B2h [j])

}
.

It is clear that the left border preserves the leftmost bit set. The definition of the right border prevents us
from resetting a border of an adjacent 2h bucket, but ensures the cancelling of all unwanted bits.

In our example nothing happens, since all moved suffixes were put at the beginning of a new bucket. This
scan updates the su f inv and B2h tables and makes them consistent with the ≤2h order. At the end of each stage
after all buckets are scanned, we update the suftab array using the sufinv array:

For all i: suftab [sufinv [i]] := i .

The next step shows that indeed the order of S1 and S5 is changed. S5 was investigated during the scan
of the first bucket and put to the beginning of its ≤2h-bucket. Also, the B2h vector changes now in the second
scanning step.

7014 Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 1 0 0=acbaacatat$
1 0 0 0 7 0 3=aacatat$
2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$

* 5 1 1 1 6 5 2=baacatat$
6 1 1 2 0 7 1=cbaacatat$
7 0 1 0 8 6 5=catat$
8 1 1 1 0 8 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

Now S1 is put at the second position of its bucket: T5 = 1 and sufinv [1] = 6, hence increment count [6], set
sufinv [1] = 6 + count [6] − 1 = 7, and B2h [7] = 1.

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 2 1 1 0=acbaacatat$
1 0 1 0 7 0 3=aacatat$
2 0 0 0 5 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 0 8=at$
5 1 1 1 6 5 2=baacatat$

* 6 1 1 2 0 7 1=cbaacatat$
7 0 1 0 8 6 5=catat$
8 1 1 1 0 8 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

Now S0 is put at the second position of the first bucket: T6 = 0 and sufinv [0] = 0, hence increment count [0],
set sufinv [0] = 0 + count [0] − 1 = 1, and B2h [1] = 1.

i Bh [i] B2h [i] count [i] sufinv [i] new st [i] suftab [i]
0 1 1 3 1 1 0=acbaacatat$
1 0 1 0 7 0 3=aacatat$
2 0 1 0 5 2 4=acatat$
3 0 0 0 0 6=atat$
4 0 0 0 2 8=at$
5 1 1 1 6 5 2=baacatat$
6 1 1 2 0 7 1=cbaacatat$

* 7 0 1 0 8 6 5=catat$
8 1 1 1 0 8 7=tat$
9 0 0 0 8 9=t$

10 1 0 0 10 10=$

Now S4 is put at the third position of the first bucket: T7 = 4 and sufinv [4] = 0, hence increment count [0],
set sufinv [4] = 0 + count [0] − 1 = 2, and B2h [2] = 1. The bucket is finished. We scan it again to update
B2h. B2h [2] is set to 0, since two suffixes with second character c were moved, but B2h should only mark the
beginning of the 2h-bucket.

The construction shown can clearly be done in time O(n log n) and O(n) space. In the original paper Myers
describes a small modification of the construction phase which leads to an O(n) expected time algorithm at the
expense of another n bytes.

The idea is to store for all suffixes Si their prefixes of length T = blog
|Σ| nc as T−digit radix-| Σ | numbers.

Then instead of performing the radix sort on the first symbol of the suffixes, we perform it on this array,
which can be done in time O(n) since our choice of T guarantees that all integers are less than n. Hence the
base case of the sort has been extended from 1 to T.

Suffix Arrays, by Clemens Gröpl, Knut Reinert, May 9, 2011, 13:45 7015

It can be shown that in the expected case there is only a constant number of additional rounds that need
to be performed.

7.12 Appendix: Computing the lcp values along with the MM algorithm

This can be done during the construction of the suffix array, without additional overhead, or alternatively in
linear time with a scan over the suffix array.

In Myers’ algorithm the computation of the lcp values can be done during the construction of the suffix
array without additional time overhead and with an additional n + 1 integers. The key idea is the following.
Assume that after stage h of the sort we know the lcp s between suffixes in adjacent buckets (after the first
stage, the lcp s between suffixes in adjacent buckets are 0).

At stage 2h the buckets are partitioned according to 2h symbols. Thus, the lcp s between suffixes in newly
adjacent buckets must be at least h and at most 2h − 1. Furthermore if Sp and Sq are in the same h-bucket, but
in distinct 2h-buckets, then

lcp (Sp,Sq) = h + lcp (Sp+h,Sq+h) and lcp (Sp+h,Sq+h) < h.

The problem is that we only have the lcp s between suffixes in adjacent buckets, and Sp+h and Sq+h may
not be in adjacent buckets. However, if S suftab [i] and S suftab [j] with i < j have an lcp less than h and suftab is
in ≤h order, then their lcp is the minimum of the lcp s of every adjacent pair of suffixes between suftab [i] and
suftab [j]. That is

lcp (S suftab [i],S suftab [j]) = min
k∈[i, j−1]

{ lcp (S suftab [k],S suftab [k+1]}

Using the above formula to compute the lcp values directly would require too much time. And maintain-
ing the lcp for every pair of suffixes would require too much space.

By using a balanced tree that records the minimum pairwise lcp s over a collection of intervals of the suffix
array, we can determine the lcp between any two suffixes in O(log n) time (which is sufficient for Myer’s online
construction).

Since there are only n internal leaves in the tree, for which the lcp has to be computed, we spend a total
of O(n log n) time to precompute the lcp values.

	Introduction
	Example
	Why another algorithm?
	Prefix doubling
	Searching
	Computing the lcp values
	The Kasai et al. algorithm
	The algorithm
	Example
	Summary
	Appendix: Manber-Myers algorithm
	Appendix: Computing the lcp values along with the MM algorithm

