13 Chaining

This exposition was developed by Clemens Gropl. It is based on the following references, which are all
suggested reading:

e Mohamed I. Abouelhoda, Enno Ohlebusch: Chaining algorithms for multiple genome comparison, Journal of
Discrete Algorithms, 3:321-341, 2005. [AO05]

e Enno Ohlebusch, Mohamed 1. Abouelhoda: Chaining algorithms and applications in comparative genomics,
Handbook of Computational Molecular Biology, Chapter 15, 2006. [AO06]

e Gene Myers, Webb Miller: Chaining multiple-alignment fragments in sub-quadratic time, SODA 1995.
[MM95]

The work of Ohlebusch and Abouelhoda was originally presented in two conference papers at CPM03 and
WABIO03. These are now mostly superseded by the two articles above.

13.1 The chaining problem

Biological sequence analysis often has to deal with sequences of genomic size which cannot be aligned as a
whole in one step. In this situation, an anchor-based approach can be used. The idea is to construct a (more or
less) global alignment from a collection of local alignments. The small pieces are also called fragment matches or
just fragments. These pieces then have to be chained one after another. The chaining problem is difficult because
no all fragment are compatible with each other. The general approach is as follows:

1. Compute fragments, i. e. regions in the genomes that are very similar.

2. Compute an optimal global chain of colinear non-overlapping fragments. The fragments of the chain are the
anchors for the alignment.

3. Fill in the gaps by aligning the regions between the anchors.

A variant of the problem (2’.) tries to find a set of local chains instead of one global chain. We will return to
this later.

Naturally we are also interested in multiple alignments of k genomic sequences. For the chaining problem,
we only care about where each fragment begins and ends in each of the k sequences.

Each fragment has a weight. The weight could be the length of an exact match, or another measure of its
statistical significance.

The gaps in a chain of fragments need to be scored as well. We will see a number of scoring schemes for
this below.

Example. To the left, you see a collection of pairwise (k = 2) alignments (top) and a chained subset of
them (bottom). To the right you see a two-dimensional visualization of the same fragment matches. An arrow
indicates that one fragment can follow another fragment in a chain. (Not all possible arrows are shown.)

13001

Chaining, by Clemens Gropl, May 23, 2011, 17:41
t

NVJ
~
\
l
1
[=2]

(a) ° (b)

13.2 The chaining problem

Note that not all pairs of fragments are compatible to each other: The fragments in the chain have to be collinear
and non-overlapping.
e Collinear: The order of the respective segments of the fragments is the same in both sequences.

o Non-overlapping: Two fragments overlap if their segments overlap in one of the sequences.

In the pictorial representation of Figure (a), two fragments are collinear if the lines connecting their
segments are non-crossing (for example, the fragments 2 and 3 are collinear, while 1 and 6 are not). Two
fragments overlap if their segments overlap in one of the genomes (for example, the fragments 1 and 2 are
overlapping, while 2 and 3 are non-overlapping). Figure (b) shows the fragments as rectangles. Fragments 2,

3, 7 are chained. ® and t are artificial source and sink nodes.
Among the many bioinformatics tools solving chaining problems (in some way) are:

e FastA. Fragments are constant-size exact matches. They are found by hashing.
o MUMmer. Fragments are maximal exact matches. They are found using suffix trees.

e MGA. Fragments are maximal multiple exact matches. They are found using suffix arrays.

e GLASS. Fragments are exact k-mers.

e DIALIGN. Fragments can have substitutions.

o MultiPipMaker. Fragments can have substitutions and indels.
e ... (add your favorite genome alignment tool here)

The fragments could also be BLAST hits, or even local chains from an earlier invocation of the algorithm.

13.3 Graph-theoretic formulation

Clearly the chaining problem can be stated in graph-theoretic terms. The fragments correspond to vertices
and we have an edge whenever two fragments are compatible, i. e. they can be combined in a chain. Thus we
obtain a weighted acyclic directed graph. The goal is to find a directed path of maximum weight. A simple

dynamic programming requires O(V + E) time and space.

Example.

13002 Chaining, by Clemens Gropl, May 23, 2011, 17:41

i
i g
........ g
......... g
...... d- - - - a-
fo od a- - -
C o a- -
........... h- - -a- - .
k- - - .. h- - - .
b ko h- - - .
b - £. . - h- - ..
b - £ j
b - fo-e- -/j
b - e - - j

Scoring scheme: For simplicity, each “letter” scores 2 and all other columns of the corresponding alignment
score —1 (diagonal “shortcuts” are allowed).

The graph theoretic approach is intuitive and will lead us to the final solution. But some essential issues
are not settled yet:

e How should the edge set be constructed? Of course we can enumerate over all pairs of vertices, but this
will take Q(V?) time, which is prohibitive in many real-world cases.

e Even worse, it is easy to construct instances where the size of the edge set is indeed Q(V?). It may help
to remove “transitive” edges which cannot be part of an optimal solution, but this does not improve the
worst-case asymptotic. (Exercise: find such an example.)

o The obvious dynamic programming algorithm does not fully exploit the geometric nature of the problem.
It works on every weighted acyclic directed graph, but our graph is more restricted.

The good news is that we need not construct the edge set explicitly. Instead we will traverse the vertices in an
appropriate order and use some auxiliary data structures and still carry out essentially the same DP recursion.

13.4 Notation

Before we can get more concrete, we need to introduce some notation.

e For1 <i<kletS; = Si[l1..n;] be a sequence of length |S;| = n;.

e Si[l..h] denotes the substring of S; starting at position I and ending at position h. (Both margins are
included.)

o A fragment f consists of two k-tuples beg(f) = (l1,12,...,lx) and end(f) = (h1, hy, ..., h) such that the
strings Si[l1..h1], Sallz..h2],. . ., Skllk-.h] are similar in some sense.

e A fragment f of k sequences can be represented by a hyper-rectangle in R* with two extremal corner
points beg(f) and end(f). We write R(p,q) := [p1,q1] X ... X [pr, gx] for the hyper-rectangle spanned
by p = (p1,...,px) and q = (q1,...,4x), where p < g,i.e, p; < gi forall 1 <i < k. Thus a fragment f is
represented by hyper-rectangle R(beg(f), end(f)). Each coordinate of the corners is a nonnegative integer.

Consequently, the number of sequences k is also called the dimension.

Each fragment f has a weight f.weight € R.
We will sometimes identify beg(f) or end(f) with f.

For ease of presentation, we introduce artificial fragments of weight zero. We let 8 := (0,...,0) and
t = (m +1,...,n+1). We let beg(0) := L (where L means “undefined”) and end(0) := (0,...,0).
Analogously, beg(t) := (n; +1,...,1n¢ + 1) and end(t) := L.

Chaining, by Clemens Gropl, May 23, 2011, 17:41 13003

e The coordinates of a point p € R* will be accessed as p.xy,. .. p.xx. If k = 2, we will also write them as p.x,
p-y-

Definition. We define a binary relation < for fragments by
f<f < V:end(f).x; <beg(f').xi

In this case, we say that f precedes f’. In the graph model, we have an arrow from f to f”.

Note that < f < t for all fragments f with f # 0, f # t, as required.

13.5 Notation
Definition.

o A chain (of collinear, non-crossing fragments) is a sequence of fragments C = (f, ..., fr) such that f; < fi;
foralll <i< .

o The score of Cis , ,
-1
score(C) = Y fiweight = Y g(fi1, f),
i=1 i=1
where g(fis1, fi) is the gap cost for connecting fragment f; to fi;1 in the chain.

The global fragment chaining problem is:

Given a set of weighted fragments and a gap cost function, determine a chain of maximum score
starting at ® and ending at t.

13.6 The basic algorithm

For each fragment f, denote by f.score the maximum score of all chains starting at ® and ending at f.

Clearly this score satisfies the following recurrence:

f’.score = f’.weight + max{f.score -g(f,) | f<f }

The simple dynamic programming algorithm for the global fragment chaining problem processes the fragments
in a topological ordering (e. g., the lexicographic ordering). This is to ensure that when f’.score is going to be
computed, all values f.score, where f < f’, have already been determined.

The initialization is
0.score :=0.

And the value we are finally interested in is t.score.

The chain itself can be found by backtracing, as usual.

13.7 Range maximum queries

So how are we going to improve upon this straightforward solution? The key is to compute the ‘max’ in the
DP recursion more efficiently, without ‘generating’ all the edges of the graph. Range (maximum) queries are a
fundamental operation in computational geometry, and efficient data structures have been designed for them.

Definition.
e Let S C R be a set of points and let p,q € R, p < g be the corners of a rectangle R(p, q). Then the range
query RQ(p, q) asks for all points of S that lie in the hyper-rectangle R(p,).

o Assume further that the points in S have a score associated with them. Then the range maximum query
RMOQ(p, q) asks for a point of maximum score in R(p, g).

13004 Chaining, by Clemens Gropl, May 23, 2011, 17:41

Observation. Consider the special case when the gap cost function g is always zero. Let T:=(,...,1). The
recurrence of the basic algorithm implies:

If RMQ(0, beg(f") — 1) returns the end point of fragment f, then f’.score = f’.weight + f.score.

In other words, range maximum queries are what we need in the DP recursion!

13.8 Global chaining without gap costs

In the following, we will first consider the case when all gap costs are zero. After that we will see how the
algorithm can be modified to deal with (certain) gap cost functions.

The algorithm uses the line-sweep paradigm to construct an optimal chain. It processes the begin and end
points of the fragments in ascending order of their x; coordinate. One can think of the traversal as a line
(actually, a hyper-plane of dimension k — 1) that “sweeps” the points with respect to their x; coordinate.! If a
point has already been scanned by the sweeping line, it is said to be active, otherwise it is said to be inactive.

Let s be the point that is currently being scanned. The x; coordinates of the active points are less than or
equal to that of s. By the preceding observation, if s is the begin of fragment f’, then an optimal chain ending
at f’ can be found by a range maximum query over the active points. Otherwise, s is the end of a fragment and
can be activated. Note that the RMQ need not take the first coordinate x; into account because of the sweeping
order.

The algorithm uses a semi-dynamic data structure D that stores the end points of the fragments and supports
two operations:

1. Activation

2. Range maximum queries over active points.

It is called semi-dynamic because we can only ‘activate” but not ‘inactivate’ points. Abouelhoda and Ohlebusch
[AOO05] have designed such a data structure that supports RMQs with activation in O(n logd_1 nloglogn) time
and O(nlog®™") space for n points in d dimensions.

Sinced = k—1in the algorithm, their algorithm solves the global fragment chaining problem in O(1 log"~* 1 log log)
time and O(n logkf2 n) space. (This holds for k > 3; for k = 2 the running time is dominated by the initial sorting.)

The correctness of the following algorithm is immediate.

Algorithm. (k-dimensional chaining of n fragments)

(1) // Data structure D is (k — 1)-dimensional, x; is ignored.

(2) /| denotes the projection.

(3) points := begin and end points of all fragments (including 0 and t)
4) sort points by x;

(5) store all end points of fragments as inactive in D

) fori=1to2n+2do

7 if points[i] == beg(f’) for some fragment f’

®) then

@ q := RMQ(0, n(points]i] — 1))

(10) f := fragment with end(f) == g and maximum score
(11) f'.prec:=f

(12) f’.score := f’.weight + f.score

(13) else // points[i] == end(f") for some fragment f’

(14) activate(rt(points[i])) in D

as) A

(1) od

The details of the data structure D are fairly complicated. It combines range trees with fractional cascading
and van Emde Boas priority queues (with Johnson’s improvement) . .. enough topics for more than another lecture!
We therefore skip this part of [AO05, AO06] :-(Note that the actual implementation of Abouelhoda uses
KD-trees, which are non-optimal with respect to the running times but much easier to implement. (Explained
on the blackboard.)

lengl. “to sweep” = dt. “fegen”

Chaining, by Clemens Gropl, May 23, 2011, 17:41 13005

At this point, we have an algorithm for the global chaining problem without gap costs. Next we show
how to modify the algorithm to take certain gap cost functions into account.

13.9 Incorporating L gap costs

Definition. For two points p, g € R, the L distance is defined by

k
di(p,q) =) Ip-xi - g.x.
i=1

Definition. The L; gap function is
§1(f, f) = di(beg(f'),end(f)) for f < f.

The effect of the L; gap function is that all characters between f and f” are scored as indels (not a very
realistic assumption, but maybe not so bad either):

ACCXXXX---AGG
ACC----YYYAGG

In this example ACC and AGG are the anchors of the alignment and X and Y are anonymous characters.

The problem with gap costs is that a range maximum query does not immediately take the gap cost g(f’, f)
into account when f”.score is computed.

But we can express the gap costs implicitly in terms of the weight information attached to the points. Let
us define the geometric cost of a fragment f as

ge(f) = di(t, end(f)).

Since t is fixed, the value gc(f) is known in advance for every fragment f. Moreover, we have the following
lemma:

Lemma 1. Let £, f, and f’ be fragments such that f < f’ and f < f’. Then
f.score — g1(f’, f) > f.score — g1(f’, f) & f.score — gc(f) > f.score — gc(f).

Proof: Exercise. (See figure on blackboard.)

Therefore we need only two slight modifications to the algorithm in order to take L; gap costs into account.

1. Replace the statement
f’.score := f’.weight + f.score

with
f’.score := f’.weight + f.score — g1(f’, f).

2. If points[i] is the end point of f’, then it is activated with priority
f'.priority := f’.score — gc(f’).
Thus the RMQs will return a point of maximum priority instead of a point of maximum score.

Then we have:
Lemma 2. If RMQ(0, beg(f’) — f) returns the end point of a fragment f, then we have

f.score — g1(f’, f) = max{ f.score — g1(f,)| f < f'}.

Proof: Application of the preceding lemma.
Therefore the modified algorithm is correct.

Algorithm. (k-dimensional chaining of n fragments using L; gap cost)

13006 Chaining, by Clemens Gropl, May 23, 2011, 17:41

(1) // Data structure D is (k — 1)-dimensional, x; is ignored.

(2) /| Tt denotes the projection.

(3) points := begin and end points of all fragments (including 0 and t)
(4) sort points by x;

(5) store all end points of fragments as inactive in D

© fori=1to2n+2do

7y if points[i] == beg(f") for some fragment f’

®) then

©) q := RMQ(0, n(points]i] — 1))

(10) f := fragment with end(f) == g and maximum score
(11) f'.prec:=f

(12) f’.score := f’.weight + f.score — g1(f’, f)

(13) else // points[i] == end(f") for some fragment f’

(14) f.priority := f’.score — gc(f")

(15) activate(r(points[i])) in D with priority f’.priority
a) i

17) od

13.10 Incorporating sum-of-pairs gap costs

The L; gap cost model is not very realistic. An alternative scoring model was introduced by Myers and Miller
[MM95]. We consider the case k = 2 first, since the case k > 2 is rather involved. (The name ‘sum-of-pairs cost’
is a bit misleading, just take it as a name.)

For two points p, g € RF, we write

Ay (p,q) = |p.xi - q.xi|
The sum-of-pairs distance depends on two parameters € and A. It is defined (for k = 2) as

dp,q) = {GAXZ +AMAy, — Ay,) Ay 2 Ay

Ay + Ay, — Ay if Ay, = Ay

— /\Axl + (e - /\)AXZ lf AX1 2 AXZ
T AA, + (€= MDAy, A, 2 A

We drop the arguments p, g if they are clear from the context.

Definition. The sum-of-pairs gap function is
g(f',) = d(beg(f"), end(f)) for f < f'.
The effect of the sum-of-pairs gap function depends on the parameters € and A.

e A > 0is the cost of aligning an anonymous character with a gap position in the other sequence.

e ¢ > (0 is the cost of aligning two anonymous characters to each other.

For A 1 and € = 2, g coincides with g;, whereas for A = 1 and € = 1, we obtain the L, metric:

gl f) = deu(beg(f"), end(f)), where

deo(p, q) = max{ [p.x; — q.xi| | 1 < i <k}.

With A > €/2 > 0 the characters between two fragments are replaced as long as possible and the remaining
characters are inserted or deleted:

ACCXXXXAGG
ACCYYY-AGG

(Compare this example to the one for the L; metric.)

Chaining, by Clemens Gropl, May 23, 2011, 17:41 13007

Otherwise it would be best to connect fragments entirely by gaps as in the L; metric. Thus we require that
A>€/2.

We need a few definitions in order explain how the score of a fragment f’ can be computed.
Let s := beg(f’). The first quadrant of s consists of all points p € R? with p.x; < g.x; and p.xp < g.x,.

We subdivide the first quadrant of s into its first and second octant O1, O,. The points in the first octant O,
satisfy Ay, > A,,; they are above or on the straight line x, = x; + (s.x — 5.x1). The points in the second octant
satisfy Ay, > Ay,.

Clearly,
f’.score = f’.weight + max{vy, v;},

where
v; := max{ f.score — g(f’, /) | f < f" and end(f) lies in octant O; }

fori = 1,2. Thus we can eliminate the case distinction for g within each octant.

We are not finished yet, since our chaining algorithm relies on RMQs, which work for orthogonal regions,
not octants! But a simple trick can help.

We apply the octant-to-quadrant transformations of Guibas and Stolfi: The transformation T; : (x1,x2) =
(1 —x2, x2) maps the first octant to the first quadrant. Similarly, T, : (x1, x2) = (x1, X2 —x1) does the same task for
the second octant. By means of these transformations, we can apply the same techniques as for the L; metric.

We only need to define the geometric cost gc; properly for each octant O;.

Lemma 3. Let f, f, and f’ be fragments such that f < f’ and f < f’. If end(f) and end(f) lie in the first octant
of beg(f’), then

fscore — g(f', f) > f.score — g(f', f) & f.score — gc,(f) > f.score — gc,(f),
where . . .
g, (f) = AAy (t,end(f)) + (€ — A)A,, (t, end(f))
for any fragment f.
Proof: Exercise. (Similar to the preceding one.)
An analogous lemma holds for the second octant.

Due to the octant-to-quadrant transformations, we need to take two different geometric costs gc,, gc, into
account. Consequently, the nodes will also have different scores with respect to both. To cope with this, we
use two data structures D;, D,. Each D; stores the points of the set { T;(end(f)) | f is a fragment }. The results
of both RMQs need to be merged. We omit the details.

We still have a line-sweep algorithm, but the data structures D; need to store two-dimensional points.
Thus the algorithm runs in O(n log 1 log log 1) time and O(n log 1) space.

For dimensions k > 2, the sum-of-pairs gap cost is defined for fragments f < f’ by

gop(F)= Y 8l fid),

0<i<j<k
where fl.’j and f;; are the two-dimensional “projections” of the fragments.

The general idea is similar as for k = 2, but now the first hyper-corner of beg(f’) is subdivided into k!
hyper-regions.

The resulting algorithm runs in O(k!n log"™" nlog log 1) time and O(k!n log"™" 1) space.

13.11 Local chaining

So far we have been searching for an optimal chain starting at ® and ending at t. If we remove the restriction
that a chain must start at ® and end at t, we obtain the local chaining problem.

Definition. The local fragment chaining problem is: Given a set of weighted fragments and a gap cost
function, determine a chain of maximum score > 0. Such a chain will be called an optimal local chain.

13008 Chaining, by Clemens Gropl, May 23, 2011, 17:41

Example:

(a) ° (b) 9,

The optimal chain is composed of the fragments 1, 4, and 6. Another significant local chain consists of the
fragments 7 and 8.

Definition. Let

f’.score := max{ score(C) | C is a chain ending with f }
Definition. A chain C ending with f’ and satisfying f’.score = score(C) is called an optimal chain ending
with f’.
We explain the idea using L; gap costs for simplicity.
Lemma. The following equality holds:

f'.score = f'.weight + max{0, f.score—g1(f",)| f < f'}.

Once again we have switched from global to local alignment by ‘adding a zero at the right place’.

Now the modification to the line-sweep algorithm is straight-forward.

13.12 KD-trees

The actual implementation done by Abouelhoda uses a KD-tree data structure.

A nice Java applet illustrating KD-trees (for dimension k = 2) can be found via Hanan Samet’s home-
page, http://www.cs.umd.edu/users/hjs/, the direct link to the applet is http://donar.umiacs.umd. edu/
quadtree/points/kdtree.html. This is the one I presented in the lecture, but it was offline on 2007-06-22, so I
went on to another one.

Another nice Java applet can be found via Hiiseyin Akcan’s homepage, http://cis.poly.edu/~hakcan01/,
the direct link to the applet ishttp://cis.poly.edu/~hakcan®1/projects/kdtree/kdTree.html, and this is
also where I have copied the pseudocode from.

http://www.cs.umd.edu/users/hjs/
http://donar.umiacs.umd.edu/quadtree/points/kdtree.html
http://donar.umiacs.umd.edu/quadtree/points/kdtree.html
http://cis.poly.edu/~hakcan01/
http://cis.poly.edu/~hakcan01/projects/kdtree/kdTree.html

Chaining, by Clemens Gropl, May 23, 2011, 17:41 13009

Algorithm BUILDKDTREE(F, depih)

Input. A set of points P and the current depth depth.

Ouiput. The root of a kd-tree storing P.

I. if P contains only one point

2 then return a leaf storing this point

3. else if deprh is even

4, then Split P into two subsets with a vertical line £ through the
median x-coordinate of the points in P. Let P, be the set of
points to the left of £ or on £, and let P be the set of points
to the right of £,

at else Split P into two subsets with a horizontal line ¢ through
the median v-coordinate of the points in P. Let Py be the
set of points below £ or on £, and let P> be the set of points

above £,
6. Viefe +— BUILDKDTREE(P, depth + 1)
v Vyight + BUILDKDTREE(P:, depth+ 1)
8. Create a node v storing £, make Ve, the left child of v, and make
Viige the right child of v.
9. return v

Algorithm SEARCHKDTREE(V, R)

Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below v that lie in the range.
1. ifvisaleaf

2 then Report the point stored at v if it lies in R.
3 else if region(lc(v)) is fully contained in R

4, then REPORTSUBTREE(/c(V))

5. else if region(lc(v)) intersects R

6 then SEARCHKDTREE(Ic(V),R)
7 if region(re(v)) is fully contained in R

8 then REPORTSUBTREE(rc(V))

9. else if region(rc(v)) intersects R

10. then SEARCHKDTREE(rc(v),R)

&

Is i
P s Py
L]
i

f P

e i
I P o) A 3

[6

iy t

A

The complexities of basic operations supported by KD-trees are as follows:

13010 Chaining, by Clemens Gropl, May 23, 2011, 17:41

o Building a static kd-tree from n points takes O(n log 1) time.
¢ Inserting a new point into a balanced kd-tree takes O(log 1) time.
e Removing a point from a balanced kd-tree takes O(log 1) time.

¢ Querying an axis-parallel range in a balanced kd-tree takes O(nl‘l/ k4 r) time, where r is the number of
the reported points, and k is the dimension of the kd-tree.

Note however that these are worst-case bounds. Moreover, there is no guarantee that the tree will be balanced
in our application. Thus the observed performance can be better or worse in practice.

KD-trees are a standard data structure in computational geometry and discussed in any textbook on the
subject. You can also find the key facts at Wikipedia: http://en.wikipedia.org/wiki/Kd_tree

13.13 Conclusion

/17! /i . N4
S, v, 147
/ Y R A B AV

/ 1/ A A A N A A
A Y e AR B A
WY/, 7 v /a4 7 ///////
/ /7 s sl ol
2 ////// 7 /7 ///, f// ////// //
/7 / / / A ol P
/sy / Vi Y A Y YV 1771
/ /// / / / / J /// // / s
VY Y A A A A VA /A
/, Va4 1/ 1/)y // Y /
/7 /////////////// /5 /////////
VA A ! /gl L0 7y
N Y Ay e 1T / /7
y /s ARV /7 / Y /
2 AV A AR Y VA

http://en.wikipedia.org/wiki/Kd_tree

	The chaining problem
	The chaining problem
	Graph-theoretic formulation
	Notation
	Notation
	The basic algorithm
	Range maximum queries
	Global chaining without gap costs
	Incorporating L1 gap costs
	Incorporating sum-of-pairs gap costs
	Local chaining
	KD-trees
	Conclusion

