=

Separating repeats in DNA sequence assembly*
(Extended abstract)

John Kececioglu!

Abstract

One of the key open problems in large-scale DNA sequence
assembly is the correct reconstruction of sequences that con-
tain repeats. A long repeat can confound a sequence assem-
bler into falsely overlaying fragments that sample its copies,
effectively compressing out the repeat in the reconstructed
sequence. We call the task of correcting this compression by
separating the overlaid fragments into the distinct copies
they sample, the repeat separation problem. We present
a rigorous formulation of repeat separation in the general
setting without prior knowledge of consensus sequences of
repeats or their number of copies. Owur formulation de-
composes the task into a series of four subproblems, and
we design probabilistic tests or combinatorial algorithms
that solve each subproblem. The core subproblem sepa-
rates repeats using the so-called k-median problem in com-
binatorial optimization, which we solve using integer linear-
programming. Experiments with an implementation show
we can separate fragments that are overlaid at 10 times the
coverage with very few mistakes in a few seconds of compu-
tation, even when the sequencing error rate and the error
rate between copies are identical. To our knowledge this is
the first rigorous and fully general approach to separating
repeats that directly addresses the problem.

Keywords Computational biology, shotgun sequencing,
disambiguating repeats, k-median problem

1 Introduction

Now that DNA sequencing has progressed to sequencing en-
tire genomes of complex organisms such as man, the prob-
lem of correctly dealing with repeats in such sequences is

*Research supported by U.S. National Science Foundation CA-
REER Award DBI-9722339 and U.S. National Science Foundation
Grant DBI-9872649.

fCorresponding author.
The University of Arizona, Tucson, A®21-0077, USA. Emai
kece@cs.arizona.edu

11Depaurt:ment of Computer Science, The University of Georgia,
Athens, GA ®02-7404, USA. Emai 1: jun@cs.uga.edu

Department of Computer Science,
1:

Permission to make digital or hard copies of part or al of this work or
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citdion on thefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or afee.

RECOMB 2001, Montreal, Canada

© ACM 2001 1-58113-353-7/01/04...$5.00

176

Jun Yut

receiving more and more attention. While approaches to
sequence assembly that work correctly in the absence of re-
peats have been known for¥séndd they

tend to compress sequences that contéu-long repeats.

eral interesting alternate approaches have been suggested,
based on trying to find an assembly whose coverage does
not deviate too far in dififibmtipntrying to ac-

comodate constraints on the orientation and distance be-
tween pairs of fragments sampled from the ends of longer
cloned)9, 2] iHding an assembly whose depth is uni-
formly close to the expected coverage does not prevent, for
instance, mixing fragments from; differhnt copies

analysis of the fragment sequences is required. Accomo-
dating constraints on end-pairs of fragments can effectively
extend the size of the unit that is read from the underlying
sequence, and hence can span a repeat by sampling disam-
biguating context, but evénidretly domig repeat,

for instance formed from tandem copies of shorter units, will
ultimately confound such an approach.

Indeed in the worst case one can show that it is im-
possible to correctly reconstruct a sequence that contains
exact copies of aoféprately in genomic DNA
long repeats are almost never exact copies, but usually con-
tain small differences distributed tfgloughout. dif-
ferences between copies, which are usually cadlizd
guishing base sites, permit in principle the correct assem-
bly of sequences even with arbitrarily long repeats. While
it has been recognized by researchers in several public fo-
rums that analysis of distinguishing base sites is necessary
to correctly separate repeats, we are not aware of any rig-
orous and fully automatic method for carrying out such
an analysis in the literature on sequence assembly algo-
rithmp),8 B, 9, 6,57, 5,3,42,2] As is often the
case, working out the details is far from trivial.

We present a four-phase approach to separating repeats
that works with any assembler that follows the standard
three-phase decomplj#]tivn

(1) construction of a graph of fragment overlaps,

(2) selection of overlaps to form a fragment layout,
and

(3) multiple alignment of the layout to determine a
consensus sequence.

Moreover our approach is fully geeenadt require

prior knowledge of the consensus sequences for the repeats,
or even the number of copies ofilldedpisateeded

is a lower bdumdhe error rate between copies, an upper
bouneén the sequencing error rate, ancbfhe coverage

the sequencinjgcpro (sometimes called the r¢dundancy

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

Furthermore our algorithms are fully automatic and contain
no ad hoc parameters; all parameters internal to the algo-
rithms have natural interpretations as confidence bounds on
well-defined probability events.

Informally we take repeat separation to be the following
task. The input is a candidate assembly described by a
layout of the fragments. The output is a set of edges in the
overlap graph that are inferred to be false overlaps, due to
them overlapping fragments that sample different copies of
a repeat. We assume that along with the layout there is a
procedure that, given any region in the layout delimited by
the left and right ends of two fragments, returns a multiple
alignment of the fragments that span the region.

A procedure for repeat separation with this input-output
behavior can be combined with a three-phase assembler as
follows. Iterate the layout phase by computing a candidate
layout, running the separation procedure on the layout and
removing from the graph all edges identified as false over-
laps, and repeat, stopping once no false edges are found with
respect to the current layout. This idea of solving a problem
with unknown error in the input (here the false overlaps in
the overlap graph) by computing an initial solution, using
the solution to identify and remove some of the error, re-
computing a solution on the edited input, and repeating, is
not new in computational biology, and has been suggested
for instance in chromosome physical mapping.

Modeling the task of repeat separation as above has sev-
eral advantages. It isolates repeat separation from the task
of computing layouts, so a procedure for repeat separation
can be combined with any three-phase assembler. Moreover
this modularization simplifies the layout algorithms, since
a layout algorithm that is correct in the simpler setting of
assembly in the absence of repeats can be combined with a
procedure that solves the repeat separation problem to yield
an assembler that is correct in the presence of repeats.

A potential disadvantage is that several iterations of the
layout phase may be necessary to obtain a layout that does
not compress repeats. The layout phase, however, is the
least computationally-intensive phase in practice [10], usu-
ally at least an order of magnitude faster than the overlap
phase. Furthermore, our procedure for repeat separation is
carefully designed to be fast (as demonstrated in Section 6),
so repeated iteration should not significantly increase the
total time for assembly.

Overview Our approach to repeat separation decomposes
the task into four subproblems:

(1) locating the positions in the layout of possible
compression due to repeats,

bounding a position of potential compression by
a window in the multiple alignment of the frag-
ments,

identifying the columns in the alignment window
that represent distinguishing base sites, and

separating the fragments in the window into
classes that represent the distinct copies of the
compressed repeat.

In Sections 2 through 5 of the paper, we formalize each of
these subproblems using the language of probability and
combinatorial optimization, and present algorithms that
solve them. Section 6 then presents computational results
with an implementation of this approach.

177

2 Locating potential compression

Given a candidate layout, we first locate positions in the
layout that potentially compress repeats. We assume the
layout is described by the position of the left and right ends
of the fragment intervals in each contig. After separately
sorting the list of left positions and right positions into in-
creasing order for a given contig, we walk these two lists in
merged order to determine the elementary intervals of the
layout, i.e. the layout intervals in which no fragment starts
or ends, while maintaining a count of the coverage depth in
each such interval. Each elementary interval is considered
to be a location in the layout.

We identify locations of potential compression by the
presence of unexpectedly high coverage, which suggests that
fragments from different copies have been stacked by the lay-
out. Of course unusually high coverage can also be due to
ordinary variation in coverage depth, so each such location
is analyzed by further phases that examine the sequence
content of the stacked fragments. Filtering layout locations
before performing further analysis reduces the running time
significantly, since analyzing the location will involve com-
puting a multiple alignment of the stacked fragments and
solving an optimization problem to partition them into copy
classes, both of which are potentially expensive.

We note that repeats may also be compressed at loca-
tions of typical coverage. To not miss such compression, we
suggest that once a final layout L has been found with no
locations of unexpectedly high coverage, the later phases of
repeat separation should be run at all locations in L.

It should also be pointed out that in actuality the pro-
cesses of locating potential compression in phase (1), and
analyzing such locations in phases (2) through (4), are in-
terleaved. On identifying a location of high coverage in
phase (1), phases (2) through (4) are immediately per-
formed, and their output is used to determine the next lo-
cation considered by phase (1).

A location of coverage depth d is classified as having un-
expectedly high coverage if the probability of having depth
at least d is sufficiently small. We denote the cumulative
binomial distribution function by

> (?)pi(l -p" "

m<i<n
The probability of observing a given coverage depth under
a natural sequencing model can be expressed in terms of
this function. We denote the total number of fragments in
the assembly by n, the length of the genome by g, and the
length of a fragment by ¢£.

B(p,m,n) := (1)

Lemma 1 Suppose the left ends of fragments are uniformly
distributed across the genome, that fragments are labeled by
distinct names, and that all fragments have the same length.
Then the probability of ham'ng depth at least d at a fized

point in the layout is B(g 714 n) O

Given a compression confidence-threshold x, which is a
small probability set by the user, using this lemma we clas-
sify a location as having potential compression if

B(d, n) < x. (2)

g—L{+1?

In practice, we precompute the quantity

fa: Bl trtn) <)

d min
1<d<n

by unbounded binary search on d. (Note that n, g, and £
are constants.) At a location of depth d we then simply test
whether d > d* in O(1) time. This is equivalent to testing
inequality (2), since B(-,d, ") is a decreasing function of d.
To evaluate B in the preprocessing we do not use equa-
tion (1), but instead express it in terms of the incomplete
beta function (see [18, pp. 178-180]), which allows us to eval-

uate B(p,m,n) in worst-case time O(y/max{m,n —m}) =
O(y/n). Finding d* by unbounded binary search then takes
O(y/nlogd*) time. This is dominated by the time to ini-
tially sort the endpositions of the n fragments, which takes
O(nlogn) time.

To summarize, given threshold x from the user, after
O(nlogn) time preprocessing we test whether a particular
layout location has potential compression in O(1) time.

3 Bounding a location by a window

Given a location of potential compression, we need to ana-
lyze the sequences stacked at that location to separate the
fragments into copies. (If the fragments all sample a com-
mon position in the genome, we view them as sampling one
copy.) To analyze the sequences and separate them on the
basis of sites that distinguish the copies, we need a multiple
alignment of the fragments, whose boundaries must be spec-
ified. The most natural boundaries of the alignment are the
endpoints of the elementary interval at the given location in
the layout. The alignment window specified by these bound-
aries is likely to be rather narrow, however, and to separate
the fragments we need a window that is wide enough to
contain several distinguishing base sites among its columns.
On the other hand, our separation procedure, described in
Section 5, uses Hamming distances between fragments that
are computed over the rows of the alignment, and these dis-
tances will be biased if we consider fragments whose row
does not span the entire window, so we only include in a
window fragments that span it. This has the consequence
that widening a window will reduce the number of fragments
it contains, which creates the following tension. A deep win-
dow containing many fragments will be narrow and is un-
likely to have enough distinguishing base sites, while a wide
window containing many such sites will be shallow and not
allow us to separate many fragments. What is the best win-
dow that both separates many fragments and has sufficiently
many distinguishing base sites?

We resolve this problem in the following way. Using
probability, we characterize when a window of a given width
and depth is likely to be sufficiently wide to contain enough
recognizable distinguishing base sites that we can separate
nearly all the copies sampled by its fragments. In other
words, we design a probabilistic test for when a window of a
given depth is sufficiently wide. If a window passes the test
we say it is feasible.! When examining feasible windows, it
suffices to consider a widest window of any given depth. Let
us call a widest window of a given depth a representative
window for that depth. The optimal window at a layout
location is a representative window that is feasible and has
greatest depth.

To find an optimal window we solve the combinatorial
problem of computing a representative window for a given
depth. At a location of coverage depth d, we then succes-

1We use a probabilistic feasibility test because, as we will see, actu-
ally recognizing the distinguishing base sites in a window is relatively
expensive, and we want the feasibility test to be cheap since we may
potentially invoke it on many windows.

178

sively compute a representative window of depth d, d — 1,
d — 2, ..., until we find one that is feasible.

‘We now present our criterion for deciding when a column
of the alignment represents a distinguishing base site. We
then develop our probabilistic test for feasibility in terms
of bounds on the number of true positive and false positive
sites in a window, and finally describe our algorithm for the
representative window problem.

3.1 Characterizing distinguishing-base-sites

A distinguishing base site is a position at which the consen-
sus sequences of the copies differ. If the coverage is high,
such a site will appear in an alignment as a column with
significant error. The error, however, will be systematic,
as opposed to random sequencing error, in that at all such
sites the fragments that sample a common copy will tend to
agree, while the fragments that sample different copies will
tend to disagree. In other words, the errors at such sites will
be correlated.

We call columns with correlated errors separating
columns, and use the following criterion for identifying
them.? A candidate for a separating column in a window
of depth d is a column C in which a pair of rows agree on
a character that has frequency at most |d/2] in C. (Such a
character is considered to be an error.) Column C is sup-
ported by another column D if both C' and D are candidates
on the same pair of rows. Finally, column C is a separating
column if it is supported by at least ¢ — 1 other columns
in the window on the same pair of rows, where t > 1 is a
parameter. (We describe how ¢ is chosen in the next sub-
section.) Stated another way, columns Ci, Cs, ..., C¢ in a
window are separating columns if there is a fixed pair of
rows (4,7) such that in all these columns the characters at
rows ¢ and j agree and occur in the minority. We call pa-
rameter t the support of the separating column; it controls
the extent to which a pair of rows have a correlated error
across columns.

Given this definition of a separating column, we deter-
mine whether a window of width w and depth d is suffi-
ciently wide in two steps. We first choose ¢t as function of
w and d so that the probability of a false positive (i.e. finding
a separating column that does not correspond to a distin-
guishing base site) is acceptably low. We then declare a
window to be sufficiently wide if the probability of a true
positive (i.e. finding a separating column that does corre-
spond to a distinguishing base site) is acceptably high. We
now describe how we determine these false positive and true
positive probabilities.

3.2 Upper-bounding false positives

Let C1, Cs, ..., Ci be a group of separating columns that
support each other. Informally, we consider each column
in the group to be a false positive if none of the C; are
distinguishing base sites. (If at least one of the C; is a dis-
tinguishing base site, then declaring the set to be separating
columns correctly identifies a distinguishing base site, while
including only a small number of erroneous columns that
happen to reinforce the base site.)

In formalizing this we use the following probability
model. We assume each character in the multiple align-
ment independently is a sequencing error with probability e,

2Separating columns are intended to represent distinguishing base
sites. We use a different term, since they might not correspond to
such sites.

where € is the sequencing error rate. We further assume that
each character in the consensus sequence for a copy, induced
by the rows of multiple alignment that correspond to frag-
ments that sample the copy, independently is a copy error
with probability §/2, where § is the copy error rate.®> Intu-
itively, each copy is formed by copying a common sequence
with error rate §/2 (so the error rate between two copies
is 4), and then each fragment is formed by copying one of
the copies with error rate e.
In this model, columns Ci, ..., C: form a false positive
if
o there exists a pair (i,4) of rows such that in each
of the ¢t columns, the characters at these two rows
are identical and are errors (so the columns form a
positive event), but

e none of these 2t errors are copy errors (so it is a
false event).

The first condition states that the C; are separating
columns, while the second states that none of them cor-
respond to a distinguishing base site.

Determining the probability of a false positive event un-
der this model is complex, and even if it could be worked
out it is unlikely it could be efficiently evaluated. To make
the analysis tractable, we further restrict the model by as-
suming that each row in a window of width w has exactly
the expected number of errors, namely [ew]. Working out
the exact false positive probability is difficult even in this
model. Fortunately, our objective is simply to ensure that
the false positive probability is small, and for this an up-
per bound suffices. If the upper bound is small, the exact
probability is small.

To obtain an upper bound on the false positive probabil-
ity in this restricted model, we analyze a necessary condition
for a false positive event to occur in a fixed pair of rows. This
yields an upper bound on the probability of a false positive,
conditioned on a pair of rows. To remove the conditioning
we sum over all pairs, which further overestimates the true
probability as the conditioned events are not disjoint. The
necessary condition on a false positive event that we analyze
is:

e after distributing [ew] errors in both rows of the
fixed pair, there are at least ¢t columns in common
at which sequencing errors occur, and

e at least ¢ columns out of a possible [ew] common
columns have identical errors in the two rows and
do not contain copy errors.

We omit the full details in this abstract, and only state the
final result. (Proofs of many of the lemmas are given in [21].)

Lemma 2 Let t be the support for a separating column.
The probability that a false-positive separating column oc-
curs in a window of width w and depth d in the above model
s upper-bounded by

1- =Y (: .
w u—
(2 (k) ot i k—1
. B(%(l - %)C7tak)7
where € is the sequencing error rate, § is the copy error rate,

r 48 the genome coverage, B is the cumulative binomial dis-
tribution function, k := [ew] is the number of sequencing

f(t,w,d)

3A copy error is what creates a distinguishing base site.

179

errors in a row, and ¢ := max{d/r,1} is the estimated num-
ber of copies in the window. |

For a given support confidence-threshold o provided by
the user, the support that we use for identifying separating-
columns in the window is then

t" = Ithl?{t s f(t,w,d) Sa}.

In other words, t* is the smallest support that guarantees
that the probability of a false positive is at most 0. We note
that t* < k = [ew], since f(k,w,d) =0 < 0.

We evaluate f(t,w,d) as follows. The logarithm of the
binomial coefficient (:%) can be computed to within ma-
chine precision in O(1) time using Lanczos’ method for the
logarithm of the gamma function (see [18, pp. 167-170]).
As mentioned in Section 2, B(:,-, k) can be computed in

O(V'k) worst-case time. So given f(t —1,w, d), we can eval-

uate f(¢,w,d) in O(Vk) time. Thus we can find ¢* by linear
search in worst-case time

ot vk) = O(K**) = O([ew]*?),

which is extremely fast. In practice, usually 2 < ¢t* < 4.

As an aside, the reason we use such an involved method
to pick t* is that there does not appear to be one value of t*
that is appropriate for windows of all shapes, and we want a
fully automatic approach with no ad hoc parameters. Fur-
thermore, we have to be careful in selecting t* since too low
a value will introduce false positives, which as we will see in
Section 5 will cause us to overestimate the number of copies
and hence remove true overlaps from the overlap graph. Se-
lecting too high a value will introduce false negatives, which
is not as serious, but as we will see in the next subsection
this tends to make the optimal window shallower than nec-
essary. Having a shallower window decreases the number of
fragments separated at a given location, which will tend to
increase the number of iterations of the layout phase.

3.3 Lower-bounding true positives

Determining the probability of a true positive in the above
model is also difficult. Our objective however is to determine
whether the probability of a true positive is acceptably high
for a given window. Hence a lower bound on the probability
suffices.

To obtain a lower bound we study the probability of
a true positive for a fixed copy C, conditioned on exactly
i > t* copy errors occuring in C. We determine this prob-
ability exactly for ¢ = t*, and show this lower bounds the
probability when t* < ¢ < |w/2]. Finally we remove the
conditioning by summing over all ¢ in this range, where
nearly all the probability is concentrated.

To show the lower bound for 7 > t* copy errors, we use an
interesting argument. Call an i-configuration a labeling of
i columns as having copy errors, together with a distribution
of [ew] sequencing errors in each row of the window so that
some pair of rows are sequencing-error-free on a common set
of at least t* of the i columns. An i-configuration is a partic-
ular type of true positive event that carries a lot of the prob-
ability mass. In particular, ¢*-configurations capture all true
positive events when exactly t* copy errors have occurred.
While it is difficult to count the number of ¢-configurations
exactly for general i, we show the existence of a one-to-
one mapping from the set of ¢*-configurations to the set of
i-configurations for t* < 7 < |w/2], which establishes the

lower bound. Existence is proved by constructing a bipartite
graph on the set of t*-configurations and i-configurations,
and showing that Hall’s condition for a complete matching
is satisfied by this graph (see [14, p. 283]).

We omit the details in this abstract and state the final
result.

Lemma 3 Let t be the support for a separating column.
The probability that a true-positive separating column oc-
curs for a given copy in a window of width w and depth d
is lower-bounded by

glt,w,d) = (B(g,t,w) — B(%, L%J +1,w)>
- (“’*t) min{r)
(Tgamete)
where k := [ew]. O

If a window contains a true-positive separating column
for each copy, we can in principle separate all its fragments
into their copy classes. In our probability model we assume
each fragment is labeled by the copy it samples, so extending
the analysis from the probability of a true-positive for a fixed
copy to the probability of a true-positive in each of ¢ copies
is trivial, since errors in the copies are independent. This
leads to the following window feasibility test.

For a given window confidence-threshold w and copy
confidence-threshold k (which are both small probabilities
provided by the user), a d x w window is feasible if

B(g(t*,w,d), |—(1 — n)c],c) > 1—w,

where ¢ := max{[2],1} is the estimated number of copies
for a given coverage r, and t* is the support for the window
determined in Section 3.2. Stated another way, a window
is feasible if the probability of not finding a true-positive
separating-column for at most a fraction s of the copies is
at most w.

Using the same numerical techniques as in Section 3.2,
we can evaluate g(t, w, d) in worst-case time O(y/w +Vd) =
O(max{w,d}"/?).

To summarize, given confidence thresholds o, w, and k,
we can test whether a window is feasible in time

O([ew]*? + max{w, d}'/?).

We next explain how to quickly find, among the windows
that are feasible, one that is optimal.

3.4 Finding an optimal window

Recall that an optimal window is a representative window
that is feasible and has maximum depth, and that a rep-
resentative window is a widest window of a given depth,
where the width of a window is the length of the intersec-
tion of the layout intervals of its fragments. The endpoints
of a fragment’s interval are the positions of the start- and
end-columns of its row in the multiple alignment.

Let d be the depth of the layout at the location where
we want to compute an optimal window. To find an op-
timal window, we will compute a representative window of
depth d, d — 1, d — 2, ... until we find one that is feasible.
A representative window of depth d — k can be described by

180

the set of k fragments it removes from the layout. To quickly
find such a window we cannot afford to examine all (z) sub-
sets for removal. We now show how to find a representative
window of depth d—k while examining at most £+ 1 subsets.

Consider sorting the left ends of the fragment intervals in
decreasing order, and the right ends in increasing order. For
a given depth d — k, we call the window that removes the
fragments with the k greatest left-ends, the leftmost solu-
tion. Similarly the window that removes the fragments with
the k smallest right-ends is the rightmost solution. (Note
that the leftmost and rightmost solutions are not necessar-
ily distinct.)

In general, define a (k,7)-window, where 0 < i < k < d,
to be the window of depth d — k obtained by

(1) removing the fragments with the k — ¢ greatest
left-ends, followed by

(2) removing from the remaining fragments those
with the ¢ smallest right-ends.

For example, the (k,0)-window is the leftmost solution and
the (k, k)-window is the rightmost solution. The following
two lemmas on (k,4)-windows yield an efficient algorithm
for computing a representative window.

Lemma 4 The widest window among the (k,0)-, (k, 1)-,
(k, k)-windows is a representative window of depth d — k.
O

Lemma 5 Given a representation of the list of (k,i)-
windows for k fized and i varying, we can compute the rep-
resentation for the list of (k+1 z) windows for k fixed and
i varying, i O(k) total time, using O(k) space.

Applying Lemma 5 for £k = 0,1, ... yields an algorithm
that finds an optimal window in O(£?) time and O(¢) space,
not counting the time for the feasibility test, where £ is the
first & at which a feasible window is found. Since we only
test one window for feasibility at each k, counting these tests
adds O(¢max{d,w}*/?) time, where w is the width of the
optimal window. In practice ¢, the number of fragments we
have to remove to obtain a feasible window, is small.

To summarize, given a location in the layout of depth d,
we can find the optimal window bounding the location in
time

O(K? + kmax{d, w}'/?)

using O(k) space, where d—k and w are the depth and width
of the optimal window.

4 Identifying separating-columns

Given a window in the multiple alignment, our next task
is to identify its separating columns. As defined in Sec-
tion 3.1, a separating column with support ¢ in a window
of depth d is a column C; such that there are ¢ — 1 other
columns Cs, Cs, ..., C¢ with the following property: there is
pair of rows (i, j) such that in columns C4, ..., C; the char-
acters at rows ¢ and j are equal and occur in the column
with frequency at most |d/2]. We identify all such columns
in two passes over the window as follows.

In the first pass over the columns we fill in a ta-
ble T'(3,j,c¢), which counts the number of columns where
character ¢ appears in rows ¢ and j and has frequency at
most |d/2]. Table T is of size ©(d?) (since for DNA se-
quences the alphabet is of size 4, which is a constant), and
can be computed in ©(wd?) time.

In the second pass we again examine each column C
and consider pairs of rows (z,7) in C. Now if rows 7 and j
agree on a character ¢ that appears at most |d/2] times and
T(i,j,¢) > t, then C is a separating column. This second
pass also takes O(wd?) time.

In short, given a window of width w and depth d, we can
find all separating columns in O(wd?) time using O(d?) ad-
ditional space.

5 Separating fragments into copies

Given the separating columns for the window, which rep-
resent the inferred distinguishing base sites of the copies,
we would like to partition the fragments in the window into
copies based on how they differ at these columns. In the
partition, each class represents the set of fragments that
sample a different copy of the repeat. To determine the
best partition of the fragments into copy classes we need an
appropriate objective function on partitions.

Suppose the fragments in the window sample k& differ-
ent copies of a repeat. In a parsimony formulation of the
problem, we would want an explanation of the fragments
by k copies that involves the fewest number of sequenc-
ing errors. Formally, we want a partition of the fragments
into k classes Pi, ..., Py, together with k strings Si, ...,
Sk representing the consensus sequences of the copies, that
minimizes), ;. > pep, D(F, Si), where D(-, -) counts the
number of errors between two strings.

If we accept the multiple alignment in the window as
being accurate, D(F, S;) can be evaluated for a given parti-
tion as follows. In the row of the alignment corresponding
to fragment F', count the number of columns at which the
character in F' does not have maximum frequency among the
rows in P;; this count equals D(F,S;). Computing D(-,-)
this way reduces the problem to partitioning the rows of
an alignment into k classes. This eliminates the consensus
sequences from the formulation, which makes the problem
much simpler, but the resulting objective function on parti-
tions is still awkward to work with.

Notice, however, that if we only evaluate this objective
over the separating columns, which represent the columns
that distinguish the copies, it is quite likely that in every
class P; of the partition, there is one row that coincides with
the consensus sequence at all columns. This is because the
separating columns are a sparse set and sequencing errors
are infrequent, so with high probability at least one row in
each class has no sequencing errors at these columns. Sup-
pose the row for fragment F™ coincides at the separating
columns with the consensus sequence for P;. Then D(F, S;)
on the separating columns is equal to the Hamming distance
between the rows for F' and F* at these columns. (The
Hamming distance between two vectors is the number of
positions at which they differ.) Thus our objective function
becomes, over the multiple alignment restricted to the sep-
arating columns, find a partition of the rows into k classes
P, ..., P, that minimizes

> iy MO} ®
1<i<k FeP;

where H(:,-) is the Hamming distance between two rows of
the alignment.

This form of the objective is equivalent to the follow-
ing problem on graphs. A star in a graph is a set of edges
that all touch a common vertex, called the center of the
star. (A single vertex is the center of a star with no edges,

181

and a single edge is a star where either endpoint is the cen-
ter.) A k-star is a collection of k vertex-disjoint stars, and a
spanning k-star is one whose vertex set is the entire graph.
In this language, minimizing objective (3) is equivalent to
the following: Given a complete, edge-weighted graph G on
d vertices, where edge (i,j) is weighted by the Hamming
distance between rows ¢ and j of the alignment restricted to
its separating columns, find a spanning k-star of minimum
total edge-weight. We call this the k-star problem. The stars
in a solution partition the fragments into k copy classes.

In the combinatorial optimization community the k-star
problem is known as the k-median problem. It is known to be
NP-complete even when the edge weights are a metric (as is
the case with Hamming distances), and only fairly recently
have constant-factor approximation algorithms been discov-
ered for this situation (see [9] for a recent 6-approximation
algorithm). Since we are using the k-star problem to sep-
arate fragments into copies, and any overlap between the
copy classes of a solution will be removed from the overlap
graph when computing a layout, it is critical that we find
an optimal solution. We find an optimal spanning k-star by
formulating it as an integer linear-programming problem,
which we solve by branch-and-bound.

Before describing the branch-and-bound algorithm we
make one final remark. Our discussion up to this point
has assumed that we know k, the number of copies, but
this parameter must also be inferred from the data. To de-
termine k we again invoke the principle of parsimony. We
take k to be the smallest value ¢ > 1 such that the copy
classes of the optimal spanning i-star contain no separating
columns. In other words, we successively solve the 1-star,
2-star, 3-star problems, and so on, until we find a k-star so-
lution for which, when we run the procedure of Section 4 for
identifying separating columns within the rows of each of its
copy classes, none are found. This k is the fewest number
of copies that explains the data without indicating further
distinguishing base sites within its copies. Note that if the
original window has no separating columns, then k = 1.

5.1

Given a k-star problem on the complete graph K, with edge
weights w;; for each edge (4, j) € K,, we construct an equiv-
alent integer linear-programming problem as follows.

The integer program has the following n’® + n wari-
ables:

Integer-programming formulation

e for each ordered pair (7,), where ¢ and j are ver-
tices in K, (possibly with ¢ = j), there is a vari-
able z;;, and

o for each vertex ¢ in K, there is a variable y;.

The z-variables encode the edges of the k-star, while the
y-variables encode the centers of the stars.

The integer program contains the following 3n? + 3n + 1
constraints:

e for all ¢ and j, z;; > 0,

e for all 4, y; > 0,

e for all j, EISiSn zi; > 1,

e for all ¢ and j, y; > s, and
° ZISiSnyi <k,

where the variables are restricted to integer values.

The objective is to minimize). . wi;zi;, where we

Table 1 Separating simulated tandem repeats.
False positives False negatives Depth Time Nodes
€ é mean max mean max mean max mean max mean Imax
5.0% 5.0% 0.10% 0.26% 0.03% 0.07% 92 117 13.56 15.23 1.0 1
50% 10.0% 54% 12.9% 2.2% 8.2% 80 108 516 9.33 1.8 5
2.5% 5.0% 6.0% 12.1% 16.0% 35.0% 120 129 9.10 11.22 1.0 1
25% 10.0% 0.0% 0.0% 0.0% 0.0% — — 0.01 0.01 — —

extend the edge weights to ordered pairs of vertices by
Wij = Wji.

To describe an optimal k-star it suffices to specify its
centers, since its edges may be obtained by assigning each
vertex to its nearest center. Given a solution to the integer
program, we recover a k-star by taking as its centers those ¢
for which y; > 0. The following lemma states that this

correspondence solves the k-star problem.

Lemma 6 Let z,y be a solution to the above integer pro-
gram. If all edge weights are non-negative, there is an opti-
mal spanning k-star with the same cost and centers as x,vy.

O

Although it may not be immediately obvious, in every
optimal solution to the above integer program, all variables
have the value 0 or 1 [21].

5.2 Solution by branch-and-bound

We solve the integer program by performing branch-and-
bound on its linear programming relaxation. To do this, we
retain the inequalities of the integer program but allow the
variables to take on real values. If we solve the linear pro-
gram and its solution is not integral, we choose a fractional
variable and branch on two subproblems. In one subprob-
lem the variable is fixed to 0, and in the other subproblem it
is fixed to 1. Every fractional solution that we find is trans-
formed into an integral solution by a rounding procedure.
During the computation we maintain the best integral solu-
tion we have seen so far, which gives a global upper bound on
the solution value. Before branching on a fractional solution
to the linear program we compare its solution value, which
lower-bounds the solution value of the integer program for
the subproblem, to the global upper bound; if the fractional
solution value is not less than the global upper bound, we
prune the subproblem and do not explore it further.

To round a fractional solution into an integral one, we
collect all fractional y; and compute

a; = Z w”/|{] : mij>0}|.

Jjizi; >0

Let ¢ be the number of y-variables that have the value 1.
We pick the k — ¢ fractional y; with greatest a; and assign
them the value 1, and assign the remaining y; the value 0.
Finally we round the z;; by assigning every vertex to its
nearest center.

To branch on a fractional solution, we select the variable
whose value is closest to 1/2. We can prove that if the z;;
are all integral, the y; are as well [21], so we only select z-
variables. We solve the subproblem with z;; = 1 first, and
the subproblem with z;; = 0 second. When setting z;; = 1,
we further tighten the constraints of the linear program by
forcing x;¢ = 0 for all £.

182

While for most integer-programming problems branch-
and-bound approaches are not especially effective, this
branch-and-bound algorithm works surprisingly well, usu-
ally solving just a few linear programs before finding an
optimal integral solution.

6 Computational results

We now present computational results with an implemen-
tation of this approach by the second author [21]. The en-
tire code we tested consisted of around 10,200 lines of C,
of which roughly 3,200 are the repeat separation implemen-
tation. The additional code consisted of a sequence assem-
bler [10] and a linear-programming solver.

The results from our initial experiments are summarized
in Table 1. In the experiments we generated a sequence
consisting entirely of a tandem repeat by the following pro-
cess. For a given copy error rate § and sequencing error
rate €, the sequence was constructed by generating a ran-
dom sequence of length 1,000 and then making 10 copies,
introducing 1000 - 6/2 insertion, deletion, and substitution
errors into each copy, concatenating the copies, and then
randomly sampling the resulting tandem repeat by frag-
ments of length 500 to 10-fold coverage, randomly reverse-
complementing the fragments with probability 1/2, and in-
troducing into each fragment 500 - € errors. All confidence
thresholds for our separation procedure were fixed at 1%.

We then measured the number of overlaps between frag-
ments that sampled the same copy that were incorrectly
removed by our separation procedure divided by the total
number of such overlaps that should be removed, which we
report as the percentage of false positives, and the number
of overlaps between fragments that sampled different copies
that were not removed by our procedure divided by same
denominator as before, which we report as false negatives.
We also measured the layout depth at the location where
separation was performed, the running time of the separa-
tion procedure in seconds, and the number of nodes in the
branch-and-bound search tree for the k-star problem. The
results are averaged over 10 trials and across all layout posi-
tions where separation was performed. Measurements were
taken on a 128Mb machine with an Athlon 700MHz proces-
sor running Redhat Linux 6.0 with the code compiled under
egcs ct++ 1.1.2-12 with the -02 option.

As can be seen from the table, the approach works quite
well. (In the last row of the table, § was sufficiently large
compared to e that the assembler did not overlay fragments
from different copies.) For most instances a single linear
program suffices to separate the fragments, and the false
positive and negative errors are relatively low. In analyzing
the data we found that the false positives appear to be due
to systematic misalignment of the fragments by the sliding-
window multiple-alignment heuristic used in [10]. While
multiple alignment heuristics are beyond the scope of this

paper, nevertheless systematically misaligned columns will
be interpreted by the repeat separation procedure as sep-
arating columns. Such false separating columns cause it
to overestimate the number of copies and hence oversepa-
rate the fragments, which contributes false positives in the
above experiments. We are currently adding an iterative
alignment procedure [1, 12] to the code to correct this, and
our impression from analyzing the data is that it may re-
duce the number of false positives to zero. It is interesting
that while such misalignment does not affect the consensus
sequence for the assembly, greater accuracy is required for
correct repeat separation.

We are also currently integrating the repeat separation
code into the sequence assembler of [10] to test how well the
complete approach, which iterates the layout phase until
finding an uncompressed assembly, reconstructs a sequence
containing repeats.

7 Conclusion

We have presented a rigorous, general, and fully automatic
approach to separating repeats in DNA sequence assembly.
The approach does not assume prior knowledge of consensus
sequences for the repeats or their number of copies. The only
parameters it requires are:

e 7, the genome coverage,
® ¢, an upper bound on the sequencing error rate,
e §, a lower bound on the error rate between copies,

and four internal parameters that are confidence probabili-
ties for well-defined events:

X, the compression confidence,
o, the support confidence,

w, the window confidence, and
K, the copy confidence.

Initial experiments indicate that the approach is promising,
but that the quality of the multiple alignment is critical
to its success. Further experiments, with a better multiple
aligner and an integrated system that iterates on candidate
layouts, would be necessary to determine whether it yields a
solution to the long-standing problem of sequence assembly
in the presence of repeats.

Acknowledgements

The first author wishes to thank Hans-Peter Lenhof, Knut
Reinert, and Ralf Zimmer for discussions on repeats while
visiting the Max-Planck-Institut fiir Informatik and the Ger-
man National Research Center for Information Technology,
and Bob Robinson and Rod Canfield at the University of
Georgia for pointers to the corollary of Hall’s theorem on
matchings.

References

[1] Anson, E.L. and E.-W. Myers. “ReAligner: A program for
refining DNA sequence multi-alignments.” Proceedings of
the 1st ACM Conference on Computational Molecular Bi-
ology, 9-13, 1997.

[2] Anson, E. and G. Myers. “Algorithms for whole genome

shotgun sequencing.” Proceedings of the 3rd ACM Con-

ference on Computational Molecular Biology, 1-9, 1999.

Chen, T. and S. Skiena. “Trie-based data structures for
fragment assembly.” Proceedings of the 8th Symposium on
Combinatorial Pattern Matching, 206—223, 1997.

(3]

183

(4]

(5]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

Chen, T. and S. Skiena. “A case study in genome-level
fragment assembly.” Bioinformatics 16, 494-500, 2000.

Green, P. The phrap computer program.
http://www.mbt.washington.edu/phrap.docs/phrap.html,
1999.

Huang, X. “An improved sequence assembly program.”
Genomics 33, 21-31, 1996.

Huang, X. “Performance of the CAP2 sequence assembly
program.” Mathematical Support for Molecular Biology,
DIMACS Series in Discrete Mathematics and Theoretical
Computer Science Volume 47, American Mathematical So-
ciety, Providence, RI, 259-269, 1999.

Idury, R.M. and M.S. Waterman. “A new algorithm for
DNA sequence assembly.” Journal of Computational Biol-
ogy 2:2, 291-306, 1995.

Jain, K. and V.V. Vazirani. “Primal-dual approximation
algorithms for metric facility location and k-median prob-
lems.” Proceedings of the 40th IEEE Symposium on Foun-
dations of Computer Science, 1999.

Kececioglu, J.D. and E.W. Myers.
rithms for DNA sequence assembly.”
7-51, 1995.

“Combinatorial algo-
Algorithmica 13:1/2,

Kececioglu, J., M. Li, and J. Tromp.
DNA sequence from erroneous copies.”
puter Science 185:1, 3—13, 1997.

“Reconstructing a
Theoretical Com-

Kececioglu, J. and W. Zhang. “Aligning alignments.”
Proceedings of the 9th Symposium on Combinatorial Pat-
tern Matching, Springer-Verlag Lecture Notes in Computer
Science 1448, 189-208, 1998.

Kosaraju, S.R. and A.L. Delcher. “Large-scale assembly of
DNA strings and space-efficient construction of suffix trees.”
Proceedings of the 27th ACM Symposium on Theory of
Computing, 169-177, 1995.

Liu, C.L. Introduction to Combinatorial Mathematics.
McGraw-Hill, New York, 1968.

Meidanis, J. “A simple toolkit for DNA fragment assem-
bly.” Mathematical Support for Molecular Biology, DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science Volume 47, American Mathematical Society,
Providence, RI, 271-288, 1999.

Myers, E.W. “Toward simplifying and accurately formu-
lating fragment assembly.” Journal of Computational Bi-
ology 2:2, 275-290, 1995.

Peltola, H., H. Soderlund, J. Tarhio, and E. Ukkonen.
“Algorithms for some string matching problems arising in
molecular genetics.” Proceedings of the 9th IFIP World
Computer Congress, 59—64, 1983.

Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vet-
terling. Numerical Recipes in C. Cambridge University
Press, New York, 1988.

Sutton, G.G., O. White, M.D. Adams, and A.R. Kerlavage.
“TIGR Assembler: A new tool for assembling large shotgun
sequencing projects.” Genome Science and Technology 1,
9-19, 1995.

Weber, J. and G. Myers. “Whole genome shotgun sequenc-
ing.” Genome Research 7, 401-409, 1997.

Yu, J. Separating Repeats in DNA Sequence Assembly.
M.S. thesis, Department of Computer Science, The Univer-
sity of Georgia, 2000.

