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ABSTRACT

An increasingly important problem in genome sequencing
is the failure of the commonly used shotgun assembly
programs to correctly assemble repetitive sequences. The
assembly of non-repetitive regions or regions containing
repeats considerably shorter than the average read length
is in practice easy to solve, while longer repeats have been
a difficult problem. We here present a statistical method to
separate arbitrarily long, almost identical repeats, which
makes it possible to correctly assemble complex repetitive
sequence regions. The differences between repeat units
may be as low as 1% and the sequencing error may
be up to ten times higher. The method is based on
the realization that a comparison of only a part of all
overlapping sequences at a time in a data set does not
generate enough information for a conclusive analysis. Our
method uses optimal multi-alignments consisting of all the
overlaps of each read. This makes it possible to determine
defined nucleotide positions, DNPs, which constitute the
differences between the repeat units. Differences between
repeats are distinguished from sequencing errors using
statistical methods, where the probabilities of obtaining
certain combinations of candidate DNPs are calculated
using the information from the multi-alignments. The use
of DNPs and combinations of DNPs will allow for optimal
and rapid assemblies of repeated regions. This method
can solve repeats that differ in only two positions in a read
length, which is the theoretical limit for repeat separation.
We predict that this method will be highly useful in shotgun
sequencing in the future.

Contact: bjorn.andersson @ genpat.uu.se

INTRODUCTION

The method of choice for genome sequencing has for
several years been the shotgun approach, where random
sub-clones are sequenced, followed by computer assem-

*To whom correspondence should be addressed.

bly of the sequence fragments in order to reconstruct
the original sequence. The size and complexity of the
shotgun projects that have been undertaken has increased
drastically in recent years, due to whole genome shotgun
sequencing of large genomes and to the repetitive nature
of many genomes and genomic regions. A main source
of problems is the inability of conventional shotgun
assembly programs to correctly assemble nearly identical
sequence repeats, longer than the length of the shotgun
fragments. The sequences include both dispersed and
tandem repeats. This problem is currently one of the main
limitations of the shotgun method, and the need for a
method to solve this issue has been stated and thus is
currently an active area of research.

It is impossible to separate and assemble repeats if the
unique sites are further apart than a read length. Thus,
in order to separate almost identical repeats, the method
used must be sensitive enough to detect most sequence
differences, and it needs to determine that a sufficient
number of differences are present in reads from repeat
regions. Several attempts have been made to resolve this
problem (e.g. Green, 1996; Kececioglu and Yu, 2001;
Pevzner et al., 2001). Of these methods, the first (Green)
has been in use for several years, but is unable to
separate nearly identical repeats without extremely high
demands on sequence quality. The other two methods
seem promising, but remain to be thoroughly tested.

We here present a novel method to correctly separate
nearly identical repeats longer than a read length. The
main strategy is to compute error probabilities for nu-
cleotide positions that may represent a difference between
repeat copies. To accomplish this we have to ensure that
close to all available information in a shotgun data set
is used. We do this by making several multi-alignments
consisting of a read and all of its overlaps as defined by
an assembly program.

In this way, the method can find differences between al-
most identical repeats and the information obtained can
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be used to improve shotgun assemblies by selectively us-
ing specific positions, defined nucleotide positions, DNPs,
for the ordering of reads in the assembly. In this paper, we
present the statistical calculations used to identify DNPs
and to distinguish them from sequencing errors, and we
propose a new method for shotgun assembly of repeated
regions using DNPs.

Extensive testing of this method on simulated shotgun
data is presented and the results clearly show that repeat
regions containing 1% sequence differences between
repeat copies can be separated, even when the maxi-
mum sequencing error is 11%. This method solves the
repeat problem, since with the current methods for DNA
sequencing this is close to the theoretical limit for repeat
separation. We predict that this will make it possible to
resolve most repetitive regions that are encountered in
shotgun sequencing projects.

METHODS

To separate nearly identical repeats, we need to detect
unique differences between repeat units. To accomplish
this, we construct multi-alignments consisting of sequence
reads and all of their overlaps with other reads. In this
way, we ensure that we always use as much information
as possible when analyzing a repeat region. The differ-
ences between repeat units can be distinguished from
sequencing errors by the fact that the errors are distributed
randomly, whereas the real differences are not. However,
the distributions computed on one column will overlap
to varying degrees depending on the rate of sequencing
error, coverage, the number of repeats, and the number
of differences between repeat units. The separation of
these distributions is not sufficient for detection of an
acceptable rate of true positives. A better separation
can be accomplished when we also consider the rate of
coinciding deviations from column consensus between
at least a pair of columns in the multi-alignments. This
means that at least two differences need to be present in a
read in order to be detected with our method.

The requirement of two differences present on a
sequence read is a universal constraint on how similar
the repeats can be in order to be separable. This is
independent of the method used to assemble almost
identical repeats longer than the read length and hence not
a constraint imposed by our method. In order to elongate
a contig, a read must contain at least two differences as
illustrated in Figure 1. It is mandatory to detect almost all
the differences that are present in the template sequence,
since by definition almost identical repeats contain only a
few differences. Thus, to separate repeats it is necessary
to use a method that with high confidence can establish
whether at least two differences are present in a read. The
following sections describe the method in detail.

(a) (b)
T, T

Fig. 1. When assembling fragments from nearly identical repeats,
the detected differences must be used to determine which reads
belong together. (a) No difference is present along the alignment and
it is hence impossible to determine which reads should be joined.
(b) The first and the third read share a difference and can be joined.
Bars indicate reads, an X indicates a detected difference.

centering
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Fig. 2. Schematic view of analyzed overlaps in a multi-alignment.
Dark grey bars indicate 1st order overlaps, light grey bars indicate
2nd order overlaps, and the black bar indicates the starting read.
The analysis is performed on the starting read and the reads with 1st
order overlaps.

Preparation of multi-alignments

To analyze a repeat region, a starting read from the data
set is chosen and a multi-alignment is constructed from the
read, all its overlaps with other reads, 1st-order overlaps,
and all their overlaps with reads not already included in the
alignment, 2nd-order overlaps (Figure 2). The alignment is
optimized locally using the ReAligner algorithm (Anson
and Myers, 1997). After analysis, the starting read and the
reads with 1st-order overlaps are marked as analyzed, and
a new starting read is picked from the set of non-analyzed
reads. This process is repeated until all reads in the data
set have been marked as analyzed.

Detection and pair wise evaluation of candidate
columns

The consensus base in a column is defined as the most
frequent base in the column. The candidate columns are
those where deviations from the consensus are observed
and where these deviations contain at least Dy, bases
of the same type, a candidate base type. Two different
methods have been tested: the basic and the extended. The
goal of the basic method is to locate pairs of candidate
columns where the deviations coincide in at least Dy,
reads covering both columns. In the extended method, a
computation of the probability of observing the coinciding
deviations by chance is added.
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Consider two fixed positions, # and v, in a multi-
alignment of k sequences spanning both u and v. Denote
the base at position u for the jth sequence by a, ; and
similarly a,, ; for position v. Let I, ; be the indicator for
the event that the base at position u of the read j deviates
from consensus and is a specific candidate base type. That
is, I, j = 1 if this is the case and [, ; = 0 otherwise. The
total number of deviations from consensus at position u is
denoted N, = Zl;zl I, ;. Define I, j and N, in a similar
way. Let I; = I, ;I ; be the indicator for a ‘coincidence’
of the jth sequence, i.e. that both positions deviate from
consensus in a sequence j. Finally, the total number of
coincidences is denoted as:

k

k
C=>1i=) Il
j=l1 J

—1

In the present section, we derive a test for the hypothesis
that coincidences in the sequences occur by chance, com-
pared to the alternative that they appear systematically.
The systematic appearance of coincidences indicates that
certain positions contain information about differences be-
tween repeat copies rather than sequencing errors.

Below we compute the approximate distribution of C
under the assumption that all deviations from the con-
sensus occur independently. The probabilities p, ; = P
(Iy,j = 1) and p, ; = P(l,;; = 1) are computed from
Phred quality values (Ewing and Green, 1998).

In order to test if the number of coincidences C is large
due to chance and not because there were more deviations
from consensus (at the two positions) than expected, we
derive the distribution of C given the observed values
N, = n, and N, = n,, i.e. the number of deviations from
the consensus at the two positions.

To derive the exact distribution of C conditional on
N, = n, and N, = n, in a typical shotgun data set is very
complicated except for the case when p, 1 =--- = py«
and py 1 =---= pyk. When the ps are identical in
all sequences, standard combinatorics imply that the
distribution of C given n, and n, is hypergeometrically
distributed with parameters k, n,, and n,/k. This means
that

X Ny—x
P(C=x)= . ,0< x

0<n, —x <k—ny.

< nU7

This is true, since when all ps are identical each possible
configuration has equal probability. By considering the
n, deviations from the consensus in position v as fixed,
the denominator above gives the total number of ways
to distribute n, deviations among all k sites, and the

numerator the number of ways to do this resulting
in x coincidences. When the different p values are
not identical, it is very cumbersome to compute the
distribution of C. The reason for this is that it is necessary
to divide the conditioning event N, = n, (or N, = ny)
in the different ways this event can occur, and since each
such event has a separate expectation of C and a separate
probability.

While the case where all p values at both sites are
identical is straightforward, all other cases require an
approximation of the distribution. Because all the p values
are assumed small (typically of the order 0.1 or smaller)
the unconditional distribution of C is well approximated
by the Poisson distribution (Ross, 1988). On the other
hand, the conditioning on N,, and N, only introduces weak
dependencies, which implies that a Poisson approximation
should still be satisfactory. What remains is to compute
the mean parameter of the Poisson distribution, i.e.
compute E(C|N, =ny,, N, = ny). From the definition
of C follows

E(CIN, = ny, Ny = ny)
k
=Y E(ly jINy =) E(L jINy = ny)
=1

J

k
> E(j = 1Ny =n)E(y; = 1Ny = ny).
j=1

Further,
P(Iu,j = l,Nu :nu)
P(Ny =ny)
P(Iu,j = I,NLSJ) =ny — 1)
P j =1, N =ny = 1)+ PU,; =0, N =ny)

P(Iu,j = 1[Ny =ny) =

where N,Ej ) = Ny — I, denotes the total number of
deviations from the consensus at site u# excluding read ;.

Note that I, ; and NLEj ) are independent. Furthermore,
both N, and NLEJ ) are approximately Poisson distributed.

Let Ay, = Y _,_; pu,iand kf,j) = Ay — pu,j, respectively,
denote the means for these Poisson distributions. It follows
that:

() .
P, j= 1, N,/ =n,—1) Ayt
= ~ e — 1!
P(Ny = ) <pu,‘/e u /(ny ) )

_ () ynu—1 _ ) i)lu
[ (e 28 o= D (= py e A ).

This becomes:

PUyj=1,N" =n,—1) _
P(Ny = ny)

Ny Pu,j

Ny pPu,j + }“L(l])(l - pu,j)
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The corresponding result applies to P ([, ; = 1[N, = n,),
and we conclude that

k Ny Pu,j
= nupu 2D A = pu )

% Ny Pv,j (1

nopuj + 11 = py.j)

E(CINy =ny, Ny =ny) =

Hence, the suggested approximation of the distribution of
C given N, = n, and N, = n, is to approximate it with
the Poisson distribution having the mean specified above.
This implies that the hypothesis that coincidences occur by
chance rather than for systematic reasons can be tested by
comparing the observed value of cyps With what to expect
from the derived approximate distribution. We compute

Cobs—1

> Poi).
i=0

corr __ 1 _

p

where Po(i) is the probability function for a Poisson
variable with mean E(C|N, = n,, Ny, = ny). p®7is
the probability of observing cqps or more coincidences
between columns u and v. The hypothesis is accepted if
PO exceeds poo.

To minimize the effect of columns with a large number
of expected sequencing errors, we compute the probability
of observing any of the two columns by chance, p©°':
col col _col

+pu _pu pv

col

pcol =pc

where p, = 1 — Z;’LEI Po(i), and Po(i) is the prob-
ability function for a Poisson variable with mean ¢, =
Zle Du.i- Pv is computed in a similar fashion. We com-
pute p©t = pcl poT and reject the pair u, v if p'°! exceeds
pet . Otherwise, the positions are assigned as DNPs, de-
fined nucleotide positions. These positions represent dif-
ferences between repeat units and can therefore be used in
order to separate the repeats.

RESULTS

A method for separation of repeats in shotgun sequence
data has been developed. In this strategy, shotgun reads
are compared in multi-alignments, which allows for the
identification of sequence differences between repeat
units that can be used for a correct assembly. In order
to show the efficiency of the method and to test its
limits, we have used several simulated shotgun projects
that were produced using the programs ‘gen_seq’ and
‘sim_gun’, that were developed in house for testing
fragment assembly programs. Both programs are available
from the authors. The gen_seq program produces random
DNA sequences with a specified number and length of
inserted repeats. A specified number of randomly placed

differences between repeats can also be introduced. The
output is read by sim_gun, a program that simulates a
shotgun sequencing process.

In order to evaluate the method, five sets of simulations
were performed. The simulations were designed to closely
mimic real shotgun data, and for that reason, the error
rates in each set were imported from nine different real
shotgun projects as compared to simpler methods using
flat error rates. For each such shotgun project quality
file, we simulated projects consisting of repeat units
of length 1000, 2000 and 3000 bases repeated 4, 6, 8
and 10 times in tandem, resulting in 108 assemblies per
set. The first three sets of simulations were performed
at different levels of quality trimming of the simulated
sequence reads, which resulted in varied coverage and
read length. The fourth set used the same quality trimming
as the third set, but with higher coverage. In the final
simulation, the number of reads was decreased, in order
to reduce the coverage. The difference between any two
repeats was 1.0% consisting of randomly distributed base
substitutions. A control set was added, in which the repeats
were identical. In total, 648 simulations were performed
including the control set. The properties of the simulation
sets are listed in Table 1.

Distributions of sequencing errors and real
differences computed on one column only

The probability distributions of sequencing errors com-
pared to those of true differences were examined. These
distributions were found to overlap. As an example of this,
Figure 3 shows one subset of distributions from Sim 3 con-
taining ten repeats in tandem. At least six or seven differ-
ences from the consensus sequence must be observed in
order to separate true differences from sequencing errors.
We define a true difference in a read to be a position cor-
responding to a difference between repeat copies in the
template, that is the target DNA molecule, as compared to
a change caused by sequencing error.

The expected number of coincidences due to
sequencing errors and real differences

To test the reliability of the approximation of the number
of coincidences (1), we computed the expected number of
coincidences over two columns and compared it to the
observed number of coincidences. The means are well
separated and the observed means of coincidences due to
sequencing errors agree with the approximation, except
for means that are greater than one. The reason for this
is that there were few cases where the expected number
of coincidences due to sequencing errors was greater than
one (data not shown).
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Table 1. The five different shotgun simulation sets and control set. The quality values used in simulations originate from nine different real sequencing projects

Number of Average sequencing Maximum sequencing error Coverage after Average Number of reads
Simulation assemblies error after trimming allowed in trimming (%) trimming read length after trimming
Sim 1 108 4.3 11 8.7 494 26491
Sim 2 108 33 8 7.6 472 23838
Sim 3 108 2.6 6 6.8 459 22423
Sim 4 108 2.6 6 10.2 457 33866
Sim 5 108 2.6 6 3.5 463 11323
Control 108 4.3 11 8.7 494 26491
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Fig. 3. The distribution of sequencing errors and real differences
computed on one column using a subset of Sim 3 consisting of 1000,
2000, and 3000 bases long repeat units repeated ten times in tandem,
computed on columns where the expected number of errors is one.
The difference between any two repeat units is 1%. The distribution

of sequencing errors is on the left side, and the distribution of real
differences on the right.

The distribution of coincidences of sequencing
errors and real differences computed on two
columns

The distributions of coincidences due to sequencing errors
and due to differences between repeats were computed
and examined. Figure 4 shows an example of such
distributions. These two distributions overlap only up to
three coincidences. Thus, in this example, four or more
coincidences are enough in order to separate errors from
differences.

Since several properties, for example the quality of the
reads, the mean read length, coverage and the number of
repeats, may influence the performance of the methods,
we tested both the basic and extended methods on varied
data sets.

0 1 2 3 4 5 5] 7 a 9 10 11 12 13 14 15

Number of observed coinciding deviations from consensus

Fig. 4. The distribution of coincidences due to sequencing errors
and real differences computed on two columns using a subset of
Sim 3 consisting of 1000, 2000, and 3000 bases long repeat units
repeated ten times in tandem, computed on pairs of columns where
the expected number of coincidences is one. The difference between
any two repeat units is 1%. The distribution of sequencing errors is
on the left side, and the distribution of real differences on the right.

Basic method

Table 2 shows the results of the basic method, where no
probability values are calculated, applied to Sims 1-3.
These simulations differ only by the stringency of the
trimming, resulting in different read mean qualities,
number of reads after trimming and coverage. The error
percentage, i.e. the rate of false positives, and the sen-
sitivities are shown for different Dpyj,. For comparison,
two different sensitivities are computed for each Dpp:
the sensitivity in respect to true differences in reads
and to differences in the template sequence, Sg and S7,
respectively, where

number of detected differences

Sr = 100 x - .
total number of true differences
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Table 2. The results of the basic method in Sims 1-3. The error, ¢, sensitivity
in respect to true differences in reads, Sp, and sensitivity in respect to
differences in the template, Sz, at different Dy,jp. Sg is set to 100 in Sim 1,
Dpin = 2, for comparison

Dpin

2 3 4 5 6

Simulation (e) (e) (e) (&) (&)
SR/St SR/ST SR/St SR/Sr SR/St

(%) (%) (%) (%) (%)
Sim 1 (59) 4.3) (0.55) (0.42) (0.36)
100/97 89/87 81/78 71/65 60/53
Sim 2 (40) (2.6) (0.37) (0.28) (0.26)
81/94 73/82 64/70 55/57 43/43
Sim 3 (25) 0.71) (0.27) (0.21) (0.20)
71/90 62/76 54/62 44/48 33/34

St is computed similarly. For comparison purposes the
total percentage of true differences in reads is set to 100
for Dpin = 2 in Sim 1. The error decreases from Sims 1
to 3 and from Dy, = 2 to 6, as well as the total number
of both true template and read differences detected. In
general, a decrease in Sk corresponds to a decrease in St.
Thus, with lower constraints on sequence quality, more
true differences will be detected. If the quality clipping
is more stringent, the error decreases, but a larger number
of true differences in the template remain undetected.

The quality clipping in Sims 4 and 5 is identical to that
used in Sim 3. The difference between these simulations
is the number of reads simulated, resulting in higher and
lower shotgun coverage, respectively. The results of the
basic method for these data sets are shown in Table 3.
The error and the sensitivity in respect to reads are shown
for different Dpi,. The error decreases in both Sims 4
and 5 with increasing Dpi,. Compared to Sims 3 and 4,
very few true differences are detected in Sim 5 due to
the low coverage. In comparison, in Sim 4, the high
coverage results in detection of a higher proportion of the
true differences compared to Sim 3. It is thus clear that
increased shotgun coverage, due to either less stringent
quality clipping or an increased number of reads, results
in improved detection of differences between repeat units.

The effect of different repeat copy numbers on the re-
sults was tested on Sims 1-3 by extracting and compar-
ing simulations with four and ten repeat copies. In most
cases, the error was found to be lower in sets containing
ten repeats compared to sets that contained four repeats
(Table 4). One possible explanation for this is that with
fewer repeat units, the risk of choosing the wrong consen-
sus sequence in certain columns in the multi-alignments is
increased. This is especially true in the case of two repeat
copies, but this has not yet been investigated. The differ-

Table 3. The results of the basic method in Sims 4-5. The error, ¢, and
sensitivity in respect to true differences in reads, Sg, at different D,

Diin
2 3 4 5 6
Simulation e/St e/St e/St e/St e/St
(%) (%) (%) (%) (%)
Sim 4 30/95 1.3/89 0.21/83 0.17/78 0.14/69
Sim 5 18/64 0.69/41 0.47/23 0.47/21 0.77 / 11

Table 4. The error of the basic method on subsets of Sims 1-5 containing
only four and ten repeat units

Din
Simulation 2 3 4 5 6
Error (%) 4/10 repeats
Sim 1 56/61 4.1/5.1 1.1/0.51  0.99/0.31 0.75/0.22
Sim 2 40/41 2.3/1.5 1.2/0.26 1.1/0.14 0.94/0.073
Sim 3 28/26  2.1/0.52 1.4/0.14 1.3/0.069 1.1/0.059

ence is probably not sufficient to necessitate the use of dif-
ferent models for different repeat copy numbers. A similar
effect was observed using the extended method (data not
shown).

Extended method
We applied the extended method with p®©® = 1073

max

to Sims 1-3 (Table 5). The sensitivities in respect to
reads, Sgr, are shown. A comparison of the basic and
extended methods at Dy, = 2, showed that the error
decreased 85% in Sim 1 and 18% in Sim 3 when the
extended method was used. At Dpin, = 3 the error
decreased 63 and 27%, respectively, while the loss in
sensitivity in respect to reads varied from 9 to 0%. No sig-
nificant reduction of the error rates was achieved by using
the extended method when Dy, > 3. An examination
of the errors remaining at Dpi, > 3 suggested that the
vast majority were caused by alignment errors, and that
the rest consisted of bases erroneously ‘sequenced’ as the
same base as a corresponding difference in another repeat
copy, thus indistinguishable from a real difference.

The probability values for the analysis are important
for the success of the extended method. Different piot
yields different results regarding the error rate and the
sensitivity. A lower p!S! resulted in a lower error rate
and a lower sensitivity in all simulations (data not shown).
Correspondingly, a higher p!Sl resulted in a higher
sensitivity and a higher error. Figure 5 shows the variation

in sensitivity and error for different choices of plSf. in
Sim 1 at Dpyin = 3. Note that a choice of pi%l, = 1 is
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Table 5. The results of the extended method in Sims 1-3. The error at
plot = 1073 (610-3), and corresponding sensitivity with respect to true
differences in reads (Sg), computed at different Dyj,. Sg is computed in

relation to Sim 1, Dp,j, = 2 with the basic method

Din
2 3 4 5 6

Simulation €10-3 €103 £10-3 €103 €103

(SR) (Sr) (Sr) (Sr) (Sr)

(%) (%) (%) (%) (%)
Sim 1 8.9 1.6 0.53 0.42 0.36

©n 87) (81) 71) (60)
Sim 2 6.6 0.92 0.37 0.28 0.21

(76) (72) (64) (55) (43)
Sim 3 5.5 0.52 0.27 0.21 0.20

67) (62) (54) (0.44) (0.33)

Error (%)
rao &

Sensitivity (%)

loglo(Ptot)

Fig. 5. The variation in error and sensitivity of the extended method

at different p'%t, in Sim 1, Dy = 3.

identical to using the basic method. These results indicate
that the extended method is flexible and can be readily
optimized, and that it can be used to reduce the error of the
basic method without a significant reduction of sensitivity.

In the control set, the basic method erroneously detected
58298 DNPs at Dpin = 2. With Dpiy = 3, only
693 or 1.2% of these erroneous DNPs remained. Using
the extended method with p® = 1073, 162 or 0.3%

max

remained, and with p% = 107>, no DNPs were
erroneously detected in the control set. Thus, the use of
the extended method significantly reduces the occurrence

of false positives.

DISCUSSION

A main limitation of the shotgun sequencing strategy has
been its inability to correctly resolve repetitive sequences.
It is of course impossible to resolve completely identical
repeats. However, in most cases base differences between
repeat units are present. While no method that resolves

nearly identical repeats has yet been published, the need
for such a method has been stated and it has been
suggested that one way to approach the problem is to use
single base differences between repeat copies. We here
present the first strategy capable of successfully resolving
repeats. This method shows a significant improvement
over existing methods according to the rigorous testing
performed.

The results shown are based on probabilities computed
on column pairs, which implies that at least two true differ-
ences must be present in a sequence read in order to be de-
tectable by our method. However, regardless of the method
used to detect differences, two differences are required to
be present in a read in order to assemble it correctly (Fig-
ure 1). Thus, if the average read length is e.g. 500 base
pairs, the lowest percentage of unique differences between
repeat copies must theoretically be at least about 0.4%
for these to be separable. In reality, however, more dif-
ferences are required, since the probability is extremely
low that several reads simultaneously cover two positions
as far apart as the mean read length. Furthermore, the dif-
ferences will not be evenly distributed across the repeat
region. Our intention has been to study the limits of the
method. For this reason we have used coincidences be-
tween two columns. It is clear that in the analysis of reads
differing more than the minimum amount, the computa-
tion can be based on more than two columns, which yields
more accurate results.

This method uses multi-alignments and identifies
variable sites using the calculation of probabilities of
the occurrence of certain combinations of sequence
differences. We have shown that the computation of
probabilities on one column only, even if we use all the
available overlaps, lacks the statistical power to accurately
pinpoint the unique differences between repeat copies
(Figure 3). For this reason, we perform the computation
on several columns at the same time, which gives a good
distinction between sequencing errors and differences
between repeats (Figure 4). From Table 2 it is clear that
it is possible to distinguish differences from sequencing
errors with good accuracy using the basic method. It is
also clear that the error decreases with more stringent
quality clipping. The cost for this increase in accuracy is
a decreased number of detected differences. As Table 2
shows, almost twice as many differences in the template
remain undetected in Sim 3 compared to Sim 1 if we use
the basic method with Dy, = 3 (24 versus 13%). Since
an assembly may break at every undetected difference
using the assembly method outlined below, an attempted
assembly of fragments from repeats differing only 1%
would potentially give rise to twice as many contigs
under the trimming conditions in Sim 3 as for those in
Sim 1. Using the same quality constraints as in Sim 3,
the results from Sim 4 show that a 50% increase in the
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number of sequence reads is necessary to obtain a similar
performance as in Sim 1 regarding detected template
differences (Tables 1 and 3). The error in Sim 1 is albeit
higher than in Sim 4 (4.3 versus 1.3% for Dy, = 3), but
this error can be decreased to the level of Sim 4, without
a substantial loss in detected differences, by applying the
extended method as shown in Table 5.

From Table 5 it is apparent that the extended method has
a greater effect when the mean read qualities are lower due
to less stringent quality clipping. This is what would be
expected, since a high constraint on read quality removes
most of the sequencing errors, making the probability
of observing multiple coincidences on two columns due
to chance close to zero. In this case, the erroneously
detected differences occur mainly because of alignment
errors. Using the basic method, the problem of separating
repeats is a trade-off between sensitivity and accuracy,
i.e. the longer the mean read length after trimming, the
more differences we can detect but we also increase the
error rate since a longer read length leads to a lower
mean quality. The extended method is a means to address
this problem and to allow for a lower error without a
substantial decrease in sensitivity.

Clustering reads using DNPs

The ultimate goal is to use this method in an assembly
program, and we have previously developed a preliminary
version of an assembly program using DNPs (Tammi et
al., 2001). There are several possible ways to use the
results of the method to direct shotgun assembly. We
outline one such approach. The reads in a multi-alignment
can be clustered into distinct repeat groups using the
DNPs in individual reads. This will not add significantly
to the runtime, since the multi-alignment can be produced
in linear time from the pair wise alignments. The most
computationally expensive step is the optimization of the
alignment. Optimally, the repeats are separated as shown
in Figure 6a. In this case, the problem of assigning reads
to different repeat groups is relatively straightforward.
However, in some cases, false positives may create
conflicts between groups. One such example of a conflict
is shown in Figure 6b, where one read can be assigned to
two repeat groups. This can be handled in different ways,
for example: (1) to do an exhaustive computation of which
group compositions are the most probable; (2) to simply
discard the conflicting reads. This can also be motivated if
the objective is to make the best possible assembly with as
few errors as possible.

In cases, when repeats are not identical, a distinction
between fragments originating from unique and repeated
regions can be made using DNPs. Once the reads are
clustered into separate groups, contig construction can be
performed by chaining clusters together. In this process,
three requirements are needed to chain two clusters: (1) the

consensus of the clusters must match to a certain degree
along the alignment. This requires no additional matching,
since the analysis stage defines which reads, and thereby
which clusters, that match; (2) the clusters must match at a
DNP; (3) if no DNP is present along the alignment of two
clusters, they may not be joined. This allows for a rapid
assembly once the previous analysis has been performed,
and an indication of where more sequencing is needed,
since gaps will form in regions where no DNPs have been
detected due to low coverage.

It is important that the DNPs are unique when we use
them to chain the clusters to assure correct order. Non-
unique DNPs may occur, that is, when the same difference
occurs in more than one repeat unit. When accompanied
by unique DNPs, non-unique DNPs can be detected as
shown in Figure 6¢. In ambiguous cases, we can compute a
probability that the observed coverage in the region comes
from only one repeat copy using the binomial distribution,
and assign the DNP as non-unique if the probability
exceeds a threshold.

Considerations for repeat separation

Separating nearly identical repeats is a task that imposes
high demands on precision. When shotgun fragments
contain as few as two differences along a read length,
it is necessary to detect them and use them in contig
building. A method that scores overlaps based on sequence
similarity and high quality mismatches, but does not
explicitly identify the differences, will ultimately fail if the
repeats are too similar.

Several algorithms have been developed in order to
separate repeated sequences in shotgun assembly. The
existing algorithms can be successful in separating short
repeats, and even repeats longer than the mean read length,
when the amount of differences present is sufficiently
high, in practice more than 2-3%. When the repeats are
more similar, these methods fail. Phrap (Green, 1996),
for example, uses error rates and statistical models to
separate repeats. The overlaps are sorted and additional
comparisons are performed at the contig layout stage. This
method, while successful when read qualities are high
and the repeats differ to a high extent, lacks statistical
power when only few differences are present in the
data set, since it is based on read pairs and thus does
not use all information available. Further, it does not
attempt to evaluate the number of real differences present
in reads and pinpoint them. This most often results in
assemblies, where sequence fragments originating from
different repeat copies are erroneously joined together.

A recently described algorithm (Kececioglu and Yu,
2001) is based on locating single base differences to
separate repeats. The approach is to perform the analysis
of single base substitutions on contigs produced by a
fragment assembly program. The analysis is performed
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Fig. 6. A schematic view of multi-alignments containing DNPs. (a) Optimally separated repeat copies R1, R2. (b) A conflicting read.
(c) Optimally separated repeat copies containing non-unique DNPs. The boxes indicate DNPs.

iteratively. Using this method, important information
may be lost for the reason that repeats may be partly
resolved before the analysis is performed, which makes
the analysis of single base substitutions between frag-
ments incomplete. Another approach would be to use the
algorithm on multi-alignments, as in our method, before
the contig construction stage. Similar to our method,
the algorithm looks for correlations at multiple columns
to assess the status of bases differing from consensus.
As opposed to our method, an upper bound on the
rate of difference between repeat copies is needed, but
the major difference is that this algorithm, like phrap,
computes statistics on pairs of sequence reads, albeit in a
multi-alignment. Our method, on the other hand, performs
the analysis simultaneously on all reads covering two
candidate positions. This method uses more than two
columns where applicable, and while our method has
not been tested using more than two columns, when the
repeats differ as little as 1% between any two repeat
copies, there will in most cases be only two differences
present in a read. Thus, we can directly compare this
method to our method in the case when we encounter
a pair of columns where two correlating differences
from consensus are observed. As we have shown above,
accepting as few as two correlating differences as DNPs
yields an unacceptably high amount of false positives.
The method described in Kececioglu and Yu (2001) has
been able to separate repeats differing 5% or more in
simulated data, and it remains to be tested on repeats that
are more similar.

Another recent method (Pevzner et al., 2001) is based on
error correction followed by an Eulerian path approach.
Although promising, the error correction step is at most
comparable to our basic method, since no statistics are
computed to determine the status of positions that occur in
a minority. The statistical approach used in our method can
probably be used to improve the error correction step of
this method, and it would be interesting to see the results
of such a combination. The utility of these two other recent
approaches remains to be determined, since none of them
has yet been rigorously tested.

In comparison, the new method presented in this paper
has the statistical power necessary to separate nearly iden-
tical repeats. This is due to the use of multi-alignments,
the use of statistical calculations in order to extract more
information, and evaluation of the number of the true dif-
ferences for use in the fragment assembly.

The use of this method in assembly programs will
facilitate the finishing of repetitive regions and it will in
this way extend the use of the shotgun sequencing strategy.
This method will be equally useful both for tandem and
for dispersed repeat sequences. The assembly of large
data sets containing multiple repetitive regions has been
shown to be improved by the use of positional information
from the sequencing of both ends of clone inserts. We
predict that the use of this strategy in combination with the
method for repeat separation presented here will provide
powerful tools for the assembly of shotgun projects,
such as large clones or bacterial genomes. Due to the
heterogeneous nature of diploid genomes, it may be
difficult to use this method for whole genome shotgun
sequencing of such genomes. In such cases, the method
needs to be modified by imposing further restrictions on
the use of DNPs.

In summary, we have developed a method that makes
it possible to separate shotgun reads from nearly identical
repeats that is a great improvement over previous methods.
The testing of the method shows it is close to the
theoretical limit for repeat separation. Work is in progress
to incorporate this strategy in an assembly program.
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