Springe direkt zu Inhalt

Funktionalanalysis

Wintersemester 2015/16

gelesen von  Prof. Dr. Holger Reich     Übungen gemeinsam mit  Dr. Filipp Levikov


  • Zeit und Ort:  Vorlesung  Mittwoch und Freitag 10:00 - 12:00 Uhr im Seminarraum 031, Arnimallee 6 

  • Leistungsnachweis: Bearbeitung wöchentlicher Übungsaufgaben, regelmäßige Teilnahme an den Übungen, Klausur


Aktuell

Die Klausur findet am Freitag, den 05.02.2016 um 10:00 Uhr im Raum J32/102, in der Habelschwerdter Allee 45 statt.

Übungen

Die Übungen finden jeweils Mittwochs, 8:00 - 10:00 im Seminarraum 031, in der Arnimallee 7 und 14:00 - 16:00 Uhr im Seminarraum 025/026, in der Arnimallee 6 statt. Der erste Termin ist der 21.10.

Die Übungsblätter werden jeden Freitag via KVV  online gestellt. Sie sollten sich deshalb unbedingt im KVV  anmelden.

Klausur und Leistungsnachweis

Der Erwerb der Leistungspunkte hängt von folgenden drei Kriterien ab:

  • Bestehen der Klausur, die am Freitag, den 05.02.2016 um 10-12 Uhr im Raum J32/102, in der Habelschwerdter Allee 45 stattfinden wird.
  • Erfolgreiche Bearbeitung der Übungsblätter, d.h. es sollten mindestens 50% der maximal erreichbaren Punkte erzielt werden.
  • Regelmäßige Teilnahme an den Übungen.

Es besteht die Möglichkeit, zu Beginn des Sommersemesters an einer Nachprüfung teilzunehmen. 

Einzig die bessere Note der Klausur/Nachprüfung bestimmt die Gesamtnote für die Veranstaltung.

Durch Ihre Anmeldung zu dieser Veranstaltung im Campus Management System sind Sie automatisch für die Klausur und die Nachklausur angemeldet. Erscheint man nicht bei der Klausur, so zählt die Klausur als nicht bestanden. Es besteht die Möglichkeit sich, bis zu einer gewissen Frist, ohne Angabe von Gründen über das   Campus Management System  wieder abzumelden. Falls Sie sich später abmelden möchten, sollten sie sich an das  Prüfungsbüro  wenden.

Inhalt

Die Funktionalanalysis ist der Zweig der Mathematik, der sich mit der Untersuchung von normierten (oder allgemeiner topologischen) Vektorräumen und stetigen Abbildungen zwischen ihnen befasst. Hierbei werden Analysis, Topologie und Algebra verknüpft.
Die Vorlesung behandelt Banach- und Hilberträume, lineare Operatoren und Funktionale sowie Spektraltheorie kompakter Operatoren.

Zielgruppe

Studierende vom 3. Semester an.

Voraussetzungen

Sicheres Beherrschen des Stoffes der Vorlesungen Analysis I/II und Lineare Algebra I/II.

Literaturhinweise