

Problem Set 9 WS2013/14 H. Reich/F. Lenhardt

## Exercise 1

- (i) On  $\mathbb{C}P^1$  resepctively  $\mathbb{C}$ , there is no Riemannian metric that is invariant under all automorphisms from  $Bihol(\mathbb{C}P^1)$  respectively  $Bihol(\mathbb{C})$ .
- (ii) Is the round metric on  $\mathbb{C}P^1 = S^2$  conformal? If yes, describe it in the usual coordinates for  $\mathbb{C}P^1$ .

## Exercise 2

Let M be a Riemann surface and  $\rho_M$  the distinguished Riemannian metric of constant curvature -1. Then we have  $Bihol(M) = Isom(M, \rho_M)$ .

## Exercise 3

Let  $\mathcal{G}$  be the pseudogroup on  $\mathbb{C}P^1$  generated by restrictions of Möbius transformations to open subsets of  $\mathbb{C}P^1$ . We obtain the associated notion of a projective structure on a topological surface.

- (i) Every projective structure determines an underlying Riemann surface structure.
- (ii) Every Riemann surface structure can be refined to a projective structure.
- (iii) There is no Möbius transformation f from  $\mathbb{B} = \mathbb{R} \times (-\pi, \pi)$  onto  $\mathbb{D}$ .
- (iv) There exists more than one projective structure on  $\mathbb{D}$ .
- (v) Do these different structures define different points in the moduli space of projective structures on  $\mathbb{D}$  modulo pullback via biholomorphic automorphisms?

A point in the moduli space of projective structures is represented by a projective structure on  $\mathbb{D}$ , and we identify two such points if one is obtained from the other via pullback along a biholomorphic automorphism.