

Problem Set 8 WS2013/14 H. Reich/F. Lenhardt

Exercise 1

- (i) Let the cyclic groups C_n act on \mathbb{D} by rotation. Show that even though $0 \in \mathbb{D}$ is a fixed point, the quotient \mathbb{D}/C_n can be equipped with the structure of a Riemann surface.
- (ii) Suppose $\Gamma \subset Bihol(\mathbb{D})$ is a discrete subgroup. Show that for every $x \in \mathbb{D}$, the stabilizer Γ_x is trivial or finite cyclic.
- (iii) Show that then \mathbb{D}/Γ can be equipped with the structure of a Riemann surface even if Γ does not act freely.

Exercise 2

- (i) Consider $A \in SL_2(\mathbb{R})$. Show that if $1 \neq [A] \in PSL_2(\mathbb{R})$ has a fixed point in \mathbb{H} , then $|\operatorname{tr} A| < 2$.
- (ii) Let Γ_p be the kernel of the natural map $SL_2(\mathbb{Z}) \to SL_2(\mathbb{F}_p)$. Show that the image of Γ_p in $PSL_2(\mathbb{R})$ acts freely on \mathbb{H} and that \mathbb{H}/Γ_p is a Riemann surface.

Exercise 3

Let $f: \mathbb{D} \to \mathbb{D}$ be a holomorphic map with f(0) = 0.

- (i) Show that $\left|\frac{\partial f}{\partial z}(0)\right| \leq 1$.
- (ii) If there exists a point $w \in \mathbb{D}$ such that |f(w)| = |w|, then f is a rotation.
- (iii) If $\left|\frac{\partial f}{\partial z}(0)\right| = 1$, then f is a rotation.

Hint: Look at the power series of f and use the maximum principle.