

Surfaces and Automorphisms

Problem Set 7 WS2013/14 H. Reich/F. Lenhardt

Exercise 1

Let M be a connected compact Riemann surface. Let $f: M \to \mathbb{P}^1$ be a nonconstant holomorphic function. Show:

- (i) $S = f^{-1}(\infty)$ is finite.
- (ii) For every point $z_0 \in M$ there is a $k \in \mathbb{Z}$ and a chart $\phi: U \to V$ with $U \subset M$ open, $z_0 \in U, V \subset \mathbb{C}$ with $0 \in V$ such that $\phi(z_0) = 0$ and

 $f \circ \phi^{-1}(z) = z^k \cdot h(z)$

for some holomorphic function $h: V \to \mathbb{C}$ with $h(0) \neq 0$.

Exercise 2

Let M be a smooth manifold and $U, V \subset M$.

(i) Show that there is a short exact sequence of chain complexes

 $0 \to \Omega^*(U \cup V) \to \Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V) \to 0$

(ii) Show that there is a long exact sequence in de Rham cohomology

$$\cdots \to H^{n+1}_{dR}(U \cap V) \to H^n_{dR}(U) \oplus H^n_{dR}(V) \to H^n_{dR}(U \cup V) \to H^{n-1}_{dR}(U \cap V) \to \dots$$

Exercise 3

Consider $\mathbb{U} = \mathbb{P}^1, \mathbb{C}, \mathbb{H}$. Investigate whether the action of $Bihol(\mathbb{U})$ on the configuration space $Conf_k(\mathbb{U})$ is transitive for k = 1, 2, 3 and compute the stablizers of these actions.

Exercise 4

Let D be the open unit disc in \mathbb{C} .

- (i) Find an explicit biholomorphism from D to \mathbb{H} .
- (ii) Show that the subgroups $PSL_2(\mathbb{R}) \subset PSL_2(\mathbb{C})$ and

$$\left\{\frac{az+b}{\overline{b}z+\overline{a}}\mid a,b\in\mathbb{C}\right\}\subset PSL_2(\mathbb{C})$$

are conjugated.