

Problem Set 4 WS 2013/14

H. Reich/F. Lenhardt

Exercise 1

Let V, W be complex vector spaces, with complex structures J_V, J_W . The complex structure J_W determines a conformal class [s(-, -)] and hence a quadratic form q(v) = s(v, v) well-defined up to a positive scalar. The level sets $q^{-1}(c), c \in \mathbb{R}$ of q of this quadratic form yield a foliation \mathcal{F}_{J_W} of $W - \{0\}$ into ellipses.

- (i) Verify all claims above and show that the foliation \mathcal{F}_{J_W} only depends on the conformal class of s(-,-) and hence only on J_W .
- (ii) Let $f: V \to W$ be a real linear map. We can pull back the foliation \mathcal{F}_{J_W} to a foliation $f^*(\mathcal{F}_{J_W})$. Show that this pulled-back foliation only depends on $\mu(f)$.

Exercise 2

A complex structure J on a real vector space V determines the complex scalar multiplication map

$$m_J \colon \mathbb{C} \otimes_{\mathbb{R}} V \to V$$
$$(a+ib) \otimes v \mapsto av + bJ(v)$$

Discuss in which sense this map is complex linear. There is also the involution

$$\bar{}: \mathbb{C} \otimes_{\mathbb{R}} V \to \mathbb{C} \otimes_{\mathbb{R}} V$$
$$\lambda \otimes v \mapsto \overline{\lambda} \otimes v$$

- (i) Show that $K = \ker(m_J)$ is an *n*-dimensional complex subspace of $\mathbb{C} \otimes_{\mathbb{R}} V$ and that $\mathbb{C} \otimes_{\mathbb{R}} V = K \oplus \overline{K}$.
- (ii) Show that an *n*-dimensional complex subspace $K \subset \mathbb{C} \otimes_{\mathbb{R}} V$ with

$$K \cap \overline{K} = 0$$

determines a (real linear) isomorphism from a real vector space to a complex vector space

$$V \cong \mathbb{R} \otimes_{\mathbb{R}} V \to \mathbb{C} \otimes_{\mathbb{R}} V \to (\mathbb{C} \otimes_{\mathbb{R}} V)/K$$

and therefore a complex structure J on V.

Please turn the page!

Exercise 3

Interpret and prove:

- (i) $\frac{\partial}{\partial x}(u+iv) = \frac{\partial}{\partial x}u + i\frac{\partial}{\partial x}v$ and d(u+iv) = du + idv
- (ii) $\frac{\partial}{\partial \overline{z}} f = \frac{1}{2} (\frac{\partial}{\partial x} f + i \frac{\partial}{\partial y} f)$
- (iii) $df = \frac{\partial}{\partial z} f dz + \frac{\partial}{\partial \overline{z}} f d\overline{z} = \frac{\partial}{\partial x} f dx + \frac{\partial}{\partial y} f dy$
- (iv) $\frac{\partial}{\partial \overline{z}}(f \circ g) = \frac{\partial}{\partial \overline{z}}g \circ \frac{\partial}{\partial z}f + \frac{\partial}{\partial z}g \circ \frac{\partial}{\partial \overline{z}}f = \frac{\partial}{\partial \overline{z}}g \cdot \overline{\frac{\partial}{\partial z}f} + \frac{\partial}{\partial z}g \cdot \frac{\partial}{\partial \overline{z}}f$

Exercise 4

Let V, W, X be one-dimensional complex vector spaces, with complex structures given by J_V, J_W, J_X . For orientation-preserving isomorphism $f: V \to W, g: W \to X$. Show that $\mu(g \circ f) = \mu(f)$ if and only if $g^*(J_X) = J_W$.