## Surfaces and Automorphisms

Problem Set 4 H. Reich/F. Lenhardt WS 2013/14

## Exercise 1

Let $V, W$ be complex vector spaces, with complex structures $J_{V}, J_{W}$. The complex structure $J_{W}$ determines a conformal class $[s(-,-)]$ and hence a quadratic form $q(v)=s(v, v)$ well-defined up to a positive scalar. The level sets $q^{-1}(c), c \in \mathbb{R}$ of $q$ of this quadratic form yield a foliation $\mathcal{F}_{J_{W}}$ of $W-\{0\}$ into ellipses.
(i) Verify all claims above and show that the foliation $\mathcal{F}_{J_{W}}$ only depends on the conformal class of $s(-,-)$ and hence only on $J_{W}$.
(ii) Let $f: V \rightarrow W$ be a real linear map. We can pull back the foliation $\mathcal{F}_{J_{W}}$ to a foliation $f^{*}\left(\mathcal{F}_{J_{W}}\right)$. Show that this pulled-back foliation only depends on $\mu(f)$.

## Exercise 2

A complex structure $J$ on a real vector space $V$ determines the complex scalar multiplication map

$$
\begin{aligned}
m_{J}: \mathbb{C} \otimes_{\mathbb{R}} V & \rightarrow V \\
(a+i b) \otimes v & \mapsto a v+b J(v)
\end{aligned}
$$

Discuss in which sense this map is complex linear.
There is also the involution

$$
\begin{aligned}
& { }^{-}: \mathbb{C} \otimes_{\mathbb{R}} V \rightarrow \mathbb{C} \otimes_{\mathbb{R}} V \\
& \lambda \otimes v \mapsto \bar{\lambda} \otimes v
\end{aligned}
$$

(i) Show that $K=\operatorname{ker}\left(m_{J}\right)$ is an $n$-dimensional complex subspace of $\mathbb{C} \otimes_{\mathbb{R}} V$ and that $\mathbb{C} \otimes_{\mathbb{R}} V=K \oplus \bar{K}$.
(ii) Show that an $n$-dimensional complex subspace $K \subset \mathbb{C} \otimes_{\mathbb{R}} V$ with

$$
K \cap \bar{K}=0
$$

determines a (real linear) isomorphism from a real vector space to a complex vector space

$$
V \cong \mathbb{R} \otimes_{\mathbb{R}} V \rightarrow \mathbb{C} \otimes_{\mathbb{R}} V \rightarrow\left(\mathbb{C} \otimes_{\mathbb{R}} V\right) / K
$$

and therefore a complex structure J on V .

## Exercise 3

Interpret and prove:
(i) $\frac{\partial}{\partial x}(u+i v)=\frac{\partial}{\partial x} u+i \frac{\partial}{\partial x} v$ and $d(u+i v)=d u+i d v$
(ii) $\frac{\partial}{\partial \bar{z}} f=\frac{1}{2}\left(\frac{\partial}{\partial x} f+i \frac{\partial}{\partial y} f\right)$
(iii) $d f=\frac{\partial}{\partial z} f d z+\frac{\partial}{\partial \bar{z}} f d \bar{z}=\frac{\partial}{\partial x} f d x+\frac{\partial}{\partial y} f d y$
(iv) $\frac{\partial}{\partial \bar{z}}(f \circ g)=\frac{\partial}{\partial \bar{z}} g \circ \frac{\partial}{\partial z} f+\frac{\partial}{\partial z} g \circ \frac{\partial}{\partial \bar{z}} f=\frac{\partial}{\partial \bar{z}} g \cdot \overline{\frac{\partial}{\partial z} f}+\frac{\partial}{\partial z} g \cdot \frac{\partial}{\partial \bar{z}} f$

## Exercise 4

Let $V, W, X$ be one-dimensional complex vector spaces, with complex structures given by $J_{V}, J_{W}, J_{X}$. For orientation-preserving isomorphism $f: V \rightarrow$ $W, g: W \rightarrow X$. Show that $\mu(g \circ f)=\mu(f)$ if and only if $g^{*}\left(J_{X}\right)=J_{W}$.

