

Surfaces and Automorphisms

Problem Set 3 WS 2013/14

H. Reich/F. Lenhardt

Exercise 1

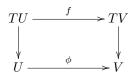
Let M be a smooth manifold. Show that $X^{or}(TM)$ is an orientable smooth manifold.

Exercise 2

Let M be a smooth manifold. Consider pairs (N, ω) where N is a smooth manifold diffeomorphic to M and ω a volume form on N. Let \mathcal{S} be the set of such pairs modulo volume form preserving diffeomorphisms, i.e. we identify (N, ω) and (N', ω') if there is a diffeomorphism $\phi \colon N \to N'$ with $\phi^*(\omega') = \omega$. Show that there is a bijection between \mathcal{S} and $\Gamma^{\infty}(X^{vol}(TM))/\text{Diff}(M)$.

Exercise 3

Let $s \in \Gamma^{\infty}(X^{\text{inn}}(TM))$ be a Riemannian metric on the smooth manifold M. Let $\phi: U \to V$ be a chart. Show that there is a bundle isomorphism



such that $f^*(s) = s_0$. Why does this *not* imply that every Riemannian metric comes from a $\mathcal{C}^{\infty,\langle -,-\rangle_{st}}$ -structure?

Exercise 4

Let \mathbb{F} be \mathbb{R} or \mathbb{C} . Then $GL(n+1,\mathbb{F})$ operates naturally on the projective space $\mathbb{F}P^n$. Show that with respect to the canonical identifications $\mathbb{R}P^1 \cong \mathbb{R} \cup \{\infty\}$ and $\mathbb{C}P^1 \cong \mathbb{C} \cup \{\infty\}$, this action is given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,\mathbb{F})$ and $z \in \mathbb{F} \cup \infty$. Show that we obtain group homomorphisms

$$GL(2, \mathbb{C}) \to \text{Bihol}(\mathbb{C}P^1)$$

 $GL(2, \mathbb{R}) \to \text{Diff}(\mathbb{R}P^1)$

and compute their kernels.