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1 Introduction

Consider the easiest model in population genetics: the Wright-Fisher model. That is, we
consider a population that develops over time. The population is supposed to be haploid,
i.e. each individual has exactly one ancestor. The generations are non-overlapping and of
constant size. Further suppose that there is an infinite number of generations both in the
future and in the past. Each individual in generation n chooses its ancestor uniformly among
the individuals of generation n — 1, independently of the choices of the other individuals.

n=-2 o L

n—2

Figure 1: An example of the genealogical tree for a population of size seven for the generations
—2 to 2.

If we model the development of the distribution of genetic types forward in time, we obtain
a measure-valued process in the limit for large populations: the so called Fleming-Viot process
(Kurtz, 1981).

If we model the genealogical tree backward in time, we obtain a partition-valued process
in the limit for large populations: Kingman’s coalescent (Kingman, 1982b).

Those two processes are dual to each other. This was shown by Dawson and Hochberg
(1982). They proved the duality of the Fleming-Viot process to a function-valued process,
but their formulation can be easily adapted to prove the duality of Fleming-Viot process and
Kingman’s coalescent.

The Wright-Fisher model is a special case of a class of population models that was in-
troduced by Cannings (1974, 1975). Mohle and Sagitov (2001) studied the partition-valued
formulation of Cannings’ model and obtained a general class of coalescents in the limit for
large populations, so called exchangeable coalescents. Schweinsberg (2000a) classified those
exchangeable coalescents and proved that they are in one-to-one correspondance with finite



measures = on the infinite simplex

A::{(:Bl,xg,...)ERN:xlzxgz---ZOand Z@Sl}

i=1

This is why exchangeable coalescents are also called =-coalescents. If we consider only mea-
sures on A that are concentrated on sequences of the form (z1,0,0,...) and can thus be
interpreted as measures on [0, 1], we also speak of A-coalescents.

Bertoin and Le Gall (2003) introduced a generalisation of the Fleming-Viot process, so
called A-Fleming-Viot processes, for which they gave an explicit Poisson construction. Also
they showed that A-Fleming-Viot processes and A-coalescents are dual to each other.

=-Fleming-Viot processes (that are a generalisation of A-Fleming-Viot processes) were
introduced explicitly by Birkner et al. (2009) who gave a fundamentally different construction
of these processes than Bertoin and Le Gall (2003) gave for their A-coalescents.

In this work we want to generalize the result of Bertoin and Le Gall (2003). We will
construct =-Fleming-Viot processes and we will show the duality of =-Fleming-Viot processes
and Z-coalescents. Bertoin and Le Gall (2003) point out the possibility of such a generalisation
and they state that “details are left to the interested reader”. Having obtained the duality
between =-coalescents and =-Fleming-Viot processes, it is not surprising that we will be able to
show convergence of the measure-valued formulation of Cannings’ model towards =-Fleming-
Viot processes.

Finally, we slightly generalize a realistic population model introduced by Schweinsberg
(2003). This population model is in the class of Cannings’ models and we can use the before
obtained convergence results to show the convergence towards coalescents or Fleming-Viot
processes, depending on the considered formulation.

In the entire text, we will always consider the Borel o-algebra, unless it is noted otherwise.
We will denote the Borel o-algebra of a topological space E by B(E).

2 Preliminaries

Unless it is noted otherwise, everything in this section is a translation of the corresponding
sections from Perkowski (2009)

2.1 Exchangeable Random Partitions

In this chapter we introduce the important correspondance between exchangeable random
partitions and mass partitions.

2.1.1 Partitions of [n]

Definition 2.1. 1. Let BCN, B # @, be a subset of N:={1,2,...}. A partition © of
B is a family of disjoint blocks (m; : i € N) such that | J;.y 7 = B. We suppose that the
m; are always enumerated by increasing order of their least element.

2. For a partition ™ of B, #m € N := N U oo is the number of non-empty blocks of 7, i.e.
#m := sup{i : m; £ 0}.

3. Fori € B, (1) is the number of the block of m that contains i.
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4. Py is the space of partitions of [n] :== {1,...,n}, equipped with the discrete topology. 0,
is the partition of [n] in singletons.

5. Poo is the space of partitions of [0o] := N. 04 is the partition of N in singletons.

6. Forn € N, m <n and 7 € P, let Rp,m be the restriction of © to [m]: R,m is the
unique partition in P, such that fori,j < m, ¢ and j are in the same block of R,,m if
and only if they are in the same block of .

7. Forn € N and 7,7’ € P, we write @ C ' if ' is coarser than 7, i.e. if 7’ is obtained
by coagulating blocks of w. We write w < w’ if 7' is obtained by coagulating exactly two

blocks of m.

We introduce the notation
i~
to express that ¢ and j are in the same block of 7. We define a distance p on P.:

p(ﬂ', 71") — 2— inf{n:R,m#Rn,7'}

We would like P, to be a Polish space. In fact it is even a compact metric space:
Proposition 2.2. P, equipped with the distance p is a compact metric space.

Proof. We will show that (P, p) is complete and that each sequence in P, admits a Cauchy
subsequence.

Let (m,) be a Cauchy sequence in P, and let m € N. So there is N,, € N such that for
each n,n’ > N,, we have p(m,,m») < 27™. So the sequence (R,,m,), is constant for large
enough n. We define a partition 7 € P., such that i ~ j if and only if i ~ j for each n that
is large enough. The definition of p immediately implies the convergence of 7, towards 7.

Let (m,) be a sequence in P,,. We consider (Rym,). Since P is finite, there is an infinite
constant subsequence (Rym,, ). Then we consider (Rsm,, ) and select another infinite constant
subsequence (Rgﬂ'nkl ), etc. We obtain a Cauchy subsequence by choosing a diagonal sequence
of this collection of subsequences of (m,,). O

2.1.2 Mass Partitions

Definition 2.3. A mass partition is a real-valued sequence (xy1,xa,...) such that

o0
Ty > 29> ---2>0 and ingl
i=1

We define

00
To ‘= 1-— E Z;
i=1

We denote by A the infinite simplex of mass partitions.

A is a compact metric space:



Proposition 2.4. A equipped with the uniform distance

d(z,2") == maz{|z; — 2| :i e N}, z,2 € A

7

1S a compact space.
Uniform convergence is equivalent to simple convergence.

Proof. The equivalence of uniform convergence and simple convergence is a direct consequence
of the fact that for each z = (x;) in A we have z; < 1/i for all i € N.
Let (™) be a sequence in A. We want to show that (z") admits a convergent subsequence.

Since (z7), is a bounded sequence in R, we can choose a convergent subsequence x?le—ofxl
Now we can choose a subsequence (z5") of (25*) that converges to a z, € R. We repeat this
for each i € N. Then we choose a diagonal subsequence of all those subsequences. Denote
that subsequence of (z") by (z™). So for each i € N, 2" converges to x; when m — oco. Of
course the limit (z;) is still monotone, i.e. x; > xo > .... Fatou’s lemma yields

00
i=1

Thus x = (x;) is in A. Since uniform convergence is equivalent to simple convergence, (z™)
converges uniformly to x.

U

Example 2.5. Let (§,0 < ¢t < 1) be a pure jump subordinator with jumps a; > ay >
. in decreasing order. (In the Appendix B there is an overview of subordinators.) So
(a1/&1,a2/&1, ... ) is a random point in A, and the distribution of (&) corresponds to a distri-
bution on A.
Let a € (0,1) and let (&,t € [0,1]) be a subordinator with Laplace exponent

ca o
® _ a__ = 1 — g9 7a71d )
(¢) = cq I _a)/() (1—e ™) T
for some ¢ > 0. Here, I is the gamma function, ['(o) = [ 2* e dz. Such a (&) is called

stable subordinator of index a. The Lévy measure of £ is given by

cx

—a—ld
INQ! —a)$ ’

A, (dz) =

It satisfies
1

Ay (z,00) = T a)x
The corresponding distribution on A is called Poisson-Dirichlet distribution of index
(a,0), PD(,0). Note that the parameter ¢ has no influence on the PD(a, 0)-distribution,
since k%c corresponds to (k&,t € [0,1]) (this can be immediately seen by calculating the

Laplace exponent).

2.1.3 Exchangeable Random Partitions

To define exchangeable random partitions, we first need to define permutations: A permuta-
tion of [n] for n € N is a bijective map from [n] to [n]. A permutation of N is a bijective map
o from N to N such that there exists an N € N with o(n) = n for each n > N.

For each permutation o of [n],n € N and for each partition 7 € P, we define the partition

or as follows: for 7,5 € [n], o(7) z o(7) if and only if i % j.

7



Definition 2.6. A random partition 7 of [n] with n € N is called exchangeable if the law
of m is invariant under permutations of [n], i.e. if for each permutation o of [n], 67 has the
same distribution as .

Definition 2.7.

A partition © of N is said to have asymptotic frequencies if for each block B of 7:

S .
nll_)HQlo - z; Liiepy exists
With the paintbox construction of Kingman (1982b) we can associate an exchangeable
random partition to each mass partition:

Definition 2.8. 1. Let x € A. Let (§)nen be a sequence of independent and identically
distributed (i.i.d.) random variables, such that

]P(é'l:i)zlii,iEN, P(§1:0):1—Zl’,
=1

Given the values of the &,, we define a partition m € Py, such that i # j are in the same
block of m if and only if

&=¢§>0

So all i with & = 0 are singletons of m. We denote the distribution of m by P*. P® is
called a paint box distribution. To motivate this name, imagine that each number 1
corresponds to a color. 0 corresponds to a magic paint that has a different color each
time it is used. Each element j € N is painted with the colour §;. Then all the elements
with the same color are put in the same block of .

2. For a distribution v on A we define a mixture of paint boxes:

PY(dr) = /A P (dr)w(dz)

It is easily verified that those paint boxes correspond to exchangeable partitions that almost
surely (a.s.) possess asymptotic frequencies. The second statement is obtained with the law
of large numbers. Indeed, every exchangeable random partition is given by a mixture of paint
boxes. To prove this, we will need de Finetti’'s theorem. The following version is Theorem
(3.1) of Aldous (1985):

Theorem 2.9 (de Finetti). Let (Z;)ien be an exchangeable sequence of real-valued random
variables. That is, for each permutation o of N, (Z,4))ien has the same distribution as (Z;);en.
Then there ezists a random probability measure pn on R (cf. Definition A.1), such that

(Z;) is i.i.d. conditionally on the o-algebra created by
P(Z; € Alp)(w) = p(w, A)

Now we are ready to state the main result of this section. This theorem was established
by Kingman (1978). The following proof is taken from Aldous (1985), Proposition (11.9), and
we use details from the more elaborate version of Bertoin (2006), Theorem 2.1.

8



Theorem 2.10 (Kingman). Let m be an exchangeable random partition of N. Then 7 a.s.
possesses asymptotic frequencies. Let X1 > Xo > ... be the ordered sequence of the asymptotic
frequencies of the different blocks of m where X,, := 0 if m has less than n non-empty blocks.
Then X = (X1, Xo,...) is a.s. in A, and conditionally on X, 7 has the distribution PX. In
particular

P(r € A) = /A PE(A)G(dz)

where G s the distribution of X.

Proof. 1. b : N — N is called selection map for the partition 7 if for all ¢, j in the same
block of  we have b(i) = b(j) = k where k is an element of the same block of 1. So let
b be a selection map for .

Let (&;)ien be an i.i.d. sequence that is uniformly distributed on [0, 1] (notation: &; ~
U([0,1])), independent of m and of b. We define Z; := &(;). Since b and 7 are independent
of (&), the distribution of (Z;);en does not depend on the selection map b.

2. The sequence (Z;) is exchangeable: Let o be a permutation of N. We have

Zo@iy = Sp(o(i)) = gllv’(i)
where

& =& and U/ (i) :== (0" oboo)(i)
b’ is a selection map for o—17: Let i and j be in the same block of o—1m: Then o(i) and
o(j) are in the same block of 7, and thus

b(o(i)) = b(a(j)) = o (k)

for a certain k such that o(k) and o (i) are in the same block of 7. But that means that

—_

k and ¢ are in the same block of o—!m. Further we have

and therefore ' is a selection map for olir. (&) is an i.i.d. sequence that is uniformly
distributed on [0, 1] and that is independent of o—'7 and of b'. Since 7 is exchangeable,
o' has the same distribution as 7, and thus Z,(;) has the same distribution as (Z;).

3. We use de Finetti’s theorem (Theorem 2.9). Let p be a random probability measure
for (Z;) as in the theorem. We can choose it such that for each w, the mass of p(w)
is concentrated on [0,1]. Let f(u)(w) be the ordered sequence pi(w) > p(w) > ... of
atoms of p(w). That is, p;(w) is the size of the largest atom of u(w), etc. We define
fn(w) := 0 if p(w) has less than n atoms. Conditionally on p, the distribution of 7 is
given by P/(:

Let
q(z) = inf{y : p([0,y]) > x}



be the (random) quantile function of p. We define
:={x € (0,1): Je> 0such that q(z) = q(y) if |y — x| < €}

The intervall lengths of 6 correspond to the atom sizes of pu. Let (V;);eny be an ii.d.
sequence, V; ~ U([0,1]), independent of 7, of (Z;), and of p. Then

P(q(V1) < zfp) = P(u([0, 2]) > Vi|p) = p([0, z])

so conditionally on p, (¢(V;)) has the same distribution as (Z;). We define a partition 7’
such that ¢ and j are in the same block of 7’ if and only if ¢(V;) = ¢(V}). Conditionally
on yu, 7' has the same distribution as 7. But i and j are in the same block of 7’ if and
only if V; and V; are in the same intervall of §. So conditionally on p, 7’ (and therefore
also 7) has the paint box distribution Pf#). (We could define W; := k if V; is in the
k-th largest intervall of 8 and W, := 0 if V; is in no intervall of 8 to see that we are really
in the paint box setting.)

4. Conclusion: We have
P(r € Al) = P/(4)

and conditionally on p, 7 has asymptotic frequencies f(u). In particular, 7 a.s. possesses
asymptotic frequencies. By taking expectations on both sides we get

P(r € A) = / PP(A)C(dx)

where G is the distribution of f(u), i.e. the distribution of the asymptotic frequencies
of 7.
m

2.2 Exchangeable Coalescents
2.2.1 Definition and Classification

We introduce coalescents with simultaneous multiple collisions and we show a correspondance
between such coalescents and finite measures on the infinite simplex A.

Definition 2.11. A coalescent is a stochastic process (I1(t))>o with values in P, forn € N
that is a.s. right-continuous and possesses left limits (cadlag) and such that for all s >t > 0:
I1(t) is a refinement of T1(s), i.e. TI(t) C II(s).

Definition 2.12. Let B C N be a subset of N. Let w be a partition of B. Let m > #m and
let ©" € Pp,. We define the partition Coag(m, ') as follows:

Cong(m. )y = | Jme < 7

gsu
where Coag(m,'); is the jth block of Coag(m,n’).

The coagulation operator has two elementary properties that will be very useful:
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1. For m, 7" € Py,n € N, we have

R, Coag(rm,n") = Coag(R,m, R,7")

2. If all the terms in the following equation are well-defined we have

Coag(m, Coag(n', 7")) = Coag(Coag(r, '), ")

Definition 2.13. Letb,r € N, ky, ..., k. >2, s e Ng:={0,1,...}, andb=ky +---+ k. +s.
m € Py is called a (by k1, ..., ky;s)-partition if © has (non-ordered) blocks By, ..., B. of
respective sizes k1, ..., k., and s singletons.

Definition 2.14. Let 7 € P,, n € N and oo > b = #m. 7' is a (b;ky, ..., ky;8)-collision
of m if #’ = Coag(mw,n") where ©" is any (b; k1, ..., k;; s)-partition.

Here we will only consider coalescents that are Markov processes and for which the rate
of each (b; k1, ..., k,;s)-collision is the same.

Definition 2.15. Let m € N. A coalescent (I1(t));>0 with values in P, is called coalescent
with simultaneous multiple collisions (c.s.m.c.) or exchangeable coalescent if for
alln,m e N, n <m:

(RIL(2))i>0 s a Markov chain with values in P,
and

when R,I1(t) has b blocks, each (b;ky, ..., k.;s)-collision
happens with rate Ak, . ks

If 11(0) = 0y, then II is called standard.

An important example of such coalescents is given by Kingman’s coalescent. For this
coalescent, the collision rates are A\p.2,—2 = 1 for each b, and every other rate is 0. This means
that the jump rate from 7 to 7’ is 1 if 7’ is formed from 7 by coagulating exactly 2 of its
blocks, and otherwise the rate is 0. This process was introduced by Kingman (1982b) to study
the genealogy of large populations. The new idea that proved to be very successful was to
consider a process with values in P,. Kingman proved that this coalescent arises in the limit
for large populations in a number of models: The Wright-Fisher model, the Moran model
(which we will not study here), but also the general Cannings’ model if we assume the family
sizes to be sufficiently bounded (this will be expressed more precisely later in this text). The
mathematical properties of Kingman’s coalescent are described in Kingman (1982a).

In 1998, Bolthausen and Sznitman (1998) introduced another exchangeable coalescent.
This paved the way for the general classification of those processes:

In 1999, Pitman (1999) and Sagitov (1999) introduced independently of each other coa-
lescents with multiple collisions. Those are exchangeable coalescents with Apx, . x,..s = 0 for
r > 1, i.e. each A that is not of the form Ay is 0. This evidently means that for such
coalescents we can have a collision of several blocks (not just of two blocks as for Kingman’s
coalescent), but a.s. no two such collisions happen at the same time.

Coalescents with simultaneous multiple collisions were obtained the first time by Mdohle
and Sagitov (2001) as limits of Cannings’ population models. A classification of c.s.m.c.’s
was given by Schweinsberg (2000a). In this article Schweinsberg proved that c.s.m.c.’s are in
one-to-one correspondance with finite measures on the space of mass partitions A:

11



Theorem 2.16. Let { Nk, ks 170 €Ny, ke > 2,5 € No,b =370 kj+ s} be a family
of positive (i.e. > 0) numbers. Then there exists a standard coalescent with simultaneous
multiple collisions with values in Py with collision rates Npg,,. ks, tf and only if there is a
finite measure = on A,

== Eo + 0(50
where Zg has no atom in 0 := (0,0, ...), dg is the Dirac mass in 0 and ¢ > 0, such that

le,.‘.,k,«;s(@

A Z;il %2

s 0o s—I
S
le,m’kr;s(l’) = Z Z (l)xfll - x?:xir+1 e xi’r'+1 (1 — Z .Z']) (2)
j=1

1=0 i1 in gy

)‘b;k1,...,kr;s = Eo(dm) + C]l{r:Lk:Q} with (1)

For each c.s.m.c., the associated measure = is uniquely determined.
Remark. 1. Note that the integral in (1) is well-defined, as =, has no atom in 0.

2. The formula (1) is the formula that was originally established by Schweinsberg (2000a).
There is another formula given by Bertoin (2006). Bertoin considers the measure

v(dr) = (1 ix?) Eo(dx) + cdo

that is not necessarily finite on A.

Definition 2.17. A c.s.m.c. (II(t))i>0 with rates My, .. ks given by (1) is called E-coalescent.

Poissonian Construction To show that condition (1) is sufficient, we construct a =-
coalescent with a Poisson point process construction (cf. Appendix A for an overview of
Poisson point processes). This construction was originally given by Schweinsberg (2000a),
but we present the slightly adapted version of Bertoin (2006), Chapter 4.2.3. Nonetheless
some details in the proof are taken from Schweinsberg (2000a).

Let v be a o-finite measure on A such that

v({0}) =0 and /AZx?y(dx) < 00 (3)

Let ¢ > 0. We associate a o-finite measure p on Py, to v and ¢: For i,5 € N let (i, j) be
the unique partition of N that consists of one block of size two, {7, 5}, and otherwise only of
singletons. We define

udm) = [ Pramodn) + 32 3 Ly (an) (4)

Since v is o-finite, p is o-finite as well.
Let (e(t)):>0 be a Poisson point process of intensity u. We will use (e(t)) to construct
processes (I1,,(t))i>0 with values in P,. Then we will see that all the II,, are compatible: a.s.

12



R, 1L, (t) = 11,,,(t) for each t. Therefore we can define a process (II(t));>o with values in Py
such that R,II(t) =II,(t) for t > 0, n € N.
For n € N we define

A, ={m € Px: Rym #0,}
and for k,1 € N:
Agy = {m € P : k and [ are in the same block of 7} (5)

We have

p(An) < En: A => > </A P(Agg)v(dz) + 1)

The last inequality comes from (3).

We define Ty, := 0 and for k > 1: T}, := inf{t > Tj_1, : e(t) € A,}. Since u(4,) < oo,
the T}, correspond to jump times of a Poisson process. Thus they are without cluster point
and we have e(Ty,,) € A, for kK > 1. Given a partition 7 € P, we define II7(0) := R, 7 and

5 (Th,n) == Coag (I} (Ty-1,), e(Thn))

Now let m < n € N. Since A4,, C A, II7, and IIT are constant on the intervall [T} ,,, Tk11.,) for
each k > 0. Thus it suffices to verify the equality II7 (t) = R, II7(t) a.s. fort € {T},, : k>0 }.
For k = 0 this is trivial. Let £ > 1. Recall that for a partition 7, n(i) is the number of the
block containing i. Let 4,5 € [m]. Then ¢ and j are in the same block of II7 (T%,) if and
only if II7 (Ty—1,)(¢) and II7 (Tx—1,)(j) are in the same block of (T} ). On the other side i
and j are in the same block of II7(7}.,,) (and thus of R,,II7(7},)) if and only if II7(Ty—1.,)(7)
and II7(7T;_1,)(j) are in the same block of e(7},). But since the blocks of partitions are
enumerated by increasing order of their least element, and since by induction hypothesis
7 (Ty—1n) = RpIIL(Ti—14), we have 117 (Ty—1,) (i) = I (Tx—1,)(i) for each i € [m]. We
obtain II7 (Ty.n) = Ry 117 (Ty.0).

The construction of I1™ is now evident: Let 7,5 € N, then ¢ and j are in the same block
of II"(¢) if they are in the same block of IIT ., ., (¢). Using the definition of the topology on
P it is evident that II™ is cadlag and that for each t < s, II"(t) is a refinement of I17(s).
Therefore we constructed a coalescent.

Given a finite measure = = Zy + ¢dg on A, we define v(dz) = Eo(dz)

R

I1™ exactly like we just did. It remains to show that II" is a =-coalescent.

and we construct

Proposition 2.18 (Sufficient Condition of Theorem 2.16). The process (II"(t))¢>0 constructed
as above is a =-coalescent.

Proof. 1. R,II™ is a Markov chain:
R,II™ = 1IT where II7 is the process of the construction. By using the construction and
the “independent increments” (55) of Poisson point processes, it is easily verified that
II7 is a Markov chain.
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2. Each (b; kq, ..., k,;s)-collision has the rate Apk, .k, s
Let n € N. Let m € Py such that R,m has b blocks. Let #’ be a (b;kq,...,k.;s)-
partition. We denote its (non-ordered) blocks of size > 2 by Bj, ..., B.. The jump rate
of R,II™(0) = II7(0) to Coag(R,m,n’) is given by pu(Ax ) with A 1= {n € P
Ryn = 7'}, We calculate P*(Ay ): Recall that P* was constructed by i.i.d. variables
(&). If Ryn = 7', there exist necessarily

0<Ii<s,i1#--#i,yal#0and 1 <my <--- <my < b such that
Em=ijforme B, 1<j<r

gmj:ir-l—j: 1§]§l

&m=0form<bmé¢ (Uj:1 ,,,,, TB;-)U{ml,...,ml}

By summing up all the possible combinations we obtain

s 0o 5=l
P1<Aoo,7r’) :Z <?) Z xfll ...[L’?:'IirJrl ...ZL’iTH (1 —Zl'j>

=0 G Al Jj=1
= le ..... kr;s(x) (6)
This implies
)\b;k‘l,...,k,-;s - oo7r / le ..... T-;s (dﬂf) + C]l{r 1,k=2}

2/ <Qk1 ..... kris /Z$> (dx) + clgp— p=2)
A

and this is the desired formula (1).
[l

Necessary Condition of Theorem 2.16 Given the Ay, . k.5, We will construct a o-finite
measure 1 on P,. Then we will associate a o-finite measure v on A and a ¢ > 0 to u. We
will see that v satisfies (3), and we will be able to define a finite measure on A by setting
=(dx) := Y 22, w3v(dr) + cdo. Then we will see that the rates Ay, . s are given by (1).

We choose this complicated way to obtain the results of Schweinsberg (2000a) (that we
want to use) with the methods of Bertoin (2006) (that reveal more about the structure of
coalescents with simultaneous multiple collisions).

Definition 2.19. Given m € P,, n € N, we define for m € N, m > n:
Az ={1 € Pp: R,7’ =7}

Proposition 2.20. There is an unique measure 1 on Po such that j1(As ) = Noky .. kerss JOT
each (b; k1, ..., k.;s)-partition w. This measure satisfies

1. w is invariant under permutations of N (then u is called exchangeable),
2. p({0}) =0,
3. w({m € Py : Rym # 0,}) < 00 for each n € N

14



Proof. For each (b;ky, ..., k,;s)-partition m with r > 0 let

r ‘= >\b;k1,...,k’T;s

We define
Ap = 0({Asq ™ € Pu\{0,}}) and A= | | A,
neN
It is easily verified that A is an algebra. We define a measure po on A by
MO(AOO,T() = dr

To verify that g is o-additive, we consider m € P, and m > n. Since R,R,,I1°% = R, 1%,

we have
dr = Z qr’ (7)

T EAm,x

which is the same as

II’O(AOO,T() = Mo (Uﬂ"eAm,ﬂAoo,w’) = Z MO(AOO,W’)

' EAm,x

Lo is evidently additive on A,,, thus we have a o-additive measure on an algebra A. We can use
Caratheodory’s extension theorem to extend g to an unique measure g on B(Py\{0x}) =
o(A) if we consider each A, as sub-set of P, \{0} rather than P.,. To obtain a measure on
0(Pw), we define ({0 }) := 0. p satisfies condition 2 by definition. Condition 3 is satisfied
since

p({m € Poo : Ry # 0,,}) = Z qr

TEP\{O0n}

Condition 1 is satisfied since ¢, = g5, for each permutation o of [n]. ]

Proposition 2.21. Let i be the measure of Proposition 2.20. There are a unique measure v
on A and a unique ¢ > 0 such that

p(dr) = /APx(dw)y(dx) —1—02 Z Or(ij)(dm).

i=1 j=i+1

v satisfies
v(0) =0 and / fou(dm) < 00.
AT

We even have a stronger result:
1. p-almost every (a.e.) m has asymptotic frequencies
2. v 1is given by
v(dz) = 1 osopu([l* € da)

where |w|¥ denotes the asymptotic frequency of m, and

L poyln) = [ Pr(aroda)

15



8. Ljapooypldm) = ¢ 3572, D020 On(ig (dTT)

Proof. 1. For n € N we introduce

fin(dm) := LR, xr0,}p(dT).
Since p({m : R,m # 0,}) < oo (cf. Proposition 2.20), p, is a finite measure on P.,. Let
ﬁn be the image measure of i, under

T where il je=n+ilntj

Since p is exchangeable, ﬁn is a finite exchangeable measure on P,,. From Kingman’s
theorem (applied to _/f”() /i1, (Ps)) we obtain that pu,-a.e. m possesses asymptotic
frequencies and that u,, is given by

i) = /A P*(dm)je, (| € da) 8)

Let A := {7 : 7 possesses asymptotic frequencies}. We have p({0}) = 0 and the
asymptotic frequencies of a partition 7 do not depend on R, 7 for n < oo. Thus

((A) = lim g, (A) = lim g, ({7 : @ possesses asymptotic frequencies})
n—oo n—oo

= lim g, (A) =1

n—oo
which yields the first statement of the theorem.

2. By using the same measure extension argument as in the proof of Proposition 2.20, we
see that it suffices to show

p(Rar = m ol £ 0) = [ P*(Rar = mo) oyl € o) 9)
A

for k € N and 7 € Pg. So let k£ and 7, be given. By monotone convergence we obtain

p(Rym = my, |[* # 0)

= lim pu(Rem = m, |71 # 0, 7y iy 7 Ofhttern))

where Ogy1,. kiny is the partition of {k + 1,...,k + n} into singletons. Since fp is
exchangeable, this expression equals

= lim fi(Rim =y, |7[* # 0)

n

O lim [ P(Rir = 1)1 ooy fin (|7]* € da)

n—oo A
With the same argument that we used in the proof of 1., we see that |7|* does not change

— .
under 7 — 7; hence we obtain

= lim [ P"(Rym = mp)1apoppin(|7]* € da)

n—0o0 A

= lim [ P*(Rpm = mp)Lpzoyp(|w|* € da, Rym #0,,)

n—o0 A
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By monotone convergence and using 1({0}) = 0, we obtain the desired equation:
(R = mp, |w|* # 0) = / PRy = m) L aroy (| 7|¥ € dz)
A

Hence it suffices to define v(dx) := Ly, z0yu(|7|* € dz). It remains to show that

/ Zm?u(dm) < 00
AT

But this is easy now:

/qudw /m 2 2)v(dx)

©)

p(Rom = {1,2}, |7|* # 0) < pu(Rym # 0,) < 00
The last inequality is condition 3 of Proposition 2.20.

3. Let p(drm) == 1{1127‘W‘¢:0}u(dﬂ) and let 1 be the image measure of /i under

7 1 where PN =240 24

ﬁ is a finite exchangeable measure on P,, and under ﬁ, a.e. 7 has the asymptotic
frequency 0. Hence p is a Dirac mass in O.,. Since p is exchangeable and fi(Ps) < 00,

(37 >3:1<17) :i

Therefore fi = cd,(1,2) for some ¢ > 0. Since p is exchangeable, we deduce
Linpeoy(dm) =cy Y buig)
i=1 j=i+1
O

To obtain the rates Ay, . k.5, We first calculate Aoy, . k..s as a function of v: Let m be a
(b; k1, ..., ky; s)-partition. Then

Abikerooloris = H(Aoor) = / P(Acr)v(dz) + CZ Z Ore(ig) (A
A

i=1 j=i+1

(6)
/ Qtr s (@) + s )

By defining Z(dz) := >2°2, #v(dx), we obtain a finite measure on A such that the
Abiky ... ks are given by (1).

17



2.2.2 Examples

Without doubt the most prominent example of an exchangeable coalescent is Kingman’s
coalescent. It corresponds to = = dg. This coalescent has some interesting properties:

Proposition 2.22. Let (II(t),t > 0) be a standard Kingman coalescent with values in Py.

1. TI comes down from infinity. This means that for each t > 0, a.s. #II(t) < co.
Further, a.e. block of TI(t) is of infinite size.

2. (Dy = #1(t),t > 0) is a pure death process with death rate ((g),k € N). More
precisely,(Dy) is a Markov process with values in N and with jump rates
N, l=k-1

1 — R I
- 2
ilzlimoo hP(DHh D = k) { 0, otherwise

for all k.
3. FEach trajectory of (IL(t)) passes by a sequence
o RE<Rp1 < <Rao <Ry

where Ry, is the state of I1 when #11 = k. The sequence (Ry) is independent of (Dy), it
is Markovian, and for each k, conditionally on Riy1 = m, Ry is distributed uniformly

on the (k'gl) partitions that are obtained by coagulating exactly two blocks of .

4. As a consequence of 2. and 3. we obtain: For all S € B(Ps)

P(R, € S) = i]P(Dt =k)P(Rr€S)

The proof of this proposition can be found in Kingman (1982a), Theorem 4.
An entire class of =-coalescents that are particularly easy to describe are coalescents with

multiple (asynchronous) collisions that were introduced independently by Pitman (1999) and
Sagitov (1999).

Definition 2.23. A coalescent with multiple asynchronous collisions or simple co-
alescent is an exchangeable coalescent that corresponds to a finite measure A on A which
satisfies

A{z = (z1,29,...) 122 >0}) =0

In this case we could rather consider the image measure of A under the projection (z1, xa,...)
x1. Thus we can view A as a finite measure on [0, 1]. In this setting the rates Apy, ks are
given by

/\b;k = /\b;k;b—k = / l’k_2(1 — x)b_kA(dx)
(0,1]

and all other rates are 0. In words, a simple coalescent is an exchangeable coalescent without
simultaneous collisions. At each collision time, several blocks are selected and united to form
a single new block.

Pitman showed in Proposition 23 of Pitman (1999) that each simple coalescent comes down
from infinity or stays infinite, which means that the coalescent a.s. has an infinite number
of blocks at each time t.

18



Example 2.24. For r, s > 0, we can consider A = Beta(r, s). Beta(r, s) is the distribution on
0, 1] with density
,CET_I(l _ ZL’)S_I
B(r, s)

where B is the beta-function,

F(T)F(S)i ' r—1/1 _ 3s—1
m—/ox (1—2)"de

In this case the jump rates are given by

B(r,s) =

Bk+r—2b+s—k)
B(r,s) '

)\b;k =

Schweinsberg showed in Schweinsberg (2000b), Example 15, that a standard Beta(r, s)-coalescent
comes down from infinity if and only if r» < 1.

In the case r = s = 1, Beta(1, 1) is the uniform distribution on [0, 1]. We denote it by U.
The U-coalescent has jump rates

(k —2)!(b— k)|

Anp =
bk (b—1)!

and was introduced by Bolthausen and Sznitman (1998). The standard U-coalescent does not
come down from infinity.

2.2.3 Some Properties of Coalescents

Elementary Properties

Remark. 1. With the Poisson-construction one can easily see that a =-coalescent (II7(¢))¢>0
with II"(0) = 7 is obtained by defining

1" (t) := Coag(m, II(¢)), t>0

where (I1()):>0 is a standard Z-coalescent. We even have a stronger result: Condition-
ally on I17(¢), (II"(t + s))s>0 has the same distribution as Coag(II™(¢), II(s))s>0.

2. If (II(¢) )s>0 is a standard exchangeable coalescent, then for each ¢ > 0, I1(#) is a random
exchangeable partition. This is equally verified with the Poissonian construction since
the measure p that we had constructed on P,, was exchangeable and the coagulation
of two independent exchangeable partitions is still exchangeable (cf. Bertoin (2006),
Lemma 4.3).

3. Let = be a finite measure on A with Z(A) # 0. The case Z(A) = 0 is trivial, since in
that case all jump rates are 0. We define G := Z/=(A). Then G is a probability on A,
and with the definition of the jump rates (1), we see that the rates of the G-coalescent
are given by dividing the rates of the Z-coalescent by =Z(A). Modulo a change of the
time scale we can therefore suppose Z(A) = 1.
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Lemma 2.25. The jump rates
{)\b;kl,...,kr;s : T,bGN,kl,...,k‘T > 2,8 GNo,b:kl—F"'—Fk’r—i—S}

of an exchangeable coalescent satisfy the following consistency relation:

T

Abiker oo dorss E bt 131 s 1okt Lkt 1oeneskirss T SN Tikr, o o 255—1
m=1
+ >\b+1;k1,...,k7-;3+1 (10)

where we define Apj, .. k,—1 := 0. This equation can be rewritten as

Nbiker oo dorssb1l =Nbiker oo ferss E bt 131 oo 1okt Lokt 15eneskinss

m=1
- S)\b+1;k1,...7kr,2;s—1 (1]-)
This is a recurrence equation that allows us the calculate all the rates when we are only given
the
)‘b;kh...,kzr;o’ b,’l“ € N7 kh R k'r 2 27 b= kl + -+ k'r
We do not give the proof here. This is Lemma 18 in Schweinsberg (2000a). The proof is
elementary and it is based on the fact that R, R, 11l = R,II for an exchangeable coalescent

I1. Noting this, one distinguishes the different possibilities for the behaviour of n+1 in R, 411,
and one gets the desired equation.

Behaviour at Collision Times
Lemma 2.26. Let = be a probability on A and let (I1(t))i>0 be a standard =-coalescent. Let

fori#j 1 ;=inf{t>0: i 9 ~" j}. Let By, By, ... be the blocks of I1(7; ;—) (that are possibly
empty for large enough k). Let T € Pyn(r, ;) be the unique partition with k 1 if and only if
By, and By are in the same block of I1(7; ;). Then m is the restriction of a partition 7" € Px
to{1,...,#I(r;;—)}. 7' is invariant under permutations of N that do not change I1(7; ;—)(i)
and I1(1; j;—)(j), and 7" a.s. possesses asymptotic frequencies that have distribution =.

Sketch of the proof. 1. Without loss of generality we suppose that II is given by the Poisso-
nian construction. Since I1(¢) is exchangeable for each ¢, it suffices to show the statement
fori,j =1,2.

2. We have
o =Inf{t > 0:e(t) € Ay}
where A5 is defined as in (5). It suffices to show |e(r2)[¥ = Z. Let S € B(A). We
define
AiQ = {E € ALQ . |<’:‘|i € S}
The formula (57) of the Appendix A yields:

M(Aig2)
P leg)=P e A%, D 12
(le(r1,2)] ) (e(T12) r2) p(Ar2)
/Zx Tizesy Z:c ‘Zo(dx) +CZ Z Je JEAT )
i=1 j=i+1
=L [=(8) + el pes)] = ———Z(S)
(A 2) - e (Ar2)



Since p(A;2) = 1, the proof is complete.
L]

Coming from Infinity and Proper Frequencies Let (II; : ¢ > 0) be a simple standard
coalescent with rates \y,. We denote by +, the rate with which the number of blocks of R}II
decreases, i.e.

Yo 1= Zizz(k - 1)(2) Absk
Schweinsberg (2000b) showed that IT comes down from infinity if and only if

o0
dow' <o
b=2

For general exchangeable coalescents we do not know an equally simple condition that is
equivalent to the coming down from infinity. But there is a nice result on the asymptotic
frequencies:

Definition 2.27. Let m € Py be a partition that possesses asymptotic frequencies and let
(x1,22,...) € A be the ordered sequence of its frequencies. We say that © has proper fre-

quencsies if
o0
E Ty = 1
j=1

Otherwise we say that m has dust.

Proposition 2.28. Let = = Zj + ¢dp be a finite measure on A with Z(0) =0 and ¢ > 0. Let
(IT; : t > 0) be a standard Z-coalescent and let t > 0. Then Il; a.s. has proper frequencies if

and only if ¢ > 0 or if
/ Z:Uj Zx?Eo(daz) =00
A =1 j=1

Proof. Let v be the distribution of the asymptotic frequencies of II;. Then the distribution of
[T, is given by

/A Pe(dm)w(dz)

With the definition of the paint box P* we see that II; a.s. has proper frequencies if and only
if {1} a.s. is not a block of II,.

Without loss of generality we suppose that II is given by the Poisson construction with
Poisson point process (e(t));>o of intensity . We define

A:={m € Py : {1} is no block of 7}

and Ty := inf{t > 0 : e(t) € A}. Then {1} is a block of II; if and only if T,y > t. We have
P(T4 > t) =0 if and only if u(A) = oco. But

p(A) = /A P*(A)Z(dx) / Zw? e > M (A)

=1 j=i+1
— [ Yu ) Y re3 o
A=t j=1 j=2
and this is infinite if and only if ¢ > 0 or [, 377, xj/ > ey 2550 (dx) = o0. O
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Feller Property We recall the definition of a Feller process (cf. Revuz and Yor (1999),
Definition (2.1) and Definition (2.5) of Chapter III.). Since P is compact, Cp(Px) = C(Poo)-

Definition 2.29. A Feller semi-group on C(Py) is a family of linear positive (i.e. f >
0= P,f >0) operators (13)1>0 on C(Pw) such that

1. To=1d and ||T3|| <1 fort >0,
2. Ty s =T, 0T, fort,s >0 and
3. limyo0 Ty f = f in C(Px) for each f € C(Px)-
A Feller process is a Markov process with a Feller semi-group.

Proposition 2.30 (Feller Property). Let = be a finite measure on A. Each Z-coalescent is a
Feller process in its canonic filtration. Its semi-group is given by

P f(m) = E(f(Coag(,11;)))
where 11 is a standard =-coalescent.

Proof. Let (II; : t > 0) be a Z-coalescent. Without loss of generality we can suppose that II is
given by the Poissonian construction with Poisson point process e. We already remarked that
conditionally on II;, (IT;;, : s > 0) has the same distribution as (Coag(Il(t),II(s)) : s > 0)
where II is a standard Z-coalescent that is independent of II. Indeed this remains true if we
condition on (II, : 0 < r < t) since (e(t + s))s>0 is independent of (e(r))o<r<t. So II; is
Markov process. It remains to show that its semi-group (P : t > 0) is Feller. It suffices to
show that P,C(P) C C(Ps) and that for each f € C'(Ps) and for each m € Py, we have
limy_,o P, f(7) = f(m) (cf. Proposition (2.4) of Chapter III of Revuz and Yor (1999)).

Let m € Pu, let (IIT : t > 0) be a Z-coalescent with I11™(0) = = and let (II; : ¢ > 0) be a
standard =-coalescent that is independent of I1™. Let f € C(Py). We have

Bif(m) = E(f(I1F)) = E(f(Coag(, I1y)))

But it is easily verified that the Coag operator is continuous from P, X Py to Ps. With dom-
inated convergence we obtain the continuity of P, f. It remains to show that lim; ,o P, f(7) =
f(m). But this follows immediately since II is right-continuous, Iy = 0, and Coag(7, 0,) = 7.
Then we use once again dominated convergence and we obtain the desired result. O

We remark that as a consequence each =-coalescent admits the strong Markov property
(cf. Theorem (3.1) in Chapter III. of Revuz and Yor (1999)).
2.2.4 Exchangeable Coalescents and Martingale Problems

We want to show that the =-coalescent is the unique solution to an easily described martin-
gale problem. Let Apg, . x.s be the rates of a =-coalescent. We write A\ := Aoy, ;s fOT
every (b;ky,. .., ky;s)-partition m. Let D := {F € C(Py) : 3n € N, F € C(P,), F(r) =
F(R,m)¥r}. We define an operator

Q:D— C(P = > Ay(E(Coag(Rye,m) = F(R,-))

NEPn
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Because of the consistency relation (10) this operator is well-defined, and of course it is just
the restriction of the infinitesimal generator of the =-coalescent to D. So we know that the
=-coalescent with starting distribution v is a solution to the (Q,v)-martingale problem (cf.
Appendix C for an overview of martingale problems).

Proposition 2.31. For Q and v as above, every solution to the (Q,v)-martingale problem
has the same finite-dimensional distributions as the =-coalescents starting with distribution v.
Any solution with cadlag paths is a =-coalescent.

Proof. Let II be a solution. Then for any n € N, R,II is a solution to the (Q,, 1/,)-martingale
problem with

Qu:B(Pa) = B(Pa),  QuF(-) =Y A(F(Coag(-,n) — F(-))

NE€Pn

where B(P,,) is the space of bounded measurable functions on P, and v, := vo R;’'. But for a
finite state space there is uniqueness for any martingale problem (cf. example in Appendix C).
That means that for every solution IT of the (@, v)-martingale problem the finite-dimensional
distributions of R,II are uniquely determined. The functions depending only on R, 7 form an
algebra in C'(P) that separates points and contains constants. So it is dense in the uniform
topology by the Stone-Weierstrass theorem. Thus we obtain the uniqueness of the finite-
dimensional distributions for solutions to the martingale problem. Since the =-coalescents is
a solution, this means that any solution has the same finite-dimensional distributions as the
=-coalescent.

We immediately obtain from Proposition C.3 in Appendix C that a solution with cadlag
paths is a Z-coalescent. O

2.2.5 Exchangeable Coalescents in Discrete Time

In this section we introduce a discrete time version of the =Z-coalescent. Under certain as-
sumptions we will obtain such processes as limits of Cannings’ population models. For a
=-coalescent to exist it is necessary that = satisfies an additional condition.

Proposition 2.32. Let {pyk,,. ks 2 0,7 € Noky, oo ke > 2,5 € Noyb= 370 kj + s} be a
family of non-negative numbers. Then there exists a discrete time process (Y (m) : m € Ny)
with values in Py with Y (0) = 0 and such that forn € N, (R, Y (m)) is a Markov chain that
satisfies for all T with #m =0, for each (b;ky, ..., k.;s)-collision € of m and for all m € Ny:

P(R.Y (m +1) = e[R,Y (m) = T) = Dpiky,... 3
if and only if
Doeroirss = | —em—s—E(dx) (12)
1 Z ?

for a finite measure = on A, without atom in 0, which satisfies

/1 igﬁ E(dr) <1 (13)
A =

In this case, the measure = is uniquely determined.
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In the demonstration we simply reduce the discrete time case to the continuous time case.

Proof. 1. Necessary condition and uniqueness:
Let Y be such a discrete time process. Let (Nt > 0) be a Poisson process with
parameter 1, independent of Y. Define II(¢) := Y (IV;), ¢ > 0. Then II is a standard
exchangeable coalescent with jump rates {pux, .k, .s}. Hence there exists a unique finite
measure = on A such that the pyg, k.5 are given by (12).

Let A, be the total collision rate of a =Z-coalescent with b blocks, i.e.

[6/2]
=Y Z N (b k- b ) Moy,
r=1 {ki,... .k}
1b/2]
= Z Z N(b; ks oo ks 8)Pbiky,orss < 1
r=1 {ky,....kr}

where N (b; k1, ..., k.;s) is the number of (b; kq, ..., k,; s)-partitions in Py, and |z] is the
largest integer that is smaller than x. We necessarily have A\, < 1 for all b. Let p and
¢ > 0 be associated to = like in the Poissonian construction. We have

=t R 2 0 =% [ MOz ) 037 57 00

j=1Tj i=1 j=i+1
/ > == Z0(dx) +CZ Z Or(i.) (Poo \ {00 })
j=1 J i=1 j=i+1

For this expression to be < 1, it is necessary that = has no atom in 0 and satisfies (13).

2. Sufficient condition:
Let = be a finite measure on A that has no atom in 0 and that satisfies (13). Let (II(¢))
be a standard Z-coalescent, given by the Poissonian construction. Let (e(t)) and u be
as in the Poissonian construction. We have

“( oo\{Ooo}),
u(PA(0) = [ © =(dr) < 1
A Z] lx]

If we define Ty := 0, Tj, := inf{t > Tj;_1 : e(t) € Poo\{Ox}}, k¥ > 1, we obtain a sequence
0=Ty<Ty <.... Let (I, : m € Ny) be an i.i.d. sequence of Bernoulli variables,
independent of e, such that P(1,, = 1) = u(Poc\{Ox}). Let Sy, := I + -+ + I,. We
define a discrete time Markov process Y by setting Y (m) := II(T5s,, ).

Let n € N, let 7 € P, with b blocks, and let £ be a (b;ky,...,k.;s)-collision of r,
e = Coag(m,n) with n € P,. Using the strong Markov property of the Poisson point
process e and the property (57) from Appendix A, we obtain

P(R,Y (m+1) = &|R,Y (m) = 1) = P(Ipyr = 1)P(R,II(Ts

= PO DP(Rie(T,..) = 1) = p(Poc\ {0 }) s

m+1) = 8|‘F£n]:[(7ﬂs'm) = 71-)

= Pbik1,....kr;s
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Since we saw that for every discrete time exchangeable coalescent with transition prob-
abilities py., . ks there exists a continuous time exchangeable coalescent with jump rates
Dhiky ... ks, We know that the ppy,  x.s must also satisfy the recursion (11).

2.3 Exchangeable Coalescents and Flows of Bridges
2.3.1 Bridges and Exchangeable Partitions

In this chapter we present an interesting correspondance between exchangeable coalescents
and flows of bridges that was established by Bertoin and Le Gall (2003).

Definition 2.33. A bridge is a stochastic process (B(r) : r € [0,1]) such that
1. B(0) =0,B(1) =1, B has increasing cadlag paths.

2. For all n € N: (B(1/n) — B(0),B(2/n) — B(1/n),...,B(1) — B(1 —1/n)) is an ea-

changeable vector.

The general classification of processes with exchangeable increments was given by Kallen-
berg (1973), Theorem 2.1. In our setting this result can be expressed as follows:

Proposition 2.34 (Kallenberg). (B(r) : r € [0, 1]) is a bridge if and only if there is a random
variable X with values in A and an i.i.d. sequence (U;)ien of uniform variables on [0,1],
independent of X, such that (B(r) : r € [0,1]) has the same distribution as

((1 — iXJ) r+ in]]‘{UjST} r e [O, 1])

Jj=1 Jj=1

In the following we will always assume that B is of this form.
We can associate an exchangeable partition to each flow of bridges. We define the cadlag
inverse of B:

B7(s) :=inf{r € 0,1 : B(r) > s},s € [0,1) et B~'(1) := 1.

The lengths of the constant intervalls of B~! correspond exactly to the jump sizes of B. Let
(Vi)ien be an i.i.d. sequence of uniform random variables on [0, 1]. We define a partition 7 (B)
such that
(B
i ™8 j if and only it B-\(V;) = B~(V})
In what follows we suppose that the sequence (V;) to define 7w(B) is always the same, for each

choice of B. By combining Theorem 36 of Pitman (1999) with Theorem 2.3 of Kallenberg
(1973) we obtain:

Proposition 2.35. Let (B™) be a sequence of bridges with respective jump sizes (X[')ien € A,

7

and let B be a bridge with jump sizes X € A. Then the following conditions are equivalent:

1. 7(B")"=3n(B) in distribution on Pay

n—o0

2. X" 35X in distribution on A

n—oo

3. B"—= B in distribution on the space D([0,1],[0,1]) of cadlag functions on [0, 1] with
values in [0, 1], equipped with the Skorohod topology.
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Remark. 1. If B and B’ are independent bridges, then B o B’ is a bridge as well:

The only property that is not obvious is the exchangeability of the increments. Let
n € N and let f : R® — R be a bounded measurable function. By conditioning on B’
and by using the independence of B and B’ we obtain

E(f(Bo B'(1/n) — Bo B'(0/n),...,Bo B'(n/n) — Bo B'((n—1)/n)))
=E(6(B(0), B'(1/n), ..., B'(n)))

with ¢(to, ..., t,) = E(f(B(t1) — B(ty), ..., B(t,) — B(t1))). But B has exchangeable
increments, so ¢ only depends on (t; — to,...,t, — t,—1). Let ¥ be such that ¥(t; —
to, .- sty —th1) = P(to,...,t,). Then we have

E(f(Bo B'(1/n) — Bo B'(0/n),...,Bo B'(n/n) — Bo B'((n—1)/n)))
=E((B'(1/n) — B'(0),...,B'(1) — B'(1—1/n)))

Since B’ has exchangeable increments and since v is a bounded measurable function,
we obtain the exchangeability of the increments of B o B’.

2. (BoB')'=B"1oB™!

The following result is Corollary 1 of Bertoin and Le Gall (2003). We do not give the proof
here, but it is not at all trivial.

Proposition 2.36. Let k > 2, and let B',. .., B* be independent bridges. We define
Ct:=Blo---oBl=1,...,k
Then conditionally on (7(CY),...,w(C1)), w(CY) has the same distribution as the coagulation

of m(C'™1) by an independent partition that is distributed like (B').

2.3.2 Flows of Bridges

Definition 2.37. A family (Bs; : —o0 < s <t < 00) of bridges is a flow of bridges if
1. For each s <t <wu: By, = Bst 0 DBy,.
2. The distribution of B, does not depend on t — s.

3. For —oo <t; < --- <1, <o0, the bridges By, 1,,..., By, ,+, are independent.

4. By s =1d for all s and Bo,ttl()) Id in probability in the Skorohod topology.
We can associate an exchangeable coalescent to each flow of bridges:

Proposition 2.38. Let B be a flow of bridges. We define for each t > 0 11, := 7(Boy). Then
(IT; : t > 0) has a cadlag modification that is a standard exchangeable coalescent.

Proof. Let 0 < tg < --- < t,. By Proposition 2.36, conditionally on (Il,,...,II;, ), I,
has the same distribution as the coagulation of II; | by an independent partition that is
distributed like 7(By s, ¢, ,) = I}, -+, ,. So Il is a Markov process with semi-group

Fif(n) = E(f(Coag(n, m(Bos))))
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This is a Feller semi-group. This is shown exactly as in the proof of Proposition 2.30: We use
the continuity of Coag from P, X Py to Ps and the fact that By, converges in probability to
the identity when ¢ tends to 0. Then we obtain the convergence of P, f(n) to f(n) when ¢t — 0
from Proposition 2.35. Since II is a Feller process, it has a cadlag modification (cf. Theorem
(2.7) in Chapter III of Revuz and Yor (1999)).

It remains to show that for each n € N R, IT is a Markov process such that each (b; &y, . . ., k,; s)-
collision has the same rate Ay, x,..s- The Markov property is easily obtained with the prop-
erty R, Coag(n,e) = Coag(R,n, R,e) of the coagulation operator. Like this we see that R,II
has the semi-group

Fl'f(n) = E(f(Coag(n, Rnll;)))

Since II; is an exchangeable partition for each ¢, each (b;ky, ..., k.;s)-collision has the same
rate. Therefore the cadlag modification of II is an exchangeable coalescent. O

We would like to establish a correspondance between flows of bridges and exchangeable
coalescents. It remains to show the injectivity and the surjectivity of the map (Bs:) +—
(m(Byo,)). More precisely we would like to show:

1. Let B and B’ be two flows of bridges with the same finite-dimensional distributions.
Then (7(Boy))i>0 has the same finite-dimensional distributions as (7 (B ;))¢>o-

2. Let II be a standard exchangeable coalescent. Then there exists a flow of bridges B such
that IT and (7(By))t>0 have the same finite-dimensional distributions.

The first statement is more or less obvious: This is just Proposition 2.35 and an application
of the stationarity and independence properties of flows of bridges.

We will show the second statement with a Poissonian construction. Let (u;);eny € [0, 1]N
and let (z;);en € A. We define

b(“i)v(mi)(r) = <1 - Z le> T+ inll{rZui}
=1 =1

Note that if (u;) is an i.i.d. sequence of uniform variables on [0, 1], then b,,) (s, is a bridge.

Let v be a finite measure on A with v({0}) = 0. Let U®N .= U ®@ U ® ... on [0, 1"
(where U is the uniform distribution on [0, 1]). Let (e(t) : t € R) be a Poisson point process
of intensity U®N @ v on [0, 1]N x A. A Poisson point process with real-valued index ¢ (instead
of positive t) is defined exactly as an usual Poisson point process, just that in this case we
consider a Poisson random measure on R x E rather than R, x E. Since v and U®N are finite
measures, € a.s. only has a finite number of points on (s, ¢] for all finite s < t. Let

(tr, (), (21))s - (b, (uf), (2))
be those points with s < t; < --- <t <t. We define
But = b, © 0 bbby (14)
If e has no points on (s, t], we define By, := Id.

Proposition 2.39. (B;;: —0o0 < s <t < 00) is a flow of bridges
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Proof. All the properties of flows of bridges are trivially satisfied. The only thing we need to
show is that B;; actually is a bridge for all s <t. We argue conditionally on the number K of
points of e on (s,t]. Conditionally on K = k, the variables (u}), ..., (u}), (z}), ..., (z}) are

(2 7 (2

independent, and (u?); has the distribution U*N for all 5 < k. Thus the processes b(uj)

are independent bridges, and conditionally on K = k,

Bs,t = b(ull),(a:ll) ©--+0 b(uk),(x’.“)
is a bridge. Since a mixture of bridge laws preserves the bridge properties, B, ; is a bridge. [

We consider II; = 7(By;). Let t > 0 be a jump time of II, corresponding to the point
(t, (ui), (z;)) of e. Then II; is the coagulation of II,_ by 7(bw,),(z:)), and 7(b(w,),(,)) is an
exchangeable partition, independent of II;_, with distribution

2 V(AT

/A P*(dn) N

If we compare this formula with the formula (4) of the Poisson construction of exchange-

able coalescents, we see that II is a standard Y -, 27v(dx)-coalescent (since II is cadlag by
construction).

Let = = Ej + ¢dp be a finite measure on A such that Zy({0}) = 0 and ¢ > 0. Then we
can find a sequence (=,) of finite measures on A\{0} such that (37, 7)Z,(dz) converges
weakly to . We can take for example a sequence 2" = (zI');en € A converging to 0 in A,
and then define for n € N:

_ . c =(dx)
=n(d) = Seo g lten: T Lz, stm (7)o

Proposition 2.40. Let = be a finite measure on A. Let =, be a sequence of finite measures
on A such that Y oo, 2?=,(dx) converges weakly to =. Let for n € N B™ be the flow of
bridges associated to Y .- x?=,(dx). Then the finite-dimensional distributions of B™ converge
weakly to the finite-dimensional distributions of a flow of bridges (Bs; : s < t) such that the
associated exchangeable coalescent is a standard =-coalescent. In particular, for each standard
exzchangeable coalescent I1 we can find a flow of bridges B such that (w(By:))>0 and (I1;)i>o
have the same finite-dimensional distributions.

Proof. For each finite measure = on A let Q= be the distribution on D(]0,0),Ps) of a
standard Z-coalescent. We will show later that = — Q= is a continuous map (cf. Proposition
3.5). So we obtain that the standard Y :°, 22, (dxz)-coalescent converges in distribution to
the standard =-coalescent. Without loss of generality we suppose that all the B™ are given
by the Poisson construction. Then (7(B,)) is a standard Y77 7=, (dx)-coalescent and thus
(m(Bg,)) converges in distribution to a standard Z-coalescent (II;);>o. So for each t, w(Bg,)
converges in distribution. We obtain the convergence in distribution of Bg, from Proposition
2.35. Denote the limit by B;. Then for all ¢ > 0: 7(B;) has the same distribution as II;. Let
t,s > 0 and let B, be a copy of By, independent of B;. Then

7(B; o B.) ~ Coag(m(By), m(B.))

where ~ denotes equality in law. But w(B.) ~ II; and therefore n(B; o B.) has the same
distribution as I1; ;s >~ m(B;ys). Another application of Proposition 2.35 yields B;o B, ~ By .
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Note that D([0, 1], [0, 1]) equipped with the Skorohod topology is a Polish space. So we can
construct a family of bridges (B;;, —0o < s <t < 00) with the Daniell-Kolmogorov extension
theorem such that for all s <t B;; ~ B, s and such that for —oo < t; < --- < t,, < o0,
By, ty, .., By, 4+, are independent. This family is a flow of bridges: By = Id is evident since
m(By) = IIy = 0. The convergence in probability of By, to the identity when t — oo is
obtained from the continuity in probability of II. II is continuous in probability since R, II is
a jump-hold process without fixed jump times and because of the definition of the topology
on Ps.

So we have the convergence of BY, to B for all fixed s, ¢ and this implies the distribution of
finite-dimensional distributions: For sq,ty, ..., Sy, t, we cut the intervalls (s;, ¢;] into disjoint
or equal intervalls. So we obtain the convergence in distribution of (B ,,..., Bl ;) to
(Bsyt1s- -+ » Bs, ) by using these intervall decompositions and the independence properties
of flows of bridges. []

2.4 Fleming-Viot Process

This section was not included in Perkowski (2009). We present a measure-valued process that

was introduced by Fleming and Viot (1979). Let E be a compact metric space, and let M (FE)

be the space of probability measures on E, equipped with the topology of weak convergence.
For f: EP — R bounded and measurable we define

< f,u®P >:= f(zy, .. ) u®(dxy, . . ., dx,)
Er

Let D := {®; : My(E) —» R, ®p(p) =< f,u® > for some p € N, f € C(E?)} We define a
linear operator A:

such that for ®,(u) =< f, v >:

Ads(p) = Z /[f(xl,...,xi,...,a:i,...,mp) — fl@r, ooy gy, 1) P (d)

1<i<j<p

Definition 2.41. Let v be a probability on M;(E). A Fleming-Viot process starting with
distribution v is an My (E)-valued process (p; : t > 0) that is a solution to the (A, v)-martingale
problem.

Existence and uniqueness of the solution to that martingale problem were shown in Fleming
and Viot (1979). We do not give the proof here because we will show existence and uniqueness
of solutions to a more general class of martingale problems later. It it shown in Kurtz (1981),
Theorem 10.1, that the Fleming-Viot process arises as the limit for large populations in the
Wright-Fisher model if the time is suitably rescaled. Essentially the same proof can also be
found in Ethier and Kurtz (1986), Theorem 4.1 of Chapter 10.

3 Weak Convergence Results

Before we continue, we need to establish some convergence results on which we will rely heavily
in what follows.
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3.1 Convergence of Rescaled Markov Chains

Assume we are in the following setting:
Let (E,d) be a compact metric space, equipped with its Borel o-algebra £. Let

A:C(E) 2 D(A) — C(E)

be an operator on C'(E). Let v be a probability measure on (F,E). We want to approximate
a solution to the (A, v)-martingale problem. That is, we want to find a sequence (Xy)yen of
processes in D([0,00), E), such that Xy converges in distribution in the Skorohod-topology
to some X € D([0,00), E), and X is a solution to the (A, ) martingale problem.

We want to show convergence of processes of the following type: Let for every n € N
(Yn(m) : m € Np) be a discrete time homogenous Markov process with values in some
compact metric space Ey. Let Py denote its transition probability, i.e. for all x € Ey and
for all Borel sets B of Ey we have

P(Yy(1) € B|Yx(0) = 2) = Py(z, B)

Define the operator Ty on B(Ey ), the space of bounded measurable functions on Ey, equipped
with the topology of uniform convergence, as follows:

Tnf(x) = : f(y)Pn(z, dy)

Let (cy) be a sequence of strictly positive numbers. Define

ANSB<EN)—>B(EN), ANF ZL(TN—I)F

CN

Let for all N 7y : Ey — E be a measurable map. We want to show convergence of (Xy(t) :=
7TNYN<U/CNJ> it Z O) to X.

We are now able to formulate our convergence theorem. This result is shown in Ethier and
Kurtz (1986) in a more general setting. But the proof there is scattered over many chapters,
and in our setting we can give a simpler and more direct proof. Nonetheless this proof is using
some of the techniques from Ethier and Kurtz (1986)

Theorem 3.1. Let (Yn) be as above. We make the following assumptions:

o There is uniqueness for the (A, v)-martingale problem,

e D(A) contains an algebra A that contains a constant function # 0 and that separates
points,

e cy — 0 when N — oo,
e The distribution of mxYy(0) converges weakly to v when N — oo,

o [or every f € D(A) there exists a sequence (fn) with fy € B(Ey) such that

Sup |f(mvy) = [n(y) =0, N —o0 (15)
and
sup |Af(mny) — Anfn(y)] = 0, N — o0 (16)
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Then (Xn(t) := nnYn([t/en]) 1 t > 0) converges in distribution on D([0,00), E) to the unique
solution X of the (A, v)-martingale problem.

Proof. 1t suffices to show that the sequence (Xy) is tight in D([0,00), E), and that every
cluster point of the sequence is a solution to the (A, v)-martingale problem.

1. First we show the tightness of (f(Xy)) in D([0,00),R) for all f € A. Let f € A and let
(fn) be a sequence for f satisfying (15) and (16). Further let (gx) be a sequence for f?
satisfying (15) and (16). f? is in D(A) because A is an algebra. Let GY = o(Yn(m) :
m < k) be the canonic filtration for Yy. We set F¥ := Qﬁ Jex |- Oince Yy is a discrete
time Markov process, for every bounded measurable ¢ : Eny — R we know that

m—1

p(Yn(m)) =Y (Ty = De(Yn(i)), meN,

1=0

is a martingale with respect to the filtration (GY). We define the following sequences of
processes:

pn(t) = fn(Yn([t/en])) +en (t/en = [t/en]) Anfn (Y ([t/en]))

_ / Ay fx(Ya([s/en )))ds
— v On([t/en])) + ex (Hen + [ten]) An iy (Ya([en )

[t/en]—1
—cn Z Anfn(Yn(i)) —en (t/en — [t/en]) AnIn(Ya([t/en]))
lt/en]-1
= fn(Yn([t/en])) — Z (Tn — 1) fn(Yn(4))

and

n(t) = an (Y ([t/en])) + ex (tew — [t/en]) Awan V(L /ex )
_ / Angn(Ya([s/en]))ds

[t/en]—1

= gv(Yw([t/en]) = D (Tw = Dgn(Ya(i))

oy and 1y are thus both martingales with respect to the filtration (F). We have
E[(f(Xn(t +5)) = F(Xn(0))?|F] = E[f*(Xn(t + 5)) — [H(Xn ()| F]
= 2f(Xn()E[f(Xn(t +5)) — fF(Xn(t)|F]
= E[f*(Xn(t+5)) = n(t+5) = (F*(Xn(t) — ¥n(t)|F]
— 2f(Xn(O))E[f(Xn(t +5)) — on(t +5) = (F(Xn(t) — on(t)|F]
We examine the term f(Xy(t)) — on(t):
XN () —en(t) = [f(rnYn([t/en]) = fn(Yn([E/en]))]

—on (t/en = [t/en]) AvIn(Yn([t/en])) +/O AvIn(Ya(lu/en]))du (17)
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The first term on the right hand side will converge to 0 by (15). For large enough N, the
second term is bounded by ey (1+€) sup,cx Af(y) by (16), which also tends to 0 since cx
converges to 0 and since Af is bounded. Only the last term might pose a problem. But
that one we can combine with the corresponding term from f(Xy(t + s)) — on(t + s).
Therefore we obtain

E[(f(Xn(t+5)) = f(Xn(0))?IF] < 2 sup [f*(mvy) — gn(y)|

yeEEN
2y (sup [AFrvn) — Avan(s)| + 147
yeEEN
t+s
+/ sup |Af*(mny) — Angn ()| + [JAS]]
t yeEEN
+ 4| f|] sup |f(7ny) — fn(y)l

yeEN

du

4]l fllex (sup Af(mny) — Ay fy)] + ||Af||)

yeEEN

t+s
+2||f||/

|| - || denotes the supremum norm on C(FE). For s < § we obtain an inequality where
the right hand side does not depend on s or ¢ any more:

E[(f(Xn(t +5) — f(Xn(0)))*)F] < 2yS€1{Ep |[f2(mvy) — gn ()] + (2en + 0)]|AS7)|

sup |Af(mny) — Axfn ()| + |[Af]]] du

yeEN

+ (2¢N +6) sup |Af*(mvy) — Angn ()| + 4/ /1] sup |f(my) = [ ()]
yeLn

yeEN

+ 2/[f1l(2en +0) sup |Af(mny) — An S ()] + 2| f]|(2en + 0)[|AS]]
yeEN
Since f is bounded we can apply Lemma 3.2 and we obtain that for any F-stopping
times T < S <T 46

E((f(Xn(S)) = f(Xn(T)))?) < 6{2;6121) |2 (mvy) — v ()] + (2en + 20)[|Af?]

+ (2eN +20) sup |Af*(mny) — Avgn ()| + 41 f]] sup |f(mwy) = fv ()]
yeLN

yeEN

+2[[f1|(2en + 26) sup |[Af(myy) — An Sy ()] + 2| f[(2en + 20)[|Af][}
yeEN
Denote by SV the set of all FV-stopping times. We apply Markov’s inequality and
obtain for any A > 0:

fmsip  sup B(FXN(S) — FCX (D) > ) < ZNALILE 2B IAT]

N—oo S TeSN T<S<T+§

and therefore

lim lim sup sup P(|f(Xn(S)) = fF(XN(T))| >A) =0

020 Nooo S§TeSN T<S<T+5

Since f is bounded, sup,s f(Xn(t)) is obviously tight in R. Therefore we can apply
Aldous’ criterion (cf. Theorem 4.5 in Chapter VI of Jacod and Shiryaev (2002)) to
obtain the tightness of (f(Xy)) in D(]0,00),R).
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2. Since A is an algebra that separates points, it is dense in the uniform topology on C'(E)
by the Stone-Weierstrass theorem. FE is compact, so Xy automatically satisfies the
compact containment condition:

inf P(Xy(t) € E,t >0) =1
NeN

So (Xn) is a sequence of processes that satisfies the compact containment condition and
such that (f(Xy)) is tight in D([0,00),R) for all f in a dense subset of C'(E). We can
apply Theorem 9.1 in Chapter 3 of Ethier and Kurtz (1986) to obtain the tightness of
(Xn) in D([0,00), E).

3. It remains to show that every cluster point of the sequence (Xy) is a solution to the
(A, v)-martingale problem. Since the distribution of X (0) converges weakly to v, every
cluster point X must satisfy X (0) ~ v. Therefore it suffices to show that for every cluster
point X of (Xy) and for every f € D(A)

FX(1)) - / Af(X)ds, >0

is a martingale. By a version of the monotone class theorem (cf. Corollary 4.4 of the
appendix of Ethier and Kurtz (1986)) it suffices to show that for every 0 <¢; < --- <
t, < t,4+1 < oo and for all bounded continuous functions hq, ..., h, on £ we have

E

(f(X(th)) — J(X(t)) - /t v Af(X(S))dS) 11 hk<X(tk))] =0

First we consider only times t; with P(X;,_ = X;,) = 1. For such ¢; we have

n

(f(X(tn+1)) - ey - [ Af(Xs)ds> 11 hk<X<tk>>]

k=1

E

(f(XN(tn+1)) — [(Xn(tn)) —/ Af(XN(S))dS) Hhk(XN(tk))]
tn k=1

= lim E
N—o0

Since we know that for all N ¢y defined as above is a martingale with respect to the
filtration FV, we can insert —pn(t,11) + @n(t,) in the brackets:

lim E <f(XN(tn+1)) — F(Xn(ta) — / Af(XN<s>>ds) 11 m(xN(tk))]
= lim E[{(/(Xn(ts)) = on (b)) = (F(Xn(t) = o (t)

tn+1

= AF(Xn(s))ds} [ Pe(Xn ()]

tn

By (17) we know
tn+1

lim f(Xn(tni) = on(tar) = lim [ Awfu(Vi(lu/en]))du

N—oo N—oo 0
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and therefore we obtain by applying dominated convergence several times

(f(X(tn+1)) - - [ Af<X8>ds) 11 m(X(m))]

E

:]\}i_l)I})O]E (/t "“{ANfN(YN(LS/CNJ) Af(rnYn([s/cen]) }ds)H (Xn(te) ]
19

For general t; we remark that
{t 2 0: P(Xt 7é Xt_> < ]_}

is at most countable by Lemma 7.7 of Chapter 3 of Ethier and Kurtz (1986). Thus we
can use the right-continuity of X and bounded convergence to obtain the equality for
all 0 <ty < v+ < tpyq.

]

Remark. We can replace the assumption that E is compact by assuming that E is a Polish
space and that the Xy satisfy the compact containment condition: For every € > 0 and every
T > 0 there is a compact set K7 C £ such that

liminf P (Xy(t) € Kr,0<t<T)>1—¢

N—oo

At one point we assumed that A is dense in C(E), which only follows from the Stone-
Weierstrass theorem if E is compact. But we only needed this to apply Theorem 9.1 of
Chapter 3 of Ethier and Kurtz (1986), and for this theorem we only need the density of .4
with respect to the topology of uniform convergence on compact subsets. In the non-compact
case case we need to work on Cy(E) rather than on C'(E).

We used nowhere in the proof that the Fy are compact. It suffices to assume that they
are Polish and to work with Cy(Ey) instead of C(Ey).

In the proof of the following lemma we take some ideas from the proof of Theorem 8.6 in
Chapter 3 of Ethier and Kurtz (1986).

Lemma 3.2. Let (X, :t > 0) be a real-valued stochastic process with globally bounded cadlag
paths, adapted to some filtration (Fi)i>0. Assume X satisfies

E((X, — X.)*|F) < C(0)

for some function C' of 6 and for all s and t witht < s <t+ 4. Then
E((Xs — Xr)?) < 6C(20)

for all finite F.-stopping times S and T such that a.s. T < S <T + 9.

Proof. First we proof that under the assumption we have
E((X7ys — X7)?|Fr) < C(0)
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for any F.-stopping time 7" and any s < §. Let T be a stopping time that takes only finitely
many values, t{,...,t,. Then

E((Xrss — X2)’|Fr) = Y E(Lgr=p (Xors — Xu)*|Fr)

k=1
But E<]1{T:tk}(th+S - th)2|fT) = ]l{T:tk}E((th+s — th>2"Ek): Let A S .FT. Then

E(]]‘A]]‘{T:tk}<th+S - th)2) = E[E(H{T:tk}ﬂAE((th—i-s - th)2"Bk)]
= E[E(Mal = E((Xps — X)) F)]

Therefore

n

E(Xris — X1)’|Fr) = > Mgy BI(Xyvs — X3, F) <O Uiz y C(8) = C(0)
P po

Now let T' be any finite stopping time. Then T' can be approached by a sequence of stopping
times (7)) taking only finitely many values and such that Ty > T for all N. We use the
right-continuity of X, the fact that X is globally bounded, and that we have Fp, O Fr since
Ty > T. Like this we obtain

E((Xrts — Xr)?|Fr) = lim E((Xry1s — Xry)*|Fr)

N—o0
= lim BE((Xry+o = Xr)*|Fry )| Fr]
< lim E(C(0)|Fr) = C(9)
Therefore for any stopping time 7" and any s < §:
E((Xr+s — Xr)?) < C(9)

Now let S and T be suitable stopping times. We have

20
WWXWSL/%WM—&VH&M—%WM
)

26 25
(/ (X14e — Xr)?dz + / (Xstz — XS)zdiU)
5 0

SOY I NCRE oY e

<

and therefore

20 20
0

E((Xs — Xr)?) < % < C(26)dx + C(26)dx) — 6C(26)

0

3.2 Convergence of Markov Processes

We only need to change the proof of Theorem 3.1 a little bit to obtain a convergence result
for continuous time Markov processes:

Let (E,d), v, A, Ex and 7y be as above. Let for every N Ay be a linear operator with
domain D(Ay) C B(Ey). Let Yy € D([0,00), Ex) be a solution of the (Ay,vy)-martingale
problem for some distribution vy on Ey.
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Proposition 3.3. We make the following assumptions:
e There is uniqueness for the (A, v)-martingale problem,

e D(A) contains an algebra A that contains a constant function # 0 and that separates
points,

e The distribution of mxYn(0) converges weakly to v when N — oo,

o For every f € D(A) there is a sequence (fn) with fx € D(An) such that

Sup |f(mny) = fn(@) =0, N —o0 (18)
and
Sup |Af(mvy) — Anfn(y)| =0, N — o0 (19)
yebN

Then (Xn(t) == wnYn(t) : t > 0) converges in distribution on D([0,00), E) to the unique
solution X of the (A, v)-martingale problem.

Proof. The proof is exactly the same as the proof of Theorem 3.1, only that we need to take
different ¢ and Yy:

on(t) == fu (Y (1)) — / Ay f (Y (s))ds

nlt) = g (Y (t)) — / Awgn (Ya(s))ds

Since Yy is a solution to the (Ay, vy)-martingale problem, ¢ and ¥y are F. N_martingales.
The rest of the proof is identical. ]

3.3 An Application

As a first application of the obtained convergence results we can show that if Q=" denotes
the law on D([0,00), Py) of a Z-coalescent starting with distribution v, then the map

(Z,v) — Q="

is continuous. Here we equip the space of probabilities on P, M;(Ps), and the space of
probabilities on D([0,00), Puo), M1(D([0,0), Py )), with the topology of weak convergence.
First we need to establish the following lemma which is taken from Schweinsberg (2000a).

Lemma 3.4. Letr > 1 and ky,..., k. > 2 let

oo
A E xfll...xf: E i, v#0
Gky,...kep + — Ra T — e i=1
L=t k=2, r=0

k. 1S a continuous and bounded map.

.....
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Proof. g := gk,, .k, is obviously bounded since for z # 0 g(z) < 372 27 /> 7 = 1. To
see that g is continuous we define for n € N

n
WA SR, (2g,2,...) Z xflle:
i1peenyin =1

all distinct

all the f™ are continuous and we will show the uniform convergence of f™ to f(z) :=

D ikt xfll o xf‘:, which implies the continuity of f: Let x = (x1,22,...) € A. Then
' [o.¢] (e.) [o.¢] (e.)
fO @) = f)] <> ) > o< Yo Y ol
J=1;=n+1141,...,051,ij41,...,ir=1 t1=n+1142,...,0r=1

all distinct
<r E x; <r E =
. A 5

1 i1=n+1

since for z € A and for all i € N z; < 1/i. This bound tends to 0 when n — oo, uniformly in
x. Thus g is the ratio of two continuous functions and therefore continuous whenever x # 0.
To see the continuity in 0, we first consider the case r = 1,k; = 2. In this case we have
g(x) =1 for all z, which is of course continuous. Otherwise let x € A\{0} with d(x,0) < 1/n
where d denotes the distance on A. Then for all 7 we have x; < 1/n, and since > - x; <1

we obtain
oo o0 1
k 2
E Ty < E x;
i=1 i=1

< 1 1
—_N— = —
“n n?2 n?

S|

for all £ > 2. Therefore
k ey 2 2 2
TR0 DD L) SE T
i1 iy i=1 =1 i=1
so g is continuous in 0. O

The following proposition was proven in Schweinsberg (2000a) for Dirac masses v. The
proof here is different from Schweinsberg’s proof since we use our weak convergence results.

Proposition 3.5. Let Z be a finite measure on A and let v € M;(Ps). Let Q=" be the
distribution of a =-coalescent 11 with Il ~ v. Then the map

(2.v) = Q=
18 continuous.

Proof. We know that there is uniqueness for the martingale problem for the =-coalescent. We
want to apply Proposition 3.3. Let =y be a sequence of finite measures on A that converges
weakly to Z and denote by AjY, . . respectively AY the rates of the Zy-coalescent. Denote
by ok, ks Tespectively A, the rates of the =-coalescent. We introduce the operators Ay
and A which are defined as in section 2.2.4:

D:={FeC(Py):IeN FeC(P,), F(r) = F(R,n)¥r}
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Ay :D — C(Ps = > A (F(Coag(Ry-,m)) — F(Ry))

nEPn

and

A:D = C(Px), F() = Y A(F(Coag(Ry-,m)) — F(Ry))

NEPn

The Z-coalescent IT with Iy ~ v is the unique cadlag solution to the (A, v)-martingale problem.
So by Proposition 3.3 it suffices to show that D contains an algebra that separates points and
contains constants (which is obvious), and that

N
)\b;kl,...,kr;s - Ab;klv"wk’r‘;‘s’ N — o0

for all b = k; + -+ - + k. + s. Since by the consistency relation (10) every other rate can be
expressed as a finite linear combination of rates with s = 0, it suffices to show the convergence
for s = 0. But for s = 0 we have

A o= /A G ()= (d2)

which converges to

by Lemma 3.4. O

4 =-Fleming-Viot Processes

We will present generalisations of the Fleming-Viot process, so called Z-Fleming-Viot pro-
cesses. We will prove that =-Fleming-Viot processes and Z-coalescents are dual to each other,
which will yield a characterization of the =-Fleming-Viot process as the unique solution to a
certain martingale problem.

The A-Fleming-Viot process was introduced by Bertoin and Le Gall (2003). The Z=-
Fleming-Viot process was introduced by Birkner et al. (2009). Here we work in the setting of
Bertoin and Le Gall (2003) and extend their results to the Z-case.

4.1 Definition and Construction of the =-Fleming-Viot Process

We want to generalize the martingale problem that characterized the Fleming-Viot process.
Let E be a compact metric space. We introduce the following notation: For a partition
7 € P, for some n € N and for i € [n] let ;) := min{j € [n] : i ~ j }. This notation is a
little unfortunate since we already introduced m(7) and 7;, so we have to be careful. With this
notation we can rewrite the generator of the Fleming-Viot process:

AD(j Z/ (e m) = f (@, 2| ()

TEPp:
#r=p—1
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With this notation it is quite obvious how to generalize the generator: Let = = Zg + cdg
be a finite measure on A with Z9({0}) = 0. Then for every (b; k1, ..., k,; s)-partition = we

define 0 (z)
s\ T) —
Ax 7= Abik ks = %Do(dw) + clr=1,k=2}

asin (1). Let D := {®; : My(E) — R, ®(u) =< f, u® > for some p € N, f € C(EP)} be the
domain of the generator of the Fleming-Viot process. We generalize A by defining an operator

G:D — C(My(E))
such that

co )= Y )\ﬁ/[f(xm],...,xm])—f(xl,...,xp)]u®p(dx)
TEPp:
T#0p
Definition 4.1. Let v be a probability on My(F). A E-Fleming-Viot process starting
with distribution v is an My (E)-valued process (p; : t > 0) that is a solution to the (Z,v)-
martingale problem. If we just have a family of rates A, and we do not want to refer explicitly
to the measure =, then p s also called a generalized Fleming-Viot process.

Thus the Fleming-Viot process is the special case of the =-Fleming-Viot process corre-
sponding to = = &y. Every function f : E™ — R can be interpreted as a function f : E"t* — R
with f(a:l, ooy Tpr1) = f(x1,...,2,). So we must have the consistency relation (7) for the
rates A\, and we can repeat the proof for the classification of =-coalescents to see that every
generalized Fleming-Viot process is indeed a =-Fleming-Viot process for some finite measure
= on A. A priori it is not obvious that a =Z-Fleming-Viot process exists, nor that the solution
to the considered martingale problem is unique.

Remark. Consider D = {®; : My(E) — R, ®(u) =< f,u® > forsomep € N, f =
[T, @i, ¢i € C(E)}, and let G be the restriction of G to D. Then for any v, the (G, v)-
and the (G, v)-martingale problem are equivalent, i.e. any solution of the (G,v)-martingale
problem is a solution of the (G, v)-martingale problem and vice versa. Of course any solution
of the (G, v)-martingale problem is a solution of the (G, v)-martingale problem. To see the
opposite inclusion, note that the functions of the type [[7_, ¢:(x;) are dense in the uniform
topology of C'(E?) by the Stone-Weierstrass theorem. This means that for any ®; € D there
is a sequence (®;,) C D such that ®; tends uniformly to ®;. By the definition of G we
see that then also G®;, = G®;, tends uniformly to G®;. So for any bounded JF;-measurable
random variable Z and for any solution p of the (G, v)-martingale problem we have by uniform
convergence

[ (@0~ 2o - [ Gartpin) 2]
- i E [ (20— n o0 - [ Go (o) 2] =0

n—oo

Proposition 4.2. Let E be any compact metric space and let v be a distribution on M :=
M (E). Then a cadlag version of the Z-Fleming- Viot process with values in M and with start-
ing distribution v exists. If (p; : t > 0) and (n, : t > 0) are two Z-Fleming-Viot processes such
that p and n have the same starting distribution, then they have the same finite-dimensional
distributions. In particular any two cadlag =-Fleming-Viot processes with the same starting
distribution have the same distribution on D([0, 00), M).
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Remark. The existence of cadlag =-Fleming-Viot processes was also shown by Birkner et al.
(2009) with a particle system construction. Here we take a different approach.

Proof. We prove the proposition in several steps: First we prove uniqueness of the solutions.
Then we show that for measures = satisfying Z({0}) = 0 and [, (1/ 377, 27) E(dx) < oo the

=-Fleming-Viot process exists as a jump-hold process. Finally we obtain general =-Fleming-
Viot processes as limits of those jump-hold processes.

1. To prove uniqueness we will show the duality of =Z-Fleming-Viot processes and =-
coalescents. Let p € N and let f € C(EP). Bertoin and Le Gall (2003) introduced
a cleverly chosen function on M;(E) x P, that gives us the duality: Let for 7 € P, and
for (x1,...,2,) € EP Y(m;21,...,2,) = (Y1,...,Yp) Where y; = z; if and only if 7 is in
mj. We define

O : Mi(E)x P, =R, Op(p,m) = FY(m 21, 2p)) P (day, . . . dzy)
Er

When we fix a partition 7 € P,, O (-, m) is of the form [, g(z1, ..., 2,)u®P(dxy, . .., dxy)
for some g € C(EP?). Therefore we can define GOy(-,m). Let (II,(¢) : ¢ > 0) be
the standard =-coalescent with values in P,. We assume that II, is independent of p.
Denote () the generator of II,,. We have

= 3" M(F(Cong(r,n)) ~ F(r))
o,

for any function F' on P,. Since for fixed u, O (1, -) is a function on P,, we can define
QO ¢ (1, ). We readily see that

GOf(p, ) = QO (p, )

for any p € M;(E) and 7 € P,:

G®f M, T Z )‘ / 7T xﬁu]?"wxn[p])) —f(Y(ﬂ';:L’l,,,.,Ip))]LL@p(dI)
nEPp:
n#0p

and

Q@f M, T Z >‘ / Coag(ﬂ- 77) l’l,...,xp)) —f(Y(ﬂ';xl,.,.,xp))]u®p(dx)
nEPp:
n#0p

Let 21 # -+ #x, € E. Let Y(m 2y, .-, y)) = (W1, -, yp) and Y (Coag(m,m); a1, - . -,
zp) = (U1, ..., Yp). Leti,j <p,1 7é] Then y; = y; if and only if ¢ € 7, j € m and
Mk = 1y~ But this is the case if and only if £ and [ are in the same block of  and thus
if and only if ¢ and j are in the same block of Coag(m,n). Thus for all z; # --- # x,

we have Y(m; 2y, ..., 2y,) = Y(Coag(m,n);x1, ..., x,). Of course this also holds for
general choices of z1,...,z,. Hence

GO (1, 7) = QO (11, 7)
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for all 4 and 7. This implies that for every =-Fleming-Viot process (p; : t > 0) and for
all f € C(EP) we have

E(©;(pr, 11,(0))) = E(O £ (po, TIy(t)))

and thus that p and I, are dual with respect to © in the sense of Liggett (1985). The
following arguments are taken from Etheridge (2000): Let 7 € P,. We have

(O, m) = / GO, (p T10))ds ) + B(©4(pn, )

and therefore J

TE(O4(ps, 7)) = E(GOs(ps, 7))

Analogously we obtain for y € M;(E):

%E(@f(u, M,(5))) = E(QO; (1, TT, (s)))

Therefore for fixed ¢t and for 0 < s < ¢:

d
ds

and thus

E(©(ps, 1(t = 5))) = E(GOf(ps, Lp(t = 5))) — E(QOf(ps, Tp(t = 5))) = 0

0= [ B o Tt = )))ds = E(© {71, T, (0)) — B (. T, (1)

But II,(0) = 0, and thus ©(-,11,(0)) = ®(-). Since D is an algebra that separates
points on M (E) and that contains constant functions, it is dense in the uniform topol-
ogy on C(M;(E)). Therefore the one-dimensional marginals of the =-Fleming-Viot
process are uniquely determined by its starting distribution. But for the solution of a
martingale problem it is sufficient to have uniqueness of one-dimensional distributions
to obtain uniqueness of finite-dimensional distributions (cf. Theorem 4.2 of Chapter 4
of Ethier and Kurtz (1986)). This proves our uniqueness statement. It remains to show
existence of =-Fleming-Viot processes.

. Let = be a finite measure on A satisfying Z({0}) = 0 and [, (1/> 2, 27) E(dz) <
Define =(dz) := 1/ 5, #?Z(dx). Consider the following transition function P on
M x B(M) (B(M) being the Borel o-algebra of M):

= > =(dx
= /A/EN 1p ((1 - ;%) pt ;%%) N (dy) E((A))

Consider the operator A : B(M) — B(M),

[1]1

Af(u) = E(A) /M(f(n) — () P, dn)

Since the jump rate Z(A) is bounded, there exists a jump-hold Markov process (p; :
t > 0) with generator A (cf. Chapter 4.2 of Ethier and Kurtz (1986)), starting with
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distribution v. We can even construct it explicitly: Let (Y, : m € Ny) be a discrete
time Markov process with transition function P and with starting distribution v. Let
(N 1t > 0) be a Poisson process with parameter Z(A) that is independent of Y. Define

Pt ‘= Y(Nt), t 2 0

Then p is a Markov process with the desired generator. Now let f(z1,...,z,) =
01(z1) ... pp(xp) with ¢; € C(E) for all i. We want to evaluate A®;(u). We have

‘, ((1_§) u+§:5> 1 Kl_le) < >+ Y y]

7=1
p—1J|
—Z<1_sz) H <‘P37M>H<Z$Z@J y7,>
JClp] FEp\J jeJ
p—I|J]
_Z<1—sz) H < Py > X
JC[p] JEPNJ

> >, (Hﬂcil@j(yil))--- I #ipi i)

TEPy i175---75i#ﬂ- JE™1 JETpr

and therefore

/ D ((1 —sz> ,u—i—inéyi) 1N (dy)
01" i=1 i=1

¥ (1_2931)1” 1 <epn>

JClp] Jelp\J
™ | 7r
Yo > At <Ilen> " < I ¢in>
TEPy 17 Fign VSust JE€THx

Note that

> (1—50:@)1)] DD D Zii”‘

JC[p] i=1 TEPy i1 F - Fiyy

5 (1_233@)%] (i?:)J (1_§;%+§;xi>p:1

JC[p]
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and therefore

/[01]N(I)f ((1 — sz> o+ Z%(Syi) 1N (dy) — B4 ()

oI (55 4 IS ollb o

JClp] TEPy 17 Fign
I <vin><]lein>-< ][ vin>- H<9017/vb>
JEPNJS jem JETHr
s—1
SRR S S 11 (55 9% D SR BN AR
TE€PR\0p =0 i F Al

(p;k1,.-..kr;s)—partition

<[lein>-< ][ er>- H<soz,u>

JE™L JET 47

- Z Qky ... keys (T) X

TEPR\Op:
(p;k1,...,kr;s)—partition

[< f(yﬂ'm? s 7yﬂ[p]>7ﬂ®p > —< f(yh s 7yp)7l’[’®p >]

where the sum over the partitions means that we sum over all partitions 7 and just
distinguish the different types that m can have. So finally we obtain

A () = /EN =N (dy) /A =(dx) [(I)f ((1 - Zw> e+ Zwy) - QI’;c(/i)]

Qv brss (T) o
TEPR\Op: A i=1"1
(p;k1,....kr;s)—partition

[< f(yﬂ[lp"'ayﬂ[p])?lu@p > —< f(ylw-wyp)mU@p >]

= E , )‘b;k1,~--,kr;s X

mEPR\Op:
(p;k1,...,kr;s)—partition

[< f(yﬁu]? ce 7y7r[p])7lu/®p > —< f(yla s 7yp)7u®p >]
— Gy() = GO, ()
So p is a solution to the (G, p)-martingale problem, which by our previous remark implies

that p is a solution to the (G, u)-martingale problem, i.e. it is a Z-Fleming-Viot process
starting with distribution v.

. It remains to show the statement for general =. We choose a sequence of finite measures
Ex on A with Z5({0}) = 0 for all N, such that A1/ xf En(de) < oo for all N,
and such that Zy converges weakly to =. For example we can choose for = = = + ¢dg
a sequence ¥ # 0 that converges to 0 in A, and then define

_N(dl’) = ]l{zl | z>1/N}( ) (dx) +C§wN
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For every N we construct a Zy-Fleming-Viot process with values in M, p», with starting
distribution v like in the previous step. We showed in the proof of Proposition 3.5 that
the rates )\fy of the =Zy-coalescent converge to the rates A\, of the =-coalescent. Since
the p"V have cadlag paths by construction and since the domain D contains an algebra
that separates points and contains constants, we can apply Proposition 3.3 to get the
convergence of p to the Z-Fleming-Viot process, which therefore has to exist.

]

Remark. Bertoin and Le Gall (2003) gave a Poisson point process construction for the A-
Fleming-Viot process. Since this construction only seems to work for the case £ = [0, 1], we
rather constructed the process with a combination of a discrete time Markov process and a
Poisson process. Most of the proof consists just of generalisation of notation for the A-case
that was proven by Bertoin and Le Gall (2003). However to obtain Z-Fleming-Viot processes
for general = as limits of Zy-Fleming-Viot p" processes with 1/ 7, 2?=y(dz) < oo, we
needed to change the argumentation a little:
In the A-setting we obtain that for every bounded measurable function ¢ on [0, 1],

(<@, p) >t>0)

is a martingale with quadratic variation
t

/ xzf\N(dw)/ (<¢® ) > =<, pl >?)ds
[0,1] 0

where Ay(dz) = 27 ?Ay(dz) and the Ay correspond to the Ex of our proof. So the sequence
f[o I 2?An(dzx) is bounded and therefore the quadratic variation of the martingale is C-tight,

which implies the tightness of the sequence < ¢, p" > by Theorem 4.13 in Chapter VI. of
Jacod and Shiryaev (2002). This in turn yields the tightness of the sequence p™ by Theorem
9.1 in Chapter 3 of Ethier and Kurtz (1986).

However in the =-case we obtain the same sequence of martingales, but now their quadratic
variation is given by

/ sz EN(dx)/ (< pl > — < p,p) >?)ds
01 \ i 0

and in general the sequence

is not bounded. To show tightness of < ¢, pV > directly does not seem to be very easy either
since the jump-rate Zy(A) of the Poisson processes used to construct py tends to infinity
when N — oo.

4.2 Some Properties of the =Z-Fleming-Viot Process

Proposition 4.3. Let E be a compact metric space. Let = be a finite measure on A Then any
=-Fleming-Viot process p with values in M1 (E) has the strong Markov property with respect to
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the filtration (F;), i.e. for any bounded measurable function f and for any finite (F;)-stopping
time T we have

Eu(f(pre) | Fr) = By (f (pe))

Proof. This is just Theorem 4.2 ¢) of Chapter 4 in Ethier and Kurtz (1986), since we already
established the uniqueness of the martingale problem for the Z-Fleming-Viot process. The
only thing we still need to show is that if P, denotes the law on D([0,00), M;(E)) of the
=-Fleming-Viot process starting in y, then for any Borel set B in D(]0,00), M;(E)) the map

p—Pu(B)

is Borel measurable. But by Theorem 4.6 of Chapter 4 in Ethier and Kurtz (1986) this follows
if M;(E) is complete and separable and if Cy(M;(F)) is separable. Since F is compact,
M, (F) is compact by Prohorov’s theorem (Theorem 2.2 of Chapter 3 of Ethier and Kurtz
(1986)). The topology of weak convergence is generated by the Prohorov distance (cf. Theorem
3.1 in Chapter 3 of Ethier and Kurtz (1986)), so M;(F) is a compact metric space, so it is
complete and separable. Also, Cp(M;(E)) = C(M;(F)) is separable by a Stone-Weierstrass
argument. O

Remark. In the case £ = [0, 1] it is easy to see that any =-Fleming-Viot process is in fact
a Feller process. This can be shown by using a connection between flows of bridges and =-
Fleming-Viot processes, and it is explained in Bertoin and Le Gall (2003). In the general case
this result is more complicated and it was shown by Birkner et al. (2009):

Proposition 4.4. Let E be a compact metric space and let = be a finite measure on A. The
=-Fleming-Viot process with values in My(FE) is a Feller process.

Proof. This is Proposition 4.3 (respectively Remark 4.4 a)) of Birkner et al. (2009). There it
is shown that the operator that we used to introduce the Z-Fleming-Viot process satisfies a
necessary and sufficient condition for its closure to generate a Feller semi-group. O

Proposition 4.5. For a distribution v on My(E) and for a finite measure = on A denote by
PY= the law on D(]0,00), M1(E)) of a cadlag =-Fleming-Viot Process p with py ~ v. Then
the map

Ml(Ml(E)) X Mf(A) = (I/, E) — PVE ¢ Ml(D([0,00),Ml(E)))

is continuous. Here M¢(A) is the space of finite measures on A and of course all the spaces
of measures are equipped with the topology of weak convergence.

Proof. We already proved everything that we need to get the continuity of this map: If Az is
the operator that we used to define the =-Fleming-Viot process, then the (Az, v)-martingale
problem has a unique solution by Proposition 4.2. If Zy converges to = and A are the rates
of the Zy-Fleming-Viot process and A, are the rates of the =-Fleming-Viot process, then AY
converges to A, for every m (which was shown in the proof of Proposition 3.5). Therefore
Az, @ converges uniformly to Az®; for all ®; € D. Since the domain D contains an algebra
that separates points, we can apply Proposition 3.3 to obtain the continuity. O
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4.3 Discrete Time =Z-Fleming-Viot Processes

We introduce a dlscrete time E-Fleming-Viot process for measures = satisfying =({0}) = 0
and [, 1/% 2, 2?2(dx) < 1. Then we show that this process is the unique solution to a
discrete time martingale problem.

Define Z(dz) := 1/ > 2, #?=(dx) and consider the transition function from the proof of
Proposition 4.2:

P My(E) x BIMi(E)) — [0,1],

/ /E N13<<1—sz>u+zxz ) (dy)E(da) + (1 — Z(A)Lp(n)

A discrete time E-Fleming-Viot process is a discrete time Markov process with transition
function P. Define the operator

T BMA(E) = BAE), 0 = [ )Pl

We know that for any discrete time Markov process (Y (m) : m € Ny) with transition function
P and for any bounded measurable function f, the process

3

My(m) == f(Y(m)) = (T = D)f(¥), m € Ny

%

I
o

is a martingale with respect to the filtration Fj, := o(Yp,...,Y%). (I is the identity map).
Conversely we know that if for every bounded measurable f M is a martingale with respect
to some filtration (Fj), then Y is a Markov process with respect to F, and its transition
function is given by P(u, B) := T1g(u). We want to examine 7" on a certain set of functions
D, and then show that the discrete time =-Fleming-Viot process is the unique process for
which M; is a martingale for all f € D.

Proposition 4.6. Let D := {®; € C(M;(E)) : 3f € C(EP) s.t. Pp(p) =< f,u®? >}. Let =
be a finite measure on A with Z({0}) = 0 and such that [, 1/ > i 7= (dx) < co. Let A; be
the rates of the =-Fleming-Viot process. Define

G:D = C(My(E)), GPs(p) = Y Ar / s Tay) = f(, )P (d)
TEPp:
T#0y

If for a discrete time process (Y (m) : m € Ny) for every &, € D
Mf(m) = ZG(I)f mGNo
is a martingale with respect to the filtration Fr = o(Y(0),...,Y(k)), thenY is a discrete time

=-Fleming-Viot process

Proof. Let ®; € D. Then

E(® (Y (m))|Fm-1) = Mp(m — 1) + Z_ GOp(Y (i) = @p(Y(m — 1)) + GO,(Y(m — 1))
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In the proof of Proposition 4.2 we saw that for &5 € D

Gy () = /A /E N [cbf ((1 - ) 3 5) - <I>f<u>] $E (dy) = (de)

=T®p(n) — y(p)

where T' is the transition operator of the discrete time Z-Fleming-Viot process. So for such
Oy

E(® (Y (m))|Fnr) = TOp (Vi)

Since the domain D is an algebra that separates points and contains constants and since
M (E) is compact, D is dense in the uniform topology of C'(M;(E)). Thus

E(F(Y (m))|Fn-1) = TF(Yin1)
for every ' € C(M;(FE)). We can apply the monotone class theorem to obtain
E(F(Y () F 1) = TF (V1)

for every bounded measurable F: The set of functions satisfying this equation is closed under
uniform convergence and under bounded point-wise convergence (F converges bounded point-
wise to F if for all p € M (F) Fn(u) converges to F(u) and if supy ||Fv|| < o0), and it
contains the continuous functions which are closed under multiplication. So Corollary 4.4 in
the Appendix of Ethier and Kurtz (1986) yields that the set contains all bounded measurable
functions. So Y is a discrete time Markov process with transition operator T'. Therefore it is
a discrete time =-Fleming-Viot process. [

5 Cannings’ Population Model

5.1 The Model

We consider a population model introduced by Cannings (1974, 1975). In this model, we
assume we are given a haploid population with non-overlapping generations, and that in every
generation the population has the constant size N. We suppose there is an infinite number of
generations both in the past and in the future, i.e. for every m € Z we are given a generation.
The model is described by a family of random variables {(v]"y,...,v§ y) : m € Z}, where
Vi is the number of descendants of the ith individual in generation m of a population of size

N. Since the size of the population stays constant in all generations, we necessarily have

We suppose that the reproduction in different generations is independent and of the same law,
ie.

(N5 VN N),m € Z, are iid. (21)

So if we are only interested in the distribution of (v{"y, ...,y y), we can omit the index m.
Finally, we suppose that the reproduction of an individual ¢ does not depend on the index 17,
i.e. that

(V1N ..., Vnn) is an exchangeable random vector. (22)
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We suppose that the individuals in generation m are distributed randomly on the families in
generation m — 1. For example the ¢-th individual in generation m is a descendant of the j-th
individual in generation m — 1 with probability v} '/N.

Clearly the Wright-Fisher model is a special case of this class of models. In that case,
(V1N .., Vnn) has the multinomial distribution with parameters (N;1/N,...,1/N).

Assume we are interested in the genealogy of a sample of the population. Say we sample
n < N individuals in generation 0, and we introduce a process (IL, y(m) : m € Ny) with values
in P,.: i and j are in the same block of II,, x(m) if and only if the i-th and the j-th individual
have the same acestor in the —m-th generation. Of course if two individuals have the same
ancestor in the —m-th generation, then this is also the case in the —m — 1-th generation,
and therefore II,, y(m + 1) is always coarser then II,, x(m), i.e. II,, xy(m + 1) is obtained by
coagulating blocks of II,, y(m).

On the other side, if we wish to model the distribution of genetic types, we can introduce
a measure-valued process (py(m) : m € Ny): Assume that in generation 0 every individual
has some genetic type, which we will represent by an element x of some metric compact space
E. Assume that every individual in generation m inherits its genetic type without mutation
from its ancestor in generation m — 1. We introduce a process (Y (m) : m € Ny) with values
in BV such that Y;¥(m) is the genetic type of individual i in generation m. Then we define

=Y
— N
which therefore is a process with values in MY (E) := {32~ 0z, ¢ (21,...,2N8) € BN

5.2 Convergence Results

We want to let the size NV of the population tend to infinity to obtain diffusion approximations
for our processes II,, y and p". To obtain a diffusion approximation, obviously we will need
to rescale the time. The right factor with which to rescale the time is the probability of two
individuals in generation m to have the same ancestor in generation m — 1, which is

N]EVZ'N2 E((v1,n5)2 012\/
-y (vin)2) _ E((nn)s) _

where (N), := N(N —1)...(N — k + 1) and where o3 is the variance of v; x (and the last
equality is true because E(v; ) = 1).

Let m € Py, be a (b; ki, ...,k s)-partition - where we could have r = 0. If we take b
individuals in generation m and label them from 1 to b, then the probability that exactly the
individuals whose numbers are in the same block of 7 have the same ancestor in generation
m — 1 is given by

N

Z E((Vil,N)kl s (Vi'r,N)k'rVir_',l’N cen l/iH_S’N)
i1yerrirys=1 (N)s
all distinct
N r+s
— ( ) + E((VLN)kl . (VT,N>I<:,~VT+1,N ce Vr+s,N) (23)
(N)s

48



We will first state the most general convergence theorem, and later we will present some
criteria to check whether the assumptions of the theorem hold. First we give the partition-
valued formulation which was proven by Mohle and Sagitov (2001). Here we use their ideas,
only in the end of the proof we use the general weak convergence results that we established,
rather than using the arguments from Mohle (1999), where convergence in distribution in the
Skorohod-topology is proven with coupling techniques.

Theorem 5.1. Suppose that for every r € N  ky,... k. > 2, the limits

lim E((vi,n)ky - - (UrN),)
N—00 Nk1++kr*7‘cN

= 0, (ky,. .., k) (24)

exist.

1. Suppose limy_yoo cy = 0. Then for all n € N, (IL, y([t/cn]) : t > 0) converges in
distribution in the Skorohod topology to an exchangeable coalescent (Il, (t) : t > 0)
with values in P,. The transition rates Apk,... k-0 of hoo are given by @, (ki,... k),
and these rates determine all the Ay, . s

2. Iflimy oo cny = ¢ > 0, then for alln € N, (II,, y(m) : m € Ny) converges in distribution
to a discrete time exchangeable coalescent (I, oo(m) : m € Ny) with values in P,.
The transition probabilities pyj, ... k.0 of I, oo are given by ¢ x ®,.(ky,...,k,), and these
transition probabilities determine all the pyj, .. k,.:s-

Before we begin with the proof, we show two lemmas that we will need for this proof as
well as for the proof of convergence for the measure-valued formulation. They are both shown
in Mohle and Sagitov (2001).

Lemma 5.2. Define

BNk - (Ve Nk Vel N - Vrgs N)
Uk, k) = ]\;1_{“00 Nk1+"'+k:_7"cN

if the limit exists. Then W, o = ®,, and the existence of the ®, implies the existence of all
VU, s, since the U, ¢ satisfy the following recursion:

\Ijr,s—i—l(kla s 7kr) :qu,s(k17 R kr) - Z \I’r,s(kla R kj—la kj + 17 kj—i—la R kr‘)
j=1
- 8\1[7,4_175_1(]{31, ceey k’r, 2) (25)

for all s € No,r € N, ky, ..., k. > 2 (where ¥, _; :=0).
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Proof. We have

(N =7 = 8)E((Vi,N)ky -+ (Ve Nk Vb LN -+ - Vst 1N)
22)
( (( N)kl (Vr N)krl/r+1 N - Vr+s,N(Vr+s+1,N + -+ VN,N))
20)
( ((Vl N)k1 (VTN)kTVT—H N - Vr+s,N(N —nNN— Vr+s,N))
= E[(VI,N)kl e (UT‘,N)]CTVT‘+1,N Ce I/TJ’,S’N(N — ]{1 — s = k‘r — S
r r4+s
=) (wiv = ki) = Y (i — 1))
i=1 i=r+1

= (N - ]{31 — k’r - S)EKVl,N)kl . (VT,N)kTVT—i-l,N Ce Vr-i—s,N]

- ZE[(Vl,N)kl ce (Vi,N)k¢+1 ce (VT,N)kTVrJrl,N cee Vr+s,N]

- SE[(Vl,N>k1 cee (VT,N>kT (Vr+1,N)2Vr+2,N e Vr—l—s,N]

Then we divide by N¥1++k+1=rc\ and let N tend to infinity to obtain the recursion. O

Lemma 5.3. Define

1—E(V1’N...V5,N)
Y = lim
N—oo CN

if the limit exists. Then the existence of the ®, implies the existence of all vy, since the v,
satisfy the following recursion:

Vo1 =+ b¥1p-1(2)
Proof. This is shown exactly like the previous lemma. O]

Proof of Theorem 5.1. 1. Let m € P, with b blocks and let n € P, be a (b;ky, ..., k.;s)-
collision of 7. Then the transition probability of II, x from 7 to 1 is given by

pWNn = P(Hn,N(m + 1) = 77|Hn,N(m) = 7T)
(2) (N)T'+S
(N

In particular, the transition probability from 7 to 7 is given by

E((VI,N)kl Ce (VT,N)krVr—i—l,N P Vr+s,N) (26)

E(VI,N e Vb7N)

2. Suppose limy_,o cy = 0. In this case we can apply Theorem 3.1 to obtain the weak
convergence: Define for every (n;ki,...,k,;s)-partition n U, := W, ((ky,..., k). Let
D(A) :={F : P, — R} and

=Y ,(F(Coag(m,n)) — F())

1767’n

This martingale problem has at most one solution since P, is finite (cf. example in
Appendix C). We can rewrite the recursion (25) to see that the U, ; satisfy the same
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consistency relation (10) as the Apj, . k.- This allows us to rewrite A. We define
for every m € P, with #m = b and for every (b;ky,...,k;;s)-collision n of 7 W, =
U, s(k1,..., k). Then we have

AF(m) = ) Wny(F(n) = F(m))

nEPn:
n2m

On the other side, Ay is given by

AnF(r) = 3 P (F(n) — F(m))

. CN

To apply Theorem 3.1, all we still need to check is whether for every # C n € P, we
have

N
lim 771 — g

N—o0 CN

But if n is a (b; ky, . .., k;; s)-collision of 7, then by (26) we have

Ky

N
. DPr o (N)rgs
lim — = A}l_rgo EM%E((VLN);“ o (Un N )k Vet LN - - - VrgsN)

N—oo CN
— i BNk - Nk Ve N - Ve )
N—oo Nb—'r—scN
BN )k - (W Nk VLN - Vs N)
= T = Uro(bys k) = Uy (2)
. Now suppose limy_,oocy = ¢ > 0. Set for w g n V., = 0 and set for every m
with #7 = b V. = limy oo E(ti v ... n)/cy (Which exists under the assumption
limy o0 ¢x > 0 because of Lemma 5.3). We have for every 7 € P,
PN
_ . ™ _ . N o
2 cUm= ) Jim b= Jim ) pm =1
NEPn: NEPn: nEPn:
n2m nom nomw

So let (I1,, oo (m) : m € Ny) be the Markov chain with transition matrix P = (¢Wry,)r pep, -
Then the finite-dimensional distributions of II,, y converge to the finite-dimensional dis-
tributions of II, .. But of course for discrete time processes, convergence of finite-
dimensional distributions is equivalent to convergence in distribution of the processes
(cf. e.g. Proposition 4.6 in Chapter 3 of Ethier and Kurtz (1986) or p. 19 of Billingsley
(1968)).

O

Now we present the most general convergence result for the measure-valued formulation:
We recall that we assumed that every individual has a genetic type that can be described
by an element x in some metric compact space E. Further we assumed that every individual
inherits the genetic type of its ancestor. The distribution of genetic types in the model with N
elements is at each time given by a measure y € M™(E) = {Zfil 0p. /N : (x1,...,2n5) € EN}.
We start in generation 0 with a random distribution of genetic types, and then we follow the
development of the distribution of genetic types forward in time. Like that we will obtain a
measure-valued stochastic process (py(m) : m € Ny).
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Theorem 5.4. Suppose that for everyr € N, ky,... k. > 2, the limits

lim (M Nk - - (Ve N),)
N 00 Nk1+--'+kr*7“CN

= O, (ky,.... k) (28)

exist and suppose that the distribution of py(0) converges weakly to some distribution v on
M, (E).
1. Suppose limy_,oo cy = 0. Then (pn([t/cn]) : t > 0) converges in distribution in the Sko-
rohod topology to a generalized Fleming-Viot process (p(t) : t > 0). The rates Aok, .. k0
of p are given by ®,(ky,..., k), and these rates determine all the Ay, .. ky:s-

2. If imy_,oocy = ¢ > 0, then (py(m) : m € Ny) converges in distribution to a discrete
time generalized Fleming-Viot process (p(m) : m € Ny). The transition probabilities
Docky ... k0 Of p are given by cx ®,.(ky, ..., k.), and these transition probabilities determine
all the pu,.,... ;s

Proof. 1. Let for i < N Y;"(m) € E be the genetic type of individual i in generation m of
the population with N individuals. Let f(z1,...,z,) = [}, vi(z;) with ¢; € C(E) for
all i. Let (z1,...,2x) € EN and let puy = S, %0z, We want to evaluate

%{E [@4(pn (1)) [pn(0) = puw] — (1)}

to apply Theorem 3.1. We have

E[®(on (1)) on(0)

~ x| [[3 37

N YN (0) = (:z:l,...,xN)]

i=1 j=1
N P
=N Y E|[[e0i7 ) YN<0>:<x1,...,xN>]
J1yendp=1 i=1

Let fori,j < N AN, ; be the event that the j-th individual in generation 1 is a descendant
of the ¢-th 1nd1v1dual in generation 0. Then we have

E[®(pn(1)) o (0 ):NN]

=N Z Z

TEPp JiyosJgpn=1 l1,..,lpr=1
all distinct

H iV (1)) - H %(Eﬁﬂ(l))ﬂmg% YH(0) = (21, 2)
1ET] €M yr
Of course A, is independent of YV(0) by our assumptions, and therefore

[Te @) I e ) en 4w [ YN(0) = (21, a)

1=1""1;,7;

1€ML iETf#W
=E H %(3/] H gpz ]#w {YN< ) (xlv REEE )} m#ﬁ AN P |:mz#:ﬂ1Ally,Jzi|
1€ €Ty
— H 901 CL’ll H ©Y; Il# |:ﬂ#7r AN }
1€ ZEW#W
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which yields

E [qu(PN(l)) lpn(0) = pn]

ey Sy T sea)e[Aeean

TEPp N€EPgn Ji,-Jptn=1 l1,...,lyy=1 m=1 \i€Coag(m,n)m
all distinct all distinct

g S A Bl 8)im) - - - (Vi )]
Y YW Y I I et o

TEPp NE€EPsr l1,..lyn=1 m=1 \ ieCoag(m,n)m
all distinct

(29)
. Let m # 0, and ) # 0x,. Set C :=[]._, ||¢i||. Then we have
N #n
B El(v1,n)pm] - - - Vatn, ) g ]
N p(N)#ﬂ Z H H Spi(:Elm) 771(]\]) L =

I1,eney l#nZI m=1 iGCOag(ﬂ',n)m #

all distinct
< N_p(N)#nCE[(VLN)Mﬂ cee (V#W,N)In#n\]

C El(vi,m)m -+ Wiy N) 1]

— Np—#n 1 7}\[7##7#?7#77 = o) (30)

o(cy) means that this term tends to 0 when it is divided by ¢y and when N tends to
infinity. This is true because by Lemma 5.2 E[(v1,n)imi| - - - (Vi N )i )/ (NFT#7Cy)
converges and because #7 < p.

. Let m =0, and n € P,. Then

N #1 VI,N)n| -+ V#nN m
N, ST M o) E[(v1,v), I(N)E,# Jineal]

l1,..lgn=1 m=1 \ieCoag(m,n)m
all distinct

al €N T xlm) E[(Vl,N> m (V 777N) T)#n]
- H< 90 ) ‘]‘vp—#n# s

l1,0lyy=1 m=1
all distinct

]E[(VLN) - (V# ,N) ]
=< H i, Uy > -+ < H Vis N > ‘m]‘vp_#n n 74n]

e 1EN 4

_ i H (H gol T, ) Vl,N)\U1| ']-V-p(V#U,N>n#n|] (31>

1E€ENm
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But for 1 # 0, the “minus-term” is of order o(cy) by Lemma 5.2:

- i ,N o (Vap N
Z H (H %’(xlm)) El(1.5)m NP( #1, )|n#n\]

ll ..... l#n:1 m=1 iE?’]m
Jitjili=l;
< #n N#nch[(VLN)ImI ce (V#%N)Vl#n”
2 Np
C (#n\ El(vin)im) - - - (V0.3 )ing ]

For n = 0, we can rewrite the “minus-term” as follows:

N

Z H SOi(:Bzm)]E[Ul’NN; V.|

I1,..,lp=1 m=1

Jikjil; =1,
al iaid E[VlN---VpN]
= > > I (I #) - (33)

UEPP\{OP} [1,0ney lyo=1 m=1 \i€om
all distinct

4. Finally let m # 0, but 7 = 0x,. Then

N # V1. N 771"'V77N N4
T S | D | B

l1,..lgn=1 m=1 \ ieCoag(m,n)m
all distinct

N il E[Vl N -« Vg N]
= > I [Tww) ) =5 (34)

I1,e.ey l#,,r:1 m=1 \i€mm
all distinct

5. We combine (29) - (34) to obtain

E[®;(pn(1)) [pn(0) = pun]

E[(v1 N) ] - - - (Vi N ) 1]
=o(cn) + Z < H Qi iy > - < H O, [N > Imjlvpi#n#n |40
n€Pp\{0p} 1€m 1€N4y

p
—o(en) + H < @i, un > Elvy ... vpN]
i=1

al iai E[VlN...I/N]
- > 2 e | =%

c€Pp\{0p} U1, -, lgo=1 m=1 \i€om
all distinct

N #m | Elin ... vgan]
Cx s (M) B

WEPP\{OZ,} l1,..., l#,,rzl m=1 \i€mm
all distinct
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But

N #o E[Vl,N ce Vp,N]
B Z Z H H wi(w,,) NP

UEPP\{OP} I1yeney l#g=1 m=1 \i€om
all distinct

N #m | ]E[Vl,N .. V#W,N]
CY Y (e B

7r€73p\{0p} l1,e.ey l#ﬂ.zl m=1 \G€mm
all distinct

< Y (MO

E[VLN e V#W,N] -1 (]E[VLN e Vp,N] — 1)

NP
TE€Pp\{0p}

< > NFPC|Eay . vgan] — 1) = By vpn] = 1] = o(en)
T€Pp\{0p}

by Lemma 5.3 and since for m # 0, #m < p.
So if we define for n € P,\{0,}

U — lim E[<V17N>|771\"'(V#n,N)m#n\]
T NS NP*#T)CN

(which exists by Lemma 5.2), then

1 p
o <E [@(pn (1) [pn(0) = pn] = T ] < i v >>
=1
E[(v1,n) il - - - (Vom0 ) g |
= Y <[leim>- <[ einw> - N z
n€Pp\{0p} €N €N 4y
p
1 —E[VLN...V ,N] O(CN)
- H < Pi, UN > L +
i=1 CN CN
p
= > U <[lenmn>< ] wonn>-n]] <einy>
n€Pp\{0p} i€m i€ngy, i=1
o\C
RS
CN
with
El(v1n) il - - - (Van. 3 ) ey |
E(N): Z ( CNNp_#n _\IIT] <H§027MN><H sz’:uN>
n€Pp\{0p} iem 1E€NHy

1—]EV’N...V’N b
—( [1 p]—”Yp)H<80i,MN>

c
N i=1

which tends to 0 when N — oo, uniformly in uy. Note that also the o(cy)/cy-term
tends to 0 uniformly in py. We have

1 (N

v
N—oo ey (N),

n E[(VLN)ImI e (V#mN)\??#nl]
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If we consider the partition-valued formulation of the model for a sample of size p, then
(V) / (N)E[(v1, Ny - - - (VN ),y 1] 18 the transition probability pé\;n of IL, x from
0, to n (cf. (26)). E[vy n...1v,n] is the probability pY of I, x to stay in 7. Therefore

o, = lim — > (N>#”E[(V1,N)\nl|---(V#n,N)m#m]

N—oco N
nEPN{0,) SN Aday Vb
_ N N o
= J\llj}nooa Z Po,n = A}l_rgo a(l popop) Tp
nEP\{0,)

So finally we obtain

LR (1)) |on(0) = pu] — (1)

CN

p
= Z v, <H90i,,uN>"'<H%‘,,MN>—H<S0¢,MN> -I—M‘I—E(N)

nEPp\{0p} i€m 1€ 40 1=1 €N
- . ®p o(cn)
= > U [ ([Twiteny) — T | i (@, doy) + == 4 e(N)
neP\{0,} EP\ i=1 im1 N
olC
= G y() + 2 )
N

where G is the operator that we used to introduce the generalized Fleming-Viot pro-
cess corresponding to the rates W,. Recall that MY (E) was defined as {32~ 8,./N :
(z1,...,2n) € EN}. Let Ty be the transition operator of py (i.e. Tn®p(un) =
E[®¢(pn(1))|pn(0) = pn]). Then we have

1
sup — (TN — I) CI>f(,uN) — Gq)f(/LN) — 0, N — o0 (35)

pnEMN (E) [ EN

. Suppose ¢y — 0. We can apply Theorem 3.1 with Ey = MY (E) and with 7y being
the inclusion map from MY (E) to M;(E). We obtain that (pn([t/cy]) : t > 0)
converges in distribution in the Skorohod-topology to the unique solution to the (G, v)-
martingale problem, i.e. the generalized Fleming-Viot process with rates W, starting
with distribution v.

. Suppose limy_,o cy = ¢ > 0. Note that M;(E)N is a compact space as a product of
compact spaces. This is easy to see with a diagonal sequence argument, since M;(FE) is
a metric space when equipped with the Prohorov distance. Also, the statement is true
by Tychonoft’s theorem (which uses the axiom of choice, cf. Munkres (2000), Theorem
37.3). So by Prohorov’s theorem (Theorem 2.2 in Chapter 3 of Ethier and Kurtz (1986)),
any sequence of discrete time processes with values in M;(F) is tight. By Proposition
4.6 it therefore suffices to show that any cluster point of the sequence py is a solution to
the discrete time (G, v)-martingale problem (since the discrete time (G, v)- and (G, v)-
martingale problems are equivalent, just as in the continuous time case). Let m € Ny,
let h be a bounded and measurable function on M;(E)™*! and let ®; € D. Using (35)
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and bounded convergence, we obtain

i E[(®;(px(m + 1)) — B5(pn(m)) — Gy (pn(m)) hon(0), .., pre(m))]
= lim E[(®5(px(m + 1)) — @;(pox(m)) — (T — D@ s(pr(m))) h(pw(0), ..
=0

which completes the proof.

5.3 Convergence Criteria

,pn(m))]

Sometimes it is not easy to check the conditions of Theorem 5.1 respectively Theorem 5.4. So

we present two criteria for that. We will not give the proofs here.
The first result is Theorem 4. b) of Méhle (2000).

Proposition 5.5. Suppose

lim E((v1,N)3)
N—00 N2CN

=0

Then cx tends to 0 when N tends to infinity, and for any b and for any m € Py with #m < b—1,

we have

i PN - - (V) )

=0
N—o00 Nb_#ﬂ-CN

That means, that the limit in the partition-valued formulation will be Kingman’s coalescent,
and the limit in the measure-valued formulation will be the classical Fleming-Viot process.

The second result is Theorem 2.1 respectively Remark 1 from Mohle and Sagitov (1998).

Proposition 5.6. Suppose limy_,oo cy =0 and

lim E((v1,n5)2(r2,n)2)
N—o00 Nch

=0
Also, suppose that there exists a probability A on [0,1] such that

N
lim —P(y; n > Nz) :/ y 2A(dy)
N—oo CN [%1]

for all x € (0,1) where the limiting function is continuous. Then for any (b; ki, ...

partition m € Py, with r > 1 we have

i PN - - (V) )

N—oo Nb_#ﬂCN =0
and for a (b; ky, ..., ky;s)-partition m with r = 1 and k > 2 we have
- E((n,3)im - - (Vg N) 1) - bk
J\P_Igo NoFre = /[071] "7 (1 — x)" " A(dx)

That means, that the limit will be a A-coalescent or a A-Fleming-Viot process.
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6 Convergence Results for Schweinsberg’s Model

We present a realistic population model that was introduced by Schweinsberg (2003). The
model is a special case of Cannings’ model, and we show convergence results.

Suppose we have a haploid population with non-overlapping discrete generations, an infi-
nite number of generations both in the future and in the past. Suppose every individual in
every generation has the same reproduction law, which is independent of the reproduction
of all the other individuals. Further we suppose that the population size is restricted due to
some external influence. So only a fixed number of the descendants in each generation can
survive. This model can be described mathematically in the following way:

Let (X" :i € Nym € Z) be a family of i.i.d. variables with values in Ny. If we are only
interested in the distribution of the X" we can therefore omit the index m. We suppose

E(X;) > 1 (36)

We interpret the X" as reproduction laws of a supercritical Galton-Watson process. The
Galton-Watson process describes the size of a population. It is given by Yy := N and Y, :=
XFooot X{‘}k. The restriction of the population size can be modelled as follows:

If XF+---4+ X% > N, we choose randomly N individuals which will be the descendants
from generation k that actually survive. The size of family ¢ in generation k, Vf, N, 1s thus
given by the number of chosen descendants of XF.

If X{' 4+ -+ X < N, we define (1] ,...,vfy) := (1,...,1). The probability of this
event will tend to 0 when N tends to infinity because of (36).

So we have a haploid population with non-overlapping generations, infinitely many both
in the past and in the future. The population has a fixed size, the family size vectors
(Vs VN n) are iid. and exchangeable. So we are in the setting of Cannings’ model,
and we can use our previous results.

For most of the results we will suppose that there exists a > 0 such that the tail of the
distribution of X is of regular variation with index —a, which means that for any C' > 0
we have

P(X, > Ck)

e sh ¢ (37)

Cf. Appendix D for an overview of functions of regular variation.
In the original article Schweinsberg (2003), the assumption was slightly stronger. There it
was supposed that there would be some constant C' > 0 such that

P(X; > k) ~ Ck™® (38)

where ~ means that the ratio of the two sides tends to 1 when k tends to infinity. This special
case was also presented in Perkowski (2009).

Let for n € N (I, y(m) : m € Ny) be the partition-valued formulation of the population
model, and let (px(m) : m € Ny) be the measure-valued formulation with values in M (E).

Theorem 6.1. Suppose (36) and that the distribution of pn(0) converges weakly to some
distribution v on My (E).

1. If E(X}) < oo, then (Il, n(|t/cn]))is0 converges in distribution in the Skorohod topol-
ogy to Kingman’s n-coalescent when N — oo, and (py(|[t/cn]) : t > 0) converges in
distribution in the Skorohod topology to the classical Fleming-Viot process starting with
distribution v. If X, satisfies the assumption (37) with a > 2, then E(X?) < oo.
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2. Under assumption (37) with a = 2, (IL, n([t/cn]))i>0 converges in distribution in the
Skorohod topology to Kingman’s n-coalescent when N — oo, and (pn(|t/cn]) it > 0)
converges in distribution in the Skorohod topology to the classical Fleming-Viot process
starting with distribution v.

3. (37) with 1 < a < 2 implies the convergence of (I, y(|t/cn]))i>0 in the Skorohod
topology towards a Beta(2 — a, a)-coalescent with values in P,, when N — oo. Recall that
Beta-coalescents are coalescent with multiple asynchronous collisions. Under assumption
(37) with a € (1,2), (pn(|t/cn]) : t > 0) converges in distribution in the Skorohod
topology to the Beta(2 — a, a)-Fleming-Viot process starting with distribution v.

The transition rates of the limit processes are given by

B(k—a,b—k+a)
B(2—a,a)

Aok =

4. (38) (attention: not (37)!) with a = 1 implies the convergence of (IL, x([t/cn]))t>0 in
the Skorohod topology towards a Beta(1,1) = U-coalescent with values in P,, when N —
oo. Under assumption (38) with a = 1, (pn(|t/cn]) : t > 0) converges in distribution
in the Skorohod topology to the U-Fleming-Viot process starting with distribution v.

The transition rates of the limit processes are given by

Ao = Bk —1,b— k + 1)

5. Let 0 < a < 1 and let ©,(dz) be the probability measure on A that corresponds to the
PD(a,0)-distribution. Define

Eq(dx) == Zx?@a(daz)
j=1

Under assumption (37) with 0 < a < 1, (IL, n(m))men, converges in distribution to
a discrete time Z,-coalescent with values in P, when N — oo, and (py(m) : m €
No) converges in distribution to a discrete time Z,-Fleming-Viot process starting with
distribution v.

The transition probabilities of the limit processes are given by

r

a1 r + 5 —1)!
. g = ki—1— _
Dbk ,... ks (b — 1)! H( a)kl 1

Remark. Note that for a = 1 we do not show the generalisation, but we just quote Schweins-
berg’s result. This is not because this case is fundamentally different and because in this case
the generalisation will not be true. Probably the generalisation is also true in that case, and
in fact this can be easily shown if E(X}) is finite, or if P(X; > k) = k~!I(k) for a function
of slow variation [ that is bounded and bounded away from 0, or if [ is given by a suitable
function of the logarithm, e.g. [ = log or [ = 1/log" or I(x) = loglog z*.

The reason why we are not able to show the generalisation for general [ is that a = 1 is a
special case in Karamata’s theorem (Theorem D.3), in which we can not control the behaviour
of fom P(X; > y)dy for x — oo as precisely as in the other cases. So this seems to be only a
technical difficulty.
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The importance of Schweinsberg’s work lays in the fact that he introduced a natural
population model in which other coalescents than Kingman’s coalescent are obtained as limits.
This result motivated the deeper study of the Beta-coalescents.

In the proof we will always argue for the convergence of coalescents. But of course those
arguments stay valid for Fleming-Viot processes since in both cases we prove convergence with
some variation of Theorem 5.1 respectively Theorem 5.4.

6.1 Preliminary Results

We remark that assumption (37) yields the existence of a function of slow variation [ such
that

P(X, > k) = k~°U(k) Yk >1 (39)
Of course in this case [ has to satisfy [(k) < k° for all £ > 1 and therefore it is locally bounded.

Lemma 6.2. Let g : Ny — R and let X be a random variable with values in Ny. Then

D g(R)P(X = k) = g(0) = g(N)P(X > N+ 1)+ > [g(k) — g(k — D)]P(X > k)
k=0 k=1
If imy_00 g(N)P(X > N 4 1) = 0, we obtain

E(g(X)) = g(0) + ) [g(k) — g(k — DIP(X > k)
k=1
This lemma is proven by summation by parts. Before continuing, we introduce a new
notation: We define p := E(X;) and Sy := X; +--- + Xy.

Lemma 6.3. If u > 1, then there is an A < 1 such that P(Sy < N) < AN for all N € N.

Proof. Let p(r) := E(r*1), r € [0,1], be the generating function of X;. p is continuously
differentiable on (0, 1), and we have p'(1) = p if u < oo but also if 1 = oo (cf. for example
Klenke (2008), Theorem 3.2). So p(1) = 1 and p/(1) > 1. Therefore there exists r < 1 such
that p(r) < r. We define A := @. With Markov’s inequality and because the X; are i.i.d.

we obtain
E(TSN )
N

— AN

P(Sy < N) <
.

]

The following lemma is essential for the proofs of all parts of Theorem 6.1 since it expresses
the important limits
E (v
i BN - (en),)
N—o00 Nkl++k7‘*7‘CN

in terms of the X;.

Lemma 6.4. Forr > 1, ky,..., k., > 2, we have
B - k) e N (X - (X,
1\}1—>H<1>o Nkt thr—rey - 1\}1—>H<1>o EE 51131+---+kr Lisy>ny (40)
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This means that the existence of one of those limits implies the existence of the other one, and
in this case the two sides are equal. Further we have

X
CN NE (<S—;)2]I{SN>N}) (41)
N
and there exists Ay > 0 such that
A
en > Wl VN > 1 (42)

Proof. 1. We order the individuals of a fixed generation randomly. Independently of that
we order the individuals of the preceding generation randomly. Let By, . be the event
that the k; first individuals of the present generation descend from the first individual
of the preceding generation, the next ks individuals descend from the second individual
of the preceding generation, etc. We have

_ Bk - (e )k,
(N>k1+---+kr

(43)

P(By,, k) = E(P(By,,
_& ((Xl)k1 - (X)

(SN )ky ooty

.....

2. For ¢y we have the following inequality:

— NE((v1,5)2) _ & (X1)2 (X1)2
Cn = —(N)2 = NP(B,;) > NE ((SN)2]1{SN2N}> > NE <W1{SN2N}>

N X\°
> —FE — ] 1
=9 ((SN) {X1>2,5N>N}>

Jensen’s inequality yields

N[ (X 2
5 _E (S—;]l{xl>2,SN>N})}
_ 2
_ NI (X X, >2,Sy>N|P(X, >2 Sy >N)
2 |\ Sy
N[ (X 2
> |E( 1| X1 22,8y > N ) (P(X, >2) - AY)
2 |\ Sy
since the X; are i.i.d. this is
J N [B(X, >2) - AY 2 (P(X, >2) — AN)?
-2 N B 2N

Let Ny be such that P(X; > 2) — AY > 0 for N > Ny. If we define
Al = mln{(]P’(Xl 2 2) - AN0)2/27 1C1, NN NOCNO}

then A; > 0 and p
chwl VN > 1
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3. Equation (43) yields

N7 )~ E((vin)ky - - - (VeN)ky)
o ke Fer NFEiFFhe—r ey

To prove (40) it therefore suffices to show

N N ((Xl)kl (X))

kr) = lim A A kr]l{SN>N}
N-voo Cy Sl thr 2

-----

K N{Sy < N}) =

77777

Since P(Sy < N) < AN and ¢y > A;/N, we have limy_ ]CV—NTIE”(Bk1
0. With (44) we obtain

. Nr (44) . N7 (X1)ky - (Xo)ke
1 P(B =1 F ! “1
A P (B pe) = lim ( O
N (XD (X)),
= Jim 2 (S

4. (41) is a special case of (40) with r = 1 and k; = 2 since in this case the left side of (40)
is equal to 1.
[l

We will need another estimation of ¢y for which the proof is a little technical.

Lemma 6.5. If u < oo, then there exists Ay > 0 such that

(X1)2
> -~ /=
o 2 AN (o Ry

for all large enough N.
Proof. We have

(X1)2 (X1)2
NE [ —~=1 > NE 1 1 _
( S2 {Sn=N} | = (X1 +2(N — 1)p)? {Sn2N} H{Xo++XN<2(N-1)u}

> NE ((X1 - éﬁ)“’_ 1)#)2) P(Xo 4+ Xy <2(N —1)pu) — NAY

with Markov’s inequality we get P(Xs + -+ Xy <2(N — 1)u}) > 1/2

N (X1)2 N 1 (X1)2 N
> —E|—2=—| -NA">N E —A
8 ((X1 + N)? - 322~ \ max{X? N2}

But there exists a ¢ > 0 such that
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for all N large enough:

E <—(X1)2 ) = P(X; = k)—k(k 1, i P(X, = k;)—k2 K

max{X? N2} N2 k2
k=0 k=N+1
N
1 P(X, < L)
2 LB =2 =
k=0

for L < N. We choose L such that P(X; < L) > 0 and we obtain the desired inequality for
all N > L with ¢ :=P(X; < L). This inequality yields

X1)2
FRSPY LY (C.
(= (i)
when N — oco. This means that for all N that are large enough we have
1 (X1)s
AN < E

~ 64p? (maX{X%, NQ})

With (41) we can find a ¢ > 0 such that

X )2 Cl (X1>2
> ¢NE (—1]1 > N E
e ( S {SM}) = a2 (wx{X&N?}

for large enough N. We define A; := #. O

Lemma 6.6. If Y is a positive random variable such that P(Y > k) is of reqular variation
with index —a < —k for some k € N, then E(Y*) < cc.

Proof. We have
E(Y*) = / k" 'P(Y > 2)dx = / ka* e (x)da
0 0

for some function of slow variation [ by (39). By Karamata’s theorem (Theorem D.3), we
have

/OO ZBk_a_ll([L')dl' ~ yk_al(y)
Y a—k

which tends to 0 when y tends to infinity by Proposition D.1. At the same time

Y
/ k" 'P(Y > 2)dx
0

is finite for every finite y, which yields the finiteness of [~ ka*"'P(Y > x)dx. O
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6.2 Proof of Theorem 6.1, 1.

By Lemma 6.6, if X satisfies (37) with a > 2, then E(X?) < occ.
We would like to use Proposition 5.5 to show convergence to the n-coalescent. So we need
to show limy o E((v1.3)3)/(N?eny) = 0. With Lemma 6.4 this is equivalent to

N X
lim —E <( 1) ]l{SN>N}) =0

N—oo CN 53

And since ¢y > A;/N by (42), it suffices to show that

. X
]};H;ONZE((S?,) 1{5N>N}) 0

We have
X1)3 X3
neg (X3 < N°E L
( Sy WN}) = (max{Xf, N3})
N-—-1 ]{/‘3 o
= N? (Z —P(Xi=k)+ > P(X; = k))
k=0 k=N
1 N-—1
=¥ EP(X, = k) + N’P(X; > N) (45)
k=0

The second term tends to 0 when N — oo since E(X?) < co. The first term also tends to 0:
Let L < N.

1 N-1 1 L—-1 1 N-1
_ — - 3 3
~ EP(X, = k) NZkP NZkP(X k)
k=0 k=0 k=L
L— N—-1
L LIET(X ) )
N; FX =)+ 3 KR B )

Since we can choose L arbitrarily large, this expression tends to 0 for N — co. Therefore we
proved the first part of Theorem 6.1.

6.3 Proof of Theorem 6.1, 2.

1. Under assumption (37) with a = 2 we have 1 < 0o (cf. Lemma 6.6). Therefore we can
apply Lemma 6.5. We will need a preliminary result: Under (37) with a = 2, we have

lim L)

=0 46
N—oo NCN ( )
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where [ is the function of slow variation satisfying P(X; > k) = k2l(k). This is
equivalent to limy_,o Ney /I(N) = oc.

(X1)
Ney Lemga 6.5 VA NE (max{Xf,zN2}> o N4, S o (k)oP(Xy = k)/N?

I(N)  ~ I(N) - [(N)
Lemma 6.2 z(le\Qﬁ ~N(N=1DP(X; > N+1)+ ig(k)z —‘(’k —1),) P(X; > k)
h=1 —2(k—1)
> z(le\?) <—N(N ~1)(N+1)72N+1) + /QN 20z — 1)P(X; > :c)dx)
> Ay (—N(N —1)(N + 1)—2“%;)1) + l(fv) /2N 2 (x — %m) x_2l(x)dx)
— A, (—N(N —1)(N + 1)—21(];2;)1) + l<]2v) /2N lf)dx)

The first term between the brackets tends to —1, and by Theorem D.3, the second term
tends to 400 when N tends to infinity. Since Ay > 0, this yields (46).

. To obtain the convergence of (II,, x([t/cx])) to the n-coalescent, it suffices to show that
. N ((X1)s
A o E (W“{SM} =0

(cf. the proof of Theorem 6.1, 1.). We use (45) to obtain

N-1

N_[((X 1 N

NE (@H{SNZN}) < > EP(X) = k) + —P(X; > N)
k=0

CN S?V - N2CN CN

For the first term we get

=

=00 (F— YPGB

1

N-1 Lemma 6.2
S OEP(Xi=k) < lim
k=0

N—oo NQCN

i 1
Nl—l?éoNQCN

i

< lim
~ Nooo N2CN

N—-1
/ 3(z + 1)2P(X; > o)da
0

. const 1 N 9
S ]\}1—1}100 N2CN + NQCN /1 B(x + l‘) P(Xl 2 x)dx

“2)  const 12NI(N) [V
< 1 NI(N
< St R, e/ V)
[(N) (6)

a2 =

Theorem p.3

and the second term tends to 0 as well:
N (N
lim 2P, > N) = Tim L) @9
N—oo CN N—o0o NCN

So the proof of Theorem 6.1, 2. is complete.
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6.4 Proof of Theorem 6.1, 3.

The following result is true under assumption (37) with a <1 < 2:

Lemma 6.7. If (39) is satisfied with 1 < a < 2, then

: 1 (X1)2 . M (X1)2
W B, = M) ((X1 + M)2> = 00" ((X1 + M)2> =aB@-a.q)

Proof. 1. We can express

G ((X()i)m)

in terms of
> pl=a(x)

lim oMte [ 2
Moo /L (@t Mp™

This means that the existence of the second limit yields the existence of the first limit,
and in this case the two are equal: We use Lemma 6.2 to obtain

(X1)2 ) . ( (k)2 (k—1)s )
E({—"=|= — P(X, >k
((X1+M)2 ; (k+M)? (k—1+M)? (X = k)
Let € > 0. We choose L large enough such that for k, M > L

M ooaMa'el(x) (k)2 (k—1)2 —a
(1 _6)/,€1 (z + M)3 de < ((k:+M)2 T k-1 +M>2) kAR)

<(1+6) / _21(‘11 ];l;f)dx

This is possible because the derivative of z(x — 1)/(z + M)? is asymptotically equal to
2Mz/(x + M)3 for M — oco. Hence

—1 oM
< (k)2 i (k )2 > k=0 k,—a/ z _dx
(k+M)? (k—1+M)? g1 (w4 M)3
for large M, and for large values of k£ we get

((k; f)z\24)2 N (k(_k1_+1)1\24>2> k%~ /:1 %dm

So finally with Theorem D.2:

(k)2 (k—1)q a k 2Mx' ()
((k:+ M2 (k—1+ M)2) kEUk) ~ /k_l (z + M)3 dr

For all L € N we have

0< lim M“i(( (K (k=1) 2)IP’(Xlzk:)

M—oo



since a < 2. So we obtain the two inequalities that confirm the statement that we want
to prove:

. (X1)2 > ) 1 /Oo z' ()
limsup M°E [ ——= | < limsup(1l + €)2M " ——dx
msup <<X1 e ) < lmsup(l o) L (@t M)

and
L (X1)2 L 1o [T xl_“l(x)
a > a IR S
I%Wm inf ME (—( T M liminf(1 — €)2M @ )3dx

2. With the substitution y = M /(M + z) we obtain

Hence

lim MGE(( (X1)2 )

M—ool(M) X, + M)2
M/(M+L) I(M(1—y)/y)
= lim 2M'fTep—1-e / 4T — g\t d
M5ee 0 v =) (M) Y

Now [(M(1—1vy)/y)/l(M) tends pointwise to 1. We want to exchange the limit with the
integral. We have

(MO -y)/y) (1- )P(Xl > M(1—y)/y)
)

L
y(1—y)'

On (0,1/2], (1 —y)/y is larger than 1, so P(X; > M(1 —y)/y)/P(X; > M) < 1. On
every compact subset of [1/2,00), [ is bounded away from 0 and oo (if lim, ., I(z) = 0,
then lim, ,,, P(X; > z) = 0 and therefore P(X; > x) = 0). So we can apply Potter’s
bound (cf. Proposition D.5) on [1/2,00) with some ¢ > 0 such that a + § < 2:

I(M(1— 5
y“(l . y)lfa ( <Z<M)y>/y> < y“(l . y)lfac«é (%y) — C«ay(l+a+5)fl(1 _ y)(Qfafé)—l

and this is integrable on [0, 1] (since its integral is CsB(a+ 0 + 1,2 —a — J)). So finally
we obtain with dominated convergence

a 1
J\}iinoolé\]{{)E ((X_f_)j—l)]\ZV) = 2/0 ¥ (1 —y)'*dy = 2B(a+ 1,2 — a)
_ 2F(a + 1DI'(2 —a) _ 2aF(a)F(2 —a) —WB2—a.a)
['(3) 2I'(2)
O
In both cases, a = 1 and 2 > a > 1, we would like to use Proposition 5.6 to show

convergence to the Beta(2 — a, a)-coalescent. Thus we need to show:

lim ¢y =0,
N—o00
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lim E((v1,n)2(v2,n)2)

=0
N—=o00 N2CN

and for all x € (0,1)

N y2—a 1(1 _ y)a—l
lim —P > N - d
N1~>Iréo CN <V1 N x) /[x’” y B(2 — a, CL) y

We will show in a series of lemmas that under assumption (37) with a € (1,2) we have

) CcN . “loy
lim = lim

N =N auTYB(2 —
A NP, S V) A Ty B2 -aa)

(since a € (1,2), this yields limy_,o ¢y = 0 by Proposition D.1),

- E((vn)2(rvan)2)
T Ney ! o
and for all x € (0,1)
N_ (X, 1 !
lim —P 1 > = a1 — ) ld 48
N . (SN {Sn>N} $) B2 —a,a) /x Yy (1—-y) Y (48)

With these lemmas it suffices to show

N N X
lim —P(yy y > Nz) = lim —P (811{5N>N} > x)
N

N—oo Cpy N—oo Cpy

Let x € (0,1) and let € > 0, ¢ < xz. On {Sy > N}, conditionally on Xj,..., Xy, v x has
the hypergeometric distribution with parameters (Xi, Sy, V). In Chvatal (1979) we find the
following bound for the tails of the hypergeometric distribution:

Let Z be hypergeometrically distributed with parameters (N, M, n). Then for all € > 0 we

have v
P (Z > (N + 6) n) < e~ 2%’

With the symmetry of the hypergeometric distribution and a small calculation this also yields

M
P (Z < (W — e) n) < g2’

We apply these bounds and the fact that limy ., N/eyP(Sy < N) = 0 since ¢y > A;/N and
P(Sy < N) < AN, Like this we obtain

N N
limsup—P(v1,x > Nzx) = limsup —E(P(vn v > No| Xy, ..., Xn)LsysnyLix, /sy>a—e})

N—oo CN N—ooco CN
N
< lim sup —IP’({SN >NN{X,/Sy >z —€})
N—o0
N X
= limsup —P (_l]l{SN>N} >z — (—:)
N—oco CN S
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and

N N
im inf — > —
thalo%ch]P)(Vl N > Nz) thﬁloréf CNE(IP(VLN > Na| Xy, .., Xn)LgsysniLix, /sy >atet)

= hmlnfﬁ P({Sy > N} N{X,/Sny >z +¢€})

N—oo Cpn

.. . N X
>
—h]\r[nmeN]P’<S LTisy>ny x+6)

Now we let € tend to 0 and obtain the equality of the limits.
Note that the same calculation works in the case a = 1 if we know ¢y — 0 and if we know
(47) and (48) for a = 1.

It remains to prove the mentioned lemmas.

Lemma 6.8. Under (37) with a € (1,2) we have

lim CN i Ne~tey
im —— im —
N—oo NP(X; > N) N—oo [(N)

Proof. We showed in Lemma 6.4 that

=u *aB(2 —a,a)

X
CN ~ NE <(S;) ]].{SN>N})

So is suffices to show that

N (X1)2
]\}IE)I;OZ(N)E< 5 ]l{SN>N}) =p *aB(2 —a,a)

We want to use Lemma 6.7. Let € > 0 and § > 0 such that (1 — §)u > 1. By the law of large
numbers

P((1—6)Nu< Xo+--+ Xy < (1+8)Np) >1—e (49)

for large enough N. For such N we have

(X1)2 (X1)2
E( 52 Lsy>ny | = E Sz) Lisy>nilixo++xp<(1-6)Nu}

+E <()S(2) Lixottxn>0- 5)Nu})
<@ (iyr) (oo amr)

<2 (i) +E (e 6 o)

Because [ is of slow variation, this yields

) N (X1)2
hgf;ipl( >]E( 52

a

1{5N>N})

. N (X1)2 (1 =0)Np) (X1)2
Shﬁfiipz<zv>4€E(<X1+N>2)*“l RN 5)NM)E<(X1+(1—5)NM)2)

Lemma 6.7

deaB(2 — a,a) + ((1 —0)p) “aB(2 — a,a)
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For N large enough that (49) holds, we also have

X X
E <(S—§)2]I{SNZN}> >E ((S;)Q1{X2+~~~+XN§(1+5)N;L})
N

(X1)2 )
(X1 + (L + )N p)?

> (1- 98

which implies

lim inf N )E ((Xl)z]l{sNzN}>

N—o0 l(N SJQV
DNy (e )
{4+ 6Np) \(Xi+(140)Np)?

1—€e)(1+0)u) “aB(2 —a,a)

> (1 =e)((1+0)n)

Lemga 6.7 (

so by letting €, § — 0 we get the desired limit. O
Lemma 6.9. Under (37) with a € (1,2):

lim E((v1,n5)2(r2,n)2)
N—o0 N2CN

=0

Proof. With Lemma 6.4 it suffices to show:

N ((Xq)2(X2)2
P (Tﬂ{&vw}) =0
We have
(X1)2(Xa)s (X1)2(Xa)s (X))
E|——1 <E =E|———————
( Sy vy | =" max{ X2, N2} max{X2, N?} max{ X% N2}

By Lemma 6.5 we know

(X1) < N
max{ X% N2} ) = AN
Since by Lemma 6.8 cy tends to 0 when N tends to infinity, we obtain

N? X1)o(X
limsup —E (—( 1)25 2)2
N—oo CN Sy

N2 CN 2 CN
1 < i = = li N =0
vz ) < e (5) =

Lemma 6.10. Under (37) with a € (1,2) we have for all x € (0,1):

N_ (X, 1 1
lim —P(=—1 >r)l=— 1= — )l

Proof. This proof is based on Lemma 6.8. Let x € (0,1). Let ¢ > 0, 6 > 0 such that
(1 —d)u > 1. For N large enough we have

Pl(1—6Nu< Xo+- 4+ Xy < (14+86)Npy]>1—¢
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So for such N:

X X

P —1]1{51\,2]\/}27} =P _1]1{SN2N}Z$ ﬂ{X2+"'+XN<(1—5)N,u}
SN SN
X

X1 Xl
<Pl — > P >
= (N_x>+ (X1+(1—5)Nu_x)

By taking the lim sup we get

) N X
limsup—P | ——1lisy>ny = T
N—oo CN SN B

. N Xy X;
<1 — [P | —= > P >
= e o (6 (N —x>+ (X1+<1—6>Nu—$>)

= limsupﬁ <65(N$)(Nx)a ! (1 - - 5)NM> <1L<1 B 5>Nu) _a>

N—oo CN - -

. [(N) _ x -
=1 @ —(1-=9
i sup 7 <€$ + (1 — )u) )
1 et 11—
Lemma 6.8 <€$ H Lo ( x) (1- 6)—11)

B(2 —a,a) a a T

We need a similar estimate for the liminf: For large enough N we have

X
P (S—lﬂ{sNzN} = l‘)
N

(1=-8)p>1 X,
> P S—ZI N{1—-0)Nu<Xo+ -+ Xy <(14+0)Nu}

> (1— )P (; - (ﬁ T x) (1= o)P (Xl > (1+ 5)N,L)

Thus

N_ (X
lim inf —P (_1]1{SN2N} > x)

N—oo CN SN

> liminf (1 — )1 (&(1 + 5)Nu) (&(1 + 5)Nu) —a

N—o0 CN

LN (e
—lﬂlgfmu (1—6)( " ) (1+49)

Lemma 6.8 1 1—2\" B
it 1—e)(1+06)°
aB(2—a,a) ( x ) (1= +9)

By letting € and 0 tend to 0 we get

1 N]P Xl]l > 1 1 1—2 ¢
im —P( — x| = -
Nooo oy \ Sy NN = B(2—-a,a)a \ =«
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But with the substitution z = (1 — y)/y, dz = —y2dy we easily see that

1/1—2z\" L .
—( )Z/yl (1—y)*'dy
a x .

6.5 Proof of Theorem 6.1, 4.

We will show in a series of lemmas that under the assumption (38) with a =1 we have

lim cylogN =1
N—oo

(in particular this yields limy ., ¢y = 0),

. E((vin)2(van)2)
i Ny =0
and for all z € (0,1)
. N_ /X, b,
R J— > —
1\}1_{%0 CNP <SN]I{SN2N} B l‘) /x vl

With these lemmas the case a = 1 is proven exactly as the case 1 < a < 2.
Note that under the assumption (38) with a = 1, there exist C’, C" > 0, such that for all
kE>1

C'k 7 <P(X;>k)<C'k! (50)
Lemma 6.11. Under (38) with a = 1 we have
lim cylogN =1
N—o00

Proof. With Lemma 6.4 it suffices to show

. (X1)2
]\lgnoo lOgN (NE <W1{5N2N} =1.

1. Let B > 0. We define Y; := 1x,<pn}X;. We will show that

. EM)

]\}I—Igo logN ¢
where C is the constant from P(X; > k) ~ Ck™!. Let 1 < L < BN. Then
00 BN
E(Y;) :/ P(Y; > z)dx = / P(BN > X; > z)dx
oBN 0
_ / (P(X, > z) — P(X, > BN))dx
0

L BN
= / P(X, > z)dx + / P(X, > z)dz — BNP(X, > BN)
0 L
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Since (50) implies P(X; > BN) < C”(BN)~!, we obtain

lim

L
> — p—
Jm ( / P(X, > z)dz — BNP(X, > BN)) 0

Let n > 0. If L is large enough, then we have for all k£ > L:

o1 — )t

1
L SPXi2a) <O+

Since the logarithm is a function of slow variation, we have

BN |
C
]\}'l—r>noo log NC/ _dx ]\}I—I}loo log N(log(BN) “logl)=C
By letting n — 0 we get
. E(Yy)
]\}I—I}clx) logN ¢

2. We will need a number of auxiliary inequalities: With Lemma 6.2 and (50) we see that

oo |BN|
var Yy < E(Y?) =) (K 1’)P(Yy > k) < ) 2kP(X) > k) <2C"BN - (51)

k=1 k=1

We will also need the following inequality

lim P ( max X; > BN) = lim 1— (1 -P(X; > BN))"

Nooo  \1<i<N N—00
(38) c\"
= ]\}I_I)I})O 1- (1 — W) =1—exp(—C/B) (52)

Let € > 0 and 0 < § < 1/2. We choose B large enough that the following condition (2a)
is satisfied and then we choose N large enough that the other conditions are satisfied:

(a) 1—e 9B < /4

(b) C(1—6)logN > 1

© |1 -E(G)] < 4

(d) |P(maxi<i<y X; > BN) — (1 — e~ “/B)| < ¢/4 and finally
)

() (8C"B)/(C25%(log N)?) < ¢/2

3. We evaluate the probabilities of two events that we will need in the proof: With (2c) we
obtain

Xo+ -+ Xn
P -1 > <P
(Fermen—1120) =(

+]P<maxX >BN>

1<i<N

Yot +Vy (Yot - -+Y¥y)| 0
CN log N CN log N -2
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We use Chebyshev’s inequality, (2a), and (2d) to see that this is
Yot -+ Yy [0\ 7 €
< 22T TN (2 -
—Var( CNlog N )(2) T3
with (51) and then (2e) we finally obtain

Xo+--+ Xy qlss) < 8C"BN(N —1)
CNlog N — ) 7 62C?N2(log N)?

The other event is {Xs + -+ + Xy < $Nlog N}:
C
P(Xp+-+Xy<oNlogN ) <P
with (2¢) and since § < 1/2:

SIP’(Y2+'“+YN— <Y2+"'+YN)‘>1)

CN log N CN log N
with Chebyshev’s inequality this is

N -1

= e g

and with (51) we get

N -1 32C"B
<

CINTlog N = CologNE Y

C
P <X2+---+XN < ENlogN> < 32C"BN

4. After this technical preparation we are now able to calculate the limit

. (X1)2
]\}gnoo log N (N]E (S—]Qv]l{sNzN}

We define the events

D, = {Xg—i—---—i—XNggNlogN}

(we showed in (54) that P(D;) < % for B and N large enough)

C
Dy = {ENlogN<X2—|—~-—|—XNgC(l—é)NlogN}

(53)
1| 29) < for e coongh

(B(D2) <P (

Dy :={Xo+ -+ Xy>C(1—-0)NlogN}
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So

(X1)2 (X1)2 (X1)2
E (S—sz]l{swv}) <P(D))E <—maX{X12,N2}> +P(Dy)E ((X1 TN log N)Q)

(X1)2
B <(X1 T C(1—0)Nlog N)?)

128C" B (X1)2 ) (X1)2
< E E
~ C2(log N)2 ((X1 + N)? e (X1 + £Nlog N)?
(X1)2
E
i ((X1 +C(1— 6)Nlog N)?
We use Lemma 6.7 with M = N, M = £Nlog N and M = C(1 —6)N log N to obtain

. (X1)2 , 128C" B 2 1
1 Nlog NE | —£21 <1 EE— — e
m sup NVlog (sjzv (swzmy | S lmsup o O GO G ¢
1
= 2%+ ——
“ti1 s

To evaluate the liminf we introduce
Dy :={C(1—-0)NlogN < Xy+---+ Xy <C(14+0)NlogN}
We calculated in (53) that P(Dg) < € for large enough N. With (2b) we get

E (();%)Q]IWWN}) 2 B(D)E ((X1 + C(l(i)simog N)2>

We use Lemma 6.7 with M = C(1+ 0)N log N to obtain

o . (XI)Q 1 1—c¢
- > — =
hNHSEileogNE( 52 Lsv=Ny ) 2 1 €>O(1+5)O 146
The proof is completed by letting €, — 0. O]

Lemma 6.12. Under (38) with a = 1 we have

lim E((v1,n5)2(r2,n)2)
N—o00 NZCN

Sketch of the proof. With Lemma 40 it suffices to show

N? X1)a2(X
—E (—( 1);2 2>21{SN2N}) =0
N

=0

lim

N—oo CN
We distinguish the events
C

D:={Xs+ - +Xny < ENlogN}

and D°. We showed in the proof of 6.11, (54) that there is a K > 0 such that P(D) < —2

(log N)?
for N large enough. We use Lemma 6.7 and Lemma 6.11, the rest is a more or less elementary
calculation. O
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Lemma 6.13. Under (38) with a = 1, we have for all x € (0,1)

N_ (X !
lim —]P’( 1]1{SN>N} > .Z‘) :/ Yy 2dy
Sn .

N—oo CN

Proof. The proof is similar to the last part of the proof of Lemma 6.11. Let ¢ > 0 and
0 < d < 1/2. Let Dy, Do, D3, Dy be as in the proof of Lemma 6.11. For large enough N we
have P(D;) < K/(log N)? for some K > 0 and P(D,) < ¢, exactly as in the proof of Lemma
6.11. So

X4 K X4 X
Pl 1 > < Pl—> + P >
(st =) < e (7 > 2) (Xr+%Nng‘”a

+P X1 >
X, +C(1—0)NlogN ="
With Lemma 6.11 and (38) we get

N X
lim sup—P (_1]1{SN>N} > x)

N—oo CN S
< limsup N log N
N—oo
K zCNlog N\ ™ 2C(1—0)Nlog N\ "
—_—— (N o e
(<1ogN>2C( ot () e (R

2-a), 1 1-z
T 1-6 =z

For large enough N we have P(D,) > (1 —¢). So

=€

. . N Xl . . X1

| f—P 1 > >1 fNlog N(1 —¢)P >

o info (SN (sw=m) f)— i inf N'log N(1 —¢) (X1+c<1+5>NlogN—f)
(38)

—1
2 lim inf N log N(1 - €)C (930(1+5)N10gN> _l-el-u
—00

1—x
By letting €, — 0, we obtain

N_ (X 1— !
lim —IP’( 1]]‘{SN>N} >x) = * :/ Yy 2dy

N—o0 CN SN

6.6 Proof of Theorem 6.1, 5.
Let (£(t) : t € [0,1]) be a stable subordinator of index a with Lévy measure
Ao(dz) = ax™* da

Let g be an asymptotic inverse of f(z) := P(X; > x). This is a positive function which diverges
to oo when N tends to infinity and which satisfies f(g(x)) ~ 1/x for z — oo (cf. Proposition
D.4). Let Z; > Zy > ... be the ordered jumps of . For all N, let Y; 5 > --- > Yy n be the
decreasing sequence of the values of X;/g(V), ..., Xny/g(N).
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Lemma 6.14. For all j € N: (Y1 n,...,Y;n) converges in distribution on R to (Zy,..
when N — 0.

A

Proof. Let 1 > --- > x; > 0 be given. We define x; := oo and by convention z5* := 0. We
define

= #{k:Yin € [2i,2i-1)} and
K; :=#{k: Zy € [x;,x;1)}

K; corresponds to the number of atoms on [0, 1] ® [z;,2;,-1) of a Poisson random measure
with intensity A ® A, where A is the Lebesgue measure on [0, 1]. Therefore K; has a Poisson
distribution with parameter A,([x;,z;—1)) = (z; ¢ — x;%). Also, all the K; are independent.

)

(LY,...,LY,N— LY —---—LY) has a multinomial distribution with parameters (N;py v,
Cey pj,NJ?N) Where pin = ]P)(Xl/g(N> I~ [:Ci’l'ifl)) and PN ‘= 1 _pLN — e _pj,N' We have
PiN = (Xl/g(N) zi) = P(X1/g(N) = @ 1) = flg(N)z;) = f(g(N)zi-1)

f(g < Dy = flg(N))a sy ~ N7H " — 2, and
py T = (L= P(X fg(N) 2 @)V T~ (1= N )Y e
So for all (ny,...,n;) € N/

N! n N—nj—--—n;
P(Livznly,.[/‘;v:n]) - ' - 0, pl’l pJNpN ' !

We have Y; y > z; if and only if LN 4.+ LN >4iand Z; > x; if and only if K;+---+ K; > i.
So

lim (Vi y > 21,..., Yy > 2;) = lim P(LY + -+ LY > i, 1<i <)
N—o0 N—oo

=P(K,+---+K;>i,1<i<j)
—P(Z > m1,..., Z; > @)

With the remarks from the section "Euclidean Space" of Chapter 1, 3. of Billingsley (1968)
(p. 17) we get the convergence in distribution. ]

Lemma 6.15. For all j € N: When N — oo, (YLN,...,Y}’N,ZZLH Y n) converges in
distribution on R to (Zy,..., 725,377 Z;).

Proof. Let d be the Prohorov distance on the space of probabilities on R7*!. d is defined as

d(P, Q) = inf{T’ >0: P(A) < Q(A”) + 7 and Q(A) < P(AT) 4+ forall Ae B(Rj+l)}
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where A" := {x € R/ : |y — x| < r for some y € A}. Convergence in distribution on R/*! is
equivalent to convergence of the distributions in the Prokhorov distance (cf. Theorem 3.3.1
of Ethier and Kurtz (1986).)

Let for M < N Qu n be the distribution of (Y1 n,..., YN, Zﬁjﬂ Y; v) and let @y be the
distribution of (Yi n,...,Yjn, Zi]ijJrl Yin). Let € > 0. We choose a B(e) > § > 0 where B(e)
is a certain bound depending on e, which will be found later. For large enough M we have
P(Zy > 6) < €/4. We showed in the preceding lemma that Y); y converges in distribution to
Zyr. Portmanteau’s theorem (cf. Theorem 3.3.1 of Ethier and Kurtz (1986)) yields

limsup P(Yy n € [0,00)) < P(Zy > 6)

N—oo

Therefore we have for large enough M and N P(Yy, n > §) < €/2. Hence

N
N
= (Z Yz‘vN]l{Yi,N<6}> =" (X1 ix,<g(v)a})

i=1
N

= — P (Xilyx,<gvysy = o) dx
g(N)/o (X1 Lgxi<ov) 2 @)

N g(N)é
< 9N /0 x~ U (z)dx

By Karamata’s theorem (Theorem D.3),

l1—a 1—a
L 9WN)Of(g(N))o="  g(N) 6~
1—a N 1—a

/g<N><s L2z ~ (9(N)9)'U(g(N)3) _ g(N)3f(g(IN))

So for large enough N

N
N N) §'-@ §le
E (ZY;,NH{K-WQS}) < W<1+E)%1—a =(1+¢) -
i=1

With Markov’s inequality we obtain

N N
P ( Y Yin > 6) <PYun>6)+P <Z Yinly, v<oy 2 6)

i=M-+1 =1
e 14edt@

_2+ e 1—a

for large enough M and N. For the right B(e) and for 6 < B(e) we therefore obtain

N
P(Z Yi,NZE)Se

i=M+1
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Hence for all A € B(R/™!):

M
Qun(A) =P ((YLN,...,Y}’N, Z Yin) € A)

i=j+1
N N
<P (m,N,...,Yj,N, > Yin) eAﬁ) +P< > Yi> e> < Qn(A) +e
i=j+1 i=M+1

and analogously Qn(A) < Qun(A°) + €, hence d(Qn, Qun) < €.
Let P be the distribution of (Z,. .., Z;, Zfijﬂ Z;) and let Py be the distribution of (Z;,
ZA{]JA Z)
Smce P _;1Zi converges a.s. (and therefore also in distribution) to 7
M — oo, we have for large enough M d(Py, P) < e.
For all M, (Yin,...,Yu n) converges in distribution to (Zi, ..., Zy) according to the last
lemma. Hence

imjt1 Z; when

M M
Yin,..., YN, Z Y; n) converges in distribution to (Z,. .., Z;, Z Z;)
i=j+1 i=j+1

and for N (depending on M) large enough we have d(Qu ., Pu) < €.

We thus choose M large enough such that P(Zy; > §) < €/4 and such that d(Py, P) < e.
Then we choose Ny large enough such that every N > N, satisfies all the other conditions
that we needed. So for all N > Nj:

d(@Qn,P) < d(Qn, Qun) + d(Quin, Pr) +d(Pr, P) < e+ e+ e =3¢
0
We define W; := Z;/ > Z; for all i > 1. So (Wy, W, ...) has the PD(a, 0) distribution.
Lemma 6.16. When N — oo,

Y, Y,
< LY EEE\CLE 0. .. > converges in distribution on A to (Wy, Wa,...)
Zz 1 7/ Zz 1 7/
Proof. We just showed that for all j,
N
Yin,. ... YnN, Z Y; n) converges in distribution to (Z, .. Z
i=j+1 i=7+1
We define
; ; T ZT;
h:RIMT SR (24,...,x; H( s J )
( #+1) T1+ .., Tj4 r1+ Tjt+1

h is continuous on RN\ {0}. But P(Z; +--- + Z; + 3=, Zi = 0) = 0. Therefore the
continuous mapping theorem (Corollary 3.1.9 in Ethier and Kurtz (1986)) implies that

N
h(Yin,..., YN, Z Yi n)) converges in distribution to h((Z, .. Z
i=j+1 i=j+1
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Hence we have the convergence in distribution of

Yin Y;n
Zi]\; YLN’ ’ Zz]\; Yin
for all j. But the functions on A that only depend on a finite number of coordinates are con-
vergence determining (cf. Theorem 3.4.5 in Ethier and Kurtz (1986), take e.g. the coordinate

projections as strongly separating subset). Therefore we have the convergence in distribution
on A. O

> to (Wy,..., W)

Lemma 6.17. For allr € N and ky, ..., k. > 2 we have

) ., Xk, - (X )k,
lim N'E << 1)in ++<k )i ]I{SNZN}> = Z E(WZ’?VT/@’?)
N—roo S]Vl " 114yl =1

all distinct

Proof. We have

v (XD by - (X0 )k, (XD - (X )k,
N ( 15’;+---+kr Lisyzny | ~ (N),E 15£1+---+kr Lisy>ny
N N

N

(X kg - (X3, g,
- Z E( 1Sk1+~-~+kr Lisyzny
N

Bl yeeytp=1

all distinct

and
. (X -+ (X2,
. i1 )kt - i ) kr
]\}1—1}100 Z E < Shrt s ]l{SNZN}>
01 yeeyip=1
all distinct
N Xk X
s IR
=lim > B Lisem
i1yenyip=1 N
all distinct
since
N
E (Xil>k1 R (X’ir)kr ]]. ]].
Z g1ty {Snv2N} X, >N/, 1<<r}
i1yeenyir=1 N
all distinct
N Xk1 Xkr
O el | 1
~ Z w {SN2N}HX >NV 1<<r}
Bl yeeytp=1 N
all distinct
and since
N
E (Xil)kfl R (Xir)kr 1 ]l
Z Gh1+Fky {Sn>NI{X;, <N1/4y
01 5eenyipr=1 N

N 1/4 k1 N ' ko ) kr
(%) 2 =) ()
= N LT SN SN
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and this inequality remains valid if we replace 1; X, <N1/4} by Lyx, <ni/ay-
J
Further

N k k N k k
. Xk X | Xk Xl
]\P—I;%o Z E < GhitEh ]1{5N>N}> - 1\}1—{20 Z E (W)

i1yein=1 i1yeyin=1

all distinct all distinct

since by Lemma 6.3 P(Sy < N) < AN and hence

XPo Xk N
lim Z E Sk1+ "y ]l{SN<N} < ]\}1_1;1{1)0 N'AY =0

N—o0
01 5eenyir =1

all distinct

So

N k k
(XD (X Xk Xk
i ]E< S sz = Z_l B\ g

all distinct

N k k

}/; 1 Y; T

S 3 m(( e ) e )
N—oo . &~ Yin+Yyn Yin+Yyn

all distinct

We introduce the function

o
f:A=R (x,29,...) — Z x?ll...xf:
01 yeeytp=1
all distinct
By Lemma 6.16 it suffices to show that f is continuous and bounded to obtain the desired
convergence. Of course every continuous function on A is bounded, since A is compact. And
the continuity we already showed in the proof of Lemma 3.4. [

Now we can combine these lemmas to complete the proof of Theorem 6.1, 4.

We define the measures ©, and =, as in Theorem 6.1: O, is the probability on A that
corresponds to the PD(a,0) distribution and Z,(dz) := Y777, 250,(dx). To obtain the con-
vergence of (II,, y(m) : m € Ny) to a discrete time =,-coalescent with values in P, we use

Theorem 5.1. Thus we need to show:
1. limy_ ey =c¢>0
2. Forallre N, ky,... k. > 2

. E((Vl N)k .. VrN Ky a 9
]\}1_{1})0 Nkljr o — / Z x ...xir/ij:a(dx)
j=1

i17 e Fir

Under assumption 1 we already proved condition 2: In this case we obtain from Lemma 6.4

 E((n)ky - (0 n)ky) e (((XDky - (X,
]\}5{1)0 Nkt Fkr—r - ]\][-L)II;ON E S]/v+~~-+kr ]l{SNZN}
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with Lemma 6.17 this is

) . X)ky o (Xp)g,
lim N'E (( 1?Sigk1+.“£k7, )i ]l{SN>N}) = Z ]E(M/lel ce Wz]ir)
N , _

N—oo

all distinct

- Z / 2O, (dr) = Z / y ;/irciEa(dx)

..... ir=1 11,..,0p=1

all distinct all distinct

To prove the condition 1 and to calculate the transition probabilities, we will need a result of
Pitman. This is Proposition 9 in Pitman (1995): Let II be a random partition in P, whose
distribution is given by the paint box mixture corresponding to ©,. Let ki,..., k. > 2 such
that k1 + -+ k, = n and let 7 € P, be the unique partition with blocks {1,... ki }, {k1 +
oo ki + k), {ki+ - +ka+1,... ki +---+ k. }. Then

(11 =) = - T = e

where [z]o ;=1 and [z]; ;= z(z +1)...(z + k — 1) for k£ > 1. On the other side we obtain
from the paint box construction:

P(RJI=m)= >  EWr.. Wk
i1 yeyir=1

all distinct

Now it is easy to see that limy_.., cxy > 0: We use Lemma 6.4 and Lemma 6.17 to obtain
lim ¢y = lim NE @]1 SuSN :iE(WZ):IP’(RQH:{l 2})=1—-a>0
N—oo N—oo 812\7 {Sv=N} — ¢ ’

Thus (II,, y(m) : m € Ny) converges to a discrete time Z,-coalescent with values in P,. The
transition probabilities are given by

pb;kl,...,kT;OZ/ Z x Zx = (dx) / Z zr ...xf:@a(dz)

i1 7 Fir i1 F - Fir
r—1
o kl k'r‘ o a (T - ].)
= Z EW3 .. W) = WHH — alp—1
117 Fly i=1

To calculate the transition probabilities for s > 0 we will need the exchangeable probability
function of II. This is a function on the space of finite sequences of positive integers. For
ki,...,k. > 1 let ™ be a partition of ky + - -- 4+ k, with blocks of respective sizes ki,..., k..
Then

a1 ?" —1)!

In Proposition 10 of Pitman (1995) it is shown that

p(ky, ...k, Zp kiy .o ki ks + L ki, k) (ke ke 1)
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For ky,..., k. > 2 we define ps(kq,..., k) :==p(ky,..., k-, 1,...,1). So
——

Dot (kry oo k) = ps(ber, . ke Zps (kiy ki ks + 1 ki, k)

- Sps—l(k17 ceey k?"a 2)

and this is the same recursion that we have for the py,  x..s (cf. the remark in the proof of
Theorem 5.1). Since pyg,... k.0 = po(k1, ..., k), we therefore have

a s r 45— 1)
N (= T | LR

J=1

T

r+sl7,,+s_1
= Hk‘—a
7j=1

(b—1)!

forall b,r € N, s € Ny, ky,..., k. >2suchthat b=k +---+ k, + s.

Appendix

A Poisson Point Processes

Let (E, &) be a Polish space, equipped with its Borel o-algebra.

Definition A.1. A random measure on E is a map v : 2 x £ — R, such that
1. Forallw € Q, v(w,.) is a measure on (E,€E).
2. Forall A€ &, v(.,A) is a random variable.
Let o be a o-finite measure on F.

Definition A.2. A Poisson random measure of intensity p is a random measure M on
E such that for all A with u(A) < co we have

A k
P(M(.,,A) =k) = e_“(A)% for all k € Ny and
ifANB=0, M(.,A) and M(., B) are independent.

Now let i be a o-finite measure on £ and let A be the Lebesgue measure on R, . Let M
be a Poisson random measure on R, x E of intensity A ® p. With the definition of a Poisson

process that is given in Revuz and Yor (1999), Chapter XII. Definition (1.3), it is easy to see
that for all A € € with p(A) < oo,

MAw) == M(w,[0,t] x A)

defines a Poisson process with intensity u(A). Since p is o-finite, we therefore have M ({t} x
FE) € {0,1} a.s. Since E is Polish and £ is its Borel o-algebra: If M ({t} x E) =1, then there
exists © € E such that M({(¢,z)}) = 1.
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Now we are able to define a Poisson point process of intensity p: Let 6 ¢ E be a point
that does not belong to . We define

(6 iEM{t x E)=0
elt) := { v, if M({(t2)}) =1

It is easy to see that a Poisson point process (e(t));>o satisfies for all s > 0:

(e(t + ))iz0 AL (e(t))o<t<s and (55)
(e(t+ $))i>0 =~ (e(t))t>0 where ~ denotes equality in law. (56)

Let A € & such that u(A) < oo and let B C A be a Borel subset of A. Let Ty := inf{t >
0:e(t) € A}. With the elementary properties of exponential random variables we obtain

P(e(Ta) € B) = u(B)/u(A) (57)

B Subordinators

We consider a measure A on (0, 00) that satisfies

/ (IAz)A(dz) < o0 (58)
(0,00)
Let (e(t),0 <t < 1) be a Poisson point process on [0, 1] with intensity A. We define

Gi= > els) teo1]

0<s<t:e(s)#d

(&,0 <t < 1) is called a subordinator and A is its Lévy measure. We remark that this
is not the most general form of a subordinator. This special case is also called pure jump
subordinator.

The condition (58) assures that & is finite. It is easily verified that (&) is an increasing
process with independent and stationary increments, hence it is a Lévy process. With the
Lévy-Khintchine formula we obtain the Laplace exponent of (&) (cf. Bertoin (1996), p. 72):

E(e~%t) = exp(—t®(q)) where

D(q) = /( (1))

On the other side, this exponent determines the law of the subordinator.
Note that because of condition (58), for x > 0 there is only a finite number of jumps of
(&) of size > x. Therefore we can order the jumps of (&) in decreasing order: a; > as > ...

C Martingale Problems

Definition C.1. Assume we are given a Polish space E, a distribution v on E, and an
operator

A: B(E) 2 D(A) — B(E)
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where B(E) denotes the space of bounded measurable functions on E. We call a process
(X :t > 0) with values in E a solution to the (A, v)-martingale problem if and only if

XO ~ vV
and for all f € D(A) the process

t
fex) = [ ards, 1z
0
is a martingale with respect to the filtration
Fii=0(Xs:s St)\/a(/ h(X,)du:s <t/he B(E))
0

We say that there is uniqueness for the (A, v)-martingale problem if any two solutions
have the same finite-dimensional distributions.

Example C.2. Let X be a Markov process with starting distribution v and with infinitesimal
generator G. Then X is a solution to the (G, v)-martingale problem. Cf. Ethier and Kurtz
(1986), Proposition 1.7 of Chapter 4.

Proposition C.3. Let E be a Polish space and let A be an operator on B(E). Suppose that
for every distribution v on E the one-dimensional distributions of the solution of the (A,v)-
martingale problem are uniquely determined. That s, for every two solutions X and Y of the
(A, v)-martingale problem and for every t > 0 we have

Xt:}/t

where ~ denotes equality in law. Then any two solutions X and Y have the same finite-
dimensional distributions, and any solution X is a Markov process with respect to the filtration
(F). If X and Y are two solutions with cadlag paths, then they have the same distribution on
D([0,00), E) since from Proposition 7.1 in Chapter 3 of Ethier and Kurtz (1986) we obtain
easily that the distribution of a process on D([0,00), E) is determined by its finite-dimensional
distributions.

Proof. Cf. Theorem 4.2 of Chapter 4 in Ethier and Kurtz (1986). O]

Example C.4. Let £ := {1,..., N} and let A be any operator whose domain includes all
functions on E. Let v be any distribution on E. Then the (A, v)-martingale problem has at
most one solution (i.e. any two solutions have the same finite-dimensional distributions): Let
f be a function on E and let X be a solution to the (A, v)-martingale problem. Then

B (X ) = S060 = [ AT+ B (/ AfCX)dol )

t+s
5+ [ ABGG) Fdu
t
And this integral equation has a unique solution
E(f(Xers)IFe) = e f(X0)

In particular we have

E(f(X,)) = / ¢4 £ (y)w(dy)

E
which shows that the one-dimensional distributions of any solution are uniquely determined
which by Proposition C.3 implies the uniqueness of the solutions.
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D Regular Variation

A function f: R, — Ry is said to be of regular variation with index a € R, if for any
>0

. f(C) e
B w ©

If a = 0, then f is said to be of slow variation. In particular, every function f of regular
variation with index a can be written as

flz) = 2% f(x) = 2°1(z)

(59)

for > 0. l(x) := 7% f(x) is a function of slow variation:

lim [(Cx) ~ lim C %z~ f(Cx)

T—00 l(x) T—00 [L'_af(ﬁj‘>

=1

Proposition D.1. Ifl is a function of slow variation, then lim, . z*l(z) = oo for all a > 0,
and lim, o 2%l(z) = 0 for all a < 0.

Cf. Proposition 1.3.6 of Bingham et al. (1989).
In fact, for functions of slow variation the convergence (59) is uniformly in C:

Theorem D.2. Let | be a function of slow variation. Then for any compact set K C (0,00)
we have

lim sup H(Cx)

=1
T—r00 CceK l(x)

One of the most useful results for functions of regular variation is Karamata’s theorem:

Theorem D.3 (Karamata). Let [ be a function of reqular variation that is bounded on each
compact interval. Then we have for all K > 0

1. Fora > —1

v ot (z)
“UNy)dy ~ ————=
/Ky(y)y e

2. Fora=—1, [ 1(y)y~'dy is of regular variation and

1 1
—/ @dy—ﬂbo,x—ﬂ)o
Wz) Jx vy

3. Fora < —1, f;o y*l(y)dy converges when x tends to infinity, and

00 a+1
/ y“l(y)dy ~ x—l(? T — 00
T —a —

This is shown in Bingham et al. (1989), Proposition 1.5.8 to 1.5.10.
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Proposition D.4. If f is a function of regular variation with index —a for some a > 0, then
there exists an asymptotic inverse g of f. g is of reqular variation with index 1/a and
satisfies

Flo(e)) ~

This is Theorem 1.5.12 in Bingham et al. (1989).

Proposition D.5 (Potter’s bound). Let [ be a function of slow variation that is bounded away
from 0 and from oo on every compact subset of [K,00) for some K > 0. Then for every § > 0
there exists a constant Cs such that

% < Csmax (3)6 (g) 76

forall z,y > K.
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