On the number of simplicial 3-spheres and 4-polytopes with \(N \) facets

Günter M. Ziegler
(joint work with Bruno Benedetti)

1. Question

Is the number of combinatorial types of simplicial 3-spheres on \(N \) facets bounded by an exponential function \(C^N \)?

This question is fundamental for the construction of a partition functions for quantum gravity [1], where space is modelled by a 3-sphere glued from regular tetrahedra of edge lengths \(\varepsilon \), and one is interested in the limit if \(N \to \infty \), which corresponds to modelling space by triangulations by regular tetrahedra of edge lengths \(\varepsilon \to 0 \).

2. Related

A related question asks for the number of simplicial 3-spheres and 4-polytopes on \(n \) vertices. Here it is long known that there are only exponentially many polytopes [5], while there are more than exponentially many spheres [11].

3. Local constructibility

In the lower-dimensional case of simplicial 2-spheres, we have the same count for 2-spheres and for 3-polytopes with \(N \) facets, due to Steinitz’ theorem. The answer is asymptotically of the order of \(\left(\frac{27}{256} \right)^{N/2} \), according to Tutte [12].

An elementary approach to this case, which also gives an exponential upper bound and invites for generalization to higher dimensions, first counts plane “trees of \(N \) triangles” (which correspond to triangulations of an \((2N + 1) \)-gon, so there are less than \(2^{2N} \) of these), and then gluings on the boundary, which amounts to planar matchings in the exterior (which again yields a factor of \(2^{2N} \)).

In 1995 Durhuus and Jonsson [3] introduced a concept that generalizes this approach: A simplicial 3-sphere is locally constructible (LC) if it can be obtained from a tree of tetrahedra by successive gluings of adjacent (!) boundary triangles. They showed that there are only exponentially-many LC 3-spheres.

4. Hierarchy

We link the LC concept with the notions of shellability and constructibility that were established in combinatorial topology [2], and thus obtain the following hierarchy for simplicial 3-spheres:

\[
\text{polytopal} \Rightarrow \text{shellable} \Rightarrow \text{constructible} \Rightarrow \text{LC}.
\]
5. Main Results

Theorem 1. Every constructible simplicial sphere is LC.

This result establishes the hierarchy above. We also have an extension to simplicial d-spheres, $d \geq 2$. It depends on a simple lemma, according to which gluing two LC d-pseudomanifolds along a common strongly-connected pure $(d-1)$-complex in the boundary yields an LC d-complex.

Theorem 2. There are less than 2^{8N} LC simplicial 3-spheres on N facets.

This result slightly sharpens an estimate by Durhuus and Jonsson. We also extend it to LC d-spheres.

Combination of Theorem 2 with the hierarchy (Theorem 1) yields that there are only exponentially-many simplicial 4-polytopes with a given number of facets. (This answers a question by Kalai; as pointed out by Fukuda at the workshop, this may as well be derived from the fact that there are only exponentially many simplicial 4-polytopes on n vertices by [5].)

More generally, for fixed d we get that there are only exponentially-many shellable d-spheres on N facets. This is interesting when compared with the studies of Kalai [7] and Lee [8], which showed that for $d \geq 4$, there are more than exponentially many shellable d-spheres on n vertices.

Theorem 3. If a simplicial 3-sphere S contains a triangle L that is knotted such that the fundamental group of its complement in S has no presentation with 3 generators, then S is not LC.

This result is derived from the fact that if S is an LC 3-sphere and Δ is a facet of S, then $S \setminus \Delta$ is collapsible. By a result by Lickorish [9] this implies that the fundamental group of $S \setminus L$ has a presentation with at most 3 generators.

Combined with the known constructions of simplicial 3-spheres with badly-knotted triangles (which go back to Furch [4]), this yields that not all simplicial 3-spheres are locally constructible. This solves a problem by Durhuus and Jonsson. More precisely, spheres with a knotted triangle are not constructible by [6], but if the knot is not complicated, they can be LC (this we derive from [10]).

The basic question about the number of simplicial 3-spheres with N facets remains, as far as we know, open.

References

