Logo der Freien Universität BerlinFreie Universität Berlin

Fachbereich Mathematik und Informatik


Service-Navigation

  • Startseite
  • Diskrete Geometrie
  • Impressum
  • Datenschutz
DE
  • DE: Deutsch
  • EN: English
Hinweise zur Datenübertragung bei der Google™ Suche
Fachbereich Mathematik und Informatik/Mathematik/

Arbeitsgruppe Diskrete Geometrie

Menü
  • Projekte

    loading...

  • Mitglieder

    loading...

  • Lehre

    loading...

  • Termine

    loading...

  • Neuigkeiten

    loading...

  • Stellenanzeiger

    loading...

  • Seminar

    loading...

  • Events

    loading...

Mikronavigation

  • Startseite
  • Mathematik
  • Arbeitsgruppen
  • Diskrete Geometrie
  • Projekte
  • ERC Advanced Grant Project
  • Publications
  • Published
  • Turán numbers for K(s,t)-free graphs: topological obstructions and algebraic constructions (extended abstract)

Turán numbers for K(s,t)-free graphs: topological obstructions and algebraic constructions

Pavle Blagojević, Boris Bukh, Roman Karasev – 2011

Focus Area 3: Topological connectivity and diameter of Discrete Structures We show that every hypersurface in $\R^s\times \R^s$ contains a large grid, i.e., the set of the form $S\times T$, with $S,T\subset \R^s$. We use this to deduce that the known constructions of extremal $K_{2,2}$-free and $K_{3,3}$-free graphs cannot be generalized to a similar construction of $K_{s,s}$-free graphs for any $s\geq 4$. We also give new constructions of extremal $K_{s,t}$-free graphs for large $t$.

Titel
Turán numbers for K(s,t)-free graphs: topological obstructions and algebraic constructions (extended abstract)
Verfasser
Pavle Blagojević, Boris Bukh, Roman Karasev
Datum
2011
Quelle/n
  • http://www.sciencedirect.com/science/article/pii/S157106531100093X
  • http://arxiv.org/abs/1108.5254
Erschienen in
Electronic Notes in Discrete Mathematics 38 (2011) 141-145, The Sixth European Conference on Combinatorics, Graph Theory and Applications, EuroComb 2011
Art
Text

Links

  • Arbeitsgruppen - Wiki

Termine

spinner

Neuigkeiten

spinner

Seminar

Service-Navigation

  • Startseite
  • Diskrete Geometrie
  • Impressum
  • Datenschutz

Diese Seite

  • Drucken
  • RSS-Feed abonnieren
  • Feedback
  • English