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Introduction

A K3 surface X over an algebraically closed field k is a connected smooth proper surface
which satisfies ωX := Ω2

X/k
∼= OX and H1(X,OX) = 0. For the Hodge numbers we have

h0,2 = h2,0 = 1 and h1,1 = 20. In characteristic zero the Hodge Chern class injects the
Néron-Severi group into H1(X,Ω1

X) and its rank is therefore bounded by 20. In positive
characteristic, the crystalline Chern class injects the Néron-Severi group into the slope 1 part
of crystalline cohomology and it can happen its image generates the whole W (k)-module
H2

crys(X/W ). In this case the rank of the Néron-Severi group of X is 22 and we say that it
is (Shioda) supersingular. It was conjectured by Artin et al. that supersingular K3 surfaces
are unirational (since all the examples they had were so). The aim of this seminar is to
understand the proof of the following recent result of Liedtke:

Theorem ([Lie15b]). Supersingular K3 surfaces in positive characteristic ≥ 5 are unira-
tional.

Lieblich also announced a proof of this result, see [Lie14], but we will follow the approach
taken in [Lie15b]. Notice that for a smooth unirational variety in characteristic 0 one
always has Hi(X,OX) = 0, for all i ≥ 1. Therefore a K3 surface in charateristic 0 can
never be unirational since we have H2(X,OX) ∼= H2(X,ωX) = H0(X,OX). Whereas the
unirationality in positive characteristic only implies Hi(X,WOX)/torsion = 0 for all i ≥ 1.
Actually we will see in the seminar that for a supersingular K3 surface, H2(X,WOX) is an
infinitely generated W (k)-torsion module.

We will spend some time to understand the methods and results which are fundamental
to understand K3 surfaces in positive characteristic. Tools that we need are a basic under-
standing of crystalline cohomology, formal groups, in particular the formal Brauer group of
Artin-Mazur, their Dieudonné modules, F -crystals and their slope decompositions. Under
the classical and fundamental results that we will discuss are the Rudakov-Shafarevich van-
ishing H0(X,Ω1

X) = 0 (in characteristic 0 this is a direct consequence of Hodge symmetry,
in positive characteristic it is some work), Illusie’s refinement of the Igusa-Artin-Mazur in-
equality, maybe also the Theorem of Rudakov-Shafarevich that supersingular K3 surfaces
always have potential good reduction and Ogus’ theory of K3 crystals culminating in his
crystalline Torelli Theorem for supersingular K3 surfaces, which says that such surfaces
are up to isomorphism determined by their K3 crystals. After discussing this fundamental
background material we will try to understand Liedtke’s proof in detail.
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The Talks

1.K3 surfaces-basics (15.10.)

Give the definition and first examples of K3 surfaces and compute first invariants, following
[Huy, Ch 1, 1.,2. ]. In particular prove Prop. 2.5 and the formula c2(X) = 24 in [Huy, 2.4].
If time permits you can compute the Hodge diamond in characteristic 0, but we will do this
over an arbitrary field later (after we proved the Rudakov-Shafarevich vanishing).

Fabio

2. Overview of crystalline cohomology and de Rham-Witt (22.10.)

Shortly describe the Witt vectors and the construction and the main properties of crystalline
cohomology. Say a word on the de Rham-Witt complex and its relation with crystalline
cohomology. You should cover the material from [Lie15a, 1.4, 1.5], don’t forget to include
Exercise 1.7 and Example 1.8 of loc. cit.. Some more details (for which we won’t much
time) can be found in [CL98] and [Ill94].

Pedro

3. Formal groups and Dieudonné modules (29.10.)

Give an overview of formal groups and their Dieudonné modules following the presentation
in [Fon77]. The numbering in the following refers to [Fon77]; the case of an algebraically
closed ground field suffices, so please restrict to this situation if it simplifies the presentation.
Here are some details what should be covered: Define a formal k-group (with k a field)
as in I, 5.1. Give the following example: if G is a commutative k-group scheme then
Ĝ(R) := Ker(G(R) → G(Rred)), R a finite k-algebra, defines a formal k-group which is
called the completion of G along the zero section. Then give I, Prop. 6.6. Following I,
§7, explain that over a perfect field k a formal k-group is a product of its étale and its
connected part (see top of p. 47). Say a word on Frobenius and Verschiebung and how
to use them to define connected and unipotent formal k-groups, see I, 7.4-7.6. Then I, §9
Thm 1 and 9.6 and 9.7. Introduce the functor M (and if time allows also G) and all the
necessary notation from III, §1, 1.1-1.3. Then go through III, 6.1, in particular define the
notion of p-divisible group (= Barsotti-Tate group) and the notion of height. State the
main theorem of Dieudonné theory for smooth p-groups: III, Prop. 6.1 (one also gets that
the unipotent smooth formal groups correspond to those Dieudonné modules on which the
Verschiebung acts topologically nilpotent). Conclude by saying that a 1-dimensional smooth

connected formal k-group (k = k̄) is either equal to Ĝa or is a p-divisible group which is
uniquely determined by its height (see e.g. [Zin84, V, Thm 5.33], but the point of view
is dual to Fontaine). As a final remark, say that the Dieudonné module of the p-divisible
group lim−→n

A[pn] associated to an abelian variety is equal to H1
crys(A/W ), see e.g. [Ill79, II,

Rem. 3.11.2].

Lei

4. The formal Brauer group (5.11.)

Define the formal Brauer group following Artin-Mazur [AM77] (the numbering in the fol-
lowing refers to this article). Define the deformation sheaf Φq(X/S,E) as in II, (1.4), give
the Main examples and Prop 1.7. Then jump to II, 4., explain Cor. (4.1) and (4.2) and
give the definition of the formal Brauer group. Note if X is a K3 surface over k = k̄, then
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the formal Brauer group of X/k is a smooth connected formal k-group. Explain the sheaf
of p-typical curves on E, TC(E) as in I, 3. (see also [Fon77, V, 3.3], where TC = CT ).
Artin-Mazur then write D instead of TC but please stick to the TC notation. Then explain
that in the case X = Spec k, then TC(E) is kind of dual to the Dieudonné module M(E)
from the previous talk, see [Fon77, V, Prop 3.2] and that it is really dual if E is a p-divisible
group, see [Fon77, Prop 3.4]. Give II, Prop 2.13 and compute TC(Gm,X) = WOX . We

get TC(P̂icX/k) = H1(X,WOX) and TC(B̂rX/k) = H2(X,WOX). In the case where X is
a K3 surface the formal Brauer group is 1-dimensional and hence by the previous talk is
either a p-divisible group of finite height h or Ĝa (h =∞). Conclude that H2(X,WOX) is
a torsion group (which is infinitely generated) iff h = ∞; and else H2(X,WOX) is a free
W (k)-module of rank h.

Elena

5. F -cystals and slopes (12.11.)

Define F -crystals, their slope decomposition and their associated Hodge and Newton poly-
gons and the connection with geometry, following [Lie15a, 3.1-3.3] (see also [Kat79]). Also
do Exercise 3.9 and explain the case of abelian varieties 3.4. The case of K3 surfaces will be
discussed in detail in talk 7.

Efstathia

6. The Rudakov-Shafarevich vanishing theorem (19.11.)

Sketch the proof of the Rudakov-Shafarevich vanishing theorem which says that a K3
surface over a field k of positive characteristic has no global vector fields (equivalently
H0(X,Ω1

X/k) = 0; notice that this holds in characteristic 0 by Hodge symmetry). To this

end proceed as follows: Assume that H0(X,Ω1
X/k) 6= 0. Then the the tangent bundle TX is

not µ-stable. Prove that this implies that X is unirational, see [Huy, 9, Prop. 4.6]. Sketch
the proof of [Nyg79, lem 3.3] which uses the unirationality of X. Then follow the argument
from [LN80].

Wouter

7. The inequality of Igusa-Artin-Mazur and K3 surfaces in positive
characteristic (26.11.)

First discuss Illusie’s refinement of the inequality of Igusa-Artin-Mazur, which describes the
Picard rank of a smooth projective scheme over an algebraically closed field in terms of
its second Betti number, the rank of the slope less than 1 part in the second crystalline
cohomology modulo torsion of X and the rank of the p-adic Tate module of its Brauer
group. See [Ill79, II, 5.7], especially explain the exact sequence [Ill79, (5.8.5)] and Prop
5.12. Now assume X is a K3 surface over an algebraically closed field. Compute the Hodge
diamond of X and its crystalline cohomology as in [Lie15a, Prop 2.4, Prop. 2.5] and [Lie15a,
3.5] especially Exercise 3.10, see also [Ill79, II, 7.2]. On the way introduce supersingular K3
surfaces as those K3 surfaces which have Picard rank 22 and use the Igusa-Artin-Mazur
inequality to show that this implies that H2

crys(X) is isomorphic to NS(X)⊗Z W (k) which

implies that the height of B̂rX/k is ∞. It follows from the Tate conjecture for K3 (proved
in characteristic ≥ 3) that the reverse implication holds as well. Also introduce the Artin
invariant of a supersingular K3 surface σ0, cf. [Lie15a, Prop 4.7, (1)]. Give examples of
supersingular K3 surfaces, see .e.g. [Lie15a, Ex 4.10].

Enlin
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8./9. Continuous families of torsors (3.12.)/(10.12.)

Discuss section 3 of [Lie15b] in detail! If time permits, it would be nice to see the idea of the
proof of the Theorem of Rudakov-Shafarevich-Zink stating that supersingular K3 surfaces
in characteristic p ≥ 5 have potential good reduction. For this first explain [RTS82, §1, Prop
3] (behavior of the height of the formal Brauer group of a K3 under specialization), then
[RTS82, §6, Thm 3].

Marta/ NN

10. /11. Supersingular K3 crystals (17.12.)/(7.1.)

Discuss [Lie15a, 4.] in detail! (Note that Example 4.10 was already given in talk 7.)

Tanya/ NN

12. The moduli space of N-marked K3 surfaces (14.1.)

Show that the functor which associates to an algebraic space T over a field the set of
isomorphism classes of N -marked K3 surfaces over T is representable by a nice smooth
algebraic space. To this end go through [Ogu83, §2] and prove [Ogu83, Thm 2.7].

Valentina

13. Ogus’ crystalline Torelli theorem (21.1.)

Discuss [Lie15a, 5.] in detail.

NN

14. N-rigidified supersingular K3 crystals and moving torsors (28.1.)

The aim of this talk is to prove [Lie15b, Cor 4.6], which says that given a supersingular K3
surface of a given Artin invariant σ0 ≥ 2 one finds a purely inseparable isogeny of height
2 to a supersingular K3 surface of Artin invariant σ0 − 1. To this end introduce rigidified
K3 crystals as in[Lie15b, Def. 4.2] and explain the description of their moduli space as in
[Lie15b, Thm 4.3]. Then give the relation with the moving torsors from talks 8./9. and
prove [Lie15b, Cor 4.6].

Kay

15. Supersingular K3 surfaces are unirational (4.2.)

First explain Shioda’s Theorem [Shi77], which says that in positive characteristic > 2 a
Kummer surface is unirational if and only if it is supersingular, see [Shi77, Thm 1.1]. Then
give Liedtke’s Theorem [Lie15b, Thm 5.1], which in particular says that in positive charac-
teristic > 5 any supersingular K3 surface is inseparably isogeneous to an abelian Kummer
surface and conclude that any K3 surface is unirational [Lie15b, Thm 5.3]. Finish with
[Lie15b, Cor 5.4, Thm 5.5].

Kay

16. Free slot (11.2.)

NN
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