Springe direkt zu Inhalt



Referierte Publikationen / Reviewed Publications

Carlos Améndola, Alexander Engström, Christian Haase, Maximum number of modes of Gaussian mixtures, Information and Inference: A Journal of the IMA, iaz013, (2019). https://doi.org/10.1093/imaiai/iaz013

C. Amendola, N. Bliss, I. Burke, C. Gibbons, M. Helmer, S. Hosten, E. Nash, J. Rodriguez and D. Smolkin (2019): The Maximum Likelihood Degree of Toric Varieties. Journal of Symbolic Computation, Vol. 92, Pages 222-242. https://doi.org/10.1016/j.jsc.2018.04.016

C. Améndola Cerón, D. Agostini (2019): Discrete Gaussian Distributions via Theta Functions. Siam J. Appl. Algebra Geometry, Vol. 3(1), Pages 1-30. https://doi.org/10.1137/18M1164937

V.  Batyrev, K. Schaller (2019): Stringy E-functions of canonical toric Fano threefolds and their applications.Izvestiya: Mathematics, Vol. 83, No 4. https://iopscience.iop.org/article/10.1070/IM8835/meta

M. Beck, C. Haase, A. Higashitani, J. Hofscheier, K. Jochemko, L. Katthän, M. Michałek (2019): Smooth centrally symmetric polytopes in dimension 3 are IDP.Annals of Combinatorics, No 26, pp 1-8. https://doi.org/10.1007/s00026-019-00418-x

Ulrike Bücking: Conformally Symmetric Triangular Lattices and Discrete ϑ-Conformal Maps, International Mathematics Research Notices, rnz308, (2019) https://doi.org/10.1093/imrn/rnz308

J. Erbe, C. Haase, F. Santos (2019): Ehrhart-equivalent 3-polytopes are equidecomposable. Proc. Amer. Math. Soc. 147 (2019), 5373-5383. https://doi.org/10.1090/proc/14626

S. Di Rocco, C. Haase, B. Nill (2019): A Note on Discrete Mixed Volume and Hodge-Deligne NumbersAdvances in Applied Mathematics, Vol. 104, Pages 1-13. https://doi.org/10.1016/j.aam.2018.11.002

Nicht Referierte Publikationen / Non Reviewed Publications

V.  Batyrev, A. Kasprzyk, K. Schaller (2019) On the Fine Interior of Three-dimensional Canonical Fano Polytopes. https://arxiv.org/abs/1911.12048

C. Haase, N. Ilten (2019): Algebraic Hyperbolicity for Surfaces in Toric Threefolds. https://arxiv.org/abs/1903.02681


Referierte Publikationen / Reviewed Publications

F. Kohl, Y. Li, J. Rauh, R. Yoshida (2018) Semigroups --- A Computational Approach. The 50th anniversary of Gröbner bases. Advanced Studies in Pure Mathematics, Vol. 77, Pages 155-170. https://doi:10.2969/aspm/07710000

F. Lensing (2018). »Aber Papa, die 1 ist doch gerade!« – Reflexionen zur Frageder Repräsentation am Beispiel von Zahl- und Funktionsbegriff. Beiträge zum Mathematikunterricht, 1155-1158.

F. Lensing (2018). The dialectics of mathematization and demathematization . Quaderni di Ricerca in Didattica / Mathematics (QRDM) Quaderno N.27 Supplemento n.2, S. 199-202.

F. Lensing, & H. Straehler-Pohl. (2018). Towards an Ethics of Mathematical Application. In: R. Vital & M. Jurdak (Eds.) Sociopolitical Dimensions of Mathematics Education. From the Margin to Mainstream (pp.35-51). Cham: Springer. https://doi.org/10.1007/978-3-319-72610-6_3

H. Straehler-Pohl, F. Lensing, A. Pais & D. Swanson. (2018). Preface: The disorder of mathematics education, Part II. Critique, imagination and play. The Mathematics Enthusiast, 15(1), 3-7.

Straehler-Pohl, H., Felix, L., Pais, A. J. S., & Swanson, D. (2018). (Hrsg.) The disorder of mathematics education, Part II. Critique, imagination and play. The Mathematics Enthusiast, 15(1).

F. Kohl, Florian; A. Engström (2018): Transfer-Matrix Methods meet Ehrhart Theory. Advances in Mathematics, Vol 330, Pages 1-37. https://doi.org/10.1016/j.aim.2018.03.004

Nicht Referierte Publikationen / Non Reviewed Publications

C. Haase, F. Kohl, A. Tsuchiya (2018): Levelness of Order Polytopes. https://arxiv.org/abs/1805.02967


Referierte Publikationen / Reviewed Publications

C. Amendola, K. Ranestad and B. Sturmfels (2017): Algebraic Identifiability of Gaussian Mixtures. International Mathematics Research Notices, Vol. 2017, No. 00, pp. 1-25 doi: 10.1093/imrn/rnx090

C. Haase, J. Hofmann (2017): Convex-normal (pairs of) polytopes. To appear in the Canadian Mathematical Bulletin. Canad. Math. Bull. 60, 510-521. http://dx.doi.org/10.4153/CMB-2016-057-0

C. Haase, M. Juhnke-Kubitzke, R. Sanyal, T. Theobald (2017) : Mixed Ehrhart polynomials. The Electronic Journal of Combinatorics Volume 24, Issue 1, Paper #P1.10

F. Lensing (2017): The repression of the subject? - Quilting threads of subjectivization. In A. Chronaki (ed.). Mathematics Education and Society 9 Proceedings. Vol 1: 676-686.

Nicht Referierte Publikationen / Non Reviewed Publications

C. Amendola, h K. Kohn, S. Lamboglia, D. Maclagan, B. Smith, J. Sommars, P. Tripoli and M. Zajaczkowska (2017): Computing Tropical Varieties in Macaulay2. Submitted. https://arxiv.org/abs/1710.10651

C. Amendola (2017): Algebraic Statistics of Gaussian Mixtures. PhD Thesis. Advisor: Bernd Sturmfels , Christian Haase

C. Haase, A. Paffenholz, L. C. Piechnik, F. Santos (2017). Existence of unimodular triangulations - positive results. https://arxiv.org/abs/1405.1687. To appear: Memoirs of the American Mathematical Society

F. Kohl (2017): Level algebras and $\s$-lecture hall polytopes.  https://arxiv.org/abs/1710.10892


Referierte Publikationen / Reviewed Publications

M. Nührenbörger, B. Rösken-Winter, K. Akinwunmi, F. Lensing, F. Schacht (2016): Roots and Scope of Design Science. In: M. Nührenbörger et al. (Hrsg.): Design Science and Its Importance in the German Mathematics Educational Discussion. Springer.

M. Nührenbörger, B. Rösken-Winter, C.I. Fung, R. Schwarzkopf, E.C. Wittmann, K. Akinwunmi, F. Lensing, F. Schacht, (Eds.) (2016). ICME-13 Topical Surveys. Design Science and Its Importance in the German Mathematics Educational Discussion. Cham: Springer International Publishing.

Nicht Referierte Publikationen / Non Reviewed Publications

C. Amendola, J. Rodriguez (2016): Solving Parameterized Polynomial Systems with Decomposable Projections. Presented at MEGA 2017. https://arxiv.org/abs/1612.08807.

M. Blanco, C. Haase, J. Hofmann, F. Santos (2016): The Finiteness Threshold Width of Lattice Polytopes. Submitted. https://arxiv.org/abs/1607.00798

Die Forschungsdaten zum Paper "Finiteness threshold width of lattice polytopes" können hier eingesehen werden: Forschungdaten.

Research data of the paper "Finiteness threshold width of lattice polytopes" can be seen here: Research Data.