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Abstract

This thesis explores the modification of a 4-axis 3D printer by FullControl,
with a particular focus on enabling non-planar and non-horizontal printing through
the implementation of a B-axis slicing pipeline. A Python Jupyter Notebook is de-
veloped to generate the corresponding G-code, utilizing all four axes. The work
presents the conceptual design, implementation process, and technical challenges
involved in creating a slicer for this type of 3D printer. Additionally, the study
investigates the complexity, capabilities, and limitations of non-planar fused fil-
ament fabrication (FFF) by comparing it with conventional planar printing tech-
niques. A series of experiments are conducted to evaluate the differences and
potential benefits of non-planar 4-axis printing.
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1. Introduction

1 Introduction

Three-dimensionl (3D) printing and especially fused filament fabrication (FFF) 3D
printing, has become one of the most important and widespread technologies for ad-
ditive manufacturing (AM). This technology enables fast prototyping and is on the
way to replace conventional manufacturing technologies such as subtractive manu-
facturing [1]. In addition to advantages such as low cost production and low energy
consumption, conventional FFF 3D printing has various limitations, such as the need
for support structures and the production of fragile parts, especially in the direction
of z [2]. Most of the downsides are due to the 3-axis design of the 3D printers. This
is why the field of non-planar printing and multi-axis printers has emerged in the
last few years [3]. An example of a 4-axis printer is the modification of a 3-axis Prusa
printer by FullControl [4]. FullControl is an open-source G-code designer by Andrew
Gleadall [5]. His 4-axis printer has an added b-axis that enables the print head to
turn around the y-axis and print sideways. However, 3-axis printers are more popular
than 4-axis printers for a reason. With higher degrees of freedom (DOF) comes higher
complexity. A comparison between the original 3-axis Prusa printer and the modified
4-axis version, along with a comprehensive examination of the complexity of imple-
menting a slicer for this type of 3D printer and what its additional capabilities and
limitations are will be the content of this master thesis.

1.1 Objective

This work aims to gain a complete understanding of the modified 4-axis 3D printer
and the corresponding slicing strategy. The following areas are the main focus of this
work.

1. Elaborate the geometrical capabilities and limitations of the 4-axes printer mod-
ification by FullControl,

2. showcase the challenges of implementing a non-planar slicer, and

3. investigate, how curved and tilted layers influence the mechanical properties of
a 3D printed object.

In order to achieve these goals, recent work about non-planar 3D printing is inves-
tigated, and a non-planar slicer that provides a user-friendly usage of the modified
4-axes 3D printer is implemented.

1.2 Structure of this work

In the following sections the process of FFF 3D printing is explained along with an
examination of the current state of the art for non-planar 3D printing. These topics
are covered in Section 2. The conversion of a Prusa MK3S+ Cartesian 3D printer,
introduced by FullControl, is explained, and the process is described in Section 3. In
order to be able to use the modified 4-axis printer, a slicer is needed that generates the
G-code for the printer. The concept, implementation and challenges of the 4-axis slicer
is covered in Section 4. As mentioned above, thorough testing of the capabilities and
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2. State of the art

limitations of the printer and its slicer is the main goal of this thesis. This is the content
of Section 5. In Section 6 the results and quality of this thesis are discussed, followed
by the conclusion in Section 7 and the prospects for further research in Section 8.

2 State of the art

This work aims to investigate the 4-axis 3D printer modification by FullControl. In
order to do so, the basic concepts of 3D printing and slicing have to be understood,
as well as the current state of the art in 3D printing of planar and non-planar printing
on 3-axis and 4-axis 3D printers. The following sections explain the Cartesian printer
design that the original printer, used in this work, has, followed by an illustrated
explanation of the concepts of slicing and FFF 3D printing. After that, the relevant
papers and slicing strategies are examined for applicability to this work.

2.1 Conventional FFF 3D printing

FFF is an additive manufacturing technique in which filament is extracted and placed
on a print bed or a previously extracted filament line layer by layer [6]. This leads
to a printed object as the result (see Figure 1). The conventional procedure is to
stack planar layers parallel to the xy-plane in the z direction, as shown in Figure 1b
[7]. There are several aspects that must be met to meet the additive manufacturing
criteria according to Mwema [8].

1. Computer aided design (CAD) software must be used for designing a 3D model,
2. a slicer must generate a toolpath, and

3. a machine must produce a physical product that matches the 3D model de-
signed.

In the next sections, the basic concepts of FFF 3D printing and slicing are presented,
as well as the 3D printer that is used for the 4-axis conversion.

2.1.1 Cartesian 3D printer

For this work the Prusa MK3S+ 3D printer (Prusa Research a.s. Partyzanska 188/7A,
17000 Prag 7, Tschechische Republik) was used. The printer has a Cartesian axis
design in which the axes are orthogonal to each other [9]. The three axes are located as
follows. The x-axis moves the print head from left to right. The z-axis is perpendicular
to the build plate and moves the print head up and down. The y-axis is detached from
the print head and moves the print bed back and forth. Another Cartesian 3D printer
with the corresponding axes can be seen in Figure 1a. The standard nozzle that comes
with the printer is a 0.4 mm brass nozzle, which will also be used in this work.

2.1.2 Planar 3D printing and slicing

FFF 3D printing is one technique in the field of AM, in which the goal is to create
a physical object out of a digital 3D model file [6]. With conventional planar 3D

2



2.1 Conventional FFF 3D printing
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(a) All three axes of a standard Carte- (b) Schema of filament extrusion.
sian 3D printer (Elegoo Neptune 4).

Figure 1: Basics of FFF 3D printing.

printing, an object is built in the direction of z. The print bed forms the xy-plane,
which is also the plane on which each layer is printed. During printing, the layers
are printed in ascending order from bottom to top. The most commonly used file
format for CAD models is standard tessellation language (STL), which represents the
3D CAD model with triangular facets [6]. Therefore, in the STL file only the outer
surface of the model is described. However, when designing a solid 3D model, not
only the shell should be printed, but a solid physical object should be the result,
which, in the example of 3D printing, is realized by a slicer [3]. The slicer is software
that converts the STL file into G-code. The G-code is a data format defined in ISO
6983 [10]. The .gcode file is defined consisting of blocks of words, each word being an
instruction for the machine, followed by arguments, if needed [11]. For example, "G1
X10 Y20 Z30 E10" is the command to move the tool head to the coordinate (10,20,30)
and extrude 10 mm of filament, in the example of a 3D printer. The slicer converts the
STL file into G-code in a way it cuts the model into horizontal slices that are printed
in ascending order [6]. Each slice is printed with lines of filament that are extruded
by the nozzle. Different types of lines allow the right settings to achieve the desired
goal, such as optical appearance or mechanical stability [12]. For conventional FFF 3D
printing with planar layers, there are already many slicer programs. Some of them
are free or even open-source, like Slic3r [13], Cura [14] or PrusaSlicer [15]. Common
settings in these programs are layer heights of 0.2 mm and a line width of 0.4 mm.
Therefore, the filaments strands are in an ellipsoid shape, as shown in Figure 2

This method has some major constraints: Overhangs can only be printed to an-
gles of 45°-60° with acceptable visual quality [16]. Otherwise, support structures are
needed that are printed underneath those surfaces. Furthermore, the visual appear-
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2. State of the art

e —_ Single strand of filament
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Figure 2: Basic slicing with a sliced 3D model with the lines of filament displayed
(a), the cross section where the shape of the strands and layers are visible (b), and a
schematic drawing of the shape of an extruded line of filament with the measures (c).

Multiple filament
strands form a layer

ance of a printed model depends on the surfaces it has, because planar layers can
become visible when flat surfaces are printed almost parallel to the xy-plane [3]. With
respect to the mechanical strength of a print, the orientation on the build plate is cru-
cial. The bonds between the filament lines and especially between the layers are the
regions that fail first under load [17] [12].

2.2 Non-planar slicing and printing

Besides the advances in planar 3D printing, the field of 4 or 5-axis 3D printing is also
being investigated. With respect to the 4-axis modification that is used in this work,
several papers are examined with regard to the slicing strategy and comparisons to
planar 3D printing. The relevant papers in the field of 4-axis 3D printing are presented
below.

2.2.1 Review of non-planar printing and slicing

In Nayyeri et al. [3] planar and non-planar slicing and printing strategies are reviewed
and compared. The researchers looked into 47 slicing algorithms from various papers
with planar slicing methods starting from 1995 and non-planar slicing starting in 2011.
The paper presents several benefits that non-planar slicing has over planar slicing: #1
Higher surface quality through reduced staircase effect. The review examines several
algorithms for different types of 3D printers and finds that non-planar slicing can
reduce the staircase effect. #2 The paper also looked at the effects of the non-planar
layer on mechanical properties and found that in some cases the non-planar slicing
leads to a 57% increase in strength. This is due to the ability of non-planar 3D printing
to print shapes more freely as one continuous fiber. Printed strands are stronger than
inter-layer bonds, which can be avoided with non-planar 3D printing. #3 Another
benefit of non-planar slicing according to the paper is the elimination, or reduced
need, of support structures, due to the fact that non-planar 3D printers have more
freedom of movement. This can lead to shorter production times, less postprocessing
and according to Wiithrich et al. [16] also to increased surface quality. #4 Non-planar
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2.2 Non-planar slicing and printing

layers can lead to faster print times, although it is not always the case. The review
paper concludes that non-planar slicing strategies are still in an early stage. The
biggest gap between planar and non-planar slicing is a missing universal approach to
non-planar slicing. Furthermore, the applicability to arbitrary models or structures is
not always given.

2.2.2 Neural Slicer for Multi-Axis 3D Printing

An advanced non-planar neural network-based slicer for multi-axes 3D printers is
presented in Liu et al. [18]. This work improves the S3-Slicer by Zhan et al. [19],
which is a comprehensive non-planar slicer that focuses on optimizing fabrication ob-
jectives such as support-free, stress-reinforced, and quality-enhanced prints. In order
to optimize for those objectives, Neural Slicer uses a neural network based compu-
tational pipeline. The authors conducted physical tests on printed models to see
whether the optimized layer orientations lead to stronger parts. The results showed
that a model sliced with the Neural Slicer can withstand double the forces of the
same model sliced with the S>-Slicer. In the paper on the S*-Slicer, this has already
been shown to produce prints with higher breaking force. Both papers implement
an impressive approach to non-planar slicer and provide valuable insights on how
non-planar 3D printing can solve various manufacturing objectives that are impos-
sible with planar printing. However, the solution provided by the authors is rather
complex and therefore out of the scope of this work.

2.2.3 RotBot

Another modification that converts a 3-axis 3D printer to a 4-axis 3D printer is the
rotating print head (RotBot) of Wiithrich et al. [16] with the RotBotSlicer presented by
Wiithrich et al. [20]. Unlike the modification by FullControl, the additional axis used
in this paper rotates around the z-axis with the nozzle installed at a fixed 45° angle.
The RotBotSlicer uses the following strategy to create the G-code for the RotBot, which
was inspired by Couped et al. [21].

1. If the resolution of the faces in the STL is too low, so that the transformation
would not lead to smooth surfaces, the STL file is refined by subdividing the
faces.

2. The triangular faces of the STL file of the 3D model are transformed into a
(inverse) cone shape, depending on the slicing direction.

3. The transformed model is sliced with a regular planar slicer, e.g. Cura.

4. The inverse transformation function is applied to the G-code, resulting in the
original shape of the 3D model.

The findings of this paper are that overhangs of 90° angle can be printed without sup-
port structures and with good visual quality of the downside surfaces. The fact that
the nozzle has a fixed tilt angle makes the print result quite predictable. Therefore,
simple premises for G-code modification can be defined to increase the quality of the
outcome. This is not the case for the variable tilt angle of the modification that I use.
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3. Converting the Prusa MK3S+ to a 4-axis printer

2.2.4 CurviSlicer

In Etienne et al. [22], the CurviSlicer is introduced. A non-planar slicer for 3-axis
3D printers, which reduces planar slicing artifacts like the staircase effect, and conse-
quently produce smoother surface finishes. The goal is to print curved surface layers
that should lead to stronger and visually smoother parts without the staircase effect.
In order to achieve that, the authors combine planar layers and curved layers in a way
that they start by printing planar layers and only print the top layers curved. Then,
their approach is to progressively curve and thicken the layers to avoid a sudden
change in the layer type. The curved layers are obtained by following a procedure
similar to the strategy of Wiithrich et al.: The input is a 3D mesh () as a STL file.
The mesh is then deformed using a transformation or mapping function M(Q}). The
transformed mesh is then sliced with a conventional planar slicer to generate the tool-
path T. After slicing, the original shape of the input model is restored by applying
the inverse mapping on the toolpath M~!(T). Collision avoidance is also crucial for
non-planar layers. Etienne et al. define an inverse cone-shaped area with the tip of the
cone being the nozzle. The premise to avoid collisions is that no previously printed
strand is not allowed to enter this area.

2.2.5 Other non-planar slicers

Other non-planar slicer projects like the Slicer4RTN (slicer for rotating tilted nozzle)
by Rene K. Mueller [23] or the Radial non-planar slicer for the Core R-Theta Printer
by Joshua Bird [24] also utilize the above mentioned strategy. I will especially use
some of the code base from Joshua Bird because he implements a user-friendly code
base in Python.

To the best of my knowledge and research, existing slicer programs like Cura or
PrusaSlicer do not implement any features for non-planar slicing.

3 Converting the Prusa MK3S+ to a 4-axis printer

The modification of a standard 3-axis Cartesian 3D printer to a 4-axis 3D printer
is the basis of this work. FullControl provided an open source manual about the
modification they made on the Prusa MK3S+ [25, 4]. This modification adds the b-
axis to the printer, which rotates the print head around the y-axis. Several parts are
added and changed with this modification. In the following sections, the modification
process is explained and the differences between a regular Prusa MK3S+ and the
modified version are explained.

3.1 FullControl modification

The printer modification adds several new parts to the printer, as well as replacing
existing parts. Due to limited availability in Germany, not all parts are exactly the ones
used in the FullControl manual. The differences are explained later. The following
parts are needed for the modification: Duet 3 Mini 5+ [26] and Duet 3 Mini 2+ Dual
Stepper Expansion Board [27] by Duet3D (Duet3D Ltd Unit 74, Workspace House 28-
29 Maxwell Rd Peterborough PE2 7]JE, United Kingdom) have the same specifications



3.2 Converting the 3D printer to a 4-axes printer

as those used in the manual. The Duet 3 Mini 5+ is a control board that replaces the
existing control board on the Prusa printer because it does not support an additional
axis. Due to unavailability in the European Union, the stepper motor used in this
work is a slightly different motor than the one used by FullControl, but with almost
the same dimensions and specifications. Instead of the Nema 11, which is used by
FullControl, a Joy-it NEMA 17 - 07GM (SIMAC Electronics GmbH Pascalstr. 8 47506
Neukirchen-Vluyn, Germany) is used, purchased at Conrad [28]. According to Duet
documentation [29] the higher power consumption of 1.68 A is supported by the Duet
3 Mini 5+ control board. In addition, some mounting brackets have to be printed,
which are used to mount the fourth axis to the x-axis. FullControl does not provide
information about the recommended printing parameters for printing the brackets. I
chose to print the brackets in ABS with four walls and 50% infill, which should be
strong enough to hold the stepper motor and the print head. Finally, some bolts, nuts,
and tools are needed to fit everything.

The clearance of the nozzle is an important factor for the degree of freedom added
by the modification, as discussed later in Section 5.1. To increase clearance, a longer
nozzle or long tip nozzle can be used. For this work, the standard M6 brazz nozzle
that comes with the Prusa MK3S + is used. It is sufficient to showcase the theory on
printed parts and also reduces the cost and time for the modification.

The original Prusa MK3S+ runs on a proprietary Prusa-built Marlin firmware built
on proprietary [30]. However, since the modification of the printer, which is presented
in the next section, uses the Reprap firmware, only this is explained here. It supports
32-bit processors and is designed for 3D printers [31].

3.2 Converting the 3D printer to a 4-axes printer

As mentioned in the previous section, in this work a different stepper motor is used.
For this reason, the printed parts need to be adjusted in their dimensions to fit the
dimensions of the stepper motor. To mitigate the chances of the parts getting loose
and leaving artifacts on the printed object due to vibration, the dimensions are chosen
in a way that they have almost no tolerance and some force had to be applied to get
the parts on the stepper motor. The parts are printed in ABS and with 50% infill and
four perimeters.

The setup of the Duet control board is well documented in the FullControl Google
Colab notebook [25] and Duet3D documentation on how to connect the board to the
computer [32] and install and update the firmware [33]. The latest version of the
Reprap firmware that I update the board to is 3.5.4.

During the process of modifying a Prusa MK35+ 3D printer for integration with a
Duet 3 Mini 5+ control board, several mechanical and electrical adjustments were re-
quired to ensure proper function. The modification began with adapting the printer’s
wiring. This involved crimping the wires to attach them to the appropriate connectors
compatible with the Duet 3 Mini 5+ board. Each wire had to be manually prepared
and fitted with the correct terminal so that it could be inserted directly into the new
board, ensuring stable and reliable electrical connections (see Figure 3a). Not all orig-
inal functions can be used with the Duet control board. For example, the display is
no longer operable.



3. Converting the Prusa MK3S+ to a 4-axis printer

Figure 3: (a) Wired Duet 3 Mini 5+ control board. (b) X-carriage part on the x-axis.
(c) Broken X-carriage printer part. (d) b-axis installed on the x-axis with printed
modification parts.

A significant mechanical issue occurred when trying to mount the new stepper
motor. The rear motor bracket was discovered to be too short due to the larger body
diameter of the replacement motor (36 mm), which caused it to collide with the X-
carriage part of the printer. To accommodate this, the rear bracket had to be length-
ened by 7 mm. Consequently, the front bracket also required the same extension in
order to maintain the proper horizontal alignment of the motor. However, while at-
tempting to install the extended front bracket, the X-carriage component broke, likely
due to the stress of the new assembly. This necessitated reprinting of the X-carriage.
Thanks to the open-source approach of Prusa, all printer parts are available online.
See Figure 3b,3¢,3d for the adjusted printed parts and the broken X-carriage.

Further modifications were carried out on the printer, including adjustments to
the extruder bracket. The bracket was found to have not been modified correctly,
as the motor shaft could not fit through the designated opening. This required fur-
ther redesign of the bracket to ensure proper alignment and clearance for the motor
components. The fully assembled 4-axis printer can be seen in Figure 4a.

After completing the necessary hardware adjustments and setting up the firmware,
the printer was successfully powered up and the web interface was reachable via the
local IP address 192.168.2.4. The four axes (X, Y, Z, and B) responded to movement
commands. However, the b-axis exhibited inaccurate movement: when instructed
to rotate 45 degrees, it moved approximately 80 degrees instead. This indicated a
calibration issue in the stepper motor settings, specifically the steps per millimeter
parameter. This is due to the different gear ratio.

To correct this, the printer’s firmware was accessed and modified via the RepRap
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3.2 Converting the 3D printer to a 4-axes printer

Web Interface. The config.g file contains critical parameters, including network set-
tings, axis-to-driver mapping, heater and end-stop definitions, and stepper motor
configurations. The steps per degree for the b-axis were adjusted to 170 steps/mm,
instead of the 238.68 steps/mm used by FullControl, to compensate for the over-
rotation. During the calibration process, several errors surfaced. One recurring issue
was a stall warning: "Driver 1 stalled at Z height 0.00", which was traced to incorrect
z-axis speed settings in both the homex.g and homey.g scripts. These were corrected
by reducing the Z speed to 50%, resolving the stalling errors. Another issue occurred
when attempting to extrude, with the error message "attempting to extrude with no
tool selected.” This was resolved by adding the command TO to the config.g file, en-
suring that the printer recognizes and selects the only available extruder [34]. A test
print was initiated using a model from FullControl G-code, with a nozzle tip axis
offset of 46 mm. The first 1.5% of the print was completed successfully, confirming
that the system was partially operational. However, it became evident that the b-axis
stepper motor was wobbling during operation, leading to inconsistent and unreliable
print results (see Figure 4b). This mechanical instability presented a challenge, espe-
cially as replacing the motor was not feasible at the time. To mitigate this issue, a
provisional solution was implemented using rubber bands. By attaching the bands
to pull the print head from opposite sides, a counteracting force was introduced to
stabilize the head. It was important to use rubber bands of the correct length; shorter
bands were necessary to maintain consistent tension throughout the movement of
the print head, as longer bands would stretch too much and lose effectiveness. This
mechanical workaround allowed for some stabilization of the b-axis and continued
experimentation. However, small artifacts can still be seen when the print head shifts
from one side to the other. To completely eliminate this problem, a different stepper
motor would need to be installed.

(@) The fully assembled 4-axis 3D (b) Visible artifacts due to wob-
printer with the four axes X, Y, Z, and bling of the print head.
B.

Figure 4: Modified printer with four axes and tilted nozzle.
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3.3 Comparison: 3D Prusa MK3S+ and 4D Prusa MK3S+

The most obvious difference is the fourth axis that was added. The print head can now
rotate along the y-axis which adds a degree of freedom to the printer. To what extent
freedom can be utilized is discussed in Section 5.1. The modified printer is still able
to print in the conventional planar style. Regarding technical differences, between
the original Prusa MK3S+ and the modified version, there are a few drawbacks with
the modification. The part cooling fan is removed to gain more clearance for the
nozzle, to print at greater angles. The display is not connected due to missing Duet
support. The automated bed leveling sensor is also removed to gain more clearance.
Features such as automated bed leveling or automated determination of the z-offset
are no longer available. The printer has to be accessed through the Web interface
by connecting to the computer via Ethernet. The printer mod still misses a reliable
homing routine, since the homing of the b-axis, which marks the 0° angle, has to be
determined by eye. In the following sections of this work, the pros and cons of the
b-axis are examined further. That is, the additional freedom for printed structures,
limitations when printing more complex structures, the complexity and challenges
for implementing a slicing pipeline, and how the different printing styles influence
some mechanical properties of the prints. The key findings, in which the modified
4-axis version differs from the standard MK3S+ are

1. The 4-axes design instead of 3-axes,

2. Probably additional freedom for printing,
3. Missing part cooling fan,

4. The display is not connected anymore, and

5. No automated bed leveling.

4 B-axis slicing pipeline

In order to be able to use the modified 3D printer without writing or programming
the G-code for every model that should be printed, a slicer program is needed. Full-
Control offers a test file, which is a G-code for a bent tube. Currently, there is no
slicer for this 3D printer modification with a b-axis. The following sections explain
the concept and implementation of the B-axis slicing pipeline, as well as challenges
for generating the G-code for this type of 3D printer.

4.1 Requirements

Before developing a concept for a slicing strategy, the requirements for this project
must be determined. Several requirements can be derived from the objectives of this
work, mentioned in Section 1.1.

The objective #1 is to elaborate on the geometric capabilities and limitations. To be
able to do so, a comprehensive slicer is needed that is capable of creating the G-Code
for many different, better yet, arbitrary 3D models. Furthermore, different settings
for slicing are needed, to be able to handle a large variety of shapes.
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4.2 Concept for implementing the B-axis slicing pipeline

The objective #2 is to give insight into what is needed for a non-planar slicer. This
does not impose explicit requirements, since this can be fulfilled by investigating the
program in the end. A non-functional requirement that makes the investigation in the
end easier and clearer could be formulated so as to have a modular code that is easy
to review.

The objective #3 is to investigate the mechanical properties of the 3D printed parts.
Here, almost the same requirements can be derived as for the first objective. The slicer
needs to be capable of handling multiple different forms and provide some settings
that allow printing with different print head orientations. In addition, consistent print
quality must be ensured between prints because multiple specimens are printed for
one test case.

Following requirements can be concluded:

R1 The b-axis is utilized.

R2 Different types of non-horizontal layers are supported.
R3 It is possible to make various settings.

R4 Versatile models can be handled.

R5 The slicer has a modular architecture.

R6 The slicer produces consistent printing qualities.

4.2 Concept for implementing the B-axis slicing pipeline

As mentioned in section 2.1.2 several slicer programs already exist for planar slic-
ing. What they do not support are non-planar 3D printers or a slicing strategy for
non-planar printing. In Section 2.2, some implementations were presented to utilize
different non-planar 3D printer designs. In Section 3 I explained the 4-axis modifica-
tion on which this work is based. This work differs from the other 4-axes projects by
the type of the fourth axis. The RotBot is a 4-axis printer with a rotating tilted nozzle
that is mounted at a fixed angle of 45° and rotates around the z-axis. The R-Theta
3D printer is completely different, as it uses polar coordinates and does not have a
Cartesian design. The CurviSlicer is designed to be used on standard Cartesian 3-axis
3D printers, not utilizing the additional freedom of a fourth axis. Since none of the
nonplanar slicers supports the 4-axes design used in this work, an additional slicer
has to be implemented. In the following, I will examine different strategies and con-
cepts for implementing the slicer and determine the most suitable options for this use
case.

The first consideration to make is where the slicer should be implemented. One
way could be to implement a completely new toolpath generator (slicer). This would
incorporate not only the challenges of using the b-axis but also additional challenges
for path finding, differentiation between line types such as perimeters, infill, top and
bottom shell, and more. Modern slicers solve those problems already and come with
handy settings for the user to tune and optimize their prints. Having this in mind,
developing a whole new slicer is out of the scope of this work and would just add
unnecessary effort. With open-source projects like Cura, Slic3r, or PrusaSlicer it is
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possible to implement additional features right in the slicer. This could increase the
simplicity of the usage for the user, but it would also limit the feature to only be used
in a specific slicer. Additionally, the programming language and project structure
would need to be adopted when implemented in an existing slicer. A third approach
is to implement a wrapper that is built around an existing slicer, which would also
limit the usage to one specific slicer.

Projects like the RotBotSlicer [20], the CurviSlicer [22], or the Radial non-planar
slicer for the The Core R-Theta Printer [24] implemented their slicer with a pipeline
approach. The STL file is preprocessed first and then the modified STL file is sliced
with a standard planar slicer. The created G-code is then modified again in a post-
processing step. This pipeline approach has several advantages.

1. Multiple slicers can be tested to validate their applicability for this use case, and
future 4-axis printer projects can use a different slicer.

2. Python can be used, which is widely used and popular [35].

3. The complexity of the implementation is kept appropriately for this work, as
the feature does not have to be integrated into existing graphical user interface
(GUI).

4. An open-source notepad can be created to make the slicer more accessible.

For those reasons, the pipeline approach is used in this work, for which I inherit the
concepts and partly even the code from the non-planar slicers, mentioned before. This
incorporates three steps. In step #1, the preprocessing of the STL file, which contains
two essential sub-steps: First, refinement of the STL file, and second, transformation
of the STL file.

Step #2 is the planar slicing of the transformed STL file, where several settings
must be set, to get a reliable G-code for the 4-axis printer.

Step #3 is the post-processing of the G-code, which contains two substeps that are
completed after another. First, the inverse transformation is applied on the G-code,
generated by the planar slicer. Then, the b-axis is added to the G-code and the values
for the other three axes are recalculated, depending on the value of B.

All three main steps, as well as their substeps, are visualized in Figure 5 are
explained in detail in the following sections.

The B-axis slicing pipeline is implemented as a Jupyter Notebook in Python. The
library st1 is used to read and modify STL files. The library pygcode is used to read
and modify G-code files. Numpy is used to handle and manipulate large data sets.

4.2.1 Refinement of the STL faces

The concept of the refinement of the triangular faces in the STL file is inherited from
the RotBotSlicer by Wiithrich et al. [20]. When creating a 3D model and exporting
it as a STL file, flat surfaces are described by as few triangular faces as possible to
reduce file size. This has no impact on the print if the STL file is printed as is.
However, with the strategy of transforming the STL file in a pre-processing step, the
resolution of the model plays a crucial role. When flat surfaces are transformed with
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Figure 5: Concept and processing steps of the B-axis slicing pipeline.

low face resolution, an angular surface is the result, as can be seen in Figure 6. For
refinement, I use the code from the RotBotSlicer from Wiithrich et al. [20], which
divides each triangle into four smaller triangles per iteration, by bisecting its sides
and connecting the new points. As mentioned by Wiithrich et al., this method divides
every triangle, even the ones that are already small, which increases the computation
time unnecessarily. However, since I will focus mainly on simpler geometrical models,
this drawback is acceptable to me.

(a) 0 refinement itera- (b) 1 refinement itera- (c) 4 refinement itera-
tions. tion. tions.

Figure 6: Transformed STL file of a cube with different number of iterations of divid-
ing the faces.

4.2.2 Transform the STL file

The transformation of the STL file is a key step for non-planar slicing. This step maps
the 3D model into non-planar space, depending on the type of layer. A visualization of
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the transformation can be seen in Step 2 in Figure 5. The section 4.2 briefly explained
the strategy for slicing with transformation and inverse transformation, used in this
work. The concept of transforming the STL file is inherited from the CurviSlicer by
Etienne et al. [22], the RotBotSlicer by Wiithrich et al. [20], the Slicer4RTN by Rene K.
Mueller [23], and the Radial non-planar slicer by Bird [24]. In this section, the strategy
is explained in more detail. There are essentially two types of transformation that
can be utilized to add freedom to the prints, which are inward bent (concave) layers
and outward bent (convex) layers [16]. The advantages of each type are examined
in Section 5.1. Other transformations can mix inward and outward bent layers. In
the following work, I will focus on just inward or outward bent layers and not a
combination of both, because they are the basic shapes. Any other transformation
type will be ignored in this work, because they may just combine the capabilities of
inward- and outward-bent transformation.

For the transformation, different functions can be used to achieve different types
of layers. For example, layers can be transformed so that they are printed as a curve.
Another type of layer can be straight with an angle. Both variants, as well as the
outward and inward bent transformations, are shown in Figure 7. The function for
the transformation of the curved layer is shown in Equation 1, which is a quadratic
function. The function for angled straight layers with an incorporated tipping point
is shown in Equation 2. Both functions modify the value of the z-coordinate and leave
the x anyy value as is. That is, because the x and y-coordinates of the layers are
the same as in the planar layers. Only the z-coordinate determines the type of layer.
This can also be seen in Figure 7. The value of z is transformed depending on the
x-coordinate. The scalar s is used to define the degree of deformation. The higher
the value of s, the steeper the angles of the nozzle will be. The scalar ¢ is used to
define the type of transformation either being inward (¢ = —1) or outward (c = 1).
In Equation 1 the z value is dependent on the quadratic value of x. Furthermore, an
offset a for x can be applied that shifts the tipping point along the x-axis (see Figure
8). The term 1/ x4y is added to limit the quadratic transformation function to add a
maximum value of Xy, + 34, where x,,,, is the maximum distance from the tipping
to the left-most or right-most point of the object along the x-axis. For the absolute
transformation function, the absolute value of the distance to the center point along
the x-axis is used with an offset.

x x
T:RP—R: [y]| = T(xyz2) = y . (1)
z Z+ SO ol * (x+a)
x x
T:R*—=R>: |y]| — T(xyz) = y ()
z zZ+sxcx*|x+al

Before applying the function on the 3D model, the model is centered along the x
axis. With this, the x-coordinate represents the distance to the center of the model. The
function is then applied to every point P of every triangle of the STL file (), resulting
in transformed model T(Q)). In Figure 8, a schematic front view on a cube 3D model
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in orange with the corner points 3 = [A, B,C, D] is shown. The purple line is a

quadratic transformation function that is applied on the orange model, resulting in the
transformed model T(Q)) = [T(A), T(B), T(C), T(D)] in green. The left image shows
the transformation without a given offset. The right image shows the transformation
with an offset of +4 along the x-axis. Both images have the model already centered
along the x-axis. A 3D view of a transformed model can be seen in Figures 6c and 5.

The following is the Python code that transforms the STL file. The max_x_distance
is the half-width of the object. The variable points contains all the triples for the
position of each corner of each triangle of the STL file.

f = lambda x: s % ¢ * 1/(max_x_distance+x_offset) = (x+
x_offset)*=2

transform = (lambda x, y, z: numpy.array([x, y, z + f(x)]))

points_transformed = list (map(transform , points[:, 0],
points[:, 1], points[:, 2]))

4.2.3 Planar slicing

In this step, the transformed STL file is sliced with a conventional planar slicer. I
use Cura because it produces less boilerplate G-code, as e.g. PrusaSlicer. In order to
ensure proper functioning of the 4-axis printer, several settings need to be made. First,
I recommend setting the standard Prusa MK3S+ as printer profile. Then the maximum
z-height has to be adjusted to a higher value to be able to fit the transformed models
in the build area. I also recommend removing the start and end G-code in the machine
settings and lowering the x width to 230 mm and the y depth to 190 mm, since the
homing routine by FullControl for those axes cuts 20 mm to be sure not to hit the end
stops while printing. For the slicer settings, the following values worked.
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.

Figure 8: Schematic front view on a cube model with the original model (orange), a
quadratic transformation function (purple) without an offset (left) and with an offset
of +4 (right), and the transformed model (green).

e Layer height = 0.2 mm

e Line width = 0.4 mm

Wall speed = 30 mm/s

Infill speed = 40 mm/s
e Travel speed = 120 mm/s
e Relative extrusion = On

For structural settings like number of walls or infill density and infill pattern, the
printer is capable of handling different settings. Those settings should be set accord-
ing to the requirements of the printed object and the printability constraints.

The result of the planar slicing is a G-code file, which is further post-processed by
the B-axis slicing pipeline in the next step.

4.2.4 Applying the inverse transformation on the G-code

The first step of the post-processing is reading the G-code to be able to further pro-
cess it. While reading the G-code file, the commands are checked for long print
movements. If a line longer than 0.5 mm is extruded along the x-axis, this command
is split into segments of 0.5 mm length. This is a strategy by Wiithrich at al. [20] and
Bird [24], both of whom split long nozzle movements in any direction. For the b-axis
printer, this is only necessary along the x-axis, because it can only print non-planar
along the x-axis. For the implementation of this step, I use the code from Bird [24],
which can be found on GitHub [36], and modified it to fit this use case. The seg-
mentation is necessary because there is no G-code command that tells the nozzle to
move from one point to another whilst describing a curve. So multiple points along
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Figure 9: Schematic visualization of the problem of applying the inverse transforma-
tion on long nozzle movements (a) and the segmentation of long nozzle movements
into smaller sections (b). This image is inspired by the Figure 9 of Wiithrich et al. [20].

the curve, which describe the non-planar layer have to be added and thereby con-
trol the printer, and especially the print head, in every position. See Figure 9 for an
illustration of the problem.

The next step is to reverse the transformation. This is done by the inverse trans-
formation T~1, which basically just subtracts the value that was previously added by
the transformation function. The inverse quadratic transformation function is shown
in equation 3 and the inverse transformation for the absolute function is shown in
equation 4. A visualization of this step can be seen in step 4 in Figure 5.

X X
TR =R |y| =T Yxyz2) = Y (3)
X X
TR R |y ]| =T xyz2) = y (4)
z Z—S%(C

In the B-axis slicing pipeline, the inverse transformation is applied by subtracting
the value that was added to z at the transformation. The position array contains the
coordinates for every G-code command. The function f is the same as in the previous
code block where the STL file was transformed.

distances_to_x_center = numpy.array (positions[:,0] —x_center)
.reshape(-1, 1)

translate_upwards = numpy. hstack ([numpy. zeros ((len(positions
), 2)), f(distances_to_x_center).reshape(-1, 1)])

new_positions = positions - translate_upwards
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4.2.5 Adding the b-axis to the G-code

To this point in the process, the G-code describes non-planar or tilted planar layer (or
a horizontal layer if the curvature strength c is set to 0). However, the current G-code
considers only the x-, y-, and z-axes, which means that the nozzle only points down
(0°). In this step, the angle of the nozzle is calculated and the value of the b-axis is
added to the G-code. With the tilt of the nozzle, the z and x coordinates also have to
be changed accordingly to compensate for rotation.

Before calculating b, the x coordinates need to be centered again. This is because
the slicer produces G-code with coordinates for the printing location on the print bed.
The b-axis is then calculated by taking the arc-tan of the slope of the transformation
function at a given point on the x-axis and transforming it from a radial value to a
degree. This results in the formula b = 180 * arctan(f’(x)) /7. A visualization can be
seen in Figure 10a. The Python code to calculate b is shown below.

x_distance_to_center = position[0] - x_center

f_derivative = lambda x: s * ¢ * 1/(max_x_distance+x_offset)
* 2%+ (x+x_offset)

b = numpy.rad2deg (numpy.arctan (f_derivative (
x_distance_to_center)))

rotational axis of
the print head

(b b3
r-cos(b)

g (b) Influence of the tilt angle of
(a) From transformation func- the print head on the x and z co-
tion to angle b of the nozzle. ordinates.

Figure 10: Calculation of the b-axis value and adjustment of the x and z coordinates.

With the b-axis calculated, the coordinates for x and z also need to be adjusted.
This is because the rotational axis of the print head is not at the tip of the nozzle. When
the b-axis rotates, the actual position of the nozzle changes without recalculating x and
z. The distance from the rotational axis to the tip of the nozzle is the offset of the tip
of the nozzle. This also defines the radius r for the rotational circle, described by the
print head rotating around a point P(x,y,z) (see Figure 10b). The new x-coordinate
of the print head is calculated using the formula 5. The new z-coordinate of the print
head is calculated using the formula 6.

Xnew = Xold + 1 * COS(b) &)
ana) — ZOld —_ (7" — T * SiI’I b) (6)

In Section 4.3.1, the angle of the b-axis is adjusted to prevent collision. This is done
right after the b-axis is calculated and before the x and z coordinates are adjusted. It
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Figure 11: Change of the space below the nozzle due to rotation. Print area below the
nozzle in horizontal prints (a) and with a tilted nozzle (b).

is crucial to understand how the nozzle behaves when tilted and what the rotational
axis is, which the nozzle rotates around. If a line of filament is extruded on a first
horizontal layer with a layer height of 0.2 mm, the height of the nozzle in the G-code
is set to "Z0.2". Therefore, if the nozzle is rotated, the B-axis slicing pipeline rotates it
around the tip of the nozzle. This changes the clearance space below the nozzle. This
is visualized in Figure 11. Therefore, the extrusion rate has to be adjusted. This is
explained in Section 4.3.2. After that is done, the G-code can be saved as a .gcode file
and sent to the printer.

4.3 Challenges

Modern slicers such as Cura or PrusaSlicer have advanced features and predefined
profiles for the most popular 3D printers. This allows the user to easily slice a 3D
model and to be sure that the print will finish with at least acceptable quality. How-
ever, for the B-axis slicing pipeline, this is not the case since a whole new printer
design is used. That reintroduces challenges that have already been solved for con-
ventional planar slicing. The first challenge is collision avoidance, which is discussed
in Section 4.3.1. With the tilt of the nozzle, the space below the nozzle changes. There-
fore, the extrusion rate must be adjusted, which is explained in Section 4.3.2. Further
challenges such as positioning the z-axis and the b-axis are covered in Section 4.3.3.

4.3.1 Collision avoidance

Collision avoidance plays a crucial role in ensuring a successful print. In planar 3D
printing, collision avoidance is already done by taking care that the nozzle is higher
than the latest printed layer and leveling the nozzle before printing. With the addi-
tional fourth axis, the complexity for collision avoidance increases, because the nozzle
can now tilt and vary the z height within a layer. The assumption that the nozzle is
always above the printed part, as is in planar 3D printing, is no longer sufficient, e.g.
when printing sideways. Therefore, further mechanisms have to be defined.

1) Avoid that the nozzle crashes into the print bed. For that, a maximum tilt
angle is chosen, depending on the Z height. When the nozzle prints the first layer,
the maximum angle can be 18°, which I determined with the clearance of the print
head (see Figure 12a). The maximum angle of 90° can be used at a height of 50 mm.
Depending on the height, the angle of the print head can increase linearly from 18° to
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90° over a distance of 50 mm. The Python code for the clipping of the b-axis is shown
below. The variable position[2] is the z-height of the current G-code command.

clip_height = 50
if (position[2] < clip_height):
if(b < 0):
b = numpy.max([b, -18-position[2]/clip_height=+72])
else:
b = numpy.min([b, 18+position[2]/clip_height=72])

2 Traverse fo
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Nozzle in Z in Z direction and
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(a) Maximum tilt angle due to the clear- (b) Collision avoidance when traveling
ance below the print head. from one side to the other.

Figure 12: Collision avoidance.

2) The second principle is to prevent the nozzle from crashing into the printed
object on travel moves (GO command). When the transformed STL file is sliced with a
planar slicer, the resulting G-code can contain travel moves from one point, diagonally
traversing the print, to another point. This is no problem with planar 3D printing, but
with non-planar 3D printing, the nozzle could crash into the print. To prevent this
from happening, the nozzle first needs to be lifted, then moved to the target position
on the xy-plane, and then moved to the target position (see Figure 12b). The code for
this part is quite long, which is why I will not display it here.

3) For concave printing, only the curved layers are printable. With tilted planar
layers, printed as an inward bent shape, the nozzle would collide with the other side,
respectively. Curved layers can only be printed with a relatively low deformation.
This depends on the height and width of the printed object. Since most of the fol-
lowing tests are printed with outward bent layers, I am not implementing a collision
avoidance algorithm for inward bent transformations.

4.3.2 Extrusion rate

The extrusion rate is a big challenge when it comes to curved slicing. The problem
with a tilted nozzle is that it is not trivial to determine the exact position and space
of each strand that is printed. Overlapping strands cause blobs on the print that can
be dragged by the nozzle and lead to irregularities. It can be seen in figure 13 that
with the regular extrusion rate of the planar slicer, there are irregularities that result
in poor print quality. Two parameters could be the cause for that.

1) The extrusion rate. The irregularities indicate that the extrusion rate is too high,
leading to the filament bulging out.
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Figure 13: Over-extrusion causes blobs on the print and results in a bad print quality
with 100 % extrusion rate and +0 mm z-offset.

2) Leveling of the nozzle. On the right-hand side of the printed sampled in Figure
13, it can be seen that the bulging is especially observed in the lower layers. The
reason for this could be that because of the tilt angle of the nozzle, the space for
extrusion is less than that with a straight nozzle.

To verify if these two parameters are the cause for the irregularities, I am printing
four additional parts with the exact same settings and geometries, except for the
extrusion rate and the z-offset. For the first part, I am changing the extrusion rate
to 90 % of the original rate (see Figure 14a). In the second test, I am changing the
z-offset to +0.2 mm (see Figure 14b). The third test print has both the extrusion rate
at 90 % and the z-offset at +0.2 mm (see Figure 14c). The fourth test prints with 87 %
extrusion rate and +0.2 mm z-offset (see Figure 14d).

(a) Extrusion rate 90 (b) Extrusion rate 100 (c) Extrusion rate 90 (d) Extrusion rate 87
%, z-offset +0 mm. %, z-offset +0.2 mm. %, z-offset +0.2 mm. %, z-offset +0.2 mm.

Figure 14: Test samples to find the cause for over-extrusion.

It can be seen that the reduction in the extrusion rate already has a positive impact
on print quality. However, the z-offset has the greatest impact on the quality of the
print and, combined with a reduced extrusion rate (see Figure 14d), can produce
prints of acceptable quality. However, with reduced extrusion rates, the opposite
effect occurs, which is called under-extrusion. In the images, it can be seen that the
samples with lower extrusion rates show small air gaps between the strands. Lower
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extrusion rates lead to smaller line widths, which lead to gaps between the lines.

To prevent under-extrusion, an algorithm is needed that adjusts the extrusion rate.
It can be derived from the above findings that the original extrusion rate is suitable
for higher layers. So, the extrusion rate must be dynamically adjusted depending on
the height of the nozzle. To verify this approach, I will test a simple algorithm that
linearly increases the extrusion rate depending on the current nozzle height. Artifacts
of over-extrusion occur in layers below 1 mm. In the above test series, an extrusion
rate of 87% seems to be suitable for the first layer (nozzle height 0). To be sure to
avoid over-extrusion, I will choose an extrusion rate of 85% for the first layer. From
then on, the algorithm linearly increases the extrusion rate to 100% in layer 6 with
a height of 1.2 mm. The z-offset is set to +0.2 mm. With these settings, the result
is not satisfactory. Over-extrusion is still happening, as can be seen in Figure 15a.
So I will adjust the algorithm to start the extrusion rate for the lower layers at 80%.
The over-extrusion still occurs at 80% in the lower layer, as can be seen in Figure 15b.
I set the z-offset higher, so that I don’t have to lower the extrusion rate again and
retain more of the original amount of filament. The Python code for the extrusion
adaption is shown below. The variable position[2] is the value for the z-axis and
point ["extrusion"] is the value of the e-axis of the current G-code command.

extrusion_scale = 1
if point["extrusion"] is not None and position[2] == O0:
extrusion_scale = 0.85
if point["extrusion"] is not None and position[2] < 1.2:
extrusion_scale = 0.80 + 0.2 x (position[2]/1.2)
point["extrusion"] = point["extrusion"]*extrusion_scale
if point["extrusion"] is not None else None

With a z-offset of +0.3 mm, the over-extrusion shows minor artifacts and the print
quality is sufficient (see Figure 15c). In addition, the problem of under-extrusion is
eliminated, which can be clearly seen on the images. The gaps between the strands
no longer exist. The question to answer is one of material loss from the adjusted
extrusion rate. This is examined in Section 5.

4.3.3 Further challenges

Another challenge is manual calibration of the z-axis and the b-axis. With modifica-
tion, the PINDA sensor (Prusa INDuction Auto-Leveling sensor), which is used for
automated calibration of the print bed [37], is removed. This means that the offset
of the z-axis has to be determined by hand. This is done by placing a paper piece
between the nozzle and the print bed and lowering the nozzle until the piece of paper
can no longer be moved back and forth. Then the command "G92 Z0" has to be sent
to the printer, which tells the printer that the current position defines the height z 0.
This method is not accurate and can lead to differences in print quality, as discussed
in Section 5.2.1. Due to the limited time of this work, I did not find a way to automate
this process again.

Even more prone to errors and inconsistent is the homing of the b-axis. The hom-
ing (command "G92 B0") sets the 0° position for the b-axis, in which the nozzle points
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