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Abstract

A beacon is a point-like object which can be enabled to exert a magnetic pull on other
point-like objects in space. Those objects then move towards the beacon in a greedy
fashion until they are either stuck at an obstacle or reach the beacon’s location. Beacons
placed inside three-dimensional polytopes can be used to route point-like objects from
one location to another. A second use case is to cover a polytope such that every
point-like object at an arbitrary location in the polytope can reach at least one of the
beacons once the latter is activated.

The topic of beacon-based routing and guarding was introduced by Biro et al. [4]
in 2011 and covered in detail by Biro in his PhD thesis [3]. Therein various aspects of
beacons in the polygonal domain of two dimensions were studied.

In this thesis we provide the first results for beacon-based routing and guarding
for three dimensions. We first define the setting for three dimensions and look at
two-dimensional beacon-based routing which lays the groundwork for our three-dimen-
sional approach. We then have a look at the complexity of certain three-dimensional
routing and guarding problems for which a smallest set of beacons should be obtained.
We show that some of the problems are at least as hard as their two-dimensional
counterpart which makes them NP-hard and APX-hard.

For the problem of finding a smallest set of beacons to be able to route between
any pair of points in a polytope we show that it is always sufficient and sometimes
necessary to place b(m + 1)/3c beacons, where m is the number of tetrahedra in a
tetrahedral decomposition of the polytope.

Finally, we show that there exists a polytope which cannot be covered by placing a
beacon at each vertex of the polytope.
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Chapter1
Introduction and related work

1.1 Introduction

The topic of beacon-based routing and guarding was introduced by Biro et al. [4] in
2011 and covered in detail by Biro in his PhD thesis [3]. He looked at routing and
guarding in (two-dimensional) polygonal domains. A beacon b is a point-like object
that can be enabled and disabled and which, when enabled, exerts a magnetic pull on
other point-like objects in space. Such an object p is then forced to move in a fashion
which greedily minimizes its distance to b. If p reaches an obstacle which blocks the
direct path from p to b, it will slide along the obstacle, still trying to greedily minimize
its distance to b.

In general, two things can happen: Either p reaches b or it gets stuck, which means
that it touches an obstacle and there is no movement along the obstacle which decreases
the distance to b.

To route a point-like object p towards a location t via beacons, an implicit beacon at t
is considered. Then the first beacon is enabled to attract p until it reaches the beacon’s
location. Subsequently the first beacon is disabled and the next one switched on. This
procedure is repeated until the last (implicit) beacon at t is enabled and finally attracts
p to its location. Note that in our setting every beacon must attract p until it reaches
the beacon’s location. Only then are we allowed to enable the next beacon. Thus, if p
gets stuck it will be stuck there forever which is not a valid solution.

A set of beacons is said to cover some domain if and only if for every point p in the
domain there is a beacon such that when the latter is enabled a point-like object at p
reaches the beacon’s location.

The main interest of this thesis lies in the combinatorics of the routing problem
in three dimensions. We take the two-dimensional polygonal domain of Biro [3]
and transfer it to the three-dimensional domain with polytopes. We are then mainly
interested in the number of beacons needed to be able to route between any pair of
points inside a polytope.

At first, in Chapter 2, we define the geometric and beacon-related terms for the
remainder of the thesis. In Chapter 3, we look at the two-dimensional case for beacon-
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Chapter 1 Introduction and related work

based routing and revise a part of the proof by Biro et al. [5]. We start with the three-
dimensional domain in Chapter 4 where we show that (like in the two-dimensional
case) some of the problems in beacon-based routing and coverage are NP-hard and
APX-hard. The two-dimensional results from Chapter 3 are then applied to three
dimensions in Chapter 5 where we prove a sharp bound for the number of beacons
necessary to route within polytopes that have a tetrahedral decomposition. Finally, in
Chapter 6 we show that for general polytopes it does not suffice to place a beacon at
every vertex of the polytope to attract all points.

1.2 Related work

Two dimensions. The topic of beacon-based routing and coverage in two-dimensional
polygons has been studied starting in 2011 especially by Biro in various publications [3,
4, 6] and very broadly in his PhD thesis [5]. In the latter he studied attraction regions
(all points attracted by a beacon), inverse attraction regions (all points that can attract a
specific point), beacon kernels (all points that attract all points inside a polygon), beacon
routing (minimal number of beacons to route between any pair of points), and beacon
guarding (minimal number of beacons to be able to attract all points).

In his work, he proved tight bounds of bn/2c− 1 on the number of beacons necessary
for routing in simple polygons with n vertices. To route within a polygon with h holes
bn/2c − h− 1 beacons are sometimes necessary and bn/2c+ h− 1 beacons are always
sufficient. For routing in orthogonal polygons (all edges are parallel to the x- or y-axis)
he can only show a smaller lower bound of bn/4c − 1 beacons, resulting in loose
bounds.

For beacon-based coverage of simple polygons and polygons with h holes he shows
that b4n/13c beacons are sometimes necessary, while b(n + h)/3c beacons are always
sufficient to cover a polygon. For simple polygons h = 0 and thus the upper bound is
bn/3c. For the coverage of orthogonal polygons he shows an upper bound of bn/4c
and a lower bound of b(n + 4)/8c.

In all of the previously mentioned cases with loose bounds, he conjectured that the
lower bound is indeed also the upper bound.

Bae et al. [1] enhanced the former results by showing that bn/6c beacons are some-
times needed and always sufficient for beacon-based coverage in orthogonal polygons.
They furthermore improved the bounds for routing in orthogonal polygons: The lower
bound was improved slightly to dn/4e − 1 while the upper bound could be reduced to
b(3n− 4)/8c − 1.

Finally, Shermer [17] found that b(n− 4)/3c beacons are always sufficient and
sometimes necessary to route between any pair of points in an orthogonal polygon. An
overview over all the best known results for routing and coverage in two dimensions
can be found in Table 1.1.

Art gallery problems. The problem of beacon-based coverage is related to art gallery
problems. It was introduced in 1973 by Victor Klee when he posed the question how
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1.2 Related work

Bound
Lower Upper Shown by

Simple polygons
⌊ n

2

⌋
− 1

⌊ n
2

⌋
− 1 Biro et al. [4]

Routing Polygons with holes
⌊ n

2

⌋
− h− 1

⌊ n
2

⌋
+ h− 1 Biro [3]

Orthogonal polygons
⌊ n−4

3

⌋ ⌊ n−4
3

⌋
Shermer [17]

Simple polygons
⌊ 4n

13

⌋ ⌊ n
3

⌋
Biro [3]

Coverage Polygons with holes
⌊ 4n

13

⌋ ⌊ n+h
3

⌋
Biro [3]

Orthogonal polygons
⌊ n

6

⌋ ⌊ n
6

⌋
Bae et al. [1]

Table 1.1: The best known results in two dimensions.

many guards are needed to cover the interior of an art gallery with n walls. Chvátal [9]
answered his question in 1975 by showing that bn/3c guards are always sufficient and
sometimes necessary. His proof was later simplified by Fisk [10]. From then on, various
aspects of the problem were studied, for example, orthogonal polygons, polygons with
holes, guards which can move along a line segment, special polygon types, and exterior
visibility. A good overview can be found in the book by O’Rourke [15].

However, in contrast to two-dimensional art gallery guarding, very few results are
known for the three-dimensional case. The known results are mainly negative ones,
i.e., lower bounds on the number of guards needed. O’Rourke [15] showed that there
exists a polytope for which it is not sufficient to place a guard at all vertices to guard
all interior points. Additionally, his construction for arbitrarily many vertices n needs
Ω
(
n3/2) many guards. Later, Michael [14] introduced a different example which

reaffirms both results by O’Rourke.
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Chapter2
Preliminaries

In this chapter we will give the relevant definitions used throughout the remaining
work. We will also show some preliminary results that follow from the definitions.

2.1 Geometric terms

For the definition of geometric objects in three dimensions we mainly refer to Lee and
Santos [11] who defined polytopes in general from a combinatorial point of view. Note
that we have made some small changes to their original definitions to fit our setting.

Definition 2.1 ([cf. 11, p. 415, polytope]). A convex polytope P is the convex hull of a
finite set V of points in Rk for some k ∈N≥1. Its dimension dim(P) is the dimension of
the affine hull of V.

Definition 2.2 ([cf. 11, pp. 415f., polytope]). A face of a convex polytope P is the set
P f := {x ∈ P | f (x) ≥ f (y) ∀y ∈ P} that maximizes a linear functional f .a The empty
set and P are considered faces and every face is a convex polytope, of dimension ranging
from −1 (empty set), 0 (vertices), 1 (edges), 2, . . ., to d− 1 (facets), and d = dim(P).

aA linear functional f is a linear map from a vector space to its field of scalars, e.g., f : Rd → R.

Definition 2.3 ([cf. 11, pp. 415f., polytope]). The boundary ∂P of a d-dimensional convex
polytope P is the union of all its proper faces, that is, all faces with dimension < d. The
interior int(P) is P without its boundary: int(P) := P \ ∂P.

With this we have some knowledge about convex polytopes and their structure. We
now combine several convex polytopes into polytopal complexes which will be the
base for our definition of a polytope afterwards.
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Chapter 2 Preliminaries

Definition 2.4 ([cf. 11, p. 416]). A polytopal complex is a finite, nonempty collection
S = {P1, . . . , Pl} of convex polytopes in Rk such that Pi ∩ Pj is always a common face of
both (possibly empty).

The dimension of S is the largest dimension of all Pi ∈ S, dim(S) := maxPi∈S dim(Pi).

We want our polytopal complexes to have some special properties. For example, we
do not want to allow a three-dimensional convex polytope with a single edge attached
to its outside. Additionally, we want our polytopal complex to be connected. This
means that there exists a path between each pair of points in the polytopal complex
which is contained in the polytopal complex. These two constraints are covered in the
following definitions.

Definition 2.5 ([cf. 11, p. 416]). A polytopal complex S is pure if all convex polytopes
in S have the same dimension.

Definition 2.6. A polytopal complex S is connected if for every Pi, Pj ∈ S and every
s ∈ Pi and t ∈ Pj there is a path p from s to t which lies in the union of all convex
polytopes, i.e., p ⊆ ⋃Pi∈S Pi.

We can now define what we mean with the term polytope, namely a pure, connected
polytopal complex. Our definition of connected does not prevent two convex polytopes
to only touch at a common vertex. However, given a polytopal complex with dimension
d, we want to enforce that each pair of convex polytopes is either disjoint or that they
share a common face of dimension d− 1. Thus we add some additional constraint in
the following

Definition 2.7. A polytope S is a pure, connected polytopal complex of dimension d
with the following additional constraint: For every Pi ∈ S and every Pj ∈ S with j 6= i
either Pi ∩ Pj = ∅ or dim

(
Pi ∩ Pj

)
= d− 1.

We also refer to P :=
⋃

Pi∈S Pi as the polytope P.

The presented definitions are general, that is, they work for arbitrary dimensions
d. Since, as the title of this thesis suggests, we only talk about three dimensions, we
restrict the definitions to three-dimensional polytopes in R3.

Additionally, whenever we talk about a polytope in the rest of this work we usually
refer to it as a subset of R3 and not as a collection of convex polytopes. However, at
least for three dimensions, one can always find a finite collection of convex polytopes
which yields the polytope we are talking about. This is due to a result of Bern and
Eppstein [2] which states that it is always possible to decompose a three-dimensional
polytope into O

(
n2) tetrahedra with the help of O

(
n2) so-called Steiner points.

Even though it should be clear intuitively what constitutes the boundary and the
interior of a polytope, we give a precise definition:
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2.2 Beacon terminology

Definition 2.8. The boundary ∂P of a d-dimensional polytope P (with S being the
collection of convex polytopes) is the union of the boundaries of its convex polytopes
minus the interior of the shared faces of dimension d− 1:

∂P :=
⋃

Pi∈S

(
∂Pi \

⋃
B∈Bi

B

)
, with

Bi :=
{

int
(

Pi ∩ Pj
) ∣∣ Pj ∈ S, j 6= i, dim

(
Pi ∩ Pj

)
= d− 1

}
.

The interior int(P) is the polytope without its boundary, int(P) := P \ ∂P.

Observation 2.9. The additional constraint introduced in Definition 2.7 implies that the
interior of a polytope is always connected.

Observation 2.10. Note that our definition of a polytope does not impose any constraints
on the number of holes or cavities. The two terms are interpreted as follows:

(i) A hole means a hole in the sense of holes in donuts. This means that, topolog-
ically speaking, the genus of the polytope’s surface (or boundary as defined by
Definition 2.8) can be arbitrarily high.

(ii) A cavity is interpreted like this: Given two three-dimensional polytopes P1 and
P2 where P2 is completely contained in the interior of P1, i.e., P2 ⊆ int(P1). If we
now look at the polytope P := P1 \ int(P2) we obtain a new polytope P with the
cavity P2.

Having a cavity also implies that the boundary ∂P is not connected. In our
example ∂P = ∂P1 ∪ ∂P2 and since P2 ⊆ int(P1) we see that ∂P2 cannot touch ∂P1.

2.2 Beacon terminology

In the following, we will define the characteristics of beacons and their effects. Many of
the definitions encountered in this section are very similar, if not equal, to those given
by Biro [3] for two dimensions. Where applicable, we indicate the relevant counterpart.

Definition 2.11 ([cf. 3, Definition 2.3.1]). A beacon b is placed at a point in a polytope P
and can be enabled and disabled. When enabled, b exerts a pull on point-like objects
in P. The objects then move to greedily minimize their Euclidean distance to b, while
being constrained to remain in P.

The movement of a point-like object p under the influence of a beacon b is called the
attraction path of p towards b.

Note 2.12. In the following when we mean that a point-like object placed at p moves
towards a beacon b we will sometimes say that “a point p moves towards b”. It should
still be clear that the point itself does not move. We will also sometimes refer to a
beacon as the point at which it is placed.
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Chapter 2 Preliminaries

?
p b

Figure 2.1: When b is enabled the point p first moves in a straight line. Then it is
unclear whether it slides either upwards or downwards.

Observation 2.13. The attraction path is not well-defined in all cases. Let p be a point
and b a beacon in P. If the attraction path of p towards b touches ∂P at an edge or a
vertex it is sometimes possible for the movement to proceed in more than one way
while still minimizing the distance to b.

Consider the situation in Figure 2.1 where the attraction path from p towards b could
either slide upwards (and thus reach b) or slide downwards and get stuck. Since there
is no “right” way to solve the situation we make the following

Assumption 2.14. If the attraction path of a point-like object p towards a beacon b is
not well-defined and there is a possible attraction path which does not terminate in b,
then p will take this path.

This assumption makes sure that we never rely on non-deterministic behavior.

Lemma 2.15. Every attraction path is a polygonal chain, i.e., a connected series of line seg-
ments given by a series of points.

Proof. Let p be a point and b be a beacon in the polytope P and let p be attracted by b.
There are two possible movements for each part of the attraction path.

The first movement is the unconstrained movement. This is always the case if there
exists an ε > 0 such that p′ = p + ε

# „

pb and the line segment pp′ is completely contained
in P. Then p moves along the line segment pb until it either reaches b or its movement
becomes constrained at a point q ∈ ∂P. In the first case (p, b) is the polygonal chain of
the movement and in the second case (p, q) is a polygonal chain which is a prefix of
the attraction path. The rest of the attraction path of p is the attraction path of q.

The second movement is the constrained movement. For this it is necessary that
p ∈ ∂P holds. Then there exists a two-dimensional facet F of P with p ∈ F. If there are
multiple such facets choose the one along which p will move towards b, taking into
account Assumption 2.14.

We now split the movement
# „

pb into two components
# „

pb⊥, which is orthogonal to F,
and

# „

pb∈, which lies in F, such that
# „

pb⊥ +
# „

pb∈ =
# „

pb. Since the movement along
# „

pb⊥
is blocked by F the point p moves along the remaining vector

# „

pb∈. This essentially is
a projection of

# „

pb onto F. If q = p +
# „

pb∈ ∈ int(F) the movement gets stuck at q since
then

#„

qb∈ =
#„

0 and thus every point around q in F is further away from b. Then the
movement of p is described by the polygonal chain (p, q).

8



2.2 Beacon terminology

b1

b2

b1

b2

Figure 2.2: Attraction is not symmetric. In this two-dimensional example b1 attracts b2
(left) but b2 does not attract b1 (right).

If, on the other hand, p +
# „

pb∈ /∈ int(F) there is a point q ∈ ∂F with q = p + r
# „

pb∈ for
some r ∈ R>0. The point p moves in a straight line towards q and thus (p, q) is the
prefix of the attraction path of p towards b until reaching q. For the movement of q we
obtain a polygonal chain by looking again an the two possible cases.

Definition 2.16 ([cf. 3, Definition 2.3.2]). A beacon b attracts a point p if, while b is
enabled, an point-like object starting at p moves so that it eventually reaches the location
of b, that is, the Euclidean distance to b is 0. We also say that p is attracted by b.

Observation 2.17. Given a polytope P, a beacon b ∈ P attracts a point p ∈ P if and only
if the attraction path of p towards b terminates at the location of b.

Note 2.18. One should be aware that the notion of attraction as defined here is different
from the common use of the word. In common use we would say that b attracts p if p
moves under the influence of b. With Definition 2.16 however, a beacon b only attracts
p if p eventually reaches b.

Definition 2.19. A point p is a dead point with respect to a beacon b if p does not move
when b is enabled. This means that its attraction path towards b consists only of p.

Observation 2.20. Attraction is a concept similar to visibility. We note that attraction is
more powerful, i.e., for any point p the visibility region of p (all points p can see) is a
subset of the attraction region of p (all points attracted by p). Additionally, as opposed
to visibility, attraction is not symmetric. See Figure 2.2 for a two-dimensional example
of two points b1 and b2 where b1 attracts b2 but is not attracted by it.

Different from visibility, the idea of attraction might lead to think about the case
where multiple beacons are enabled. Here, the movement will depend on the strength
of the attraction: One can think about strength which is relative to the distance (like
magnets) or strength which is the same regardless of the distance. In the latter case
the attracted point would try to move to the beacons’ center of gravity. One could also
think about enabling and disabling various beacons while a point is moving, which
would complicate the point’s movement a lot. To simplify our model for not needing to
look at those more complex situations we make the following

Assumption 2.21. At all times, at most one beacon is enabled.

9



Chapter 2 Preliminaries

This assumption implies that, whenever we say that a beacon is enabled, it also
means that all other beacons are disabled.

2.2.1 Routing

In the area of beacon-based routing we are interested in moving a point at a location
inside a polytope to another location solely with the help of beacons. More specifically
we are interested in finding minimum beacon paths between two given points, that is,
a minimal number of beacons with which it is possible to route from the start to the
target location. To do this, we need to define the term beacon path and what makes it a
minimum beacon path.

Definition 2.22 ([cf. 3, Definition 6.1.1]). Given a polytope P and two points s, t ∈ P, a
beacon path from s to t in P is a sequence of locations s = b0, b1, b2, . . . , bk, bk+1 = t in P
such that bi+1 attracts bi for all i = 0, 1, 2, . . . , k. The length of such a path is k, i.e., the
number of locations without s and t.

If P is clear from the context we just say: a beacon path from s to t.

Note 2.23. We would like to point out that bk+1 = t is not considered an additional
beacon in the sense that it is not counted in the number of beacons necessary to route s
to t. Otherwise, to route from a fixed start s to all points in P, we would need to place
a beacon at every possible destination t, resulting in uncountably many beacons.

The idea is to enable b1 which attracts an object at the location of s. When the object
reaches b1, we activate b2 and so on. In the end we activate t which attracts the object
to its final location. From this definition of a beacon path we can extract the following
assumptions about our model:

Assumption 2.24 ([3, Assumption 6.1.3]). Each beacon must lie inside the polytope.

Assumption 2.25 ([3, Assumption 6.1.4]). Each beacon may be activated at most once.

Assumption 2.26 ([3, Assumption 6.1.5]). The routed object must reach the activated
beacon before the next beacon may be activated.

These assumptions were also made by Biro [3] to simplify the model. We chose to
follow his path to make the results comparable. With this in mind, we can now give a
definition of a minimum beacon path.

Definition 2.27 ([cf. 3, Definition 6.1.6]). Given a polytope P and two points s, t ∈ P, a
minimum beacon path from s to t in P is a beacon path with minimum length among all
beacon paths from s to t.

Definition 2.28 ([cf. 3, Definition 6.1.7]). Given a set B of beacon locations in a polytope
P and two points s, t ∈ P, we say that s is routed to t in B if there exists a beacon path
s = b0, b1, b2, . . . , bk, bk+1 = t with b1, b2, . . . , bk ∈ B.

10



2.2 Beacon terminology

2.2.2 Coverage

When looking at beacon-based coverage (sometimes also called guarding due to the
similarity to art gallery guarding) the idea is to find a set of beacons B such that every
point in the domain to be covered (in our case a polytope) is attracted by at least one of
the beacons in B. We look at this more formally with the following

Definition 2.29. Given a polytope P, a set B ⊆ P of beacon locations is said to cover the
polytope P if for every point p ∈ P there exists a beacon b ∈ B such that p is attracted
by b.

2.2.3 Relation between routing and coverage

Even though routing and coverage are similar, there are important differences. The
most important difference is that routing is symmetric, i.e., we must be able to route s
to t and also t to s, whereas coverage is asymmetric, i.e., every point must be attracted
by some beacon but the beacons do not need to be attracted by them. If we look again
at the two-dimensional example in Figure 2.2 we can see that b1 covers the polygon but
it is not possible to route between any pair of points with b1 being the only beacon.

With this in mind it should be clear that a set of beacons able to route between any
pair of points is also able to cover a polytope. This is formalized in the following

Lemma 2.30 (Routing implies coverage). Given a polytope P and a set of beacons B ⊆ P.
If for all s, t ∈ P, s is routed to t in B then

(i) if B = ∅ then for every point p ∈ P the set {p} covers P or

(ii) if B 6= ∅ then B covers P.

Proof. We show this individually for each case.

(i) If B = ∅ then for every pair of points s, t ∈ P the target t attracts s. This means
that every point t can attract every point s.

(ii) Assume p ∈ P is a point not covered by B. Since p is not covered by B, no b ∈ B
can attract p. Then p cannot be routed to any of the b ∈ B, either. This is a
contradiction.

Corollary 2.31 (Non-coverage implies non-routing). Given a polytope P and a non-empty
set of beacons B ⊆ P which does not cover P. Then there exist s, t ∈ P such that s is not routed
to t in B.
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Chapter3
Two-dimensional beacon-based routing

revised

One of the first things studied by Biro et al. [4] after introducing the notion of beacon-
based routing was the problem’s combinatorial complexity. Here, one of the main
questions is:

Given a two-dimensional polygon P, how many beacons are needed to be
able to route between any pair of points inside the polygon via beacons?

The main result to this question is the following theorem in which n is the number of
vertices of P.

Theorem 3.1 (Theorem 1 by Biro et al. [5]). Given a simple polygon P,
⌊ n

2

⌋
− 1 beacons are

sometimes necessary and always sufficient to route between any pair of points in P.

Here simple means that the edges of the polygon do not intersect, except for the
vertices which are shared by exactly two consecutive edges.

The idea of their proof is to triangulate the polygon, yielding n− 2 triangles, and
then successively remove at least two triangles by placing one beacon. They show
that the beacon can always be placed so that it lies on the boundary of the remaining
polygon and can always see the whole interior of the removed triangles. They can then
conclude that at most bn/2c − 1 beacons are needed and show a construction which
always needs this many beacons.

3.1 Revision of the upper bound for simple polygons

While proving the upper bound of the above theorem they analyze different config-
urations of triangles to show that by placing one beacon at least two triangles can
be removed. One of the cases is that of a triangle σ2 = 4BCD having two adjacent
triangles σ1 = 4ABC and σ3 = 4CDF whose interior should be completely attracted
by a beacon b positioned on the leftover line segment of σ2, namely BD. See Figure 3.1

13



Chapter 3 Two-dimensional beacon-based routing revised

A

B

C

D

E

F

σ1 σ2

σ4

σ3

b

Figure 3.1: The situation as analyzed by Biro et al. [5]. Here b can be placed near D to
fulfill the requirement of seeing every point inside ABDFC.

for an explanatory depiction. Note that the order of the names of the vertices is rather
unusual but it was chosen to fit the original description. Then they state the following:

The location b along BD is chosen so the pentagon ABDFC is visible to b.
This is always possible, by placing b on the correct side of lines CF and
AC. Then, any point in triangles 4ABC, 4BCD, 4CDF can be routed to
or from b as b is visible to each point in those triangles. — Biro et al. [5, p. 2]

However, the constraint that b needs to lie to the right of AC and to the left of FC is
not sufficient. Additionally, b needs to lie to the left of AB and the right of FD, that
is, in the visibility cone of both triangles σ1 and σ3. Figure 3.2(a) shows an example
where those stronger constraints cannot be fulfilled. Here, the line through B and D
constrains the visibility of a beacon b on the line segment BD unless it is placed at B or
D. This still means, however, that b cannot see the full pentagon.

Since we only need mutual attraction and not visibility, we might think that this
problem is irrelevant here. In fact, we can always place b such that it can attract all

A

B

C

D

E

F

σ1
σ2

σ4

σ3

(a) In this situation b cannot be placed on BD
to see the full pentagon.

A

B

C

D

E

F

G

H

b

(b) Wherever b is placed on the line segment
BD, it cannot be attracted by both A and F.

Figure 3.2: It is not possible to place one beacon b on the line segment BD such that it
attracts and is attracted by all points inside the pentagon ABDFC.
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3.1 Revision of the upper bound for simple polygons

points inside the pentagon ABDFC but the reverse does not hold. Look at Figure 3.2(b)
for an example. If b is not placed at B we can position A very close to G such that A
cannot attract b. The same holds true for F. Since b cannot be placed at B and D at the
same time, it cannot be placed at all without violating the constraint.

Nevertheless, Theorem 3.1 still holds as we will show in the following lemma. We
will show the complete upper bound and indicate where we introduced our new idea.

Lemma 3.2 (Two-dimensional upper bound). Given a simple polygon P with n ≥ 2
vertices,

⌊ n
2

⌋
− 1 beacons are always sufficient to route between any pair of points in P.

Proof. First note that we have restricted n to be at least 2. Otherwise a the number of
allowed beacons is negative. For n = 2 P is just a line segment. We do not ignore this
case out of technical reasons—we will need the case where a polygon consists of just a
line segment.

Triangulate P and look at the dual graph T of the triangulation: the triangles form the
set of nodes and two vertices are connected if and only if the corresponding triangles
share an edge in the triangulation. Because P is simple, T is a tree with n− 2 nodes
and we require it to be rooted at an arbitrary leaf. The idea is to place a beacon which
is included in at least three triangles and then remove two of them. By induction we
will show that this is always possible.

Base case (n ≤ 4). If 2 ≤ n ≤ 3 then P is either a line segment, or a single triangle. In
both cases no beacon is needed due to the convexity of P’s shape.

For n = 4 the polygon P consists of exactly two triangles which share a common
edge. We are allowed to place one beacon which we place at an arbitrary point b along
the shared edge. Then every point p ∈ P can see b which means that they mutually
attract each other. Then we can route from every point s ∈ P to every point t ∈ P via b.

Inductive step (n > 4). Assume that Lemma 3.2 holds for all polygons with strictly
less than n vertices. Look at a triangle σ1 which is a deepest leaf in T and whose parent
triangle is called σ2. We then distinguish between two cases:

(i) σ2 has no other children. Let σ3 be σ2’s parent triangle. Then σ1, σ2, and σ3 share
a common vertex at which we place a beacon b. This situation can be seen in
Figure 3.3(a).

Afterwards we remove the triangles σ1 and σ2 which leaves a new simple polygon
P′ with n′ = n− 2 vertices. By the induction hypothesis we know that we need at
most

⌊ n′
2

⌋
− 1 =

⌊ n−2
2

⌋
− 1 =

⌊ n
2

⌋
− 2 beacons to route in P′. Together with the

one beacon b we place this satisfies the boundary of
⌊ n

2

⌋
− 1.

We still need to show that we can route between any pair of points in P. By the
induction hypothesis and because b is contained in σ3 which remains in P′ we
can route between b and any point in P′. Additionally, every point in σ1 or σ2

15
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b

σ1 σ2

σ3

σ5
σ6

(a) The beacon b covers
at least three trian-
gles: σ1, σ2, and σ3.

b1

b2

σ1 σ2

σ4

σ3

σ5
σ6

(b) The two beacons b1 and b2
cover σ1, σ2, σ3, and σ4 and
both neighbors of σ4.

b1

b2

P1

P2

(c) After removing σ1 to σ4 two
(possibly empty) polygons
P1 and P2 remain.

Figure 3.3: The two possible configurations in the inductive step are shown in (a) and
(b). In (c) we can see the situation of (b) after removing the triangles.

sees b due to convexity and can thus attract and be attracted by it. Hence, we can
route between any pair of points via b.

(ii) σ2 has a second child σ3. This is the erroneous case of the original proof by Biro
et al. [5].

Let σ4 be σ2’s parent triangle. We know that σ3 is a leaf in T because σ1 is a
deepest one. Look at Figure 3.3(b) for a depiction of the situation.

Instead of placing one beacon and removing three triangles, as suggested in the
original proof, we will place two beacons and remove four triangles. Beacon b1 is
placed at the common vertex of σ1, σ2, and σ4 (marked red) and b2 at the common
vertex of σ3, σ2, and σ4 (marked blue). Note that if σ4 has additional neighbors σ5
or σ6 they are also covered by one of the beacons.

We now remove σ1 to σ4 which leaves two polygons P1 and P2 which share exactly
one vertex. If either polygon is “non-existent” it still consists of the line segment
between the incident beacon and the shared vertex. This will be important in the
next step.

Let n1 ≥ 2 and n2 ≥ 2 be the number of vertices of P1 and P2, respectively. Here,
it is important that a “non-existent” polygon still has two vertices. We know that
n1 + n2 = n− 2 since we have removed three vertices and P1 and P2 share one
vertex which needs to be counted twice.

Because n1 < n and n2 < n we can apply the induction hypothesis individually
to P1 and P2 which tells us that we need at most k1 =

⌊ n1
2

⌋
− 1 and k2 =

⌊ n2
2

⌋
− 1

beacons. To remove the four triangles we have placed two additional beacons
which means that in total we never place more than k1 + k2 + 2 beacons. It
remains to show that this number is never larger than the claimed upper bound
of
⌊ n

2

⌋
− 1:
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3.2 A different lower bound for simple polygons

k1 + k2 + 2 ≤
⌊n

2

⌋
− 1

⇔
⌊n1

2

⌋
− 1 +

⌊n2

2

⌋
− 1 + 2 ≤

⌊n
2

⌋
− 1

⇔
⌊n1

2

⌋
+
⌊n2

2

⌋
≤
⌊n

2

⌋
− 1

⇔
⌊n1

2

⌋
+
⌊n2

2

⌋
≤
⌊

n1 + n2 + 2
2

⌋
− 1

⇔
⌊n1

2

⌋
+
⌊n2

2

⌋
≤
⌊

n1 + n2

2

⌋
The last inequality trivially holds, showing that we never place too many beacons.

We still need to show that we can route between any pair of points in the original
polygon P. By the induction hypothesis and because of the placement of b1 and
b2 on the boundary of P1 and P2 we know that we can route between b1 and
any point in P1 and between b2 and any point in P2. Additionally, b1 and b2 can
see and attract each other, since they share an edge of the triangulation of P.
Furthermore, all four removed triangles either contain b1 or b2 and thus every
point in the removed tetrahedra can attract and be attracted by one of the two
beacons. As a result, we can route every point p ∈ P to and from b1 or b2 and
between b1 and b2 which enables us to route between all pairs of points in P.

3.2 A different lower bound for simple polygons

As stated in Theorem 3.1 and shown by Biro et al. [5],
⌊ n

2

⌋
− 1 is not only an upper

but also a lower bound for the necessary number of beacons in simple polygons. We
will prove this lower bound in a different way which will be extended to the three-
dimensional case later on in Section 5.3. The idea for this construction is similar to the
one used by Shermer [17] for the lower bound for beacon-based routing in orthogonal
polygons.

We first show the construction of a class of spiral-shaped polygons for which we will
then show that

⌊ n
2

⌋
− 1 beacons are needed for a specific pair of points.

Definition 3.3. For every c ∈N≥1 and some small 0 < δ < 1 a c-corner spiral polygon is
a simple polygon with n = 2c + 2 vertices. These vertices, given in counterclockwise
order, are called s, q1, q2, . . ., qc, t, rc, rc−1, . . ., r1 and their coordinates are given in
polar notation as follows:

• s = (1; 0π), t =
(⌊ c+1

3

⌋
+ 1; (c + 1) · 2

3 π
)
,

• qk =
(⌊ k

3

⌋
+ 1 + δ; k · 2

3 π
)

for all 1 ≤ k ≤ c, and

• rk =
(⌊ k

3

⌋
+ 1; k · 2

3 π
)

for all 1 ≤ k ≤ c.
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0π

2
3 π

4
3 π

s t

Figure 3.4: A 5-corner spiral polygon with δ = 0.4 for which five beacons (marked in
red) are necessary to route from s to t.

The two vertices rk and qk form the k-th corner. The c− 1 trapezoids rkqkqk+1rk+1 for
all 1 ≤ k < c and the two triangles 4sr1q1 and 4trcqc are each called hallway.

An example for c = 5 can be seen in Figure 3.4. There are five corners and we have
already placed five beacons to be able to route from s to t.

Lemma 3.4 (Two-dimensional lower bound). Given a c-corner spiral polygon. Then c
beacons are necessary to route from s to t.

Proof. To show that we need c beacons we introduce some additional notational con-
ventions as depicted in Figure 3.5. The interior angle at each (reflex) vertex rk is called
αk. We split each hallway into two parts. To achieve this, three rays starting at the
origin with the angles 1

3 π, π, and 5
3 π (the dotted rays in Figure 3.4) are drawn. Every

hallway is divided by exactly one of the three rays and the intersection points with the
polygon’s boundary are called ak and bk: ak is the intersection of one of the rays with
the edge rk−1rk and bk with the edge qk−1qk.

We observe that, due to the triangular shape, the angle αk is always strictly less than
90°, for every 1 ≤ k ≤ c.
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3.2 A different lower bound for simple polygons

rk−1

rk

qk−1

qk

ak

bk

ak+1bk+1

αk

αk−1

Figure 3.5: Notation for various parts on the triangular spiral.

drk

qk

ak

bk

ak+1bk+1

Ck−1

Ck+1

Figure 3.6: The complete corner Ck in lighter gray. It is not possible to route through
this corner from Ck−1 to Ck+1 without a beacon inside the marked region. If
bk+1 was a beacon, points from Ck−1 would not travel further than d.
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Chapter 3 Two-dimensional beacon-based routing revised

We now divide our polygon into c + 2 subpolygons C0 to Cc+1 at each pair ak and bk.
This subdivision results in two triangles C0 and Cc+1 which contain s and t, respectively,
and c subpolygons C1 to Cc which are called complete corners and which all have the
same structure. We show that every such complete corner needs to contain at least one
beacon to be able to route from s to t. We look at one complete corner Ck, 1 ≤ k ≤ c,
shown in Figure 3.6.

We want to route from Ck−1 to Ck+1. To route any point from Ck−1 (which all lie to
the right of akbk) towards bk+1 there has to be a beacon such that the shortest path of
this beacon to the line segment rkak ends in rk. Otherwise, an attracted point will get
stuck on rkak because the shortest path ends somewhere on rkak (excluding rk itself). In
Figure 3.6 we see the case where bk+1 is a beacon. Here d is a dead point with respect
to bk+1 and no point from Ck−1 will travel further into Ck when attracted by bk+1.

The marked region in Figure 3.6 is the region in which every point can attract at
least all points on the line segment akbk. Additionally, every point in the region can be
attracted by a beacon somewhere in the first part of Ck+1, i.e., the region to the right of
bk+1ak+1 and to the right of the line trough rkak+1.

On the other hand, there is no better option than bk+1 for a beacon position outside
of Ck. All other points in Ck+1 lie to the right of the line through bk+1d and hence their
respective dead point on rkrk−1 lies further away from rk.

We can see that if the length of the hallways (the distance between rk and rk+1) is
sufficiently large compared to their width (the distance between ak and bk) it is never
possible for a point outside of Ck to be inside the marked region. Therefore it is not
possible to route from somewhere inside Ck−1 to somewhere inside Ck+1 without an
additional beacon inside Ck.
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Chapter4
Complexity of three-dimensional

beacon-based routing and coverage

The primary goal of beacon-based routing in polytopes is to find a minimum set B of
beacons such that we only need beacons from B to route between all pairs of points,
from all points to one end point, from one start point to all end points, or between
to specific points. For coverage in polytopes we want to find a minimum set B such
that the whole polytope is covered by B. In this chapter, we first define the problems
whose complexity we want to determine. We then explain briefly how Biro [3] showed
hardness for a number of similarly defined problems in two dimensions. Afterwards,
we show that the respective three-dimensional problems are NP-hard and APX-hard
with a reduction from their two-dimensional counterparts.

4.1 The problems

We first define the problem of finding minimum beacon paths and its variations. The
most interesting problems are to find a minimum set of beacons to route between all
pairs of points, to route a specific start point to all points, to route all points to a specific
end point, and to find a minimum beacon path to route from a known start point to a
known end point.

Problem 4.1 ([cf. 3, Problem 6.1.8]). Given a three-dimensional polytope P, finding
a minimum set B of beacons such that for every pair of points s, t ∈ P, there exists
a beacon path from s to t in B is called the Three-Dimensional All-Pair Beacon-
Routing Problem or the 3D-All-Pair Problem.

Problem 4.2 ([cf. 3, Problem 6.1.9]). Given a three-dimensional polytope P and a point
s ∈ P, finding a minimum set B of beacons such that for every point t ∈ P, there
exists a beacon path from s to t in B is called the Three-Dimensional All-Sink

Beacon-Routing Problem or the 3D-All-Sink Problem.
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Chapter 4 Complexity of three-dimensional beacon-based routing and coverage

Problem 4.3 ([cf. 3, Problem 6.1.10]). Given a three-dimensional polytope P and a point
t ∈ P, finding a minimum set B of beacons such that for every point s ∈ P, there
exists a beacon path from s to t in B is called the Three-Dimensional All-Source

Beacon-Routing Problem or the 3D-All-Source Problem.

Problem 4.4 ([cf. 3, Problem 6.1.11]). Given a three-dimensional polytope P and a pair
of points s, t ∈ P, finding a minimum beacon path is called the Three-Dimensional

Given-Pair Beacon-Routing Problem or the 3D-Given-Pair Problem.

For beacon coverage there is mainly one problem—namely, to find a minimum set of
beacons such that every point in the polytope is attracted by at least one beacon, or
more formally:

Problem 4.5 ([cf. 3, Section 7.1]). Given a three-dimensional polytope P, finding a
minimum set B of beacons such that for every point p ∈ P, there exists a beacon b ∈ B
such that b attracts p is called the Three-Dimensional Beacon-Coverage Problem or
the 3D-Coverage Problem.

4.2 The idea of hardness in two dimensions

If we change the definitions of Problems 4.1 to 4.5 such that P is a polygon instead of a
polytope P we obtain the corresponding definitions of the two-dimensional problems as
defined by Biro [3]. He has shown that those two-dimensional problems, except for the
two-dimensional Given-Pair Beacon-Routing Problem, are NP-hard and APX-hard
by reducing from the Minimum Line Covering Problem. This problem was shown to
be NP-hard by Megiddo and Tamir [13] and APX-hard by Brodén et al. [7] and it is
defined as:

Problem 4.6 ([3, Problem 6.2.1]). Given a set of lines in the plane, the Minimum Line

Covering Problem is finding the smallest set of points so that there is at least one
point on each line.

Biro [3] showed the hardness for all of the four problems individually but we will
only present the idea of their reduction1: Given an instance of the Minimum Line

Covering Problem, that is, an arrangement of lines in the plane, we construct a
rectangle P, called spike box, such that all intersections of the lines are contained inside
the rectangle. An example of the construction of P is shown in Figure 4.1. After certain
modifications which we will describe subsequently, P will be the input polygon for the
beacon problems.

Every line of the line arrangement leaves P at two locations. We pick one location
arbitrarily and construct an additional gadget at this location The type of gadget

1For the complete proofs refer to Theorems 6.2.2, 6.2.3, 6.2.4, and 7.2.1 of Biro [3].
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4.2 The idea of hardness in two dimensions

(a) An input for the Minimum Line Cov-
ering Problem (Problem 4.6).

(b) The spike box which contains all in-
tersections. Additional gadgets are
constructed at the marked points.

Figure 4.1: Given a line arrangement for the Minimum Line Covering Problem it
is transformed by first constructing a rectangular box which contains all
intersection points. Then additional gadgets are added at one side where
each line leaves the box.

depends on the problem for which we want to show hardness and two of the three
gadgets used can be seen in Figure 4.2.

The first zigzag gadget ensures that only beacons located inside the marked area can
attract the point s. The area consists of the part inside the gadget and an arbitrarily
thin region around the original line. For the two-dimensional All-Source Problem

we place t somewhere in the rectangle without being near the lines and construct
the zigzag gadget for every line. This prevents t from attracting the point s for every
constructed gadget and thus a smallest beacon set necessarily has at least one beacon
inside each marked region. Every beacon then corresponds to a point on the line of the
original instance of the Minimum Line Covering Problem.

The second inverted arrow gadget is constructed for the opposite case. It guarantees
that t can only attract points inside the marked area. As is visible in Figure 4.2(b),
the area widens slightly due to the non-zero angle between t and the points at which
the gadget is connected to the spike box. This problem is mitigated by choosing an
arbitrarily small width for the gadget. For the two-dimensional All-Sink Problem

s t

(a) A zigzag gadget to prevent t from at-
tracting s if t is not placed anywhere
inside the green area.

s
t

(b) An inverted arrow gadget to prevent t
from attracting anything outside the
blue attraction region.

Figure 4.2: The two gadgets used for reducing the two-dimensional All-Source Prob-
lem (left) and All-Sink Problem (right). In both cases an additional beacon
is needed to route s to t.
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Chapter 4 Complexity of three-dimensional beacon-based routing and coverage

we construct the inverted arrow gadget for every line and place s inside the spike box
without being near any marked region. Then, with the same argument as before, we
need at least one beacon in every marked region to be able to route s to all t for every
gadget—and once again every beacon then corresponds to a point on a line in the
Minimum Line Covering Problem. The two-dimensional All-Pair Problem can be
treated with the same strategy as the two-dimensional All-Sink Problem.

To show hardness of the two-dimensional Coverage Problem a third gadget is used
by Biro [3]. However, it should be sufficient to reuse the zigzag gadget as this gadget
only allows beacons on the original line to attract all points inside the gadget. Since all
points must be covered there is at least one beacon on every line and hence the position
of the beacons give us a solution for the original problem.

4.3 Hardness in three dimensions

We will now show that the corresponding three-dimensional problems (Problems 4.1
to 4.3 and 4.5) are all at least as hard as their two-dimensional versions and thus
both NP-hard and APX-hard. We will reduce the two-dimensional problems to the
three-dimensional ones to prove their hardness, as shown in the following

Theorem 4.7. The 3D-All-Pair Problem, the 3D-All-Sink Problem, the 3D-All-
Source Problem, and the 3D-Coverage Problem are all NP-hard and APX-hard.

Proof. We will reduce from the respective two-dimensional problems which were
already shown to be NP-hard and APX-hard. We first define that a beacon set B is
sufficient if and only if B is a solution according to the problem definition without the
constraint of being a minimum set.

The input for the respective two-dimensional problems consists of a polygon together
with an optional target or start point. We denote those inputs as (P), (P, t), and (P, s).
We transform it into inputs (P∗), (P∗, t), and (P∗, s) where P∗ is a polytope according
to the following construction:

Suppose all vertices of P lie in the xy-plane, i.e., their z-coordinate is zero. We take
a copy P′ of P and set all of its z-coordinates to one. We then connect every vertex
of P with the respective vertex of P′. This yields a polytope P∗. An example of the
transformation can be seen in Figure 4.3.

Let B∗ be a beacon set for the transformed three-dimensional problem and let
B = {(x, y) | (x, y, z) ∈ B∗} the projection of the solution to the xy-plane. We show
that B is a sufficient solution for the two-dimensional problem if and only if B∗ is a
sufficient solution for the three-dimensional problem. We note that since B∗ ⊆ P∗ also
B ⊆ P must hold.

We observe that the movement along the z-direction inside P∗ is never obstructed if
the z-coordinate lies in the interval [0, 1]—if the z-coordinate is outside of this interval
the corresponding point lies outside of P∗. Due to the fact that every cross section of
P∗ parallel to the xy-plane yields the same polygon P, we can split the movement of a
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s

t

(a) A polygon P with two points. De-
pending on the problem, either s or
t or both are missing.

s
t

(b) The result P∗ of the transformation. The
z-coordinates of s and t are set to zero.

Figure 4.3: The transformation of a two-dimensional instance (a) into a three-dimen-
sional one (b).

point p under the influence of a beacon b into its xy-movement and its z-movement.
Those two movements are independent and the latter linearly moves from zp to zb. The
result is that the z-coordinate of the beacons in B∗ is not important and can be set to
zero for all of them. This essentially yields the set B as defined before and thus B is
sufficient for the polygon P if and only if B∗ is sufficient for the polytope P∗.

We now show that B∗ is a minimum beacon set if and only if B is a minimum beacon
set: Suppose B∗ is a minimum beacon set and sufficient for the three-dimensional
problem. Furthermore assume that there exists a beacon set O with |O| < |B| which
is sufficient for the two-dimensional problem. Then O∗ = {(x, y, 0) | (x, y) ∈ O} is
sufficient for the three-dimensional problem. Because |O∗| = |O| < |B| = |B∗| holds,
B∗ is not a minimum beacon set. This directly contradicts our assumption that B∗ is a
minimum beacon set.

On the other hand, if B∗ is not a minimum beacon set then a sufficient and strictly
smaller beacon set O∗ exists which can be transformed into a sufficient two-dimensional
beacon set O as before. Then O is smaller than B and hence B is not a minimum beacon
set either.

As a result of the theorem and with the assumption of P 6= NP, no polynomial-time
algorithm to obtain an optimal solution can exist for any of the four three-dimensional
problems. Additionally, with the same assumption, no polynomial-time approximation
scheme (PTAS) exists to find an approximate solution.

Regarding the 3D-Given-Pair Problem (Problem 4.4), we do not show any hardness.
For the respective two-dimensional problem Biro [3] shows that there exists a PTAS
and gives an algorithm to compute an optimal solution whose complexity is unknown.
He uses techniques which were out of scope of this thesis to obtain those results and
thus we have no similar results for three dimensions.

Some more details about the PTAS and the exact algorithm are given in Section 7.1
where we describe the open problems.
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Chapter5
Beacon-based routing in polytopes with a

tetrahedral decomposition

In this chapter, we want to look at the combinatorial aspects of the routing problems to
show upper and lower bounds. The first idea when tackling the problem is to transfer
the two-dimensional approach by Biro [3] to three dimensions. In two dimensions the
main idea is to look at a triangulation of the polygon. In our case, we will look at the
three-dimensional analogon, the decomposition of a polytope into tetrahedra.

5.1 Preliminary thoughts on tetrahedral decompositions

Lennes [12] has shown in 1911 that a polyhedron cannot, in general, be decomposed
into tetrahedra if no additional vertices are allowed. The problem of deciding whether
such a decomposition exists is, in fact, NP-complete as shown by Ruppert and Seidel
[16].

In the two-dimensional case, every simple polygon with n vertices has a triangulation
with exactly n− 2 triangles; a polygon with h holes has a triangulation of n− 2 + 2h
triangles. In contrast, for three dimensions the number of tetrahedra in a tetrahedral
decomposition is not directly related to the number of vertices. Chazelle [8] showed that
for arbitrary n there exists a polytope with Θ(n) vertices for which at least Ω

(
n2) convex

parts are needed to decompose it. Naturally, this is also a worst-case lower bound on
the number of tetrahedra. On the other hand, Bern and Eppstein [2, Theorem 13] show
that any polytope can be triangulated with O

(
n2) tetrahedra with the help of O

(
n2)

so-called Steiner points. Furthermore, it is clear that every tetrahedral decomposition
consists of at least n− 3 tetrahedra.

Additionally, the same polytope can have different tetrahedral decompositions with
different numbers of tetrahedra. One such polytope can be found in Figure 5.1. Due to
this, we will prove bounds on the number of beacons needed for routing relative to the
number of tetrahedra m rather than the number of vertices n.

To successfully apply the ideas for two dimensions to three dimension we need some
preliminary definitions and lemmas.
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Chapter 5 Beacon-based routing in polytopes with a tetrahedral decomposition

(a) A triangular
bipyramid.

(b) Decomposition into
two tetrahedra.

(c) Decomposition into three
tetrahedra.

Figure 5.1: The number of tetrahedra in a polytope’s tetrahedral decomposition is not
unique: The bipyramid in (a) can be decomposed (b) into the upper and
lower tetrahedron or (c) into three tetrahedra. (Source: [16, p. 228])

Definition 5.1 (Dual graph of tetrahedral decompositions). Given a polytope with
a tetrahedral decomposition Σ = {σ1, . . . , σk} into k tetrahedra. Its dual graph is an
undirected graph D(Σ) = (V, E) where

(i) V = {σ1, . . . , σk} and

(ii) E =
{
{σ1, σ2} ∈

(
V
2

) ∣∣ σ1 and σ2 share exactly one triangular facet
}

.

Observation 5.2. It is a fact that the dual graph of a triangulation of a two-dimensional
simple polygon is always a tree with a constant maximum degree of 3. This is not true
for tetrahedral decompositions in three dimensions. An example is the decomposition
in Figure 5.1(c) whose dual graph is exactly K3. Nevertheless, we can observe that
each node in the latter dual graph has at most 4 neighbors—one for each facet of the
tetrahedron.

Lemma 5.3. Given a tetrahedral decomposition Σ of a polytope together with its dual graph
D(Σ) and a subset S ⊆ Σ of tetrahedra from the decomposition whose induced subgraph D(S)
of D(Σ) is connected. Then

(i) |S| = 2 implies that the tetrahedra in S share one triangular facet,

(ii) |S| = 3 implies that the tetrahedra in S share one edge, and

(iii) |S| = 4 implies that the tetrahedra in S share at least one vertex.

Proof. We show this seperately for every case.

(i) This follows directly from Definition 5.1.
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(a) One tetrahedron in the
center has all other tetra-
hedra as neighbors.

(b) Two tetrahedra with one
and two tetrahedra with
two neighbors.

(c) In this configuration all
four tetrahedra share one
edge.

Figure 5.2: A polytope with a tetrahedral decomposition of four tetrahedra is in one of
those three configurations. The shared vertex or edge is marked in orange.

(ii) In a connected graph of three nodes there is one node neighboring the other two.
By Definition 5.1 the dual tetrahedron shares one facet with each of the other
tetrahedra. In a tetrahedron every pair of facets shares one edge. Thus all three
tetrahedra share this edge.

(iii) By case (ii) there is a subset of three (connected) tetrahedra that shares one edge
e. This edge is therefore part of every of the three tetrahedra. By Definition 5.1,
the fourth tetrahedron shares a facet f with at least one of the other three (called
σ). Since f contains three and e two vertices of σ they share at least one vertex.
A depiction of the possible configurations of four tetrahedra can be seen in
Figure 5.2.

We now show that if the dual graph of a tetrahedral decomposition with six tetrahedra
is in a very specific configuration, we have more information about the shared objects
between those tetrahedra than what we already know from Lemma 5.3. This knowledge
will be needed in Section 5.2.2.

Lemma 5.4. Given a tetrahedral decomposition of six tetrahedra with the dual graph as de-
picted in Figure 5.3(a). Then at least one of the following holds:

(i) σ1 to σ5 share a common vertex, or

(ii) σ3, σ4, σ5, and σ6 share a common vertex v; σ1, σ2, σ3, and σ6 share a common edge e;
and v ∩ e = ∅.

Proof. We first define S1 = {σ3, σ4, σ5, σ6} and S2 = {σ1, σ2, σ3, σ6}. We observe that by
Lemma 5.3 each set shares at least a vertex, but can also share an edge. We distinguish
the cases by the shared geometric object:
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σ6

σ3

σ4

σ5

σ2

σ1

(a) The dual graph
of the tetrahe-
dral decomposi-
tion.

σ5 σ1

σ4 σ2

σ3

σ6

(b) All tetrahedra but the rear-
most tetrahedron σ6 share
one common vertex, here
marked in orange.

σ5

σ1

σ4

σ2
σ3

σ6

(c) The four tetrahedra on the
left share a common vertex
while the right four tetrahe-
dra share a common edge.

Figure 5.3: One tetrahedron σ6 with a subtree of five tetrahedra. Subfigures (b) and (c)
depict configurations that satisfy cases (i) and (ii) of Lemma 5.4, respectively.

• If both S1 and S2 each share an edge, case (i) holds. Each such edge needs to be
part of the triangular facet which connects σ3 and σ6. Thus both edges share a
common vertex.

• If just one of the two sets shares an edge e and the other shares only a vertex v
there are two trivial cases: If v ∩ e = ∅ then case (ii) is true—see Figure 5.3(c) for
an example. On the other hand, if v ∩ e = v then case (i) holds.

• The last case is the one in which each of the sets shares only a vertex. The situation
can be seen in Figure 5.3(b). First look at the vertex v of σ3 not contained in the
facet shared by σ3 and σ6, i.e., v /∈ σ3 ∩ σ6. In the figure v is marked in orange. We
observe that then all neighbors of σ3 except σ6 contain v.

Thus, σ2 contains v and three of its four facets are incident to v. One of the facets
is the shared facet with σ3, but the other two are where σ1 could be placed. σ1
cannot be located at the fourth facet of σ2, since it would then share an edge with
σ3 and σ6 which is covered in the previous cases. Therefore, σ1 contains v and
with the same argument the same holds true for σ5. Then case (i) holds.

5.2 The upper bound

After the preparatory work, we can now show an upper bound on the number of
beacons needed to route within a polytope with a tetrahedral decomposition. The idea
of the proof is based on the proof by Biro et al. [4] for (two-dimensional) polygons. We
want to show the following

Hypothesis 5.5. Given a polytope P with a tetrahedral decomposition Σ with m = |Σ| tetra-
hedra. Then it is always sufficient to place

⌊m+1
3

⌋
beacons to route between any pair of points

in P.
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5.2 The upper bound

Since the proof is very long and consists of many cases we split it up into various
lemmas and finally combine their results in Theorem 5.10.

5.2.1 Preparation

Given the polytope P and a tetrahedral decomposition Σ with m = |Σ| tetrahedra,
we look at the dual graph D(Σ) of the tetrahedral decomposition. For the rest of the
section we want the dual graph to be a tree. This is possible by looking at a spanning
tree T of D(Σ) rooted at some arbitrary leaf node.

In the following lemmas, we will place beacons depending only on the neighborhood
relation between tetrahedra. If T is missing some edge {u, v} from D(Σ) we “forget”
that tetrahedra u and v are neighbors, i.e., share a common facet. We have less
information about a tetrahedron’s neighborhood and thus we might place more beacons
than needed—but never less.

Note 5.6. In the following we will refer to nodes of T as well as their corresponding
tetrahedron with σi. It should be clear from the context when the node and when the
tetrahedron is meant—if not, it is indicated.

The main idea of the proof is as follows: In a recursive way we are going to place a
beacon and remove tetrahedra until no tetrahedra are left. As will be shown, for every
beacon we can remove at least three tetrahedra which yields the claimed upper bound.
We will show this by induction and start with the base case:

Lemma 5.7 (Base case). Given a polytope P with a tetrahedral decomposition Σ with m =
|Σ| ≤ 4 tetrahedra. Then it is always sufficient to place

⌊m+1
3

⌋
beacons to route between any

pair of points in P.

Proof. If m = 1 then P is a tetrahedron and due to convexity no beacon is needed.
If 2 ≤ m ≤ 4 we can apply Lemma 5.3 which shows that all tetrahedra share at least

one common vertex v. We place the only beacon we are allowed to place at v. Then v is
contained in every tetrahedron and thus, by convexity, every point in P can attract and
be attracted by a beacon at v.

We can now proceed with the inductive step, that is, polytopes with a tetrahedral
decomposition of m > 4 tetrahedra. Our goal is to place k beacons which are contained
in at least 3k + 1 tetrahedra and can therefore mutually attract all points in those
tetrahedra. Afterwards, we will remove at least 3k tetrahedra, leaving a polytope with
a tetrahedral decomposition of strictly less than m tetrahedra, to which we can apply
the induction hypothesis. We then need to show how to route between the smaller
polytope and the removed tetrahedra.

To do this, we look at a deepest leaf σ1 of the spanning tree T. If multiple leaves with
the same depth exist we choose the one whose parent σ2 has the largest number of
children, breaking ties arbitrary. In Figure 5.4 we can see different cases how the part
of T which contains σ1 and σ2 might look like. We first concentrate on Figures 5.4(a)
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σ1

σ2

σ3 σ4

to
ro

ot
(a) Remove σ1, σ3, and σ4 by

placing a beacon where
all four tetrahedra meet.

σ1

σ2

σ3

σ4

to
ro

ot

(b) Remove σ1, σ2, and σ3 by
placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

to
root

(c) Remove σ1, σ2, and σ3 by
placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

σ5 σ6

to root

(d) Remove σ1, σ2, and σ4 by
placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4
σ5

σ6 σ7

to root

(e) Remove σ1, σ2, σ4, and
σ5 by placing a beacon
where σ1 to σ5 meet.

σ1

σ2

σ3

σ4
σ5

σ6

to
ro

ot

(f) The number and config-
uration of σ6’s children
needs to be looked at.

Figure 5.4: The possible configurations in the first part of the inductive step.

to 5.4(e) and show for them the first part of the inductive step. Note that in all five
cases there needs to be at least one additional root node—either because we have
strictly more than four tetrahedra or because the tree is required to be rooted at a leaf
node. The second part of the inductive step, namely Figure 5.4(f) will be dealt with in
Section 5.2.2.

Lemma 5.8 (Inductive step I). Given a polytope P with a tetrahedral decomposition Σ with
m = |Σ| > 4 tetrahedra and a spanning tree T of its dual graph D(Σ) rooted at some arbitrary
leaf node. Let σ1 be a deepest leaf of T with the maximum number of siblings and let σ2 be its
parent. Assume furthermore that any of the following conditions holds:

(i) σ2 has three children σ1, σ3, and σ4 (see Figure 5.4(a)),

(ii) σ2 has two children σ1 and σ3 and a parent σ4 (see Figure 5.4(b)),

(iii) σ2 has one child σ1 and is the only child of its parent σ3 whose parent is σ4 (see Fig-
ure 5.4(c)),

(iv) σ2 has one child σ1 and its parent σ3 has two or three children of which one, σ4, is a leaf
(Figure 5.4(d)), or

(v) σ2 has one child σ1 and its parent σ3 has three children each of which has a single leaf
child (Figure 5.4(e)).

32



5.2 The upper bound

Then we can place a beacon b at a vertex of σ1 which is contained in at least four tetrahedra.
We can then remove at least three tetrahedra containing b without violating the tree structure
of T and while there is at least one tetrahedron left in T which contains b.

Proof. We show this individually for the conditions.

(i)–(iv) In all those cases the induced subgraph of the nodes σ1, σ2, σ3, and σ4 is connected.
We can then see with Lemma 5.3(iii) that the four tetrahedra share at least one
vertex at which b is placed.

After that we either remove σ1, σ3, and σ4 (case (i)); σ1, σ2, and σ3 (cases (ii)
and (iii)); or σ1, σ2, and σ4 (case (iv)). In all of those cases only leaves or inner
nodes with all their children are removed which means that the tree structure of
T is preserved. Additionally, we only remove three of the four tetrahedra that
contain b, thus, one of them remains in T.

(v) Looking at Figure 5.4(e) we see that we have three different sets, each containing
σ3, a child σi of σ3, and σi’s child: {σ1, σ2, σ3}, {σ5, σ4, σ3}, and {σ7, σ6, σ3}.
When applying Lemma 5.3(ii), we see that each set shares one edge, giving us
three edges of σ3. Since at most two edges in any tetrahedron can be disjoint,
at least two of the given edges must share a common vertex. Without loss of
generality let these be the edges shared by {σ1, σ2, σ3} and {σ5, σ4, σ3}. We can
then place b at the shared vertex and afterwards remove σ1, σ2, σ4, and σ5. The
beacon b is also contained in σ3 which remains in T.

5.2.2 Special cases in the inductive step

Until now, we have ignored the configuration in Figure 5.4(f). The problem here is that
to remove the tetrahedra σ1 to σ5 we need to place two beacons. Placing two beacons
but only removing five tetrahedra violates our assumption that we can always remove
at least 3k tetrahedra by placing k beacons. If we removed σ6 and σ6 had additional
children then T would no longer be connected which also leads to a non-provable
situation. Thus, we need to look at the number and different configurations of the
(additional) children of σ6.

Since there are many different configurations of σ6’s children (and their subtrees) we
decided to use a brute force approach to generate all cases we need to look at. To do
this, we wrote a small program in Python which generated all trees of maximum depth
3 where every inner node has at most three children. It then walks through the tree
and applies Lemma 5.8 exhaustively to remove nodes and subtrees. Afterwards, the
trees are normalized to prevent duplicate trees where only the order of the children is
different. The code can be found in Appendix B.

The result of the program consists of 9 different trees with a depth of 3. A depiction
of all those trees can be found in Figure 5.5. Note that in all cases but Figure 5.5(a) σ6
cannot be the root node since we required T to be rooted at a leaf node. This means
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Figure 5.5: All “nontrivial” configurations of children of σ6. The tree in (a) is a subtree
of all configurations. In all cases σ6 has no other children than the ones
shown here. Furthermore by the requirement that T is rooted at a leaf node,
σ6 needs to have an additional parent (except for case (a)).

that when removing σ6 we need to place a beacon at a common vertex of σ6 and its
parent. We show that we can always place beacons and remove sufficient tetrahedra
with the following

Lemma 5.9 (Inductive step II). Given a polytope P with a tetrahedral decomposition Σ with
m = |Σ| > 4 tetrahedra and a spanning tree T of its dual graph D(Σ) rooted at some arbitrary
leaf node. Let any of the cases shown in Figure 5.5 be a subtree of T.

Then we can place k beacons which are contained in at least 3k + 1 tetrahedra. Additionally,
every beacon is contained in an edge together with at least one other beacon and the graph of
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the beacons and the edges they are contained in is connected. We can then remove at least 3k
tetrahedra, each of which contains a beacon, without violating the tree structure of T. After
removal there is at least one tetrahedron left in T which contains one of the beacons.

Proof. We show this individually for each of the nine cases.
Note that whenever we say that two beacons b1 and b2 share an edge or that b1 and b2

are neighbors we mean that there exists an edge e in the tetrahedral decomposition such
that e is defined by the vertices v1 and v2 at which the beacons are placed: e = {v1, v2}.

(a) Looking at Figure 5.5(a) we know from Lemma 5.3(iii) that both of the sets
{σ1, σ2, σ3, σ6} and {σ6, σ3, σ4, σ5} each share one vertex v1 and v2, respectively. We
place one beacon at v1 and one beacon at v2. If v1 = v2 we arbitrarily place the
second beacon at one of the three other vertices of σ6.

If σ6 has a parent tetrahedron the shared facet contains three vertices of σ6 and
thus at least one of the two beacons. Thus, we can remove all tetrahedra σ1 to σ6
after placing the two beacons. By placing k = 2 beacons we can remove 6 = 3k
tetrahedra.

(b) In Figure 5.5(b) we have the same situation as before except for the additional σ7.
We place the k = 2 beacons as in case (a) and observe that σ6 contains two beacons.
With the same argument as for σ6’s parent, σ7 contains at least one beacon.

Hence, we can remove all tetrahedra σ1 to σ7. By placing k = 2 beacons we can
remove 7 > 3k tetrahedra.

(c) For Figure 5.5(c) we apply the same argument as for case (b) but remove all
tetrahedra σ1 to σ8. By placing k = 2 beacons we can remove 8 > 3k tetrahedra.

(d) For Figure 5.5(d) we first see with Lemma 5.3(ii) that the set {σ6, σ7, σ8} shares an
edge e. After applying Lemma 5.4 to σ1 to σ6 we have two cases to consider.

In the first case σ1 to σ5 share a vertex v. As it is a vertex of σ3 (and σ3 is neighbor
of σ6) three of its neighboring vertices are vertices of σ6. The edge e then contains
at least one of those three neighbors (call it w). We place one beacon at v and one
at w. Since they are neighbors they share the edge vw.

In the second case we have a vertex v and an edge e′, both inside σ6 and disjoint.
This covers three vertices of σ6 and therefore the edge e shares at least one vertex
with v or e′. We can now choose two vertices of σ6 for the beacons such that v,
e′, and e each contain at least one. Since they are both vertices of σ6 they are
neighbors.

In both cases we have placed k = 2 beacons. We then remove σ1 to σ5, σ7, and σ8
which are 7 > 3k tetrahedra.

(e) When Lemma 5.3(ii) is applied to the situation in Figure 5.5(e) we see that
{σ6, σ7, σ8} and {σ6, σ9, σ10} share edges e1 and e2, respectively. We also apply
Lemma 5.4 to σ1 to σ6 which leaves us again with two cases.
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Chapter 5 Beacon-based routing in polytopes with a tetrahedral decomposition

In the first case σ1 to σ5 share a vertex v. We choose v and two additional vertices
of σ6 as beacons such that both edges e1 and e2 contain at least one beacon. With
the same argument as in case (d) v is neighbor to at least one of the other beacons
and the other two beacons are neighbors because they are both vertices of σ6.

In the second case we have a vertex v and an edge e, both inside σ6 and disjoint.
We choose v and two additional vertices of σ6 as beacons such that all edges e, e1,
and e2 contain at least one beacon. Obviously, all three beacons are neighbors.

In all cases we place k = 3 beacons such that every tetrahedron contains at least
one. We then remove all tetrahedra but σ6, which removes 9 = 3k tetrahedra.

(f) For Figure 5.5(f) we apply Lemma 5.4 independently to σ1 to σ6 and σ6 to σ11.

In the first case both σ1 to σ5 and σ7 to σ11 share a vertex, which we call v1 and v2.
With the same argument as in case (d) three neighboring vertices of both v1 and
v2 are vertices of σ6. Therefore, at least one vertex of σ6 is neighbor to both; we
call it v. We then place three beacons at v, v1, and v2.

In the second case, without loss of generality, σ1 to σ5 share a vertex v1 and σ6 to
σ11 have a vertex v2 and an edge e in σ6, with v2 ∩ e = ∅. Then at least one of the
three vertices of σ6 which are neighbors of v1 is covered by v2 or e. We place one
beacon at v1, at v2, and at one of the vertices of e.

In the third case, σ1 to σ6 have a vertex v1 and an edge e1 in σ6 and σ6 to σ11 have
a vertex v2 and an edge e2 in σ6. We place three beacons at vertices of σ6 such that
v1, v2, e1, and e2 contain at least one beacon.

In all cases we place k = 3 beacons such that every tetrahedron contains at least
one. As before, every beacon has at least one other beacon as a neighbor. We then
remove all tetrahedra but σ6, which removes 10 > 3k tetrahedra.

(g) The situation in Figure 5.5(g) is similar to case (f) for Figure 5.5(f). Thus we only
describe where we need to take some additional care.

In the first case, v can be placed at two vertices. Here we chose the vertex which
is contained in σ12. This is always possible since σ12 contains three of the four
vertices of σ6

In the the second case, we do not place the beacon at an arbitrary vertex of edge e
but at the vertex which is contained in σ12. The same argument as before applies.

In the third case there is at least one beacon contained in σ12 because all three
beacons are placed at vertices of σ6.

By placing k = 3 beacons we can then remove 11 > 3k tetrahedra: all but σ6.

(h) The situation in Figure 5.5(h) can be handled similar to the situation in Figure 5.5(f)
and thus we first apply case (f). By Lemma 5.3(ii) {σ6, σ12, σ13} shares an edge e′.
If e′ is not covered by one of the three beacons placed by the rules of case (f), we
place one additional beacon at one of the vertices of e′.
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By placing either k = 3 or k = 4 beacons we remove 12 ≥ 3k tetrahedra: all but
σ6.

(i) For Figure 5.5(i) let S1 = {σ1, σ2, σ3, σ4, σ5, σ6}, S2 = {σ6, σ7, σ8, σ9, σ10, σ11}, and
S3 = {σ6, σ12, σ13, σ14, σ15, σ16}. Furthermore let S′1 = S1 \ {σ6}, S′2 = S2 \ {σ6},
and S′3 = S3 \ {σ6}. We then apply Lemma 5.4 independently to S1, S2, and S3.

In the first case, S′1, S′2, and S′3 each share a vertex, which we call v1, v2, and v3.
We place beacons at those three vertices. Each such vertex has three neighbors
which are vertices of σ6 with the argument of case (d). Thus, they all have one
common neighbor vertex in σ6 at which we place a fourth beacon.

Without loss of generality, in the second case, S′1 and S′2 each share a common
vertex v1 and v2 and S3 has a vertex v3 and an edge e3, disjoint and in σ6. We
choose v1, v2, and v3 and one of the vertices of e as beacon locations. The latter
two are vertices of σ6 and thus v1 and v2 have a neighboring beacon in σ6.

In the third case, without loss of generality, S′1 shares a common vertex v1 and
S2 and S3 each have a vertex v2 and v3 and an edge e2 and e3, all four in σ6. We
place a beacon at v1 and three beacons at vertices of σ6 such that v2, v3, and both
edges e1 and e2 contain at least one beacon. Since three neighboring vertices of v1
are vertices of σ6 the beacon at v1 has at least one beacon neighbor in σ6.

In the fourth case, all S1, S2, and S3 each have one vertex and one edge in σ6. We
place one beacon at the resulting vertex of each set. This also covers all edges.
Hence, we only need three beacons for all tetrahedra.

In all cases, we place k ≤ 4 beacons to remove 15 > 3k tetrahedra (all but σ6).

5.2.3 Conclusion

We can now restate Hypothesis 5.5 as a theorem:

Theorem 5.10 (Upper bound). Given a polytope P with a tetrahedral decomposition Σ with
m = |Σ| tetrahedra. Then it is always sufficient to place

⌊m+1
3

⌋
beacons to route between any

pair of points in P.

Proof. We show this by induction. The base case is shown by Lemma 5.7. We assume
that the induction hypothesis (Hypothesis 5.5) holds for all polytopes with a tetrahedral
decomposition with strictly less than m tetrahedra. We then show that it also holds for
tetrahedral decompositions Σ with exactly m tetrahedra.

Look at the spanning tree T of the dual graph D(Σ) of the tetrahedral decomposition
Σ which is rooted at an arbitrary leaf node. Let σ1 be a deepest leaf node and if
σ1 is not unique choose the one with the largest number of siblings, breaking ties
arbitrary. By the brute force argument of the program in Appendix B σ1 is in one of the
configurations in Figures 5.4 and 5.5. In both cases we can apply Lemmas 5.8 and 5.9,
respectively. We then know at least the following:
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(i) We have placed k ≥ 1 beacons and removed at least 3k tetrahedra.

(ii) Every removed tetrahedron contains at least one beacon.

(iii) Every placed beacon has at least one of the other beacons as a direct neighbor
and all beacons are connected by edges.

(iv) There is at least one beacon b contained in the remaining polytope P′.

From (i) it follows that the new polytope P′ has a tetrahedral decomposition of
m′ ≤ m− 3k tetrahedra. We can then apply the induction hypothesis for P′. Thus we
only need to place k′ =

⌊m′+1
3

⌋
≤
⌊m−3k+1

3

⌋
=
⌊m+1

3

⌋
− k beacons in P′ to route between

any pair of points in P′. Since k′ + k =
⌊m+1

3

⌋
we never place more beacons than we

are allowed.
From the induction hypothesis and (iv) we conclude that we are especially able to

route from any point in P′ to the beacon b and vice versa, since b is contained in P′.
With (ii) we know that for every point p in the removed tetrahedra there is a beacon b′

such that p attracts b′ and b′ attracts p. Finally, with (iii) we know that we can route
between all beacons we have placed. This especially means that we can route from
every beacon to the beacon b which is inside P′ and vice versa.

This completes the inductive step and thus, by induction, we have proved the
theorem.

5.3 The lower bound

We now want to show a lower bound for the number of beacons needed to route within
polytopes with a tetrahedral decomposition. For this we use a construction very similar
to the one used in Section 3.2 which was defined in Definition 3.3.

Definition 5.11. For every c ∈N≥1 and some small 0 < δ < 1 a c-corner spiral polytope
is a polytope with n = 3c + 2 vertices. These vertices are s and t as well as qk, rk, and
zk for all 1 ≤ k ≤ c. The coordinates of s, t, qk, and rk are the same as in Definition 3.3
with their z-coordinate set to 0. The zk are positioned above rk or more formally

zk := rk +
(0

0
1

)
for all 1 ≤ k ≤ c.

The edges and facets of the polytope are given by the tetrahedral decomposition:

• The start and end tetrahedra are formed by r1q1z1s and rcqczct.

• The hallway between two triangles 4rkqkzk and 4rk+1qk+1zk+1 consists of the
three tetrahedra rkqkzkrk+1, rk+1qk+1zk+1qk, and qkzkrk+1zk+1.

The three vertices rk, qk, and zk form the k-th corner.

Figure 5.6 shows how the hallway is constructed out of the three described tetrahedra.

38



5.3 The lower bound
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(a) The complete hallway.
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rk+1

zk+1

qk+1

(b) The first tetrahedron.
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qk

rk+1

zk+1

qk+1

(c) The second tetrahedron.

rk

zk

qk

rk+1

zk+1

qk+1

(d) The third tetrahedron.

Figure 5.6: The three-dimensional hallway (a) consists of three tetrahedra (b) to (d).
Thus three vertices are needed for one additional hallway.

Observation 5.12. The smallest c-corner spiral polytope with c = 1 consists of exactly
two tetrahedra. For greater c we add exactly c− 1 hallways, each consisting of three
tetrahedra. This means that a c-corner spiral polytope has a tetrahedral decomposition
with m = 3c− 1 tetrahedra. It follows from Definition 5.11 that the number of tetrahedra
relative to the number of vertices is m = 3 · n−2

3 − 1 = n− 3.

We will now show that this class of polytopes is a worst-case example for the number
of beacons needed to route between a specific pair of points.

Lemma 5.13 (Lower bound). Given a c-corner spiral polytope P. Then c beacons are neces-
sary to route from s to t.

Proof. We project P onto the xy-plane which results in a c-corner spiral polygon P′ due
to the construction of the c-corner spiral polytope. To P′ we can apply Lemma 3.4
where we showed that c beacons are sometimes necessary to route in P′. In the proof,
we showed that a beacon is needed in an area around each of the c corners.

As opposed to the polygon, the movement in the polytope is not constrained to
the xy-plane. Additionally, beacons can be placed at locations which do not lie in the
xy-plane. We need to show that this does not change the situation in a way so that less
than c beacons are necessary.

The argument here is similar to the one in our proof of Theorem 4.7. First, note that,
due to the construction in Definition 5.11, every cross section of the polytope parallel
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Chapter 5 Beacon-based routing in polytopes with a tetrahedral decomposition

to the xy-plane yields a c-corner spiral polygon with different widths δ. For every such
cross section, Lemma 3.4 tells us that to route only in this cross section, c beacons are
needed.

Additionally, the hallway’s inner boundary rkzkrk+1zk+1 is perpendicular to the xy-
plane. This means that the movement of all points p which are attracted by a beacon
b can be split into a xy-movement and a z-movement because the z-coordinate is not
important for any movement along the inner boundary. Since each hallway is convex
there is no other movement of a point p attracted by a beacon b which is constrained by
the polytope’s boundary ∂P. We can then only look at the xy-movement which again
yields a two-dimensional situation to which Lemma 3.4 can be applied.

5.4 The sharp bound

Theorem 5.14. Given a polytope P for which a tetrahedral decomposition with m tetrahedra
exists. Then it is always sufficient and sometimes necessary to place

⌊m+1
3

⌋
beacons to route

between any pair of points in P.

Proof. In Theorem 5.10 we have shown that
⌊m+1

3

⌋
is an upper bound.

We now show that for a given m we can always construct a polytope which needs
exactly

⌊m+1
3

⌋
beacons. With c =

⌊m+1
3

⌋
we construct a c-corner spiral polytope

which, by Observation 5.12, consists of m′ = 3c− 1 ≤ m tetrahedra and for which, by
Lemma 5.13, c beacons are sometimes necessary. If m′ < m we need to add one or two
additional tetrahedra such that we obtain a polytope which consists of m tetrahedra.
We do this by adding one or two tetrahedra to the tetrahedron which contains t, the
same way the hallway of the spiral polytope is constructed. We first add the tetrahedron
in Figure 5.6(d) and then (optionally) the tetrahedron in Figure 5.6(c). This way the
obtained polytope is always connected by shared facets, as required by our definition.

We have shown how to construct a polytope with a tetrahedral decomposition of m
tetrahedra for which c =

⌊m+1
3

⌋
beacons are sometimes necessary to route between a

specific pair of points. This matches the upper bound and thus completes the proof.
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Chapter6
General polytopes

As we have already seen in Chapter 5, there exist polytopes which cannot be triangu-
lated easily, if at all. Nevertheless, when additional so-called Steiner points are allowed
to be placed, a tetrahedral decomposition can be obtained for every polytope [2].

6.1 One beacon at each vertex does not cover the polytope

In his book Art Gallery Theorems and Algorithms O’Rourke [15, pp. 255f.] presents a class
of polytopes for three-dimensional art gallery problems which, among others, fulfill the
following property: Placing a guard at every vertex does not cover the whole interior
of the polytope.

The example is constructed with visibility and not attraction in mind. In fact, placing
a beacon at every vertex of the described polytope is indeed sufficient to attract any
point and route between any pair of points. However, a modification of the construction
yields the following

Lemma 6.1. There exists a polytope P for which it is not sufficient to place a beacon at every
vertex of P to attract any point p ∈ P.

Proof. We construct a polytope similar to the one presented by O’Rourke, starting with
an axis-aligned cube C of side length L > 5. We then locate an axis-aligned unit cube in
the center of C, i.e., both centers of mass are located in the same point. We now project
the unit cube onto the front, top, and right facet of C.

For every of these three facets we take two additional unit squares, place them on the
projection and then translate them by 1 + ε, for some 0 < ε� 1, along one axis, such
that we obtain the situation depicted by Figure 6.1(a). Here the unit cube’s projections
are marked with a dotted line while the additional squares are solid.

The solid squares are now distorted in the following fashion: Place a vertex at the
center of each edge and move it 1

2 − δ units towards the square’s center, for some
0 < δ� 1. This results in star-shaped polygons, as seen in Figure 6.1(b).
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Chapter 6 General polytopes

(a) The six solid unit squares do
not touch when pushed into
the interior.

(b) The squares are distorted in
a way such that we obtain
star-shaped polygons.

(c) A frontal cross section
through the cube’s cen-
ter.

Figure 6.1: The cube C with side length L. The dotted unit squares are projections of a
unit cube located in C’s center. The solid shapes in (a) and (b) are pushed
into the interior until they nearly touch the opposite facet. This can also be
seen in the cross section (c).

We choose some 0 < σ� 1 and then push those polygons into the interior of C by
L− σ units, resulting in star prisms that nearly touch the opposite facet. The cross
section in Figure 6.1(c) shows the result. In Figure 6.2 we can see how all the parameters
play together.

We can now place a point c in the center of C. On all six sides c is confined by the six
star prisms. We first show that c cannot be attracted by the vertices of those prisms.
Afterwards we show that the corner vertices of C can also not attract c.

1 ε 1

1

ε

1

L

σ

1
2 − δ1

2 − δ

2δ

Figure 6.2: A part of Figure 6.1(c) to show the parameters L, ε, δ, and σ.
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α

c

v

u

1
2 − δ 1

2 + ε

1
2

(a) Parameters ε and δ have to be
chosen such that α > 90° holds.

c

c
(b) All points in the shaded area, including the

red ones, cannot attract the point c.

Figure 6.3: If we choose ε and δ such that α > 90° (see (a)) no point invisible to c can
attract it. With this we can prevent the vertices of the star prisms (whose
projections are marked in red in (b)) from attracting c.

Star prism vertices cannot attract c. The cross section in Figure 6.3(b) shows in red
the area in which points are not visible from c. Our goal is to show that this is also the
area of the points that cannot attract c. To fulfill this goal we first look at c together
with one of the star prisms in Figure 6.3(a). In the following, we will use the notation
of this figure for the points v and u which are the top right and middle right points,
respectively, of the left star polygon. Whenever we refer to the angle α we also mean
the angle from this figure.

We will concentrate on the points to the right of the line cu; due to symmetry the
same argument applies for points to the left of this line. Our claim is that if the angle α
from Figure 6.3(a) is strictly smaller than 90°, then no point invisible from c is able to
attract c.

We choose an arbitrary point p that lies to the left of the line trough cv and to the
right or on the line trough cu. Due to this constraint the line segment pc has to intersect
the edge uv at some point p′ ∈ uv. Additionally, the shortest line segment from p to uv
hits uv at some point p′′ ∈ uv.

The movement of c under the influence of p is the following: First c moves in a
straight line until it reaches point p′. It will then slide along the edge uv until reaching
p′′. At this point there are two possibilities which are both depicted in Figure 6.4: If
p′′ 6= v we are either stuck on the edge uv or at the vertex u, in both cases p is unable to
attract c further. See Figure 6.4(a) for an example of this situation. If, however, p′′ = v
our point will continue moving towards p. There is an example of the movement in
Figure 6.4(b).

To prevent the latter, we have to make sure that the shortest line segments to uv of
all points not visible from c do not end in the vertex v. This is the case if the angle α is
strictly larger than 90°. Then, for any observed point p, the angle ^pvu is strictly less
than 90° and the shortest lines segment to uv does not terminate at v. We only have to
check whether it is possible to chose ε and δ as needed.

We look at Figure 6.3(a) and notice that the triangle 4cuv can be decomposed into
two right triangles along the dashed line. Each triangle contains a part of α which
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c

v

u

α > 90°

p

p′

p′′

(a) Here ε is large, which moves c to the right,
and δ is small, which moves u to the left.
Both movements increase the angle α.

c

v = p′′

u

α < 90°

p

p′

(b) Here ε is small, moving c to the left,
and δ is big, moving u to the right.
Both movements decrease α.

Figure 6.4: Two different configurations of the parameters ε and δ, as depicted in
Figure 6.3(a). In both figures p is the same point which is not visible by c.
We can see that in (a) p cannot attract c since the shortest path from p to uv
terminates on the edge. In (b) p can attract c since the shortest path to uv
terminates in v.

we call α1 and α2 and for which α = α1 + α2 holds. Since we know the lengths of the
catheti of both triangles we can compute α depending on ε and δ:

α = α1 + α2 = arctan

(
1
2 + ε

1
2

)
+ arctan

(
1
2 − δ

1
2

)
= arctan(1 + 2ε) + arctan(1− 2δ).

Since we want α to be strictly larger than 90° it follows that

90° < arctan(1 + 2ε) + arctan(1− 2δ) (6.1)

must hold true. For any right triangle with catheti of lengths x > 0 and y > 0 we know
that

90° = arctan
(

y
x

)
+ arctan

(
x
y

)
holds, because the two non-right angles sum up to exactly 90°. Additionally, arctan is
monotonically increasing and thus, for some µ > 0, we can also write

90° < arctan
(

y
x

)
+ arctan

(
x
y
+ µ

)
. (6.2)

If we find values for ε and δ such that they fulfill the requirement

y
x
= 1 + 2ε and

x
y
+ µ = 1− 2δ
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6.1 One beacon at each vertex does not cover the polytope

for all x > 0 and y > 0 we can conclude that Equation (6.1) must be true for those
values since Equation (6.2) holds. With

x
y
<

x
y
+ µ

⇔ 1
1 + 2ε

< 1− 2δ

⇔ 2δ < 1− 1
1 + 2ε

⇔ δ <
1
2

(
1 + 2ε

1 + 2ε
− 1

1 + 2ε

)
⇔ δ <

ε

1 + 2ε
(6.3)

we see that the latter inequality needs to hold in order for α to be strictly larger than
90°. This is always possible since ε is positive. When choosing ε and δ according to
Equation (6.3) no point invisible from c can attract c.

In order to make the vertices of the star prisms (marked red in Figure 6.3(b)) invisible
from c we have two options. We either choose a small value for ε (and thereby δ), which
increases the angle of the area of invisibility. We can also choose a large value for L,
the side length of C. By doing so we can finally obtain the situation as depicted in
Figure 6.3(b).

With this, we have shown that no point, which lies in the same xz-plane as c and
is not visible from c, can attract c. Unfortunately, most star prism vertices w do not
lie in the same plane as c, that is, yw 6= yc. However, since the star prism covers all
y-coordinates between yw and yc and since there are no obstacles which can inhibit a
y-movement from yc to yw, we can split the movement of c under the influence of w
into the xz- and y-movement. Since the y-movement is monotonic and the star prism
covers all corresponding y-coordinates we can safely ignore it. We are then left with
the xz-movement which we have just analyzed.

Due to symmetry the same argument holds for the top and lateral cross sections
through C’s center. The only vertices remaining are the eight corners of C.

Corner vertices cannot attract c. Due to the symmetric construction and the placement
of c in the exact center of C, c is able to see all eight vertices of the outer cube. This
means, of course, that they can also see and hence attract c.

However, by enlarging the length of one side of C we can hide the vertices behind a
star prism the same way as done before. A cross section of the resulting polytope is
shown in Figure 6.5(a). This may look as if we already succeeded.

While looking at a cross section of C from the top, as in Figure 6.5(b), we notice that
the four corners of the side which is not touched by the star prisms can still attract c.
First c will move straight until it hits a star polygon. It will then slide upwards until it
reaches the end of the star prism. There it is able to see and be attracted by the corner
vertex.
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c

(a) The frontal cross section after stretch-
ing C to the left and right. If all eight
corner vertices of C were in the same
plane as c they could not attract c.

c

(b) A cross section while looking at the top.
Since the star prisms do not touch both
the lower and upper facet, the upper
vertices of the cube can still attract c.

c

(c) We add a roof to prevent the attraction
visible in (b). The roof node itself can-
not attract c either.

(d) The complete three-dimensional con-
struction. No vertex can now attract
the point in its center. The box was
rotated once towards the reader.

Figure 6.5: By (a) enlarging one side of C and (c) adding a roof which enables us to
push one pair of prisms more into C we obtain the result (d) which inhibits
the attraction of c by corner vertices, as in (b).

The solution to this problem could either consist in pushing the star prisms even
further, eventually leading to a polytope with holes. Since we want to show the result
for polytopes without holes, we opt for a second solution. It consists of pulling one
facet of C outwards at its center point which constructs a roof. We can then push the
star prisms further into C such that they are higher than the corner vertices, without
touching the roof. The cross section in Figure 6.5(c) shows that then neither the newly
added roof point nor the corner vertices can attract c.

The complete construction is shown in Figure 6.5(d). It prevents any of its vertices to
attract c and thus completes the proof.

With the result of Corollary 2.31 it follows that placing a beacon at every vertex is
also not sufficient to route between any pair of points in the constructed polytope.
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Conclusion and open problems

Starting with the two-dimensional foundation laid out by Biro [3] and Biro et al. [4,
5, 6] we have transferred the idea of beacon-based routing and coverage from the
two-dimensional polygonal domain to the three-dimensional polytopal one. We have
shown that several problems (in particular the 3D-All-Pair Problem, the 3D-All-Sink

Problem, the 3D-All-Source Problem and the 3D-Coverage Problem as defined in
Chapter 4) are NP-hard and APX-hard by reducing to the respective two-dimensional
problems.

Nevertheless, we have shown a tight worst-case bound of b(m + 1)/3c for the number
of beacons needed to route within polytopes with a tetrahedral decomposition of m
tetrahedra. This bound depends on the number of tetrahedra because the number of
tetrahedra needed to decompose a polytope can vary widely. Relative to the number of
vertices n this bound can be as low as b(n− 2)/3c but never bigger than O

(
n2).

Since every polytope can be decomposed into O
(
n2) tetrahedra if additional Steiner

points are allowed (see Section 5.1) the latter bound is also an upper bound for general
polytopes. For general polytopes we have also shown that it is not sufficient to place a
beacon at every vertex of the polytope to cover it.

7.1 Open problems

In his PhD thesis Biro [3] looked at various subtopics in the beacon model which were
not covered in this work but might be interesting to look at. These subtopics are

• attraction regions: computing all points which are either attracted by a specific
beacon or by beacons in a specific subset of the polytope,

• inverse attraction regions: all points that can attract a specific point or a specific
subset of the polytope, and

• beacon kernels: the set of all points in a polytope such that a beacon at any such
point covers P completely.
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Chapter 7 Conclusion and open problems

There are also some more specific problems which are interesting to look at. We had
a look at some of the problems but either decided that it would be out of scope or we
tried to tackle the problem with different attempts but were not successful.

Open question 7.1. In Section 5.3 we have shown a lower bound of Ω(n) for the number
of beacons necessary to route within polytopes with a tetrahedral decomposition. Can
a larger lower bound be shown for the number of beacons needed to cover or route
within general polytopes?

The construction by O’Rourke [15], which we used in Section 6.1, is actually a class
of polytopes for arbitrary large numbers of vertices n. The construction leads to a lower
bound of Ω

(
n3/2) for the number of guards necessary to cover the polytope. We tried

to modify the construction to suit the needs of beacon-based guarding but did not
succeed.

Open question 7.2. What is the complexity of finding a shortest beacon path between
two given points, i.e., the complexity of the 3D-Given-Pair Problem?

This question was briefly mentioned at the end of Chapter 4. For two dimensions
Biro [3] first presents a 2-approximation with the following idea:

Triangulate the polygon and construct a directed graph whose vertices are the
triangles and whose edges are given as follows. For every triangle σ calculate its
inverse attraction region IA(σ), i.e., all points which can attract at least one point in the
triangle. For every other triangle τ add an directed edge from τ to σ in the graph if
τ ∩ IA(σ) 6= ∅, that is, there is a point b ∈ τ and a point p ∈ σ such that b attracts p.
Then a shortest path in the directed graph from the triangle which contains t to the
triangle containing s is found. For every triangle in the shortest path two beacons are
placed, one that attracts a point in the previous triangle and one that is attracted by a
beacon in the next one. He then shows that the number of beacons needed is always as
high as the number of triangles in the shortest path, yielding a 2-approximation.

By calculating not only the attraction region of triangles but the attraction region of
the attraction region iteratively the algorithms becomes more precise which results in a
PTAS.

The idea of the exact algorithm is quite obvious: Given s, t calculate the inverse
attraction region A1 = IA(s). Iteratively compute Ai+1 = IA(Ai) until t ∈ Ak for some
k ∈ N. Then place a beacon bk at t and choose an arbitrary point of IAk−1 which is
attracted by bk. Place the beacon bk−1 at this point and iterate until b1 is placed.

The regions Ai are represented as polygons and for their size (the number of vertices)
mi = |Ai| the best known bound is quadratic in the input region and the size of the
polygon: mi ∈ O

(
m2

i−1n2) with n = |P|. Thus, the running time of the algorithm could
be exponential in the number of steps k and since sometimes n beacons are needed it
could be exponential in the size of the polygon.
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AppendixB
Program code

Here we include the program code used to generate all possible trees of maximum
depth four used in section Section 5.2.2.

1 #!/usr/bin/env python3
2 """Generate all dual graph configurations we need to look at."""
3

4 from itertools import chain, product
5

6 from graphviz import Digraph
7

8

9 ###############################################################################
10 # Tree structure.
11 ###############################################################################
12 class Node:
13 """A tree structure which allows pruning of unneeded subtrees."""
14

15 # =========================================================================
16 # General tree structure.
17 # =========================================================================
18

19 def __init__(self):
20 """A new node is simply a leaf."""
21 self.nodes = []
22

23 def add(self, n=1):
24 """Append n additional children and return self."""
25 for _ in range(n):
26 self.nodes.append(Node())
27 return self
28

29 def append(self, node):
30 """Append a node or an iterable of nodes and return self."""
31 try:
32 for n in node:
33 self.nodes.append(n)
34 except TypeError:
35 self.nodes.append(node)
36 return self
37

38 def is_leaf(self):
39 """Return whether this node is a leaf, i.e., has no children."""
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40 return not self.nodes
41

42 # =========================================================================
43 # Graphviz.
44 # =========================================================================
45

46 def to_dot(self, graph=None, prefix=''):
47 """Return a Graphviz representation of the tree."""
48 if graph is None:
49 graph = Digraph()
50 self._dot_recursion(graph, 1, prefix)
51 return graph
52

53 def _dot_recursion(self, graph, current, prefix=''):
54 """Recursively create Graphviz tree."""
55 graph.node(prefix + str(current), label=str(current))
56 this_number = current
57 current = current + 1
58 for child in self.nodes:
59 current, child_number = child._dot_recursion(graph, current,
60 prefix)
61 graph.edge(prefix + str(this_number), prefix + str(child_number))
62 return current, this_number
63

64 # =========================================================================
65 # Pruning of "easy" cases.
66 # =========================================================================
67

68 def prune(self):
69 """Remove subtrees that are easily removed."""
70 # First try to remove subtrees.
71 if self._prune() is None:
72 return None
73

74 # Call prune() for all children and filter out children that were.
75 # removed
76 self.nodes = list(filter(lambda x: x is not None,
77 map(Node.prune, self.nodes)))
78

79 # Sort children after pruning to have a canonical structure.
80 self.nodes.sort()
81

82 # Try pruning easy subtrees again. Maybe pruning the children created a
83 # prunable configuration again.
84 return self._prune()
85

86 def _prune(self):
87 """Remove subtrees that are easily removed."""
88 if len(self.nodes) == 3:
89 if all(n.is_leaf() for n in self.nodes):
90 # Case (i): Figure 5.4(a): This is s2
91 # Three children that are leaf nodes: Remove all of them.
92 self.nodes = []
93 elif all(len(n.nodes) == 1 and n.nodes[0].is_leaf()
94 for n in self.nodes):
95 # Case (iii)(3): Figure 5.4(e): This is s3
96 # Three children with one child leaf each: Remove two
97 # children.
98 self.nodes.pop()
99 self.nodes.pop()

100 if len(self.nodes) == 2:
101 if all(n.is_leaf() for n in self.nodes):
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102 # Case (ii): Figure 5.4(b): This is s2
103 # Two children that are leaf nodes: Remove both including the
104 # parent node.
105 return None
106 if len(self.nodes) == 1:
107 if len(self.nodes[0].nodes) == 1:
108 if self.nodes[0].nodes[0].is_leaf():
109 # Case (iii)(1): Figure 5.4(c): This is s3
110 # A chain of three nodes: Remove all of them.
111 return None
112 if len(self.nodes) >= 2:
113 leaves = [n for n in self.nodes if n.is_leaf()]
114 leaves2 = [n for n in self.nodes if len(n.nodes) == 1 and
115 n.nodes[0].is_leaf()]
116 if leaves and leaves2:
117 # Case (iii)(2): Figure 5.4(d): This is s3
118 # One leaf child and one child with a single leaf child:
119 # Remove both children.
120 self.nodes.remove(leaves[0])
121 self.nodes.remove(leaves2[0])
122

123 # Return self to indicate that the node itself is not to be removed.
124 return self
125

126 # =========================================================================
127 # Make trees comparable.
128 # =========================================================================
129

130 def __eq__(self, other):
131 """
132 Compare equality of two nodes.
133

134 Two nodes are equal if they have the same number of children and every
135 child is equal to the respective child of the other node.
136 """
137 if other is None:
138 return False
139 if len(other.nodes) != len(self.nodes):
140 return False
141 for this, that in zip(self.nodes, other.nodes):
142 if this != that:
143 return False
144 return True
145

146 def __lt__(self, other):
147 """
148 Compare whether a node is smaller than another node.
149

150 A node is smaller then another node if it has more direct children or
151 if any of the children is smaller than the respective other child.
152 """
153 if len(self.nodes) != len(other.nodes):
154 return len(self.nodes) > len(other.nodes)
155

156 for this, that in zip(self.nodes, other.nodes):
157 if this < that:
158 return True
159 if that < this:
160 return False
161

162 return True
163
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164 # =========================================================================
165 # String representation and hash value for uniqueness.
166 # =========================================================================
167

168 def __str__(self):
169 """Generate a bracket term representing the tree."""
170 return '(' + ''.join(str(n) for n in self.nodes) + ')'
171

172 def __repr__(self):
173 """Terminal representation."""
174 return str(self)
175

176 def __hash__(self):
177 """Hash value for uniqueness."""
178 return hash(str(self))
179

180

181 ###############################################################################
182 # Generate all trees with certain maximum depth.
183 ###############################################################################
184 def all_trees(depth):
185 """
186 Yield all trees with a given maximum depth.
187

188 The trees are created recursively by appending combinations of trees of
189 depth-1 to a node.
190 """
191 if depth == 1:
192 # Create a node with 0, 1, 2, and 3 children.
193 for i in range(4):
194 yield Node().add(i)
195 else:
196 # Append 0, 1, 2, or 3 children.
197 for number_of_children in range(4):
198 # Create as many iterators of the next lower depth as there should
199 # be children appended.
200 next_level_iterators = []
201 for _ in range(number_of_children):
202 next_level_iterators.append(all_trees(depth - 1))
203

204 # Combine all possible combinations of the iterators and add them
205 # to a new node.
206 for subtrees in product(*next_level_iterators):
207 yield Node().append(subtrees)
208

209

210 def iterator_len(iterator):
211 """
212 Return the number of elements in an iterator.
213

214 The iterator is consumed by calling this function.
215 """
216 length = 0
217 for _ in iterator:
218 length += 1
219 return length
220

221

222 ###############################################################################
223 # Main program.
224 ###############################################################################
225 if __name__ == '__main__':
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226 # The maximum depth of the tree is 3
227 depth = 3
228 number_of_combinations = iterator_len(all_trees(depth))
229 # Start with the first tree
230 current = 1
231

232 # A container for all distinct non-prunable trees
233 trees = set()
234

235 # Iterate through all different trees of maximum depth
236 for tree in all_trees(depth):
237 # Prune "easy" cases
238 tree = tree.prune()
239 # Add tree to set of trees if it was not pruned completely
240 if tree is not None:
241 trees.add(tree)
242

243 # Debug output
244 print('\r{percent:.2f}% ({current} / {all}) - trees: {trees}'
245 .format(percent=100 * current / number_of_combinations,
246 current=current,
247 all=number_of_combinations,
248 trees=len(trees)),
249 end='', flush=True)
250 current += 1
251

252 # Sum up the number of trees
253 print()
254 print(len(trees), 'trees')
255

256 # Create a document with all non-prunable trees
257 g = Digraph()
258 prefix = 1
259 for tree in trees:
260 tree.to_dot(g, str(prefix) + '_')
261 prefix += 1
262 g.render('trees')
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