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8.3 

Purpose 
•  Simulation is often used in the analysis of queueing models. 
•  A simple but typical queueing model 

•  Queueing models provide the analyst with a powerful tool for 
designing and evaluating the performance of queueing systems. 

•  Typical measures of system performance  
• Server utilization, length of waiting lines, and delays of customers 
• For relatively simple systems: compute mathematically 
• For realistic models of complex systems: simulation is usually 

required 
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Outline 
•  Discuss some well-known models  

• Not development of queueing theory, for this see other class! 

•  We will deal with 
• General characteristics of queues 
• Meanings and relationships of important performance 
measures 

• Estimation of mean measures of performance 
• Effect of varying input parameters 
• Mathematical solutions of some basic queueing models 
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Characteristics of Queueing Systems 
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Characteristics of Queueing Systems 
•  Key elements of queueing systems 

• Customer: refers to anything that arrives at a facility and requires 
service, e.g., people, machines, trucks, emails, packets, frames. 

• Server: refers to any resource that provides the requested service, 
e.g., repairpersons, machines, runways at airport, host, switch, 
router, disk drive, algorithm. 
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Computer Jobs CPU, disk, CD 

Network Packets Router 
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Calling Population 

•  Calling population: the population of potential customers, may 
be assumed to be finite or infinite. 
• Finite population model: if arrival rate depends on the number of 

customers being served and waiting, e.g., model of one corporate 
jet, if it is being repaired, the repair arrival rate becomes zero. 

• Infinite population model: if arrival rate is not affected by the number 
of customers being served and waiting, e.g., systems with large 
population of potential customers. 
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System Capacity 

•  System Capacity: a limit on the number of customers that 
may be in the waiting line or system. 
• Limited capacity, e.g., an automatic car wash only has room for 10 

cars to wait in line to enter the mechanism. 
• If system is full no customers are accepted anymore 

• Unlimited capacity, e.g., concert ticket sales with no limit on the 
number of people allowed to wait to purchase tickets. 
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Arrival Process 
•  For infinite-population models:  

• In terms of interarrival times of successive customers. 
•  Arrival types: 

• Random arrivals: interarrival times usually characterized by a 
probability distribution. 
•  Most important model: Poisson arrival process (with rate λ), where 

a time represents the interarrival time between customer n-1 and 
customer n, and is exponentially distributed (with mean 1/λ). 

• Scheduled arrivals: interarrival times can be constant or 
constant plus or minus a small random amount to represent 
early or late arrivals. 
•  Example: patients to a physician or scheduled airline flight arrivals 

to an airport 
•  At least one customer is assumed to always be present, 

so the server is never idle, e.g., sufficient raw material for 
a machine. 
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Arrival Process 

•  For finite-population models: 
• Customer is pending when the customer is outside the queueing 

system, e.g., machine-repair problem: a machine is “pending” 
when it is operating, it becomes “not pending” the instant it 
demands service from the repairman. 

• Runtime of a customer is the length of time from departure from 
the queueing system until that customer’s next arrival to the 
queue, e.g., machine-repair problem, machines are customers 
and a runtime is time to failure (TTF). 

• Let A1
(i), A2

(i), … be the successive runtimes of customer i, and S1
(i), 

S2
(i) be the corresponding successive system times: 
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Queue Behavior and Queue Discipline 

•  Queue behavior: the actions of customers while in a 
queue waiting for service to begin, for example: 
• Balk: leave when they see that the line is too long 
• Renege: leave after being in the line when its moving too slowly 
• Jockey: move from one line to a shorter line 

•  Queue discipline: the logical ordering of customers in a 
queue that determines which customer is chosen for 
service when a server becomes free, for example: 
• First-in-first-out (FIFO) 
• Last-in-first-out (LIFO) 
• Service in random order (SIRO) 
• Shortest processing time first (SPT) 
• Service according to priority (PR) 
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Service Times and Service Mechanism 

•  Service times of successive arrivals are denoted by S1, S2, S3. 
• May be constant or random. 
•  {S1, S2, S3, …} is usually characterized as a sequence of independent 

and identically distributed (IID) random variables, e.g.,  
•  Exponential, Weibull, Gamma, Lognormal, and Truncated normal 

distribution. 

•  A queueing system consists of a number of service centers and 
interconnected queues. 
• Each service center consists of some number of servers (c) working 

in parallel, upon getting to the head of the line, a customer takes the 
1st available server. 
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Queuing System: Example 1 
•  Example: consider a discount warehouse where customers may 

• serve themselves before paying at the cashier (service center 1) or  
• served by a clerk (service center 2) 
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Queuing System: Example 1 
•  Wait for one of the three clerks: 

•  Batch service (a server serving several customers 
simultaneously), or customer requires several servers 
simultaneously. 
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Queuing System: Example 1 
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Queuing System: Example 2 
•  Candy production line 

• Three machines separated by buffers 
• Buffers have capacity of 1000 candies 
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The Kendall Notation 
Queueing Notation 
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Queueing Notation: Kendall Notation 

•  A notation system for parallel server queues:  A/B/c/N/K 
•  A  represents the interarrival-time distribution 
•  B   represents the service-time distribution 
•  c   represents the number of parallel servers 
•  N  represents the system capacity 
•  K  represents the size of the calling population 
•  N, K are usually dropped, if they are infinity 

•  Common symbols for A and B 
•  M  Markov, exponential distribution 
•  D  Constant, deterministic 
•  Ek  Erlang distribution of order k 
•  H  Hyperexponential distribution 
•  G  General, arbitrary 

•  Examples 
•  M/M/1/∞/∞ same as M/M/1: Single-server with unlimited capacity and call-

population. Interarrival and service times are exponentially distributed 
•  G/G/1/5/5: Single-server with capacity 5 and call-population 5. 
•  M/M/5/20/1500/FIFO: Five parallel server with capacity 20, call-population 1500, 

and service discipline FIFO 
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Queueing Notation 

•  General performance measures of queueing systems: 
•   Pn  steady-state probability of having n customers in system 
•   Pn(t)  probability of n customers in system at time t 
•   λ   arrival rate 
•   λe  effective arrival rate 
•   µ   service rate of one server 
•   ρ   server utilization 
•   An  interarrival time between customers n-1 and n 
•   Sn  service time of the n-th arriving customer 
•   Wn  total time spent in system by the n-th customer 
•   Wn

Q  total time spent in the waiting line by customer n 
•   L(t)  the number of customers in system at time t 
•   LQ(t)  the number of customers in queue at time t 
•   L   long-run time-average number of customers in system 
•   LQ  long-run time-average number of customers in queue 
•   W   long-run average time spent in system per customer 
•   wQ  long-run average time spent in queue per customer 
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Long-run Measures of Performance of 
Queueing Systems 
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Long-run Measures of Performance of Queueing 
Systems 
•  Primary long-run measures of performance are 

•  L   long-run time-average number of customers in system 
•  LQ  long-run time-average number of customers in queue 
•  W  long-run average time spent in system per customer 
•  wQ  long-run average time spent in queue per customer 
•  ρ   server utilization 

•  Other measures of interest are 
• Long-run proportion of customers who are delayed longer 
than t0 time units 

• Long-run proportion of customers turned away because of 
capacity constraints 

• Long-run proportion of time the waiting line contains more 
than k0 customers 
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Long-run Measures of Performance of Queueing 
Systems 
•  Goal of this section 

• Major measures of performance for a general G/G/c/N/K 
queueing system 

• How these measures can be estimated from simulation runs 

•  Two types of estimators 
• Sample average 
• Time-integrated sample average 

Prof. Dr. Mesut Güneş ▪ Ch. 8 Queueing Models 



8.23 

Time-Average Number in System L 

Prof. Dr. Mesut Güneş ▪ Ch. 8 Queueing Models 

Time 

Number of 
customers in the 

system 



8.24 

Time-Average Number in System L 
•  Consider a queueing system over a period of time T 

• Let Ti denote the total time during [0,T ] in which the system 
contained exactly i customers, the time-weighted-average number in 
the system is defined by: 

• Consider the total area under the function is L(t), then, 

• The long-run time-average number of customers in system, with 
probability 1: 
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Time-Average Number in System L 
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Time-Average Number in System L 
•  The time-weighted-average number in queue is: 

•  G/G/1/N/K example:  
consider the results from the queueing system (N ≥ 4, K ≥ 3). 
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Time-Average Number in System L 
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8.28 

Average Time Spent in System Per Customer w 
•  The average time spent in system per customer, called the 

average system time, is: 

 
 where W1, W2, …, WN are the individual times that each of the N 
customers spend in the system during [0,T]. 

• For stable systems: 

• If the system under consideration is the queue alone: 
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8.29 

Average Time Spent in System Per Customer w 
•   G/G/1/N/K example (cont.):  

• The average system time is (Wi = Di – Ai) 

• The average queuing time is 
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The Conservation Equation or 
Little’s Law 
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The Conservation Equation: 
Little’s Law 
•  One of the most common theorems in queueing theory 
•  Mean number of customers in system 
•  Conservation equation (a.k.a. Little’s law) 

average number in system = arrival rate × average system time 
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The Conservation Equation: 
Little’s Law 
•  Conservation equation (a.k.a. Little’s law) 

• Holds for almost all queueing systems or subsystems (regardless of 
the number of servers, the queue discipline, or other special 
circumstances). 

•   G/G/1/N/K example (cont.): On average, one arrival every 4 time 
units and each arrival spends 4.6 time units in the system. Hence, at 
an arbitrary point in time, there are (1/4)(4.6) = 1.15 customers 
present on average. 
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Server Utilization 
•  Definition: the proportion of time that a server is busy. 

• Observed server utilization,   , is defined over a specified time 
interval [0,T ]. 

• Long-run server utilization is ρ. 
• For systems with long-run stability: 
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Server Utilization 
•  For G/G/1/∞/∞ queues: 

• Any single-server queueing system with  
•  average arrival rate λ customers per time unit,  
•  average service time E(S) = 1/µ time units, and 
•  infinite queue capacity and calling population. 

• Conservation equation, L = λw, can be applied. 
• For a stable system, the average arrival rate to the server, λs, 
must be identical to λ. 

• The average number of customers in the server is: 
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Server Utilization 
•  In general, for a single-server queue: 

• For a single-server stable queue: 

• For an unstable queue (λ > µ), long-run server utilization is 1. 
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Server Utilization 
•  For G/G/c/∞/∞ queues: 

• A system with c identical servers in parallel. 
• If an arriving customer finds more than one server idle, the 
customer chooses a server without favoring any particular 
server. 

• For systems in statistical equilibrium, the average number of 
busy servers, Ls, is: 

• Clearly 0 ≤ LS ≤ c 
• The long-run average server utilization is: 
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Server Utilization and System Performance 

•  System performance varies widely for a given utilization ρ. 
• For example, a D/D/1 queue where E(A) = 1/λ and E(S) = 1/µ, 
where: 

L = ρ = λ/µ,   w = E(S) = 1/µ,   LQ = WQ = 0 
•  By varying λ and µ, server utilization can assume any value 

between 0 and 1. 

• In general, variability of interarrival and service times causes 
lines to fluctuate in length. 
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Server Utilization and System Performance 
•  Example: A physician who 

schedules patients every 10 
minutes and spends Si minutes 
with the i-th patient: 

• Arrivals are deterministic: 
  
A1 = A2 = … = λ-1 = 10 

• Services are stochastic 
•   E(Si) = 9.3 min 
•   V(S0) = 0.81 min2 

•   σ = 0.9 min 

• On average, the physician's 
utilization is  
ρ = λ/µ = 0.93 < 1 

• Consider the system is 
simulated with service times: 
S1= 9, S2=12, S3 = 9, S4 = 9, S5 = 9,... 

• The system becomes: 

• The occurrence of a 
relatively long service time 
(S2 = 12) causes a waiting line 
to form temporarily. 
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Costs in Queueing Problems 
•  Costs can be associated with various aspects of the waiting line 

or servers: 
• System incurs a cost for each customer in the queue, say at a rate of 

$10 per hour per customer. 
•  The average cost per customer is: 

•  If    customers per hour arrive (on average), the average cost per 
hour is:  

• Server may also impose costs on the system, if a group of c parallel 
servers (1 ≤ c ≤ ∞) have utilization ρ, each server imposes a cost of 
$5 per hour while busy. 
•  The total server cost is:	
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8.40 

Steady-state Behavior of Infinite-
Population Markovian Models 
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Steady-State Behavior of Markovian Models 
•  Markovian models:  

• Exponential-distributed arrival process (mean arrival rate = 1/λ). 
• Service times may be exponentially (M) or arbitrary (G) distributed. 
• Queue discipline is FIFO. 
• A queueing system is in statistical equilibrium if the probability that 

the system is in a given state is not time dependent: 
    

• Mathematical models in this chapter can be used to obtain 
approximate results even when the model assumptions do not strictly 
hold, as a rough guide. 

• Simulation can be used for more refined analysis, more faithful 
representation for complex systems. 
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Steady-State Behavior of Markovian Models 

•  Properties of processes with statistical equilibrium 
• The state of statistical equilibrium is reached from any starting 
state. 

• The process remains in statistical equilibrium once it has 
reached it. 
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Steady-State Behavior of Markovian Models 
•  For the simple model studied in this chapter, the steady-

state parameter, L, the time-average number of 
customers in the system is: 

• Apply Little’s equation, L=λ w, to the whole system and to the 
queue alone: 

•  For M/G/c/∞/∞ queues: to have a statistical equilibrium, a 
necessary and sufficient condition is: 
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M/G/1 Queues  

•  Single-server queues with Poisson arrivals and unlimited capacity. 
•  Suppose service times have mean 1/µ  and variance σ 2 and ρ = λ / µ < 1, 

the steady-state parameters of M/G/1 queue: 
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M/G/1 Queues  
•  There are no simple expressions for the steady-state 

probabilities P0, P1, P2 ,…  
•  L – LQ = ρ is the time-average number of customers being 

served. 
•  Average length of queue, LQ, can be rewritten as: 

• If λ and µ are held constant, LQ depends on the variability, σ 2, of the 
service times. 
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M/G/1 Queues  
•  Example: Two workers competing for a job, Able claims to be faster 

than Baker on average, but Baker claims to be more consistent  
•  Poisson arrivals at rate λ = 2 per hour (1/30 per minute). 
•  Able: 1/µ = 24 minutes and σ 2 = 202 = 400 minutes2: 

•  The proportion of arrivals who find Able idle and thus experience no delay is 
P0 = 1-ρ = 1/5 = 20%. 

•  Baker: 1/µ = 25 minutes and σ 2 = 22 = 4 minutes2: 

•  The proportion of arrivals who find Baker idle and thus experience no delay is  
P0 = 1-ρ = 1/6 = 16.7%. 

•  Although working faster on average, Able’s greater service variability results 
in an average queue length about 30% greater than Baker’s. 

Prof. Dr. Mesut Güneş ▪ Ch. 8 Queueing Models 

customers 711.2
)5/41(2

]40024[)30/1( 22
=

−

+
=QL

customers 097.2
)6/51(2

]425[)30/1( 22
=

−

+
=QL



8.47 

M/M/1 Queues 
•  Suppose the service times in an M/G/1 queue are exponentially 

distributed with mean 1/µ, then the variance is σ 2 = 1/µ2.  
•  M/M/1 queue is a useful approximate model when service times 
have standard deviation approximately equal to their means. 

• The steady-state parameters 
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M/M/1 Queues 
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• Interarrival and service times are exponentially distributed 
• λ = 2 customers/hour and µ = 3 customers/hour 
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M/M/1 Queues 
•  Example: M/M/1 queue 

with service rate µ =10 
customers per hour. 
• Consider how L and w increase 

as arrival rate, λ, increases 
from 5 to 8.64 by increments 
of 20% 

• If λ/µ ≥ 1, waiting lines tend to 
continually grow in length 

• Increase in average system 
time (w) and average number 
in system (L) is highly 
nonlinear as a function of ρ. 
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Effect of Utilization and Service Variability 

•  For almost all queues, if lines are too long, they can be 
reduced by decreasing server utilization (ρ) or by decreasing 
the service time variability (σ2). 

•  A measure of the variability of a distribution: 
• coefficient of variation (cv): 

• The larger cv is, the more variable is the distribution relative to its 
expected value 

• For exponential service times with rate µ 
•  E(X) = 1/µ  
•  V(X) = 1/µ2 

 Æ cv = 1 

[ ]2
2

)(
)()(

XE
XVcv =
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Effect of Utilization and Service Variability 

•  Consider LQ for any M/G/1 
queue: 
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Multiserver Queue: M/M/c 
•  M/M/c/∞/∞ queue: c servers operating in parallel 

• Arrival process is poisson with rate λ 
• Each server has an independent and identical exponential service-

time distribution, with mean 1/µ. 
• To achieve statistical equilibrium, the offered load (λ/µ) must satisfy  
λ/µ < c, where λ/(cµ) = ρ is the server utilization. 
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Multiserver Queue: M/M/c 
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•  The steady-state parameters for M/M/c 

Probability that 
all servers are 

busy 
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Multiserver Queue: Common Models 

•  Other common multiserver queueing models 

•  M/G/c/∞: general service times and c parallel server. The 
parameters can be approximated from those of the M/M/c/∞/∞ 
model. 

•  M/G/∞: general service times and infinite number of servers. 
•  M/M/c/N/∞: service times are exponentially distributed at rate µ and 

c servers where the total system capacity is N ≥ c customer. When 
an arrival occurs and the system is full, that arrival is turned 
away. 
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Multiserver Queue: M/G/∞ 
•  M/G/∞:  general service times and infinite number of servers 

• customer is its own server (self-service) 
• service capacity far exceeds service demand 
• when we want to know how many servers are required so that 

customers are rarely delayed 
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Multiserver Queue: M/G/∞ 
•  How many users can be logged in simultaneously in a computer 

system 
• Customers log on with rate λ = 500 per hour 
• Stay connected in average for 1/µ =180 minutes = 3 hours 
• For planning purposes it is pretended that the simultaneous logged in 

users is infinite 
• Expected number of simultaneous users L 

• To ensure providing adequate capacity 95% of the time, the number 
of parallel users c has to be restricted 

• The capacity c =1564 simultaneous users satisfies this requirement 
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Multiserver Queue with Limited Capacity 
•  M/M/c/N/∞: service times are exponentially distributed at rate µ and 

c servers where the total system capacity is N ≥ c customer 
• When an arrival occurs and the system is full, that arrival is turned away 
• Effective arrival rate λe is defined as the mean number of arrivals per 

time unit who enter and remain in the system 
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Multiserver Queue with Limited Capacity 

•  Space only for 3 customers: one 
in service and two waiting 

•  First compute P0 

•  P(system is full) 

•  Average of the queue 

•  Effective arrival rate 

•  Queue time 

•  System time, time in shop 

•  Expected number of customers 
in shop 

•  Probability of busy shop 
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Steady-state Behavior of Finite-Population 
Models 
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Steady-State Behavior of Finite-Population 
Models 
•  In practical problems calling population is finite 

• When the calling population is small, the presence of one or more customers 
in the system has a strong effect on the distribution of future arrivals. 

•  Consider a finite-calling population model with K customers (M/M/c/K/K) 
•  The time between the end of one service visit and the next call for service is 

exponentially distributed with mean = 1/λ. 
•  Service times are also exponentially distributed with mean 1/µ. 
•  c parallel servers and system capacity is K. 
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Steady-State Behavior of Finite-Population 
Models 
•  Some of the steady-state probabilities of M/M/c/K/K : 
 

Prof. Dr. Mesut Güneş ▪ Ch. 8 Queueing Models 

µ
λ

ρλ

µ
λ

µ
λ

µ
λ

µ
λ

c
LwnPL

Kccn
ccnK

K

cnP
n
K

P

ccnK
K

n
K

P

e
e

K

n
n

n

cn

n

n

K

cn

n

cn

c

n

n

===

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∑

∑∑

=

−

−

=
−

−

=

      ,/     ,

,...1,     ,
!)!(

!

1,...,1,0                ,

!)!(
!

0

0

1
1

0
0

service) xitingentering/e(or  queue  tocustomers of rate arrival effectiverun  long  theis  where eλ

∑
=

−=
K

n
ne PnK

0
)( λλ



8.62 

Steady-State Behavior of Finite-Population 
Models 
•  Example: two workers who are responsible for 10 milling 

machines.  
• Machines run on the average for 20 minutes, then require an 
average 5-minute service period, both times exponentially 
distributed: λ = 1/20 and µ = 1/5. 

• All of the performance measures depend on P0: 

• Then, we can obtain the other Pn, and can compute the 
expected number of machines in system: 

• The average number of running machines: 
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Networks of Queues 
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Networks of Queues 
•  No simple notation for networks of queues 
•  Two types of networks of queues 

• Open queueing network 
•  External arrivals and departures 
•  Number of customers in system varies over time 

• Closed queueing network 
•  No external arrivals and departures 
•  Number of customers in system is constant 
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Networks of Queues 
•  Many systems are modeled as networks of single queues 
•  Customers departing from one queue may be routed to 

another 

•  The following results assume a stable system with infinite 
calling population and no limit on system capacity: 
• Provided that no customers are created or destroyed in the queue, 

then the departure rate out of a queue is the same as the arrival rate 
into the queue, over the long run. 

• If customers arrive to queue i at rate λi, and a fraction 0 ≤ pij ≤ 1 of 
them are routed to queue j upon departure, then the arrival rate 
from queue i to queue j is λj =λi pij over the long run. 
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Networks of Queues 
• The overall arrival rate into queue j: 

• If queue j has cj < ∞ parallel servers, each working at rate µj, then 
the long-run utilization of each server is: (where ρj < 1 for stable 
queue). 

• If arrivals from outside the network form a Poisson process with rate 
aj for each queue j, and if there are cj identical servers delivering 
exponentially distributed service times with mean 1/µj, then, in 
steady state, queue j behaves likes an M/M/cj queue with arrival rate 
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Network of Queues 
•  Discount store example:  

•  Suppose customers  
arrive at the rate 80 per  
hour and 40% choose  
self-service.  

• Hence: 
•  Arrival rate to service center 1 is λ1 = 80(0.4) = 32 per hour 
•  Arrival rate to service center 2 is λ2 = 80(0.6) = 48 per hour. 

•   c2 = 3 clerks and µ2 = 20 customers per hour. 
•  The long-run utilization of the clerks is: 
    ρ2 = 48/(3×20) = 0.8 

•  All customers must see the cashier at service center 3, the overall rate to 
service center 3 is λ3 = λ1 + λ2 = 80 per hour. 
•  If µ3 = 90 per hour, then the utilization of the cashier is: 

   ρ3 = 80/90 = 0.89 
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Summary  
•  Introduced basic concepts of queueing models. 
•  Showed how simulation, and sometimes mathematical analysis, can be 

used to estimate the performance measures of a system. 
•  Commonly used performance measures: L, LQ, w, wQ, ρ, and λe. 
•  When simulating any system that evolves over time, analyst must 

decide whether to study transient or steady-state behavior. 
•  Simple formulas exist for the steady-state behavior of some queues. 

•  Simple models can be solved mathematically, and can be useful in 
providing a rough estimate of a performance measure. 
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