Service Placement in Ad Hoc Networks

Georg Wittenburg and Jochen Schiller
Department of Mathematics and Computer Science
Freie Universitat Berlin
Takustr. 9, 14195 Berlin, Germany
Email: {wittenbu,schiller}@inf.fu-berlin.de

Georg Wittenburg is a Research
Assistant and PhD candidate in
Computer Science at Freie Universitat
Berlin. He received his M.Sc. and B.Sc.
in 2006 and 2004 from the same
university. His research interests
include protocols and distributed

9~ systems for wireless, ad hoc and
sensor networks, in particular the topics of service
placement, distributed event detection and simulation
accuracy.

Prof. Dr.-Ing. Jochen H. Schiller is head
of the working group Computer
Systems & Telematics at the Institute
of Computer Science, Freie Universitat
Berlin, Germany. Dr. Schiller studied
Computer Science at the University of
Karlsruhe where he also got his PhD in
1996. His research focus is on
wireless, mobile, and embedded devices, communication
protocols, operating systems for devices with small
footprint, and quality of service aspects in communication
systems.

ABSTRACT

Service placement optimizes the number of instances of a
service and their location within an ad hoc network in light
of changes in service demand and network topology. The
goal is to reduce bandwidth usage and latencies between
clients and servers, while improving scalability and
availability of the service.

We propose the SPi service placement architecture which is
unique in that it addresses the interdependencies between
service placement, service discovery, and routing. We give
an overview of the system, discuss the service model and
algorithms with emphasis on the cost of synchronization
between service instances, and present simulation-based
results that illustrate the benefits of service placement
when compared to traditional client/server architecture.

1. INTRODUCTION

Service provisioning in ad hoc networks is challenging given
the difficulties of communicating over a wireless channel
and the heterogeneity and mobility of devices. In order to
optimize the performance of the network as a whole, it is
necessary to continuously adapt the logical network
topology to both external (e.g., wireless connectivity,
mobility, churn) and internal (e.g., communication patterns,
service demand) factors. Recent proposals(1)(2)(3)
advocate that the nodes in the network should dynamically

choose which subset of them should provide application-
level services to other nodes. The process of selecting an
optimal service configuration, i.e., a set of nodes to host a
service in light of a given service demand and network
topology, is referred to as service placement.

Service placement addresses the questions of how many
instances of the same service should be available in the
network and cooperate to process clients' service requests;
where these service instances should be placed, i.e., which
nodes are best suited for hosting them; and when to adapt
the current service configuration. The main benefit of this
approach is that the service configuration, i.e., the set of
nodes to host a service, is adapted automatically at run-
time. A good service configuration reduces overall network
traffic and latency, and it can also be used to optimize the
network performance according to service-specific metrics.
In our prior work (4), we discussed the general applicability
of service placement and gave a survey of recent
approaches. We found that the service placement problem
is either tackled as a byproduct of middleware research or
as an application of facility location theory. The interactions
between service placement and existing service discovery
and routing protocols are widely unexplored, which gives
raise to questions regarding optimality, stability, and
overhead of current solutions.

2. SERVICE PLACEMENT AND SYNCHRONIZATION

A key aspect in establishing the optimal service
configuration is the traffic between service instances.
Service instances need to communicate among themselves
in order to keep global state and data synchronized. For
example, a service instance of a DNS-like service has to
propagate a client’s update to a record to all other
instances. In the following, we make the simplifying
assumption that for a service s the synchronization traffic
between two service instances can be expressed as a
fraction 7, of the traffic between an instance and its
clients. T4 can either be preconfigured using service-specific
expert knowledge, or it can calculated based on the traffic
statistics of the service, e.g., by a middleware performing
deep packet inspection. The fraction 7, specifically includes
any service-level processing of the service requests, such as
aggregation or compression.

Figure 1 illustrates the interdependency between the
fraction of synchronization traffic 74 and the optimal service
configuration. If a high volume of synchronization traffic, as
it may be the case for a distributed database that provides
transactional semantics, the optimal service configuration is
to have only a single instance of the service (cf. Fig. 1a). On
the other extreme, if no synchronization traffic is required,
e.g., for a spell checking service, each client hosts its own
service instance (cf. Fig. 1d). For the more interesting cases

(a) High sync traffic; one single service instance in the entire
network

o

Q .
“‘ \\
O.... ne

(c) Low sync traffic; several instances, strongly related to
regional demand

e, 0
*, .’
.
. -
. =
=
- =
O.. o i
& ey, »* =
K =
Q
Q
D

’0’ "‘ O----O 3
O.. o7 / \ :
O“ OOOO

(b) Medium sync traffic; few instances, mostly independent
of regional demand

-
Od (N o s, .
Q o e, -
0 . o Q
N e v

anuman® e, - - **
o % & Rt o »
* ", “‘ o -

., »

L)
o @.. © passive node /
o
O ." % o O O client / server
‘., .“““_'@. :: iemmsmsemsss radio link
o ".@ service traffic
=== sync traffic

(d) No sync traffic (T = 0); one service instance per client

Fig. 1: Service configurations for different levels of synchronization traffic

of medium to low synchronization traffic (cf. Figs. 1b and
1c), the service configuration needs to be calculated using a
cost model based on a (partially known) network topology
and the service demand.

For a service s, given the set of nodes N, distances between
nodes d,,, , withm,n € N, and the set of current hosts of
service instances H; € N, the following parameters are
used to calculate the service provisioning cost c(s):

6(s,c) Demand for s on client node c € N in terms of
required network traffic

T, = 0 Fraction of service requests processed by a service
instance of s required for synchronization with the
other service instances

The cost of providing service s hosted on node h € H, to a
given client on node c is the product of the distance
between h and c and the service demand at the client
dy 6(s,c). If there is more than one service instance, i.e.,
|Hg| > 1, then the service discovery process can be
assumed to result in the closest (with regard to a metric
reflecting the network topology) host being used by each
client. Thus, the service host used by client c to satisfy
service requests for service s isn(s,c) = arg mingey dp c.
Thus, the cost of providing service s to a single client c is
Ay (s,0),c0(s, €). With the set of clients of a host h for service
s given by Csp, ={c € N|n(s,c) = h}, the cost of a
service host h can be written as

Cclients(s' h) = Z dn(s,c),c(s(sr C)

CECsp

As introduced above, service instances may need to
synchronize their global state and data. The fraction of the
service requests received by one service instance required
for the synchronization to another service instance is given
by 5.

The demand for service s at host h is Ycec_, 8(s, ¢). Hence,
the synchronization cost for one service instance of service

s hosted on node h is
dh,h' Z 8(s,c)

h'e Hg\{h} cECsp

Csync(sﬂ h) = Ts

The service provisioning cost for a service s combines the
cost incurred by each service instance h € Hg while serving
client requests and while synchronizing global state and
data between all service instances:

C(S) = Z Cclients (S! h) + Csync (S' h)

heHg

Based on this cost function, the goal of a placement
algorithm is to find the optimal service configuration
H, S N of nodes to host a service s that minimizes the
service provisioning cost, i.e., ﬁs = argming cy c(s).

3. THE SPI SERVICE PLACEMENT ARCHITECTURE

We propose the SPi service placement architecture as a
novel approach to service placement in ad hoc networks
that optimizes the number and the location of service
instances based on usage statistics and a partial network
topology derived from routing information. The system only
requires minimal knowledge about the service it is tasked
with placing in the network, and it is unique in that it
explicitly considers the communication between service
instances that is required to synchronize shared data.
Furthermore, our system implements a cross-layering
approach to take advantage of the interdependencies
between service placement, service discovery and the
routing of service requests to reduce network overhead.

The three main components of the SPi architecture are
depicted in Figure 2. The service placement middleware is

Application Application
(Client) (Service Instance)

Discovery Discovery || Placement Ji* 2
Transport Transport
Routing Routing ﬁ
Data Link Data Link

7 /

Fig. 2: Components of the SPi Service Placement Architecture

active on each node which is currently hosting a service
instance. It is tasked with collecting usage statistics of the
service and adjusting the service configuration when
necessary. The service discovery component locates the
most suitable service instance to provide a service for a
client. Furthermore, it proactively announces the location
of new service instances that are created whenever the
service configuration is changed. The routing component
implements an enhanced routing protocol that selectively
piggy-backs neighborhood and routing path information on
data packets. This information is then aggregated and
provided to the service placement middleware on demand.
The service placement middleware operates according to
the following steps: Local usage statistics are transmitted to
a dynamically-assigned control node. This node calculates
the optimal service configuration according to the cost
function described in the previous section. The cost metric
is based on service demand in terms of used bandwidth and
the network topology in terms of hop count and link
quality. With this service configuration as input, the control
node establishes a set of actions required to migrate from
the current to the optimal configuration. Possible actions
are the replication of a service instance from a current host
to a new host, the migration of a service instance, and
shutting down an instance. If the combined cost of these
actions in terms of network traffic is less than the
difference in cost between the current and the optimal
configuration, commands for adapting the configuration
are issued to the current service hosts. These nodes then
distributively proceed with replicating, migrating, or
shutting down individual service instances.

A crucial step in this process is the calculation of the
optimal service configuration on the coordinator node. Our
algorithm is based on the observation that, provided that
clients chose the nearest service instance during service
discovery, the mapping of clients to service instances
induces a clustering of the network. The goal of the
algorithm is thus to calculate the optimal clustering, whose
set of cluster heads corresponds to H. This is achieved by
initializing the algorithm with a valid but suboptimal
configuration of having one service instance per client, i.e.,
each client node is its own cluster head, and then iteratively
merging the two adjacent clusters (with nodes h and h' as
cluster heads) that have the lowest combined cost
Zcng,hUcS_hr‘g(s' c). After each step of the iteration, we

calculate the service cost c(s) for the current set of cluster
heads and retain the service configuration with the lowest
cost. This algorithm has a run-time proportional to
[N|* x deg?, where deg is the node degree of the network

O R N W hH O o N ©
T

Distance Travelled (avg. hops)

20 40 60 80 100
Network Size (nodes)

Fig. 3: Hop count of service requests against network size

graph. It terminates for all inputs because the number of
clusters decreases with each iteration of the main loop.

4. EVALUATION

In our evaluation, we quantify the advantages of service
placement with SPi over a traditional approach based on a
client/server architecture without service placement. We
used version 2.33 of the NS network simulator to simulate
networks of different sizes (in terms of number of nodes)
and under different load scenarios. The nodes were
randomly placed in an area whose size was changed
depending on the number of nodes in order to achieve a
near constant median node degree. The radio link was set
to an average transmission radius of 50 m, IEEE 802.11 was
used for medium access, and an enhanced version (as
detailed above) of DYMO (5) was used for routing. The size
of the service as transferred between hosts when a service
instance is replicated or migrated was set to 100 kB. The
fraction of synchronization traffic T, was set to 10%. We
observed the network for simulated 15 minutes after an
initial 5 minutes for initialization. The initial service host
was assigned randomly at the beginning of the simulation.
During the initialization phase, half of the nodes began
issuing service requests. The results are based on
aggregated data from 30 runs of the simulation. Each
measurement is plotted as combination of median, mean,
first and third interquartile, and minimum and maximum.
The medians of related measurements are connected with
a dashed line.

As a fundamental effect of service placement, one would
expect that the average distance between client nodes and
service hosts decreases as a suitable number of service
instances is created. We verify this intuition in Figure 3
which shows the distance travelled by service requests
against the size of the network. We can observe that
service placement with SPi reduces the distance that
service requests have to cover in order to reach the closest
service host. Furthermore, it becomes apparent that the
general behavior of the network becomes more predictable
as the dependency of the overall performance on the
random choice of the initial service host is eliminated.

In Figures4 to 7, we evaluate the cost of service
provisioning and the quality of the service. Figures 4 and 5
plot the overall link layer traffic during the entire simulation
against different network sizes and loads. We note that our
system with SPi service placement consistently, for both
increasing network size and load, requires about half the
amount of network traffic when compared to a system

800 - :
700 t
600
500 |
400
300 t
200 |
100 |

Total Traffic (MB)

Network Size (nodes)
Fig. 4: Overall (link layer) network traffic against network size

10 .

=
T

Round-trip Time (s)
o
S

0.01

80 100
Network Size (nodes)
Fig. 6: Round-trip time of service requests against network size

without service placement. As network size or load
increase, scenarios without service placement reach a point
of saturation at approximately 700 MB, beyond which no
additional data can be transferred during the allocated
time. As a result, service requests cannot be routed to their
destination nodes anymore and the service recall, i.e., the
fraction of successful service requests, begins to drop
(figures omitted). In comparison, scenarios with SPi service
placement reach saturation for larger networks or under
higher load. In other words, service placement allows
deploying more demanding services in larger networks that
would otherwise exceed the network capacity.

Figure 6 and 7 plot the round-trip time of service requests
for the same scenarios as above. Similarly to the plots in
Figures4 and 5, we observe that our system with SPi
service placement consistently reduces the round-trip time
by about one half. As network size and load increase, the
network reaches the limits of its capacity and the round-trip
time increases sharply by one order of magnitude. As in the
previous part of the evaluation, this transition occurs later
for scenarios with SPi. Hence, we can conclude that service
placement allows sustaining a higher quality of service even
in more demanding scenarios.

Combining these two observations, we can sum up our
findings in stating that service placement, as implemented
in SPi, reduces the overall cost of service provisioning (in
terms of required network traffic) while at the same time
improving the quality of the service (in terms of recall and
responsiveness).

5. CONCLUSION

In this paper, we gave a brief introduction to service
placement in ad hoc networks with an emphasis on the cost
of synchronizing shared data between multiple service
instances. We introduced the SPi service placement
architecture and evaluated the effects of service placement
in comparison to a traditional client/server architecture.
Our results show that networks with service placement

800

700

T
S —
none ~ T

600
500
400
300
200 +
100 [g™ e

Total Traffic (MB)

Network Load (requests/s)
Fig. 5: Overall network (link layer) traffic against network load

10 :

Round-trip Time (s)

0.01 = -
0.1 1 10

Network Load (requests/s)
Fig. 7: Round-trip time of service requests against network load

consistently perform better than those without, improving
application-level quality metrics while causing less overall
network traffic.

Additional to these results, networks employing service
placement can also benefit from inherent replication of
data which protects against node failures and the effects
churn. Scenarios than can potentially draw most benefit
from service placement are those in which a strong
correlation exists between location of nodes (including
group mobility) and demand for a service. Service
placement can thus be considered applicable to a wide
range of system, ranging from sensor networks and fixed
office meshes to vehicular networks.

6. BIBLIOGRAPHY

1. Herrmann, K. Self-Organizing Infrastructures for Ambient
Services. PhD thesis. Berlin, Germany: Technische
Universitat Berlin, July 2006.

2. Gossa, J., et al. Proactive Replica Placement Using
Mobility Prediction. Proc. Workshop on Data Management
in Context-Aware Computing (DMCAC '08 / MDM '08).
Beijing, China, April 2008.

3. Lipphardt, M, et al. DySSCo - A Protocol for Dynamic Self-
organizing Service Coverage. Proc. Workshop on Self-
Organizing Systems (IWSQS '08). Vienna, Austria, December
2008.

4. Wittenburg, G and Schiller, J. A Survey of Current
Directions in Service Placement in Mobile Ad-hoc Networks.
Proc. IEEE Conference on Pervasive Computing and
Communications (PerCom '08 / PerWare '08). Hong Kong,
March 2008.

5. Chakeres, I. D. and Perkins, C. E. Dynamic MANET
Ondemand (DYMO) Routing. IETF Internet-Draft. March
2009.

