
Demo Abstract: In-network Training and
Distributed Event Detection in Wireless Sensor Networks

Georg Wittenburg
wittenbu@inf.fu-berlin.de

Norman Dziengel
dziengel@inf.fu-berlin.de

Jochen Schiller
schiller@inf.fu-berlin.de

Department of Mathematics and Computer Science
Freie Universität Berlin

Takustr. 9, 14195 Berlin, Germany

ABSTRACT
In order to avoid transmitting raw data to a base station,
sensor nodes are trained to cooperatively recognize deploy-
ment-specific events based on the data sampled by their sen-
sors. As both training and event detection are performed
without the need for central coordination or processing, only
information about the detected event needs to be reported.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems—distributed applications; I.5.4 [Pattern
Recognition]: Applications—signal processing

General Terms
Design, Experimentation, Performance

Keywords
Wireless Sensor Networks, Distributed Event Detection, In-
network Data Processing, Pattern Recognition

1. INTRODUCTION
In-network data aggregation with the goal of avoiding ex-

cessive packet transmissions is commonly regarded as a key
aspect for conserving energy and thus extending the lifetime
of a Wireless Sensor Network (WSN). Data aggregation may
be as simple as combining several sensor readings into one
single packet or averaging data sampled on different nodes.
However, even with limited per-node processing capabilities,
more advanced methods are feasible.

In this demonstration, we present our system for distribu-
ted event detection Patrec that is capable of identifying com-
plex application-specific events based on the raw sensory
data collected by several sensor nodes. For instance, con-
sider a WSN consisting of nodes equipped with accelerom-
eters attached to a fence: Based on the acceleration data
gathered by several nodes, the WSN is able to differenti-
ate between events such as a person climbing over the fence
or a person merely shaking the fence [6]. Event detection
is performed collaboratively on those nodes whose sensors
register the event and only a notification about which event
was detected is transmitted back to the base station in or-
der to alert the user. As events depend on the application as

Copyright is held by the author/owner(s).
SenSys’08, November 5–7, 2008, Raleigh, North Carolina, USA.
ACM 978-1-59593-990-6/08/11.

well as the deployment scenario, our system can be trained
on-site as part of the deployment process.

This architecture improves upon other approaches that ei-
ther consume additional energy by sending raw data back to
the base station for centralized processing [5] and/or sacri-
fice accuracy by relying on simple heuristics, e.g. thresholds
of sensor values [1] or number of affected nodes [3].

2. SYSTEM ARCHITECTURE
The architecture of our system is depicted in Figure 1. We

treat event detection as a layered process that runs in par-
allel on several sensor nodes. The general idea is to expand
upon established methods from the area of pattern recogni-
tion by exchanging data about features extracted from the
raw data between sensor nodes. The event detection pro-
cess is triggered on any sensor node whose sensors register
a noteworthy level of activity.

The tasks of the individual layers are as follows: During
raw data processing, the stream of raw data is segmented
using thresholds with hystereses and the data corresponding
to one potential event is then filtered using an weighted mov-
ing average and normalized to optimize subsequent calcula-
tions on the microcontroller. The feature extraction uses
the processed sensor data to calculate several descriptive fea-
tures, e.g. duration, minimum/maximum/average values or
distribution of frequencies. The numeric values for each fea-
ture are then concatenated into a feature vector. Additional
normalizing of the extracted features makes sure that all
features are comparable in the common feature space, thus
allowing us to fuse features from different types of sensors.
During feature distribution and fusion, the feature vec-
tors of all sensor nodes on which the event detection has
been triggered are sent to neighboring nodes and concate-
nated into a combined feature vector. Timeouts are used to
compensate for the fact that per-node processing may have
been triggered at different points in time depending on the
sensory input. The classification compares the combined
feature vector against a set of reference vectors with the Eu-
clidean distance as metric. Each of the reference vectors
corresponds to a previously trained class of events. If the
event corresponding to nearest reference vector is deemed
worthy of reporting, an identifier for this event is routed to
the base station of the network.

The process of training the system works along the same
lines. The lower layers are used without modification, how-
ever the final classification step is replaced by a correspond-
ing training component: For each event to be classified later



Feature Extraction

node n‐1 node n node n+1

Raw Data Processing

Classification

Feature Distribution 
and Fusion

Event

Figure 1: Distributed Event Detection Architecture
of Patrec and Exemplary Detection Process

on, a predetermined number of exemplary combined feature
vectors are used to calculate an event-specific reference fea-
ture vector. An evaluation of further design alternatives is
omitted for brevity but can be found in [2].

3. DEMONSTRATION SETUP
We have implemented the system for distributed event

detection on ScatterWeb MSB sensor nodes [4] which are
based on the TI MSP430 16-bit microcontroller with 5 kB
of RAM. The sensor nodes are equipped with a Chipcon
CC1020 868MHz radio transceiver and a Freescale Semi-
conductor MMA7260Q accelerometer. The demonstration
is completely self-contained, i.e. it requires no external com-
ponents for coordination or processing.

Our demonstration consists of two distinct parts that re-
spectively focus on training and distributed event detection.
The training of the event detection system is started manu-
ally by a person holding the sensor node in one hand. The
system will first calibrate the accelerometer and adjust the
sensitivity parameters of the raw data processing layer based
on how much the hand is trembling at its current position.
After the calibration is completed, the user will be prompted
by the LEDs of the node to teach the system three events
in the form of motion patterns of his own choice. The be-
ginning and end of each motion are detected automatically.
The system subsequently extracts features from the acceler-
ation data and constructs the feature vector. After repeating
each motion three times, the feature vectors are combined
to form the reference vector for the motion pattern in ques-
tion. Once the training is complete, the user may repeat
any of the previously learned motions and the sensor node
will classify the motion pattern and report the result using
its LEDs.

Distributed event detection is demonstrated using three
sensor nodes that have been trained to recognize the four dif-
ferent geometric shapes depicted in Figure 2. A distributed
event consists of the three nodes being moved simultane-
ously. To this end, three persons agree on one of the four
shapes and then retrace the printed outline of the shape
in question. Once again, each of the nodes detects auto-
matically the beginning and end of each motion, extracts
features and constructs a feature vector. These feature vec-
tors are then exchanged via radio and on each node fused
into a combined feature vector which is classified using pre-
viously trained reference vectors. The event resulting from
the classification is reported using the LEDs of the nodes.

Figure 2: Sensor Node with Accelerometer Moved
According to Four Previously Trained Shapes

In addition to the results of the distributed event detection,
each node also reports which shape was recognized locally.
This way, users can assess in how far distributed event detec-
tion increases the overall accuracy of the system as opposed
to local event detection.

4. CONCLUSIONS
Our system for distributed event detection Patrec is ca-

pable of reliably detecting events based on sensory values
sampled across multiple sensor nodes. It does not require
central coordination or processing and expands upon other
approaches by adapting pattern recognition methods to the
distributed nature of WSNs. Furthermore, the system is ca-
pable of learning new events to detect by the means of a
supervised training process.

Preliminary results from lab experiments are available
in [2] and support our claim that distributed in-network
event detection in WSNs increases the detection accuracy
over existing approaches at a reasonable energy expendi-
ture. We are currently in the process of preparing a large
scale deployment of our system to verify our findings.

5. REFERENCES
[1] R. R. Brooks, P. Ramanathan, and A. M. Sayeed.

Distributed Target Classification and Tracking in
Sensor Networks. IEEE, 91(8):1163–1171, Aug. 2003.

[2] N. Dziengel, G. Wittenburg, and J. Schiller. Towards
Distributed Event Detection in Wireless Sensor
Networks. In DCOSS ’08, Santorini, Greece, June 2008.

[3] T. He, S. Krishnamurthy, J. A. Stankovic,
T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu,
G. Zhou, J. Hui, and B. Krogh. VigilNet: An
Integrated Sensor Network System for Energy-Efficient
Surveillance. Trans. Sensor Networks, 2(1), Feb. 2006.

[4] J. Schiller, A. Liers, and H. Ritter. ScatterWeb: A
Wireless Sensornet Platform for Research and Teaching.
Computer Communications, 28:1545–1551, Apr. 2005.

[5] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and Yield in a Volcano Monitoring
Sensor Network. In OSDI ’06, Seattle, USA, Nov. 2006.

[6] G. Wittenburg, K. Terfloth, F. L. Villafuerte,
T. Naumowicz, H. Ritter, and J. Schiller. Fence
Monitoring - Experimental Evaluation of a Use Case
for Wireless Sensor Networks. In EWSN ’07, Delft, The
Netherlands, Jan. 2007.


	Introduction
	System Architecture
	Demonstration Setup
	Conclusions
	References

