Performance Considerations for Mobile Web Services

M. Tian?, T. Voigt®*, T. Naumowicz?®, H. Ritter?, J. Schiller®

aInstitut fir Informatik, Freie Universitat Berlin, Takustr. 9, 14195 Berlin, Germany

Web services are an emerging technology that provides a flexible platform for web interaction. We evaluate
Web service performance of handheld resource-constrained clients using different wireless technologies. Due to
the usage of XML, message sizes in Web services are larger than in traditional web technologies and therefore,
compression of Web service messages is attractive. As shown in our experiments, this especially holds for mobile
clients with poor connectivity and high communication costs. However, compression requires CPU time at both
the server and the clients. We present measurement results of a simple dynamic scheme that provides benefits by
compressing responses only when the required server resources are available.

1. Introduction

Traditionally, Internet servers such as web
servers served mainly static content. During re-
cent years, more and more web sites have started
serving dynamic content, thus enabling personal-
ization of web pages as well as more complex in-
teraction such as on-line commerce and electronic
banking. The latest trends in the field of web
interaction are Web services. Web services are
software components that can be accessed over
the Internet using popular web mechanisms and
protocols such as HTTP. Public interfaces of Web
services are defined and described using Extensi-
ble Markup Language (XML) based definitions.
Examples of Web services range from simple re-
quests such as stock quotes or user authentica-
tion to more complex tasks such as comparing
and purchasing items over the Internet.

In contrast to traditional web interaction, Web
services incorporate some additional overhead. In
particular, due to the usage of XML, requests
and replies are larger compared to traditional web
interactions and the need for parsing the XML
code in the requests adds additional server over-
head. We present a typical web application that
requires the transmission of four to five times
more bytes if implemented as a Web service com-
pared to the same service implemented as a tradi-
tional dynamic program (in our case as an Active

*Visiting from the Swedish Institute of Computer Science.

Server Page application). Therefore, compression
of Web service interactions is attractive. It is easy
to imagine that in the future clients using mobile
devices will generate a large percentage of all Web
service requests. Although the computing power
of handheld devices is increasing rapidly the CPU
time required for decompression might eliminate
the benefits of compression for these types of de-
vices. We present experiments that quantify the
decompression overhead on a handheld comput-
ing device with constraint processing capabilities.
As expected, mobile clients benefit from compres-
sion when the available bandwidth is scarce, for
example when the client is connected via GPRS.
But even when resource-constrained devices have
better connectivity, the performance loss caused
by decompression is almost negligible. Note that
mobile clients also might prefer compressed re-
sponses since they are often charged by volume
rather than by connection time, e.g., in the case
of GPRS [1].

A lightly loaded server can afford the extra cost
of compressing responses. We present measure-
ments that show that the throughput of a heavily
loaded server can decrease substantially when it
is required to compress Web service responses. At
the same time the response times experienced by
the clients increase. We propose a simple scheme
that allows clients to specify whether they want to
receive data compressed when requesting a Web
service. Depending on the current server load, the



server compresses only the requests of the clients
that required such a service. We present experi-
ments that demonstrate that this approach works
as expected and that both the server and clients
with poor connectivity benefit during high server
demand.

The main contributions of this paper are the
evaluation of Web service performance for mobile
clients as well as a scheme that supports a server
in the decision whether to compress Web service
responses.

The rest of the paper is outlined as follows: Sec-
tion 2 presents some background information on
Web services and the associated overhead. Sec-
tion 3 motivates and discusses our dynamic com-
pression approach. The following section presents
our experiments. After presenting related work in
Section 5, we conclude with a short summary of
our findings and discuss some future work.

2. Web Services

A Web service is a software system identified
by a URI, whose public interfaces and bindings
are defined and described using XML [2]. The
definition of a Web service can be exported to
a file, published to a lookup service, and discov-
ered by other software systems. These systems
may then interact with the Web service in a man-
ner prescribed by its definition, using XML based
messages conveyed by Internet protocols.

The Web service architecture defined by the
W3C enables application to application commu-
nication over the Internet. Web services allow
access to software components through standard
Web technologies, regardless of platforms, imple-
mentation languages, etc.

In term of the Internet reference model, the
Web service layer could be placed between the
Transport and Application Layer. The Web ser-
vice layer is based on several standard Internet
protocols, whereby the protocols WSDL, SOAP,
and typically HTTP as depicted in Figure 1
should be supported by all Web service imple-
mentations for interoperability.

The HTTP protocol that builds the first layer
of the interoperable part of the protocol stack is,
because of its ubiquity, the de facto transport pro-

Application Layer

Web services Description (WSDL)

XML-based Messaging (SOAP)

Web Service Layer

Network (HTTP, FTP, SMTP, ...)

Transport Layer

Figure 1. Web Service Architecture

tocol for Web services. But any other transport
protocols such as SMTP, MIME, and FTP for
public domains as well as CORBA and Message
Queuing protocols for private domains could be
used instead.

The XML-based SOAP forms the next layer.
SOAP provides XML-based messaging. In com-
bination with HT'TP, XML function calls can be
sent as payload of HTTP POST. Because of the
extensibility of SOAP, one can define customized
messages using SOAP headers. The highest in-
teroperable layer is the XML-based Web Services
Description Language (WSDL). A WSDL docu-
ment serves as a contract to be followed by Web
service clients. It defines the public interfaces and
mechanisms of Web service interactions.

2.1. Web Service Overhead

Since both SOAP and WSDL are XML-based,
XML messages have to be parsed on both the
server and the client side and proxies have to be
generated on the client side before any communi-
cation can take place. The XML parsing at run-
time requires additional processing time, which
may result in longer response time of the server
in case of a Web service server.

In order to demonstrate the quantity of the ad-



ditional bytes Web services generate for transfer,
we have implemented the same ”service” both as
a traditional dynamic program, in our case as
an Active Server Page (ASP) application, and as
a Web service. The implemented application is
an electronic book inventory system. The clients
send the ISBN of a book to the server and the
server returns information about the book such
as the title, author name, price, and so on.

O content @ ASP overhead O WS overhead

3363

589 589 589

data

Figure 2. Overhead of server page and Web ser-
vice.

When sending small amounts of content using
SOAP on HTTP, such as sending an ISBN for
querying book information, the major part of the
entire conversation will consist of HT'TP headers,
SOAP headers including the XML schema as well
as brackets. In our case, the Web service accepts
the ISBN of a book as input parameter and re-
turns the book information in form of a dataset.
The actual content of both request and response
consists of a total of 589 bytes, thereof 10 bytes for
the ISBN and the rest for the information about
the book. But more than 3900 bytes have to be
sent and received for the entire conversation. Fig-
ure 2 depicts the bytes on the wire for the actual
content and the overhead when it is transmitted

as HTML or XML. The disproportion is not as
big for traditional web interaction with HTML.
The total amount of the request and response for
transferring the same information value is about
1200 bytes.

The overhead of the Web service stems mainly
from the usage of XML producing human read-
able text and is employed when interoperability
with other Web services and applications is es-
sential [3]. Others have compared XMLs way of
representing data with binary encodings. They
quantify the overhead as 400 % [4].

3. A Dynamic Approach for Reduction of
Web Service Responses

The growth of the Web service message size,
which results in higher data transmission time,
creates a critical problem for delay sensitive ap-
plications. One way to achieve a compact and
efficient representation is to compress XML —
especially when the CPU overhead required for
compression is less than the network latency [3].
Compression is both useful for clients that are
poorly connected as well as for clients that are
charged by volume and not by connection time by
their providers. The latter group contains mobile
users connected with handheld devices such as
people accessing a service via GPRS. This group
of users is expected to increase rapidly in the next
years. However, the Web service application on
the server does not have any information about
the delay, for example the current round trip time
estimated by TCP, and about the available band-
width between client and server.

Thus, we have decided to let the Web ser-
vice users specify whether they want the response
compressed. Mobile users usually know if they are
charged by volume and often know how they are
connected. Thus, it seems reasonable to let them
decide whether they want the server to compress
the response. Note, that a smart software com-
ponent could take over this task as well. In our
current design we let users decide between three
options:

e Do not compress the response

e Compress the response



e Compress the response if possible

If users choose the last option, the server is free
to choose what the server considers best. To give
users an incentive to choose this option, commer-
cial Web service providers could decide to charge
a lower price for this option. The choice of the
users is reflected in the request. When the last op-
tion is chosen and the server demand is low, the
server compresses the responses to all clients that
have asked for compressed replies and to those
clients that have not specified a preference. Dur-
ing high server demand, the server compresses
only responses to clients that have asked for com-
pressed data. Since compression requires mainly
CPU time, we regard the server demand as high
when the CPU utilization of the server exceeds a
certain threshold.

Note that in this approach, the server can still
become overloaded. Mechanisms for server over-
load protection have been studied elsewhere [5].

4. Experiments

In this section we describe our experimental
setup and the application we have implemented
as well as our experiments and the corresponding
results.

4.1. Testbed

Our testbed consists of three 1GHz Pentium III
machines with 256 MB memory, a Pentium III
laptop with 700MHz and 384 MB RAM and an
iPAQ Pocket PC 3970 running Windows CE 3.0
with a 400MHz XScale Processor (see Figure 3).
Our Internet server is a standard Internet Infor-
mation Server version 5.0 with the default con-
figuration. The other two Pentiums run Linux.
One is running the sclient traffic generator (see
below) and the other runs NIST Net [6]. NIST
Net emulates a wide variety of network conditions
such as low bandwidth and large round trip times.
The iPAQ handheld device is connected to the
server via the laptop and the machine running
NIST Net.

For background load generation, we use the
sclient traffic generator [7]. Sclient is able to gen-
erate client request rates that exceed the capacity
of the Internet server. This is done by aborting

requests that do not establish a connection to the
server in a specified amount of time. This timeout
is set to 50 milliseconds in our experiments. The
exact timeout value does not impact the results,
as long as it is chosen small enough to avoid that
TCP SYNs dropped by the server are retrans-
mitted. However, the larger the value, the higher
the risk that the request generator runs out of
socket buffers. Sclient does not take the aborted
requests into account when calculating the aver-
age response time.

In order to emulate poorly connected clients we
use the host running NIST Net to add additional
delays and decrease the available bandwidth. We
emulate a GPRS network based on the results
from measurements in a real GPRS network by
Chakravorty et al. [8]. They measure the delay
on the uplink to about 500 ms and on the down-
link to about 800ms. We do not take the vari-
ations into account in our experiments. For the
bandwidth the theoretical values are 40.2 kbit/s
on the downlink and 13.4 kbit/s on the uplink
meaning that the mobile device listens simulta-
neously on three downlink channels while send-
ing on one uplink channel as many mobile tele-
phones do. The values measured by Chakravorty
vary substantially based on the current network
conditions with the best conditions coming very
close to the maximum values. We use both the
theoretical values as the best case from the clients
point of view as well as the values they measured
when link conditions were poor. The latter are
12.8 kbit/s on the downlink and 4 kbit/s on the
uplink.

4.2. Test Application

The implemented application is a modification
of our electronic book inventory system described
in Section 2.1 that returns responses of different
sizes depending on the request. The additional
requests are for a small Hello World service, and
more detailed ("heavy”) information (including
more detailed information, user ratings and hints
on similar books etc.) about one, two, three and
five books. The corresponding sizes of the SOAP
body in both compressed and uncompressed form
are shown in Table 1. Note that additional bytes
are needed for the SOAP header (approx. 150



- =

WLAN,
Bluetooth,
GPRS . NIST Net
. Win XP
iPaq - on Linux

Figure 3. Testbed.
Table 1

(=1 -
L2277

=~
==
= =
=
- =
=
= =
=
=

el

IIS Server

=

—
Sclient
on Linux

Response size without and with compression, compression and decompression time

Original data
size (byte)

Data size after
compression (byte)

Compression time
on server (ms)

Decompression time
on client (ms)

“Hello World” 209 256

response

Lite information 3366 1390
for 1 book

Heavy information 16055 6038
for 1 book

Heavy information 28153 10222
for 2 books

Heavy information 36049 12350
for 3 books

Heavy information 50205 15470
for 5 books

1 41
12 200
24 497
36 747
79 877
89 1122

Bytes), the SOAP envelope (approx. 200 Bytes)
and the HTTP header. We only compress the
SOAP body in our experiments. We see that ex-
cept for the small "Hello World!” response the
compression factor is about three.

The Web service running on a Microsoft In-
ternet Information Server is implemented with
the .NET framework 1.1 beta [9]. The Web ser-
vice client is implemented with the .NET com-
pact framework and is deployed on the iPAQ.
Since SOAP is used for the client server inter-
action, we have extended the SOAP headers with
the SOAPExtension class of the .NET framework
class library in order to modify (on the client side)
and to inspect (on the server side) SOAP mes-
sages. The client sets a parameter in the SOAP
header instructing the server either to compress
or not to compress the data part of the SOAP
response or to let the server decide by itself. For

compression we use the SharpZipLib library [10],
but other compression algorithms may be used,
too.

4.3. Experimental Results

In this section, we present three different set
of experiments. In the first subsection, we evalu-
ate the performance of Web services for different
wireless networks. These experiments show that
mobile clients can gain from compression when
their connectivity is poor. However, compres-
sion requires server resources and, therefore, we
quantify the server overhead for compression. In
the second subsection, we demonstrate that com-
pression can degrade server performance severely.
The experiments in the final subsection validate
our dynamic approach, where during high server
load the server compresses only responses for
clients that have indicated that the server should



14000

12000

i
8000 /

6000 /

//

0 10000 20000 30000 40000 50000 60000
size as uncompressed (Bytes)

service time (ms)

0

Figure 4. iPAQ service time over wireless LAN.

compress the response.

4.3.1. Web Service Performance for Hand-
held Devices

Due to the large message sizes of Web ser-
vices we assume that compressing Web service
responses is useful. However, the cost of decom-
pression on resource-constrained devices may in-
validate this assumption.

In the following we investigate the performance
of Web Services on handheld devices when con-
nected to different networks, namely with 802.11b
wireless LAN, Bluetooth as well as GPRS net-
works with both good and poor connectivity, as
described in Section 4.1. The server in this sce-
nario is lightly loaded because the client is the
single user. Table 1 shows the compression times
on the server and the decompression times on
the client for different data sizes. The results in-
dicate that the compression time on the server
is much lower than the decompression time on
the resource-constrained handheld device. On the
iPAQ, the decompression time is more than one
second for the largest response while compressing
on the server requires less than 90 ms.

Figure 4 to Figure 7 show the experimental re-
sults with different network connections. The x-
axis shows the original message size of Web ser-
vice responses ranging from 0 to 50000 bytes. The
y-axis is the service time in millisecond. The ser-

14000

12000 -

10000 -

8000 4

6000 -

service time (ms)

4000 -

2000 of

0 T T T T T 1
0 10000 20000 30000 40000 50000 60000
size as uncompressed (Bytes)

Figure 5. iPAQ service time over wireless Blue-
tooth.

vice time denotes the time interval between the
moment the client requests the service, e.g., by
clicking on a button and the moment the client
has received and processed the result. We ex-
pect that mobile clients will benefit from com-
pression when the bandwidth is scarce but expe-
rience small performance degradation when the
available bandwidth is larger, i.e., when the ser-
vice is requested over the wireless LAN or Blue-
tooth.

Since the available bandwidth in a wireless
LAN is higher than in a Bluetooth network, we
expect the service time in the wireless LAN to be
lower than the service time over Bluetooth. In-
deed, as shown in Figure 4 and Figure 5 the ser-
vice time in the wireless LAN scenario is about
2 seconds faster than in the Bluetooth scenario
for all message sizes. There is no significant dif-
ference between service time for compression and
no compression when the iPAQ is connected via a
wireless LAN or Bluetooth network. At its maxi-
mum, the time difference for receiving compressed
or non-compressed responses is about 4 % for the
largest request over the wireless LAN. This shows
that the overhead caused by compression is not
severe in these scenarios.

When the iPAQ is connected via a low band-
width network such as GPRS, the service time is
lower for larger response sizes when the response
is compressed. This means that the benefit of



25000

20000 /

15000 /

10000

\

service time (ms)

5000
/

0

0 10000 20000 30000 40000 50000 60000

size of uncompressed message

Figure 6. iPAQ service time over emulated GPRS
network.

compression is higher than the cost of decom-
pressing the response. As Figure 7 shows, when
connectivity is poor the service time is halved
when compressing the largest response.

These experiments demonstrate that compress-
ing Web service responses is useful when the avail-
able bandwidth is scarce even for clients using
resource-constrained devices.

4.3.2. Impact of Compression on Server
Performance

Compression requires CPU time at the server,
too. In this section, we evaluate the impact of
compression on server performance. We use the
sclient workload generator to sustain a certain re-
quest rate independent of the load on the server.
The traffic generator makes requests at a certain
rate for the electronic book Web service described
in the previous section.

The test scenario increases the request rate
across runs and conducts three runs for each re-
quest rate with each of the runs lasting for three
minutes. We measure the average throughput
and response time. We expect that the response
time will be quite low when the request rate
is below the capacity of the server, no matter
whether compression is used or not. However,
using compression we expect that the server will
reach its maximum capacity at a lower request
rate. When the request rate is above the ca-

pressed e Ur

50000

45000 /
40000 /
35000 /
2 30000 /
@
2 25000
8 / /
=
g
H

20000
15000 / /
10000

5000 /

0

0 10000 20000 30000 40000 50000 60000

size as uncompressed (Bytes)

Figure 7. iPAQ service time over emulated GPRS
with poor connectivity.

pacity of the server, the response time will in-
crease rapidly due to the waiting time that re-
quests spend queuing before they can be pro-
cessed. Also, the throughput will increase with
the request rate until the maximum server capac-
ity is reached. When the request rate is higher
than the capacity of the server, the throughput
will not increase anymore. During severe over-
load the throughput might even decrease since
CPU time is wasted on requests that cannot be
processed and are eventually discarded [7].

For compression we use the SharpZipLib li-
brary. This way, we can reduce the overall
number of bytes for the “lite information” sce-
nario from more than four KBytes to around two
Kbytes (cf. Table 1). Without compression, three
TCP segments are needed for the response while
the compressed response fits into two TCP seg-
ments. Note that in our experiments the client,
i.e., the traffic generator, is not required to de-
compress or to process the received data in some
other way.

Due to the additional CPU time the server
spends on compressing data, we assume that the
response time increases and the throughput (mea-
sured in connections per second) decreases when
the response is compressed. Figure 8 shows that
this is indeed the case. The response time dur-
ing overload is about three seconds higher and the



—+—\Veb Senice —s=—Web Senice + ZIP

12000

10000 - ,//—/
8000

6000 { //

4000 r

2000 I

I [

0 50 100 150 200

request rate (requests/s)

Response time (ms)

Figure 8. Comparison of response time with and
without compressing the response.

throughput is about 45 conn/sec lower when com-
pression is used. Figure 9 shows that the max-
imum server throughput decreases from about
135 conn/sec to 90 conn/sec when compression
is used. These experiments show that when a
server compresses all replies, the maximum server
throughput decreases substantially and the re-
sponse time experienced by the clients is affected
negatively. This gives reason for our approach
that is based on the assumption that servers
should only compress replies to clients that can
benefit from compression.

4.3.3. Dynamic Server Compression

The first experiments have shown that mobile
clients with poor connectivity benefit from com-
pression while the experiments in the previous
section have demonstrated that compression re-
duces server performance during high demand.
In the experiment in this section, we investigate
if the dynamic compression approach described
in Section 3 is able to give us the best of both
worlds, i.e., compressed data for clients that wish
to receive compressed data while achieving high
server throughput.

The next experiment compares the server per-
formance when

1. all responses are compressed

2. no responses are compressed

=t Web Senice —s=\Web Senice + ZIP

160
140 -

120 /

100

80 /\-—-ﬁ
60

40

throughput (conn/s)

20 4

0 50 100 150 200

request rate (requests/s)

Figure 9. Comparison of throughput with and
without compressing the response.

3. the server decides which responses to com-
press

As in the experiment in the previous section,
we use sclient to request the lite information on
a book. Sclient first requests that all responses
are to be compressed, then that no responses are
compressed and finally 50 % of the responses to be
uncompressed and for the other 50 %, the server
is asked to decide. In the latter setting, which
we call dynamic, when no compression indication
is given for a request, the server compresses the
response when the CPU utilization of the server
is below a threshold of 80 %. If the CPU utiliza-
tion is higher than 80 % it does not compress such
a response in order to save processing time. Us-
ing this approach, the performance should be al-
most as high as without compression. Figure 10
and Figure 11 show the response time and the
throughput, respectively. As expected, using the
dynamic approach the server performance is al-
most as high as when the server does not use
compression. Further inspection of the results re-
veals that the server compresses all responses it
is allowed to compress (50 % of the requests that
have indicated that they do not have any pref-
erences) until a request rate of 60 requests/s is
reached. When the request rate reaches 120 re-
quests/s only 20 % of the requests without prefer-
ence indication are compressed while no requests



i COMPression === Dynamic ==e==No Compression

12000 4

10000 §

\

.y

response time (ms)

§

g

—

o

0 50 100 150 200

request rate (requests/s)

Figure 10. Response time of the dynamic ap-
proach.

are compressed at request rates larger than 140
requests/s.

However, the performance gap should be
smaller, i.e., the difference between the dynamic
approach and no compression should be almost
nothing, since the only extra task required from
the server is to check the current CPU utilization
when processing a request that has not indicated
any preference. This indicates that this task is
more expensive than one would expect.

In the next experiments we want to validate
that a client with a poor connection to the server
may indeed benefit from this approach. In these
experiments, the sclient varies the request rate
and requests the ”lite information for one book”
for two different scenarios. In the first scenario
sclient requests compressed responses while in the
second scenario sclient requests 50 % of the re-
sponses as compressed and 50 % of the responses
without compression preference. In both scenar-
ios, the iPAQ requests the ”heavy information for
one book”. The mobile client is connected via the
emulated GPRS network to the server.

The results shown in Table 2 indicate that our
approach is beneficial for both the server and for
mobile clients with poor connectivity. As ex-
pected for some sclient request rates, the service
time experienced by the mobile client is much bet-
ter when the server uses the dynamic approach,

o= N0 COMPIesSion == Compression == Dynamic

=
@
3

i
5
3

@
3

\7\

throughput (conn/s)

a
S

/

0 50 100 150 200

N
S

=)

request rate (requests/s)

Figure 11. Throughput of the dynamic approach.

namely when the sclient request rates are be-
tween 100 and 140 requests/s which corresponds
to the results in Figure 10. This is the request
range where the CPU time required for processing
would overload the server and would degrade per-
formance but the server still performs well when
it does not need to compress the responses.

5. Related Work

Web Services are a young area of research, thus
not much about Web services has been published
yet. Cai et al. compare alternative encoding
mechanisms, namely binary and XML, for Web
services [3]. Their aim is to discuss the perfor-
mance trade-off associated with these two alter-
natives. They develop a model that allows them
to estimate the throughput depending on factors
such as server bandwidth and packet loss. In our
work we implement the described approach and
demonstrate experimentally the benefits for both
the server and poorly connected clients. Chiu et
al. have investigated the limits of SOAP per-
formance for scientific computing [11]. They de-
scribe an efficient SOAP implementation specifi-
cally targeted at systems with stringent memory
and bandwidth requirements while we improve
the performance of an existing implementation
during high demand and particularly considering
poorly connected clients.



10

Table 2

Impact of the dynamic approach on the response time of the mobile client.

Sclient rate (request/s) 80 100 120

140 160

All compressed (ms) 9985 10495 16492
Dynamic (ms) 9370 9850 10468

17104 17176
10538 17131

Krashinsky investigates optimizing the final
critical link between a mobile web client and a
stationary base station by compressing HTTP re-
quest and reply [12]. While they use a proxy
for compression over the last link we use end to
end compression if desired by the clients. Ar-
don et al. present a generic content adaptation
architecture using a distributed proxy architec-
ture [13]; our focus is on compression for Web
services which can be deployed exclusively on the
server. While in our approach the clients them-
selves decide if they want compressed replies, Kr-
ishnamurthy and Willis classify client connectiv-
ity based on information collected during previ-
ous client access to the same web server [14]. In
particular, they measure the delay between the
base object and the first embedded object as well
as the delay between the base object and the
last object in a sequence. Ardaiz et al. mea-
sure the service time of web clients by extending
web server logs to contain more precise informa-
tion and compute the service time from the server
logs [15]. Note that in both cases there is no infor-
mation about a client available when she makes
her first request to the web site.

In contrast to traditional web interaction, little
is known about request size and file distributions
of Web services. Furthermore, the performance
issues of traditional web servers are well under-
stood [16] and mechanisms to cope with server
overload have been developed [5].

6. Conclusions and Future Work

Compression is one way of dealing with the
problem of large message sizes of Web services.
We show that compression is useful for poorly
connected clients with resource-constrained de-
vices despite the CPU time required for decom-
pressing the responses. Compression also de-
creases server performance due to the additional

CPU time required. In the approach presented in
this paper, we let the clients decide whether they
want their responses compressed. During low de-
mand, the server compresses the responses for all
clients that have asked for compressed responses
as well as for clients that have not indicated any
preference. During high server demand, only re-
sponses to clients that have asked for compressed
response are compressed. Our experiments have
shown that both the server and the clients, in par-
ticular clients that are poorly connected, benefit
from this approach.

In the presented experiments, the client can in-
struct the server to compress the returned data.
This information could be seen as some kind of
quality of service (QoS). We think that a gen-
eral QoS support for Web services will play an
important role for the success of this emerging
technology. Providers of QoS aware Web services
can specify QoS related statements on the ser-
vices they offer, while the clients can specify QoS
related statements on services they require. The
statements made by both the service provider and
service requestor should be able to be matched,
adjusted, and controlled at runtime. In our exper-
iments, we have used the SOAP headers for a sin-
gle QoS attribute. But we think that the WSDL
is a better place for further integration of QoS in-
formation. In an ongoing research project [17], we
are examining QoS integration for Web services
in a general way.

REFERENCES

1. J. Schiller, Mobile Communications, second
ed., Addison-Wesley (2003).

2. W3C, Web services
http://www.w3.0rg/2002/ws/

3. M. Cai, S. Ghandeharizadeh, R. Schmidt and
S. Song, A Comparison of Alternative Encod-
ing Mechanisms for Web Services, 13th In-

Activity,



10.

11.

12.

13.

14.

ternational Conference on Database and Ex-
pert Systems Applications, Aix en Provence,
France (September 2002).

A. Mani and A. Nagarajan, Un-
derstanding quality of service
for Web services, http://www-

106.ibm.com/developerworks/library /ws-
quality.html (January 2002).

T. Voigt, R. Tewari, D. Freimuth and A.
Mehra, Kernel Mechanisms for Service Dif-
ferentiation in Overloaded Web Servers, 2001
Usenix Annual Technical Conference, Boston,
MA, USA (June 2001).

NIST Net, National Institute
of Standards and Technology,
http://snad.ncsl.nist.gov /itg/nistnet/

G. Banga and P. Druschel, Measuring the ca-
pacity of a web server, Usenix Symposium on
Internet Technologies and Systems (Decem-
ber 1997).

R. Chakravorty, J. Cartwright and I. Pratt,
Practical Experience with TCP over GPRS,
IEEE GLOBECOM 2002, Taipei, Taiwan
(November 2002).

.NET Framework class
1.1.4322 (November 2002).
SharpZipLib, http://www.icsharpcode.net/
OpenSource/SharpZipLib/default.asp

K. Chiu, M. Govindaraju and R. Bramley,
Investigating the Limits of SOAP Perfor-
mance for Scientific Computing, IEEE In-
ternational Symposium on High Performance
Distributed Computing, Edinburgh, Scotland
(July 2002).

R. Krashinsky, Efficient Web Browsing for
Mobile Clients using HTTP Compression,
Distributed Operating Systems term project,
Massachusetts Institute of Technology (De-
cember 2000).

S. Ardon, P. Gunningberg, Y. Ismailov, B.
Landfeldt, M. Portmann, A. Seneviratne and
B. Thai, Mobile Aware Server Architecture:
A distributed proxy architecture for content
adaptation, INET 2001, Stockholm, Sweden
(June 2001).

B. Krishnamurthy and C. Wills, Improv-
ing Web experience by client characteriza-
tion driven server adaptation, Proceedings of

library, version

15.

16.

17.

11

WWW 2002 Conference, Hawaii (May 2002).
O. Ardaiz, F. Freitag, L. Navarro, Estimat-
ing the Service Time of Web Clients using
Server Logs, ACM SIGCOMM Workshop on
Data Communication in Latin America and
the Caribbean, San Jose, Costa Rica, SIG-
COMM Latin America (2001).

E. Nahum, T. Barzilai, and D. Kand-
lur, Performance Issues in WWW servers.
IEEE/ACM Transactions on Networking,
Vol. 10, No. 1 (February 2002).

M. Tian, A. Gramm, M. Nabulsi, H. Ritter,
J. Schiller, T. Voigt, QoS Integration in Web
Services, DWS 2003, Technologies and Appli-
cations of XML, Berlin, Germany (October
2003).



