
 

  

Abstract—Distributed event detection in wireless sensor 

networks (WSNs) is the process of observing and evaluating an 

event using multiple sensor nodes without the help of a base 

station or other means of central coordination and processing. 

Current approaches to event detection in WSNs transmit raw 

data to an external entity for evaluation or rely on simplistic 

pattern recognition schemes. This implies either high 

communication overhead or low event detection accuracy, 

especially for complex events. 

In this paper, we present our currently on-going work on a 

system for distributed event detection that particularly suits the 

specific characteristics of WSNs. Adapting traditional pattern 

recognition algorithms to highly embedded devices, it uses the 

distributed sampling of sensor nodes to optimize the accuracy of 

the event detection process. Four different algorithms for 

distributing, classifying and fusing “fingerprints” of the raw data 

sampled on each sensor are proposed and quantitatively 

evaluated in a small-scale experiment. 

 
Index Terms—Wireless Sensor Networks, Distributed Event 

Detection, Pattern Recognition 

I. INTRODUCTION 

IRELESS sensor networks (WSNs) consist of battery-
powered miniature computers, that sample physical 

properties of their environment with diverse sensors and use 
radio communication to exchange data among themselves or 
with a base station. Event detection in a WSN comprises the 
steps of gathering raw data from one or several sensors, 
recognizing a previously learned pattern in the raw data and  
mapping this pattern to an event that is semantically relevant 
to the application of the WSN. For instance, with the approach 
presented in this paper, a WSN employing nodes with 
acceleration sensors attached to a fence can recognize the 
acceleration patterns caused by a burglar climbing over the 
fence and alert the proprietor. The key idea in our approach is 
that the detection accuracy of a group of collaborating sensor 
nodes is superior to that achievable by individual nodes. 
Hence, the existing redundancy in a densely deployed WSN is 
leveraged to improve the accuracy of the overall event 
detection. Furthermore, data fusion techniques as used in our 
system are considered beneficial for reducing the energy 
consumption and thus extending the lifetime of WSNs [8]. 
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In current research, very high-performance and thus large 

and energy-inefficient sensor nodes are employed for 
distributed event detection [2], while other approaches make 
use of a central basis station [12] or several additional micro-
servers [1]. Furthermore, WSNs based on low-power sensor 
nodes currently either rely on basic threshold values in order 
to define simple events [13, 11] or focus on the discovery of 
event patterns [9] rather than the detection of specific events 
as we do. Hence, distributed event detection in WSNs 
currently either implies the use of complex hardware or of 
simplistic or special purpose pattern recognition algorithms. 

Our system Patrec is capable of self-contained, distributed 
pattern recognition and event detection on low-power sensor 
nodes without requiring a base station or any other form of 
external processing. Sensor nodes locally recognize previously 
learned patterns based on features extracted from the collected 
raw data. A feature is a characteristic attribute which describes 
a pattern observed in the raw data. Simple features include 
attributes such as duration or average value. In our approach, 
we use features based on histograms of the raw data which are 
highly descriptive while keeping computational overhead low. 
After local data collection is complete, the nodes proceed to 
exchange their data with other nodes that were triggered by 
the same event. Data can be fused by exchanging different 
combinations of information on extracted features or feature 
classification results. In our implementation on the 
ScatterWeb MSB-430 sensor node [10], we use raw data 
sampled by the three-axis acceleration sensor. 

In the following, we briefly introduce our event detection 
architecture and describe four different approaches to data 
fusion as part of the distributed pattern recognition process. 
We also report on initial results obtained from an experimental 
evaluation of our system. 

II. LOCAL AND DISTRIBUTED EVENT DETECTION 

The distributed event detection algorithm is divided into four 
phases. In the first phase, the HELLO phase, all nodes locate 
neighboring nodes. In the subsequent CALIBRATION phase, 
the sensors (in our case the accelerometer) are calibrated by 
establishing the values of their neutral position and, if 
necessary, bounds to the background noise. In both the 
TRAINING and the RECOGNITION phases, the evaluation 
of the raw data follows the classical pattern recognition model 
according to [3, 7]. Key components to this process are 
preprocessing, segmenting and feature extraction as well as 
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classification. In order to handle different amplitude ranges 
and durations the segmented acceleration data is normalized. 
Extracted features are normalized to make them comparable in 
the multi-dimensional feature space. The final classification 
maps the feature vector to one of the trained classes. 

The TRAINING phase is used to learn new reference 
patterns for future runs of the RECOGNITION phase. During 
the supervised training, the sensors of the node are exposed to 
typical raw data values for each application-specific class of 
events. The features of each class as extracted from the raw 
data are then sent to the neighboring nodes. Each node stores 
the received features together with the features extracted from 
the local raw data. The combined data is used by each node to 
create a reference feature vector for each class from the 
concatenated feature vectors of all involved sensor nodes. 
During the RECOGNITION phase, the raw data is processed 
in a similar manner and classified using a Prototype Modeler 
[5] via comparison of its Euclidean distance in the feature 
space to all the previously stored reference feature vectors. 

The Omnibus Model [8] defines several fusion techniques. 
In our context the raw data fusion and soft-decision fusion are 
considered. In comparison, raw data fusion as used in [12] has 
the disadvantage of large amounts of data that need to be 
transmitted thus leading to a heavily reduced lifetime of sensor 
nodes, see Fig 1. b). An additional problem of collecting raw 
data of all involved nodes is the limited per-node storage. We 
decided to use soft-decision fusion, which works on 
condensed raw data in the form of features or classification 
data. The soft-decision approach allows fusing sensed data 
within the WSN, thus leading to a self-contained event 
detection system with acceptable requirements on storage and 
power. 

Both feature fusion and classification fusion are supported 
soft-decision techniques implemented in Patrec. In the 
classification fusion, the locally determined classes of the 
individual sensor nodes are used to make a majority decision, 
see Fig 1. d). The majority decision corresponds to a 
simplified weighted evaluation, similar to the approach 
presented in [6]. The feature fusion adds the feature vectors of 
neighboring nodes to a combined feature vector, see Fig 1. c). 
This vector is then classified by the same algorithm that is also 

used for local classification but uses the concatenated and 
higher dimensional feature vector of the distributed training 
and distributed recognition. 

Patrec also supports combinations of the fusion methods 
described above. The cooperative fusion is similar to the 
classification fusion, but falls back to the feature fusion, if no 
majority can be established based on the collected local 
classification results. This requires an additional radio request 
for the feature vectors of the other participating nodes. The 
cooperative fusion with veto actively requests additional 
feature vectors from other nodes, if a configurable fraction of 
nodes has reported a deviating local classification. 

III. INITIAL RESULTS 

In order to compare the quality of both local and distributed 
event detection we used the metric of recognition accuracy. 

Accuracy is defined as the ratio of correctly classified events 
and all events. 

In a supervised training, Patrec was taught four different 
two-dimensional geometrical shapes, see Fig. 1.a). Each 
pattern was trained ten times, which according to our 
experience is a suitable amount of training sets beyond which 
overall event detection accuracy of the system does not 
improve significantly. Once the training had been completed, 
we conducted our experiments with three sensor nodes, each 
handled by a different test person. The size of the group was 
kept small to ensure repeatability of the evaluation process, 
and the training was conducted without the participation of the 
test persons in order to avoid any possible influence. 

The three test persons were told to simultaneously draw one 
of the previously trained geometrical shapes with the sensor 
nodes by moving them according to the requested shape. The 
group completed 160 experiments for distributed event 
detection, which corresponds to 480 runs for local event 
detection on the individual sensor nodes. Hence, in the context 
of distributed event detection, the distributed event consisted 
of three individual local events. We sampled all movement 
patterns at 50 Hz and extracted six histogram features out of 
the collected acceleration data. A movement pattern was 
generated by moving the node along a preprinted stencil. 
Interrupting the motion indicated the end of the pattern. 
Further details of the experiments are described in [4]. 

We use our previous work [13] as a reference for evaluation 
which, like our current work, also employs the ScatterWeb 
MSB-430 sensor node. It reports on data of 90 test runs in 
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Fig. 1.  Feature and classification fusion is applied for energy efficiency. 
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Fig. 2.  Comparison between local and distributed event detection. 



 

which a WSN is used to detect a person climbing over a fence. 
In relation to [13], we were able to increase the accuracy for 
both local and distributed recognition by 37%, see Fig. 2. 

This increased accuracy is due to the Prototype Modeler in 
our pattern recognition system. The local classification 
scheme results in an accuracy of 89%, which is further 
increased by the four different methods of the distributed 
classification resulting in accuracy between 93.8% and 96.3%. 
Classification fusion performs worst, since this method is 
based on sensor data that is the most compressed. The feature 
fusion approach has a slightly higher accuracy, while the 
cooperative methods do not have a considerable impact. 

In order to capture the tradeoff between accuracy and 
communication cost, we evaluated the system in a cost-benefit 
analysis. In our considerations, the costs are defined as 
transmitted bytes and the benefit is defined as the accuracy of 
the event detection. This gives us a good idea whether a higher 
accuracy can only be reached with a disproportional amount of 
transmitted data. The amount of data is calculated as specified 
in [4] and reflects required communication overhead for each 
of the four fusion methods. As illustrated in Fig. 3, the most 
efficient fusion is the classification fusion which is thus to be 
preferred if communication needs to be minimized and lower 
accuracy is acceptable. The cooperative fusion with veto is 
inefficient as it requested the feature vectors too frequently in 
our experiments. We attribute this behavior to the limited 
number of nodes in our experiments and plan to re-evaluate it 
during our next deployment. Finally, the cooperative fusion 

does not need to request the whole feature vector for each 
event in order to reach an accuracy that is comparable to the 
feature fusion. Hence, the cooperative fusion represents a 
good compromise between accuracy and communication 
costs. 

IV. CURRENT WORK 

We are currently working on implementing additional 
features required for an extended field test in the area of 
construction site surveillance that we intend to conduct in the 
near future. Missing features include the ability to differentiate 
between trained and non-trained patterns and collaboration of 
a dynamic number of nodes triggered by the same event. Both 
are equally relevant to realistic deployment scenarios because 
neither can all possible patterns be trained nor can we assume 
the WSN to be static over time in light of environmental 
factors. 

Furthermore, we plan to evaluate whether the overall 
accuracy of the system can be further improved by additional 
feature extraction methods looking at properties of the raw 
data such as regression parameters or slope. We also need to 
add a dynamic leader election to the system, possibly similar 
to the one described in [11], in order to establish which node 
should be responsible for handling data fusion, event 
evaluation and reporting to the base station. 

V. CONCLUSION 

We have presented our ongoing work on our distributed 
event detection system for WSNs. In contrast to prior 
approaches, our system is self-contained, i.e. it operates 
without a central component for coordination or processing, 
and makes active use of the redundantly placed sensor nodes 
in the network to improve detection accuracy. Our 
experimental results show that distributed event detection 
yields higher accuracy than local detection on a single node. 
We have implemented and evaluated four different fusion 
techniques. With the high accuracy of the feature fusion, the 
high efficiency of the classification fusion and the cooperative 
fusion as a compromise between the two previous methods, 
our system presents interesting new alternatives to distributed 
event detection in WSNs. 
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Fig. 3.  Cost-benefit analysis of fusion methods in Patrec. 


