
AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 1

An AODV Implementation
for the ScatterWeb

Janos Kutscherauer
Freie Universiẗat Berlin

Email: kutsch@inf.fu-berlin.de

(Technical Report)

Abstract—Mobile ad-hoc networks (MANETs) are collections
of mobile devices, which autonomoulsy want to communicate.
Routing protocols for MANETs are mainly challenged with
the lack of knowledge about the topology of the network, as
participating devices can move within the network. For the
handling of this special requirement onMANET routing protocols
there have been developed two families of approaches: Proactive
and reactive routing protocols.

The RFC-3561 introduces the reactive routing protocol for
mobile ad hoc networks AODV. This (experimental) routing
protocol has been implemented on theScatterWeb platform. The
implementation has been evaluated in real test field setups.

I. I NTRODUCTION

T HE major challenge for routing protocols in MANETs is
that there is no stable knowledge about the topology of

the network at any time. Because the participants of MANETs
are expected to bemobile, devices can just appear in the
network, move their position and leave. Routing protocols for
MANETs have to deal with these uncertainities concerning
locality as well as with all the challenges which wireless
networks are facing anyway (e.g. unreliable wireless links).

The difficulty lies in discovering neighboring participants
(devices) for every participant in the network, and also main-
taining neighbourhood information. The neighbourship infor-
mation is essential for every routing protocol to dicover and
use routes to other devices for forwarding data. As participants
can always move in the network, neighbourship information
can only be temporary. It is up to the routing protocol to make
sure, that known neighbours are valid and new neighbours are
recognized.

There are two basic approaches for MANET routing algo-
rithms to target the lacking topology knowledge:

A. Proactive

Every participant keeps and maintains information for the
entire network. It does so by constantly asking into the network
for information before routes to other devices are neede.
When participants discover locality changes (of themselves
or neighbours) they hasten to spread their new information
into the network. This strategy of collecting and maintaining
locality information is calledproactive, because most of the
work is in particular doneprior to a route request.

The major advantage of proactive routing protocols is the
short time it takes to find a route to any destination, because

every node idealy has all information over the whole network
already collected (and updated) at any time. The disadvantage
however is the high traffic load it takes to keep the locality
information up to date over the entire network. This can
usually only be done by frequently repeated broadcasts or
multicast, which causes constant maintainance traffic.

B. Reactive

A participant searches for a route to a destination only when
it actually needs it. This is for instance, when a data packetis
to be sent to the destination. Using a reactive approach, a route
is only discoveredon demand. To establish a route, broadcasts
or multicasts can be used. Once a route has been found to a
destination, there are usually actions taken to maintain that
route - however, the loss of a route will not lead to further
route discovery actions. Such protocols are calledreactive,
because they onlyreact on demand. If no route is needed, a
reactive protocol has just little work to do.

The main advantage of reactive routing protocols is that
the network overhead traffic is kept at a minimal amount. As
opposed to proactive routing protocols, the major disadvantage
of reactive routing protocols lies in the time it takes to actually
send data when no route to the desired destination has been
established.

The RFC-3561defines the routing protocolAODV, which
uses the reactive approach on dealing with the unknown
topology and changes in locality inmobile ad-hoc networks.

This work is organized as follows: In section II an overview
of considered routing protocols is given. TheAODV routing
protocol and it’s function is described in section III. The
ScatterWebplatform, i.e. the device and the operating system,
is briefly indroduced in section IV. The basic focus of this
work is done in section V, where the implementation ofAODV
on the ScatterWebplatform is introduced. The attempts on
testing the implementation in a real test field are presentedin
section VI, and finally in section VII the experiences that have
been made in both implementing theAODV routing protocol
and testing the implementation are discussed.

II. PROTOCOLSOVERVIEW

A small variety of routing protocols from different protocol
families have been considered prior to this work. These have
been

AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 2

OLSR (Optimized Link State Routing Protocol)[1] A
proactive routing protocol which introduces the
concept ofmultipoint relaysas an enhancement
against broadcasts.

DSR (Dynamic Source Routing Protocol)[2] A reac-
tive routing protocol which supports multi-path
routing and unidirectional links.

DSDV (Highly Dynamic Destination-Sequenced
Distance-Vector Routing) [3] A proactive
distance vector routing protocol that avoids the
‘counting to infinity’ and looping problems.

ZRP (Zone Routing Protocol)[4] A hybrid of proac-
tive and reactive routing protocols.

ARA (Ant Routing Algorithm)[5] [6] A rather novel
approach on network routing, based on the path
discovery strategies of ants.

AODV (Ad hoc On-Demand Distance Vector Rout-
ing) [7] A reactive routing protocol based on the
distance-vector routing protocol family, capable
of both unicast and multicast routing.

DYMO (Dynamic MANET On-demand Routing)[8] The
follow-up of AODV. Dymo enjoys the current
engeneering focus on reactive routing protocols.

AODVjr AODV Jr. [9] A simplified version of AODV,
which omits some features of AODV such as
sequence numbers, hello messages and precursor
lists.

The implementation was to be made on theScatterWeb
platform. TheScatterWeboperating system is a rather min-
imal operation system designed for RF applications for the
Texas Instruments MSP430microcontroller family. A reactive
approach on the routing protocol seemed to be appropriate
for this work, owing to the highly limited ressources of the
MSP430microcontroller.

For this work, AODV has been chosen to be the routing
protocol to be implemented and tested.AODV is the most
commonly known reactive routing protocol for mobile ad-
hoc networks. Because the RFC3561 [7] has went through
a draft lifecycle end ended up as an RFC (experimental), this
routing protocol was considered as a suitable candidate to be
implemented. The assumption was, that the RFC would shape
the ideas and the function of the protocol in a clear fashion,
so that most of the effort in this time limitated work could
go straight into the actual implementation on theScatterWeb
sensor boards, and then into the testing.

The simplifiedAODV versionAODV Jr.[9] was also consid-
ered for implementation.AODV Jr. would have spared much
of the data organization work, which plainAODV requires,
and therefore would have been more suitable for a 1-man
project in the given timeframe. However, there was the wish
to implement some real bigger, mature protocol with all it’s
snares, and so the hard way was kept by chosingAODV.

III. AODV O VERVIEW

TheAd-hoc on-demand distance vector routing protocol
(AODV) is an reactive routing protocol designed for mobile
wireless devices. These devices, which form themeselves into
a wireless network, are referred to asnodeshereafter.

As many other routing protocols, the operation ofAODV
consists of two major parts:route discoveryandroute mainte-
nance. The basic operation ofAODV is briefly depicted next,
while further details for the single operations follow. When
a route to another node is needed (that is, when data is to
be sent to a destination) and does not exist, this route must
be discovered first. Once a route exists, it is only valid for
a certain amount of time. Whenever valid routes are used by
normalAODV operation, this is seen as a proof that the route
is still valid and the lifetime increases. After an expiration of
a routes lifetime, another route discovery must be performed
before the route can be used again. When a node notices, that
a route is not valid anymore, it propagates this information
as error messages to other nodes. To provide connectivity
information to other nodes, hello messages are used.

A. Route Discovery

If and only if a node has to send a data packet to a
destination, for which it doesn’t have a valid route available,
it has to start theroute discoveryprocess. It does so by
broadcasting a specialroute request (RREQ) message into the
network. EachRREQ message contains a (temporarily) unique
request ID to prevent circular broadcasting.

While the RREQ message makes it’s way through the
network, every node that forwards theRREQ creates a route
entry in it’s routing table, so that it will be able to provide
a way back to the originator. Every node will only react on
a RREQ message once per originator address and request ID.
To control the dissemination of broadcastRREQs in multiple
retries,AODV uses an expanding ring technique. Additionally,
an exponential backoff timeout is used for repeatedRREQ
broadcasts.

When aRREQ message arrives at the desired destination,
this node sends back a specialroute reply (RREP) message
to the originator of the route request. ThisRREP message is
unicast towards the originator of theRREQ. Because every
intermediate node of theRREQ should have created a route
towards the originator, the reverse route should exist. This is
only true for bidirectional links though. However,AODV uses
techniques to recognize unidirectional links. By keeping so
called “blacklists” of neighnodes, of which is known that the
link is unidirectional, a destination node will only reply to
route requests, which it has received over a bidirectional link.

On the way back to the originator, thenumber of hops
is counted in theRREP message. In the event that a route
reply message arrives at the originator, this node has now a
valid route for the destination, from which the route reply
was received. Also, every other node on the path of theRREP
message now has a valid route. These routes are valid for a
certain amount of time and can be used to send and forward
data packets.

AODV consideres several enhancements on replying to
route requests. Intermediate nodes, who are not the desired
destination of aRREQ message may also answer the request
themselves with aRREP message, if they have an active
route to the searched destination available. Also, to detect
unidirectional links, replying nodes can claim one-hop ac-
knowledgements for route replies.

AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 3

B. Route Maintenance

When a node has a route to a specific destination in it’s rout-
ing table, this route is only valid for a certain amount of time.
Any incoming AODV message, which has new information
about that destination (e.g. route replies from that destination)
will refresh and possibly update the route. Sometimes, routes
appear with a smaller hop count, which will then rather be
used.AODV uses subsequently increasedsequence numbers
for each destination, to make it possible to identify whether
an information is new or stale. These sequence numbers are
kept by every node. Every time a node sends out anAODV
message it increases it’s own sequence number. To prevent
the counting to infinity problem, thos sequence numbers are
kept as unsigned numbers, though compared as signed integer
values.

Once a node is part of an active route, it provides connec-
tivity information to other nodes to keep the routes alive by
sending specialHELLO messages. TheseHELLO messages are
sent frequently and repeatedly.

When the breakdown of a link is detected by a node, it
propagates this information to neighbouring nodes using a
specialroute error (RERR) message. A link breakdown can be
recognized either by a route timeout expiration or by receiving
a RERR itself. Also, a route error is detected as such, when a
node is used to forward data packets to a destination which it
hasn’t got a route for. To provide this information pointedly
to all nodes, who might have routes to the destination that
has been lost, but to prevent flooding the whole network, each
AODV node keepsprecursor listsfor every destination. Every
node, which has been seen on a route to a destination by one
node will be in this precursor list for this destination. The
precursor list can be then used to address affected nodes at
any time.

C. AODV Features

AODV intentionally provides the oportunity to operate over
unidirectional links. Although links are expected to be sym-
metric (i.e. bidirectional) per default,AODV allows appli-
cations to signal that bidirectional connections are desired.
AODV usesRREP acknowledgement messages to make sure,
that a sentRREP message has been received by the next hop.

AODV is also capable of supporting subnet routing.

IV. SCATTERWEB

The implementation of the chosen routing protocol was
to be implemented and tested on theScatterWeboperating
system, which was running on the ScatterWeb sensor boards
MSB-430. Both the ScatterWeboperating system and the
sensor board are depicted briefly in this section.

A. The Sensor BoardMSB-430

The sensor boardMSB-430 consists of aTexas Instru-
mentsMSP430-F1612 microcontroller, which has aChipcon
CC1020 RF transceiver connected to it. The sensor board
has sensors such a 3-axis-acceleration sensor and a temper-
ature/humidity sensor attached to it. The sensors however are
not relevant for this work and weren’t used.

There were several sensor boards available for the tests
of the implementation. They differed slightly in equipment
(e.g. some didn’t have the temperature sensor), what was most
relevant to the tests of the RF applications was the antenna.
Those antennas are discussed in the Testing section.

TheMSP430-F1612microcontroller is a 16-bit controller of
theTexas InstrumentsMSP430 ultralow power microcontroller
family. This version F1612 has several controller-modules
such as digital-analog, analog-digital and direct-memoryac-
cess controllers. There are two 16-bit timers plus awatchdog
timer, and also different serial interfaces such as UART and
SPI. TheF1612has 55kB flash memory and 5kB RAM.

The CC1020 transceiver is a single-chip device, designed
for ultralow power applications and operates on the frequency
bands 4xx, 868 and 915 MHz. It is connected via the SPI
interface to the MSP430 microcontroller.

The MSB-430 boards all have a red LED attached to one
I/O port of the MSP430 microcontroller. This LED is used to
signal states in the tests, which will be described in this work.

The MSP430 controllers are programmed using the JTAG
interface. On the sensor boards, there also exist 5-pin serial and
power connectors for the FTDI USB connector cables. This
way, serial input and output can be eaysily made over USB,
whilst the whole module is supplied with power. Alternatively,
to use the sensor nodes stand-alone, they can be powered with
three AAA batteries.

B. The Operating System

The ScatterWeb2operating system is an experimental envi-
ronment for the ScatterWeb boards, which has gone through
quite a history of development by different developers. The
operating system is programmed inC, and built with the GNU
mspgcc compiler.

The ScatterWeb operating system provides functionality to
register and unregister handler for system interrupts. One
timer of the MSP430 is used to enable user applications to
easily have routines called after certain delays. This timer
function allows to register and unregister function calls with
a parameter argument. A system clock is implementated to
provide time and date information.

The basic function of the ScatterWeb operating system is
the RF application. ScatterWeb utilizes a simple sort-of layer-
2 protocol: every node has a 8-bitNodeID, the address255
is the broadcast address, and the address0 is undefined. Using
these NodeIDs, ScatterWeb provides the functionality to send
generic data to a specific address (including the broadcast
address) to applications, and also to react on incoming data
frames. A ScatterWeb data frame contains an application iden-
tifier (8-bit), the sender and destination NodeID, and several
other information such as theRSSI value which indicates the
transmission quality of the frame. So the ScatterWeb operating
system enables applications to send and receive frames with
individual user data. First tests showed, that the frame size is
limited to about 80 to 100 bytes. A frame that is to be sent is
buffered until it could be transmitted or had to be cancelled.

ScatterWeb has a nice and simple framework based on
C-macros, with which it is easy to read serial input as

AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 4

commands, and parse the passed parameters. The following
listing shows an example usage of this framework. In the
example, aCOMMAND macro ‘ping’ is defined to capture he
(case sensitive) serial input of the sequence ‘ping’:

1 COMMAND(ping, 0, cmdargs) {
2 uint16_t node;
3 nodeID = String_parseUint16(cmdargs->args, NULL

);
4 if (nodeID > 0) {
5 Net_sendPing((netaddr_t) nodeID);
6 }
7 }

Listing 1. Capturing serial input

This command facility is a powerful feature for processing
user input. A bunch of system commands are already defined
by the ScatterWeb operating system, such asled for setting
and reading the led status,txpwr for adjusting and reading
the transmission signal strength, andreset to restart the
device.

In this work, command definitions were often used to define
test programs which then could be started by user input.
With a little hack into the operating system, such commands
can also be generated by software. The special command
@<nodeID> <command>[<args>] will be interpreted
as directing the command and the arguments to the specified
node. For example, the following serial input would lead to
turn all LEDs on, which can hear the broadcast of the node:

@255 led 1

The nodes LED itself will also be turned on.

C. Eclipse CDT

The ScatterWeb operating system source code exists as an
integration for theEclipse CDT IDE as well as a Microsoft
Visual Studio integrated project. For this work, the Eclipse
CDT was chosen to be the IDE. After theJTAG-TINY
programmer and theFTDI connectors had been installed, and
theMSP-GCC compiler chain has been setup, some additional
makefile targets likeupdate, flashonlyusb andclean
were added. Theupdate target only updates the edited code,
without performing the actual build. Theflashonlyusb
makefile target only performs the flashing of already compiled
and built code over the USB programmer, without actually
building it. Doing this and using the EclipseMake Targets-
view, Eclipse became a very comfortable and really powerful
developing environment from project management, over code
editing and refactoring to the actual deployment of the pro-
gram binaries.

Only the in-place debugging feature with views into the
controllers registers, which integrated propriatary IDEssuch
as the Texas InstrumentsCode Composer Essentialoffers,
wouldn’t want to work with the MSP-GCC integration. This
lack could be accepted though for this work, as the main focus
was on the protcol implementation anyway.

V. I MPLEMENTATION

In this section, the implementation of the routing protocol
AODV is presented. In the first part, some details on archi-
tectural decisions and also used utils are described, and in
the second part the concrete implementation of the routing
protocol is shown.

A. Implementation Overview

In this part, the basic approaches on the implementation
on an embedded system, i.e. the MSP430 microcontroller,
are described. Due to the highly limited resources compared
with modern common computer systems, especially the limited
memory did pose problems. The limited calculation power
wouldn’t bother too much. In the present case, which is an RF
application, there isn’t much serious calculation to be made.
The speed, at which data is processed (i.e. forwarded, stored,
compared), shouldn’t be too critical for the chosen routing
protocol.

1) Memory Management:For the AODV implementation,
there is a small number of data needed to be buffered during
the protocol operation. The storage of data isn’t as trivialon a
MSP430 microcontroller, as it could be at a ‘normal system’.
As there is only 5kB of RAM available, which is used for both
heap and stack, any usage of the memory has to be considered
with an economic focus.

There are three evolutional stages of the memory man-
agement for the present implementation, of which two are
developed and the third one would evolute next. The first
approach is the most simple one: Buffered data is simply
stored in arrays of the particular data type. As arrays in C
must be of fixed size,#define macros are defined on a central
location to adjust these array sizes. These array-bufferescan
then be used independently as ring buffers or fixed buffers as
needed. In the moment that the project is built into anELF
file, it is clear whether the required buffer memory can be
stored in the MSP430s memory or not.

Obviously, this approach is very easy, not dirty, though
unflexible. The major disadvantage with this style of mem-
ory management is, that memory is allocated, which is not
necessarily used. All allocated memory will be cut off from
stack space. So especially when the maximum buffer space is
used by the software, the stack will be limited to the minimal
size.

After the fixed buffer approach worked fine, the manage-
ment was changed completely. In the next approach, dynam-
ically allocated memory is used to allocate just the memory
that is effectively needed. To realize buffers using dynamic
memory allocation in an easy way, double linked lists are used.
Whenever a data entry needs to be stored, memory would be
allocated for it, and an list entry would be created for that
memory and appenden/inserted into a list. To remove a bufferd
data entry, the memory would be freed and the list element
removed from the list.

This memory management technique enables the software to
always use just as much memory as it actually needs. However,
when the needed memory reaches the amount of available
memory, the allocated memory again blocks and depletes

AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 5

memory space that would be needed for the stack. Well, this
is indeed a situation which would always occur, if not some
sort of management watches the amount of memory allocation
to make sure, that there is always a specific amount left for
stack usage. In the first memory management approach (fixed
memory allocation), this could be done easily by adjusting the
fixed memory sizes. In this second approach, a manegement
unit would be needed.

This second approach has another larger downside: In every
situation, where data needs to be stored, memory will be
allocated for the single data entry. This produces quite an
overhead on allocation management and fragmentation of the
available memory space.

So in the third approach on memory management for
the AODV implementation would use some more intelligent
technique to allocate memory in larger blocks and to organize
those lists in a - concerning fragmentation - more performant
way. Also, some sort of guard would control the amount
of dynamically allocated memory to ensure the operation
of the application also under high needs. For the present
AODV implementation, the easier usage of dynamic memory
allocation was just fine and sufficient.

2) Lists: For the data buffers, a generic dynamic list
implementation was useful to utilize the different needs of
data buffers in a general way. Therefore, a double linked
list was implemented as follows: Every list element may
have a predecessor and a successor, and every list element
stores a pointer to the data. Now, every list element can be
the beginning of a whole list, and hence be the list itself.
That is, when the predecessor element isNULL. Using these
PRE andSUCC references, the list elements can be inserted,
appended and removed. Also, the whole list can be traversed.
The insertion of a list element is always dependent on the data,
which the element is needed for. The list framework therefore
doesn’t allow to insert/append existing (maybe user created)
list elements, but instead simply allows the creation of an entry
for a particular data type. The list framework then allocates
memory for the list element, also allocates memory for the
data type, lets the list entry point to the data memory, connect
the list entry to the list, and returns the pointer to the allocated
data memory. The client application then only needs to copy
the data that is to be stored into this data memory.

A list element is always be represented by the pointer to
the user data. List elements can also be created with already
existing data memory. In this case no memory is allocated for
data. To delete data from the list, again the pointer to the data
is used as the identifier, and the list framework does all the
freeing and disconnecting of the linked list.

To provide performant insert operations, a new list element
is always inserted at the beginning of the list to be the first
list element.

The list framework is defined in the header file
aodv.genericList.h and implemented in the source file
aodv.genericList.c. The definition of the list data type
is listed in listing 2. The functions, which the list framework
provides are listed in listing 3.

3) Tools: The present AODV implementation uses a tiny
logging facility to make the application better to understand.

1 typedef struct aodv_list_s aodv_list_t;
2 struct aodv_list_s {
3 aodv_list_t *prev;
4 aodv_list_t *next;
5 void *data;
6 };

Listing 2. List definition

1 void* list_createEntry(aodv_list_t **aList,
uint8_t dataSize);

2 bool list_deleteEntry(aodv_list_t **aList, void

*anEntry);
3 aodv_list_t* list_findEntry(aodv_list_t *aList,

void *anEntry);
4 void list_clearList(aodv_list_t **aList);
5 uint8_t list_getSize(aodv_list_t *aList);

Listing 3. List interface

The ScatterWeb operating system directs everyprintf output
(et al) to the USART controller to be transmitted to any serially
connected receiver - as in the present case over the FTDI USB
controller to any connected computer.

With this work, first the programHTerm by Tobias Hammer
has been used to print the sensor nodes serial outputs. Later
on, an own Java based application has been implemented. This
tool also only printed the serial output of different connected
sensor nodes - no storing of logfiles was implemented.

However, to obtain a readably formatted output, some little
macro frameworking for serial outputs was done on the MSP-
430 side. The framework provides macros to log a key plus
any formatted characters. The key is thought to provide infor-
mation about where the data comes from (e.g. ‘routing table’),
and the data is just the data which would just be delivered to
printf. Also, additional logging lines without a key (but for the
same, previously set key), can be done. The loggong macros
format the output by inserting space characters after the key,
so that the whole output can be read in two columns.

Because of the vast overhead, which serial data output
brings, the whole logging can be turned off at compile by
a macro definition. However, although logging may be turned
on, they can be turned off at runtime by software. Of course,
this can only be achieved by putting even more overhead on
every logging call, that is, by checking before each output if
the output is actually turned on.

B. AODV Implementation

1) Project Organisation:The project sources are organized
similar to the example of the ScatterWeb implementation itself.
The filenames of the header and source files imitatenames-
paces. The basic namespace is the ‘package’aodv. Every
header file, which is part of the present AODV implementation
therefore has the naming schemeaodv.<names>.h, source
files accordingly. Sub-packages are also used.

The main starting point within the ScatterWeb operat-
ing system for a client application (such as the present
AODV implementation is a client application) is the file
ScatterWeb.Process.c. ScatterWeb will inform user

AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 6

applications over the functionvoid Process_init(), that the
module is started and initialized. Hoever, the ScatterWebs
timer facility has not yet setup at this point. Perhaps because
the DCO (digital controlled oscillator) is still adjustingitself,
it takes severalsecondsuntil the first timed procedure will be
invoked by ScatterWeb. To capture this event, the initialization
is extended by placing the call

LED_ON;
Timers_add(1, (fp_timer) reportStarted, (void*)

0xFFFF);

into thevoid Process_init() function. After an ideally delay
of 1ms, but realistically after 10 seconds, the function

void reportStarted(void) {
LED_OFF;
// The system is ready to run
// ...

}

is called and it is ensured that the module has started up,
including the timer facility.

2) ScatterWeb Integration:The entry point for RF applica-
tions on ScatterWeb is the functionbool Process_radioHandler

(struct netpacket_handler_args* args). This handler is called
whenever a complete data frame has been received by the
CC1020 transceiver and transmitted to theMSP-430 con-
troller. Any data frames will be delegated to this handler.
We actually can speak about suchframesin terms of layer-2
frames. As discussed aboce, the basic information such frames
provide is their origination, destination and type.

To develop a specific RF application, first the layer-2 packet
types must be declared. So far, the following packet types are
already declared by ScatterWeb:

1 enum packettypes {
2 // Packet Type: Acknowledgement packet.
3 ACK_PACKET,
4 // Ping packet
5 PING_REQUEST_PACKET,
6 // "Pong" packet
7 PING_REPLY_PACKET,
8 // Command request packet
9 MESSAGING_REQUEST_PACKET,

10 // Command reply packet
11 MESSAGING_REPLY_PACKET,
12 // text messages for output by the observer

node
13 DEBUGLOG_PACKET,
14 // First number for user defined packet types
15 USERDEFINED_PACKET
16 };

Listing 4. ScatterWeb layer-2 frame types

To avoid conflicts between the participating groups of the
course, numbering conventions have been agreed to. So for
this protocol implementation, the range frame type number
range50-59 could be used. Listing 5 shows, how the frame
types for this implementation are defined.

In the above mentioned ScatterWebs frame handler method
Process_radioHandler, the AODV application as well as test
programs can decide whether an incoming data frame is
relevant to them, and how the data needs to be processed.

1 #define MY_GROUP 50
2 enum userPackettypes_e
3 {
4 USERUNDEFINEDPACKET = USERDEFINED_PACKET +

MY_GROUP
5 , TRAFFIC_GENERATOR_PACKET
6 , CONNECTION_TEST
7 , AODV_TEST_PACKAGE
8 /* AODV-Frames. */
9 , AODV_CONTROL_MESSAGE

10 , AODV_DATA_PACKAGE
11 };

Listing 5. AODV layer-2 frame types

AODV

Applications

ScatterWeb / CC1020

Network

Fig. 1. AODV Integration Design

3) The Protocol Stack:As briefly mentioned earlier, the
simple network protocol provided by the ScatterWeb operating
system is treated as a layer-2 1-hop network protocol. The
nodes 8-bit network addresses (as defined by the data type
netaddr_t) are seen asMAC-addresses. AODV, as it is
defined in the RFC [7], however uses a layer-3 network
protocol to be implemented atop.

This implementation ofAODV does not need a layer-3
infrastructure, especially IP, to work on. Protocol layersare
slightly mixing up in this implementation, as node addresses
(actually being seen as layer-2 addresses) are used also as sort-
of layer-3 addresses. The present implementation of the AODV
routing protocol is actually a tiny layer-3 protocol itself. It just
also uses the existing layer-2 network addresses.

The only thing missing from the IP protocol is actually the
TTL facility. These time-to-live values, which are decreased
by every intermediate hop, are needed by AODV to realize
the expanding ringsearch technique. So thisTTL feature was
simply added to this AODV implementation, see section V-B5
for details.

4) AODV Design:The AODV routing protocol application
is designed to easily offer other applications on the sensor
nodes to simply send and receive arbitrary data. However,
changes to the ScatterWeb core weren’t desired, so that
applications could still use any existing features. That isin
particular the so called layer-2 point-to-point frame transmis-
sion. Figure 1 shows, how AODV uses ScatterWeb facilities
as any other application would, but also offers facilities to any
application.

The interface, which the AODV routing application provides
to clients, is defined in the header fileaodv.interface.h.
There are quite many functions defined, but the basic interface

AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 7

consists of the following functions:

• void initAODV(void)

Initializes the application once. If needed, memory is
prepared and timers are started.

• void sendData(destination, data, dataSize, flags,

application, callbackHandler)

The interface for applications to send data to a specific
destination. The flags parameter lets the
application chose AODV specific details, such as that a
bidirectional connection is desired. Theapplication
parameter is used to specify an application identifier, so
that the receiver can match the incoming packet to a
receiver application. ThecallbackHandler attribute
is a function pointer to a function, which will be called
after the transmission of the data has been made or has
failed.

• bool addDataReceivedListener(aListener)

This allows applications to register a handler
function, which will be called for every data
packet, which was received over the AODV routing
protocol. There also exists a correspondingbool
aodv_interface_removeDataReceivedListener(aListener)

function to remove a registered handler function.

This tiny interface already fully enables applications to com-
municate using the AODV routing protocol implementation.
The interface however offers some few more functions - for
testing purposes three more types of listeners can be registered
to capture events during AODV operation:

• bool addRREQReceivedListener(aListener)

Registers a listener which will be called whenever aroute
requestis received by this node.

• bool addRREPReceivedListener(aListener)

Registers a listener which will be called whenever aroute
reply is received by this node.

• bool addPacketForwardListener(aListener)

Registers a listener which will be called whenever a data
packet is received and forwarded to another node.

Corresponding ‘remove-listener’ functions exist. These two
functions enable test applications to intervene the AODV
routing process. Logging of data and even changing the
payload-data in the ‘forward-packet’ handler can be realised.

The registration/unregistration of all of listeners is realized
using the list framework (V-A2).

5) Data Types:The data types for the control messages
used by this AODV implementation are defined strictly ac-
cording to the AODV-RFC [7]. These messages are defined in
the header fileaodv.messageTypes.h. Table I shows an
overview over the AODV data types and their matches to the
implementation definitions. There were just spare modifica-
tions made to the data types as they were proposed in the RFC.
Somereserved and flags fields were not used by this
implementation, but left in the data definition to keep/achieve
alignments of the remaining attributes inside the struct.

In the RFC, the basic datatype size was based on 32 bit.
Sequence numbers and node addresses (called IP-addresses
in the RFC) were therefore be sized to be 32 bit long. The
ScatterWeb however uses only 8 bit node addresses. Now

TABLE I
AODV M ESSAGETYPES

Message Intention Type definition

RREQ Route Request aodv_RREQ_message_t

RREP Route Reply aodv_RREP_message_t

RERR Route Error aodv_RERR_message_t

RREP-ACK RREP Acknowledgment aodv_RREPACK_message_t

1 typedef struct {
2 netaddr_t destination;
3 netaddr_t originator;
4 uint8_t ttl;
5 uint8_t flags;
6 uint16_t application;
7 } aodv_header_t;
8
9 typedef struct {

10 aodv_header_t header;
11 const void *payload;
12 uint16_t payload_size;
13 } aodv_dataPacket_t;

Listing 6. AODV data packet

this AODV implementation uses 8 bit node addresses to be
compliant with ScatterWeb, but 16 bit for fields which may
require larger values, such as sequence numbers and route
request IDs. (16 bit is the microcontrollers natural register
size).

TheRREQ message was added aTTL field. This is necessary
for the utilization of theexpaning ring search techniquefor
route requests. Instead of using the layer-3 protocol IP (it
doesn’t exist on ScatterWeb), this simple addition to route
request messages solves everything which AODV needs from
this stack layer. TheTTL value is decreased by every inter-
mediate hop. When route request messages arrive at a node
with TTL=0, they will be dropped.

There is a ‘generic’ type definitionaodv_ControlMessage_t,
which only consists of the attributeuint8_t type. Because all
of the structs for RREQ, RREQ, RERR and RREP-ACK share
the same first attribute, any AODVcontrol message can
be cast to this generic type to check, of what particular type
the control message is.

The other AODV data type is the one used to trans-
mit data over AODV. It is defined in the type definition
aodv_dataPacket_t, and utilizes a sort-of layer-3packet. As
explicitely pictured in listing 6, suchAODV-Packets stores
payload and a header. Theheader is similar to an IP-
Header: It stores the originator and destination addresses, an
application identifier, some flags (for AODV) and theTTL
value.

6) Buffers & Tables:AODV requires different data to be
stored during it’s operation. The required data buffers, their
organisation and realization are depicted briefly next.

• Payload data
When AODV is faced with sending data to a node, which
it does not have a route available for, it initializes aRoute
Request. During the request - i.e. until a suitable route
reply message arrives - the data has to be stored by AODV
for a certain amount of time. As AODV lets applications

AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 8

pass a callback handler, which will be called when the
data has been sent or timed out, this callback handler
must also be buffered.
This implementation uses an own buffer data type to
store all necessary data, and theList framework (→V-A2)
to realize the required buffer: When there is data to be
stored, a struct of the buffer data type is created and
stored in an newly created list entry. Whenever AODV
has new information (e.g.RREQs have arrived), the list
can be searched for data that is ready to be sent now.
Buffer entries can be easily deleted from the list when
they have been sent or timed out. The detailed structure
of this buffer is further described in sectionV-C2.
In the ScatterWebs timer framework, the list entry pointer
can be used to point to a specific buffer entry, to process
it in any routine after an amount of time (e.g. timeout
deletion, retransmission attempt).

• Routing Table
The routing table is the main element of the whole AODV
implementation, and the basic part of the AODV opera-
tion. The routing table stores route availability informa-
tion for destinations: It stores, if a route is still available,
how up-to-date the route is (→ sequence numbers), and
how many hops the destination is away from this node.
The routing table is also organized in theList framework
(→V-A2). The list is easy to traverse (if it was sorted, it
would be faster though), and especially theinsert and
delete operations can be done inO(1).
Again, the list entry pointer can be used in the Scatter-
Webs timer framework to point to a particular routing
table entry after an amount of time, e.g. to disable or
delete it.

• RREQ Buffer
Every node may react on aRREQ that it has received
only once to avoid circular rebroadcasts of the same
message. To distinguishRREQ from one another,RREQs
storeRREQ-IDs, which, together with their originators
node address, is an identifying property (apart from arith-
metic overflows). Every node therefor needs to remember,
which RREQs it has received, so it can ignore duplicate
ones.
To do so, again theList framework (→V-A2) is used.

• Precursor Lists
For every routing table entry, every node stores addresses
for other nodes, who have been active on this route. Those
nodes will be interested in receiving route error messages
when the route to the destination is detected to be broken.
Those precursor lists are also realised with theList
framework (→V-A2).

As shown above, all data organization is reduced to one list
framework, which uses dynamic memory allocation. Going
this way, there is not too much care for the memory left
during the implementation. The downside of the current imple-
mentation (with the current lists) is, as mentioned in section
V-A1, that once the available heap memory is all allocated,
there is neither stack space left nor can more, possible more
important data than the already bufferd one, be stored. Having

the list frameork encapsulated as it is, however provides
the opportunity to improve just the framework to be more
‘managing’, and leaving the implemention as it is.

7) Configuration parameters:This AODV implementation
uses the same configuration parameters as given in the RFC.
The configuration parameters are static values, which define
thresholds, timeouts and sizes for the AODV operation. This
implementation blindly trusts the RFC to have the parameters
pre-configured in a sensible way. Having the parameters seper-
ated in an own header file within macro definitions, changes
to them could be made easily for experimenting purposes.

The configuration parameter definitions can be found in the
header fileaodv.configuration.h.

C. AODV Operation

In this subsection, the basic realization concepts for getting
AODV running are described. These are in particular the event
triggered procedures, which arise during the AODV operation.
First, a short overview is given over the general functioning
of AODV.

AODV keeps a routing table, in wich next-hop nodes are
stored for known destinations. When AODV is asked to
transmit a data packet, the data is transported hop-by-hop over
these next-hop nodes towards the destination. When AODV
doesn’t have a routing table entry for a destination, it starts
the route discovery. This is done by broadcasting aroute
request (RREQ) message into the network.RREQ messages
are re-broadcasted by other nodes, so that after a while the
desired destination can receive the message. Aroute reply
(RREP) message is unicastly sent back to the requestor of the
RREQ. If theRREP arrives at the requestor, the route discovery
procedure has terminated. If noRREP message arrives at a
node in response to a route request, the procedure terminates
after a timeout. More precise,AODV uses several attempts of
route discovery with increasingTTL value, meaning increasing
broadcast range. Therefore, the route request procedure termi-
nates after a bunch of timeouts. The data, which was wanted to
be transmitted when no route to the destination was available,
is always stored byAODV. Stored data will be deleted when
the timeouts for the route discovery have occured, but stored
data can be transmitted, whenever a route for the destination
of the data becomes available.

Once a route is decteded to exist for a destination, this route
is not expected to be much stable. Instead, all routes suffer
deactivation and deletion timeouts. After a certain amountof
time, a route will be deactivated, when there was no activity
observed on it (i.e. the route is used to transmit data, control
messages received from the destination, etc.). Again aftermor
inactivity, a route will be deleted. On the other hand, when a
better route to the destination is detected, an existing route is
updated. To keep rotes updated,HELLO messages are used and
sent frequently.HELLO messages are route replies (to virtual
route requests), which are sent as layer-2 broadcasts.

1) Routing Table:The routing table in this implementation
is designed according to the RFC suggestions. The routing
table consists of entries of the typeaodv_routingTableEntry_t,
which are stored in lists (→ List framework (V-A2)). The entry
type definition is shown in listing 7.

AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 9

1 struct {
2 netaddr_t destAddress;
3 netaddr_t nextHopAddress;
4 uint16_t destSeqNumber;
5 unsigned validDestSeqNumber :1;
6 unsigned valid :1;
7 unsigned otherFlags :6;
8 uint8_t hopCount;
9 aodv_list_t *precursor_list;

10 } aodv_routingTableEntry_t;

Listing 7. The Routing Table

1 struct {
2 void *bufferedData;
3 uint16_t data_size;
4 aodv_header_t packetHeader;
5
6 aodv_applicationCallback callback_handler;
7 uint8_t rreq_flags;
8
9 uint8_t nextTTL;

10 uint8_t numRetries;
11 uint16_t nextBackoffTime;
12
13 } aodv_packetBuffer_entry_t;

Listing 8. The Packet Buffer

The routing table “interface” allows tolookup a destination
in the routing table and update the table from incoming mes-
sages/packages/frames. The time-event triggered deactivation,
reactivation and deletion of routing table entries (=routes)
is achieved by using the ScatterWebs timer framework with
the pointer to the routing table entry as the identifier. In
fact, a routing table entry isalways threatened of being first
deactivated and then deleted by timer events. Activity on the
route only restarts those timers on an entry.

2) Data Buffer: Application data (i.e. payload) is buffered
by AODV until a route becomes available. Infact, this im-
plementation buffers already the complete “layer-3” packet,
which would be transmitted when a route was available. Also,
the whole ‘expanding ring’ search technique organization data
is stored together with the payload data. Listing 8 shows the
structure of the data buffer entry type definition.

This has one massive advantage. The expanding ring search
technique works as follows: A route request is performed with
a smallTTL value. This means, that theRREQ message will
only be re-broadcasted a few hops far. When the route request
times out without having a RREP received, the route is again
requested with a largerTTL value.AODV performs repeated
route requests with increasingTTL value, and then some few
more attempts with a maximalTTL value. Now the timeouts
can be achieved easily with the ScatterWebs timer framework,
having the buffer list entry being the identifier and argument.
So if all the retransmission parameters (i.e.TTL value, number
of retry and backoff timeout) are stored together with the data
and the callback handler, the retransmissions can be scheduled
completely independently. When a scheduled (i.e. timed) data
packet retransmission is due with the ‘retry number’ already
at the maximal value, this data packet can be dropped and
the callback handler can be called (faulty). On the other hand,
when during theAODV operation aRREP message is received

which enables a stored data packet to be transmitted, the
transmission can be performed, the callback handler can be
called (successfully), and then the stored entry can be deleted.
Though if there is still another retransmission scheduled for
this (now deleted) data packet, this won’t be a problem: When
the retransmission is due, the argument will be the pointer to
a list entry struct. This list entry has been deleted though and
won’t be found in the list. The scheduled retransmission will
be just dropped then.

D. What’s missing

• Lifetime
AODV uses absolute time values which are put into
control messages to have such messages being removed
from the network after they’ve been around for a certain
amount of time.RREP messages for instance would
be tagged with the current time plus a constant value
(configuration parameter) when it is transmitted. Every
node would ignore this message then, if the current time
is older than the time value stored in the message.
Such a mechanism requires all nodes to have synchro-
nized times though. This requirement was absolutely
unrealistic to realize for the ScatterWeb nodes, so the
“lifetime feature” was not considered and hence not
implemented in this implementation.

• Route Errors
Route Error messages, their real effects and execution
was so horribly badly described in the RFC, that the
implementation expense went far beyond “the calculated
time” (i.e. the time that was left for the implementation).
Route error messages, although an important part in the
AODV routing protocol, therefore unfortunately had to be
dropped.

• HELLO’s
HELLO messages appeared to break the actually working
AODV implementation by over-gossipping the network.
No other traffic was possible, also with a hello-rate of
one HELLO message per second. Also, thoseHELLO
transmissions seemed overcharge the nodes. So the usage
of HELLO messages was implemented to be an optional
feature (by pre-compiler definition), but for the tests it
was left turned off.

• Blacklists
To avoid unidirectional link problems, every node can
keep blacklists for neighbouring nodes, of which it is
known that the connection is somehow unidirectional.
This implementation hasn’t got far enough to implement
the blacklist feature.

VI. T ESTS

A. Preparations

1) Node Set-Up:To be able to realize comprehensable and
ideally also reproducable behavior of the routing protocol
implementation on a real field of nodes, the set up and
arrangement of them needed much consideration. In an ideal
environment, it is known and clear, which nodes are connected
to which other nodes. In reality, it was absolutely impossible

AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 10

to obtain such conditions. Furthermore, once a behavior was
acceptably settled, and a setup of nodes could be made, it
seemed impossible to reproduce the simplest setup. Also, the
signal conditions seemed to be able to change dramatically just
from one moment to another. Also, when a setup of nodes was
reached that would fulfill the star topology for example, this
would have been only testet using the ScatterWebCOMMAND
messages. When sending real data, the reachability of the
nodes was sometimes observed to be completely different
when it was with small command frames.

2) Antennas:The sensor boards which were available for
the tests were equipped with different antennas: some of
them had antenna jacks (for putting on a real antenna), some
had wires of about a half lambda length, and some weren’t
equipped with an antenna. It turned out that the choice of the
antenna was an essential part for achieving good setups of the
nodes for the tests.

The half-lambda wire-antenna was just too powerful in
signal strength. The difficulty with strong signals is to get
sensor nodes to not hearing each other to acchieve a more-
than-one-hop connections. The antenna-jacks (which work as
antenna as well) showed pretty well signal strength behaviour.
The signals of those antennas seemed to be some sort of
´robust’, i.e. it was easier to reproduce connectivity behaviour
with those antennas. The signal range was about 30-50cm,
which is large (for tests!), though still acceptable. Because
only a few nodes were equipped with these antenna jacks,
and because they are too expensive to upgrade, they couldn’t
be used. Instead, all nodes which were used for the tests were
updated to have tiny wire antennas of length of a quarter or a
sixteenth of lambda. These tiny antennas had a nice signal
range, which could be adjusted with the CC1020stxpwr
settings. The signal consistency though was still very poor:
Sometimes, a node would reach another node all through the
room (despite littletxpwr setting), but couldn’t reach 10
nodes standing next to it. A while later the behavior might
be just completely different.

B. Shocking Experiance

The most work in the “test field” was actuall spent on
arranging the nodes to get proper test setups. This appeared
impossible due to the very unpredictable behaviour of the
hardware. Most work was done in writing test programs,
which should help to manually physically arrange the nodes,
so that one node would only have two neighbours in a
linear topology for example. Also, a node should of course
“hear” his neighbours! Many attempts for helpfulCOMMAND
programming were made to sort-of ‘visualize’ the range of the
nodes. Something like that was not really possible to realize
with only the one red LED on the devices.

When a topology was achieved, that would guarantee a
three or four hop linear topology withLED-on, LED-off
test routines, the shocking experiance was, that this topology
would explicitely not work withAODV. The experiance was,
that it is AODV’s natural behaviour, to chose always theworst
path for a destination! This may sound weird indeed.AODV
indeed thinks, that it choses something good, but under the

A C DB

Range of C

R
an

ge
 o

f A

Range of B

Fig. 2. AODV Range Races

tough conditions in the real test field, the choices made by
AODV are just not usable.

Let’s explain this. WhenAODV ‘hears’ a node, which is
closer to a destination than another one is, this node will bethe
preferred neighbour for the destination. Although a node may
have a perfectly working route to a destination,AODV will
drop this route, if it hears from a closer node just only once.
The horrible mistake is though, that under the poor wireless
conditions concerning signal quality, this closer node isvery
likely to be a worse choice. That is, because the further a
node is away, the even worse the signal quality becomes,
and therefore the even much worse the route becomes. Put
differently: Comparing two routes to a destination, the one
with the more hops is likely to be the better one. Of course,
this shouldn’t be put into meanings such as “the longest route
ist the best”, because the longest route may containg a million
circles.

An example for this “range race condition” is illustrated in
figure 2. There are nodesA, B, C andD, while A wants to
discover a route to nodeD. In A’s range is nodeB, and also
partly nodeC. “Partly” may mean ‘with poor signal quality’
or ‘only sometimes’. On the other side though, nodeA is
in good range of nodeC. So far: NodeC can hear nodeA
only sometimes, and nodeA can mostly hear nodeC. When
nodeA starts aroute discoveryfor nodeD by sending aRREQ
message, nodesB will receive it.B may have already a 2-hop-
route toD available over nodeC, and would answer with a
RREP. NodeA then has a 3-hop-route toD overB. However,
also nodeC may receiveA’s RREQ message, and because
C has a 1-hop-route available to nodeD, it answers with a
RREP message. NodeA receives theRREP message, and will
replace the existing 3-hop-route with thesupposedly better
route, namely a 2-hop-route.

VII. C ONCLUSIONS

AODV poorly failes on simply achieving even only 4-hop
connections, because it is so very greedy with making as little
hops as possible. Allroute maintainancefeatures AODV has
would only please ping-pong fans: SendingHELLO messages
to keep routes active will be also received and processed by
weak links. Of course,route error propagationmay often solve
the problems, but only until another next weak next-hop makes
it into the routing table again.

AN AODV IMPLEMENTATION FOR SCATTERWEB, 2009 11

The only feature which would promise some hope, is
the blacklist feature, which avoids unidirectional deadlock
problems. However, the main problem ofAODV seems to lay
in the poor judging and picking of best neighbours.

REFERENCES

[1] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” RFC 3626 (Experimental), Internet Engineering Task Force,
Oct. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3626.txt

[2] D. Johnson, Y. Hu, and D. Maltz, “The Dynamic Source Routing
Protocol (DSR) for Mobile Ad Hoc Networks for IPv4,” RFC 4728
(Experimental), Internet Engineering Task Force, Feb. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4728.txt

[3] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers,”SIGCOMM Com-
put. Commun. Rev., vol. 24, no. 4, pp. 234–244, 1994.

[4] Z. J. Haas, M. R. Pearlman, and P. Samar, “The zone routing protocol
(zrp) for ad hoc networks,” Cornell University, Internet-Draft draft-ietf-
manet-zone-zrp-04, July 2002, expires in six months on January 2003.

[5] M. Günes and O. Spaniol, “Ant-routing-algorithm for mobile multi-hop
ad-hoc networks,”Network control and engineering for Qos, security and
mobility II, pp. 120–138, 2003.

[6] M. Günes, M. K̈ahmer, and I. Bouazizi, “Ant-routing-algorithm (ara)
for mobile multi-hop ad-hoc networks - new features and results,” In
Proceedings of the 2nd Mediterranean Workshop on Ad-Hoc Net- works
(Med-Hoc-Net’2003), June 2003.

[7] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” RFC 3561 (Experimental), Internet
Engineering Task Force, Jul. 2003. [Online]. Available: http://www.ietf.
org/rfc/rfc3561.txt

[8] I. Chakeres and C. Perkins, “Dynamic MANET On-demand (DYMO)
Routing,” Internet Engineering Task Force, Internet-Draft draft-ietf-
manet-dymo-14, Jun. 2008, work in progress. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-ietf-manet-dymo-14.txt

[9] I. D. Chakeres and L. Klein-Berndt, “Aodvjr, aodv simplified,” SIGMO-
BILE Mob. Comput. Commun. Rev., vol. 6, no. 3, pp. 100–101, 2002.

