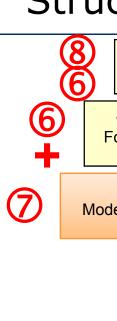


Modeling and Performance Analysis with Simulation SS 2011

Prof. Dr. Mesut Güneş

Distributed Embedded Systems Computer Systems & Telematics Freie Universität Berlin, Germany mesut.guenes@fu-berlin.de



Chapter 0

Motivation, why Simulation?, and some organizational issues

Structure/content of CST-Lectures

Praktikum Mobilkommunikation

Medienzugriff, Mobile IP, Mobiles Web

Embedded Sensor Web

Projekte rund um Sensornetze

Seminar Technische Informatik

Forschung in Mobilkommunikation, eingebettete Systeme, Internet

Mobilkommunikation

Drahtlose Übertragung, Medienzugriff, GSM, 3G, WLAN, Mobile IP, Ad-hoc-Netze, WAP

Simulation

Modellierung und Bewertung von Systemen mit Hilfe von Simulationstechniken

Mikroprozessorpraktikum

Programmierung eingebetteter Systeme, mobile Endgeräte, Mikrocontroller, Steuerungssysteme

(5)

Telematik

Protokolle, Dienste, Standards, LAN, Internet, TCP/IP, WWW, Sicherheit, ISDN/IN/ATM, Dienstgüte, Multimedia, IPv6, MPLS

- 4 Semester
- Bachelor
 Master

Praktikum Technische Informatik (TI IV)

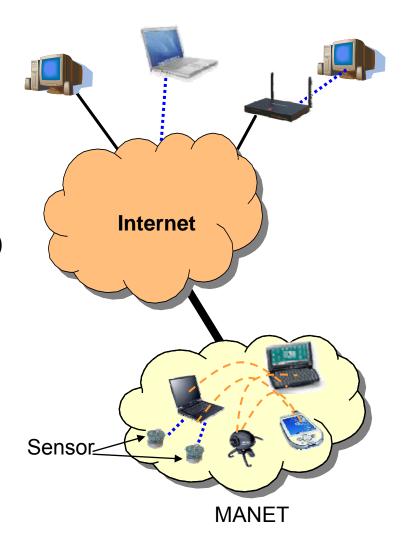
Eingebettete Systeme, Schnittstellen, Treiber, Betriebssystem – programmieren, vernetzen, interagieren

Betriebs- und Kommunikationssysteme (TI III)

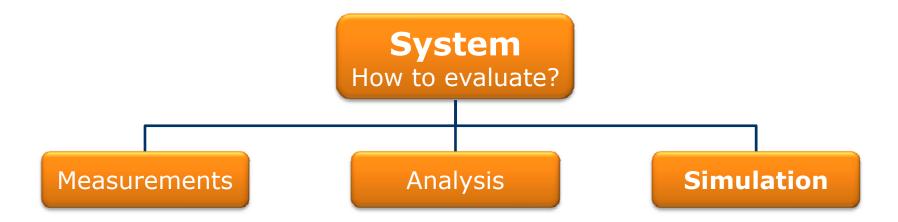
Ein-/Ausgabe, DMA/PIO, Unterbrechungen, Puffer, Prozesse/Threads, UNIX/Windows, Netze, Medienzugriff, Protokolle, TCP/IP, Internet

Rechnerarchitektur (TI II)

Harvard/v. Neumann, Mikroarchitektur, RISC/CISC, VLIW, Pipelining, Cache, Speicherhierarchie, Assembler, Multiprozessorsysteme

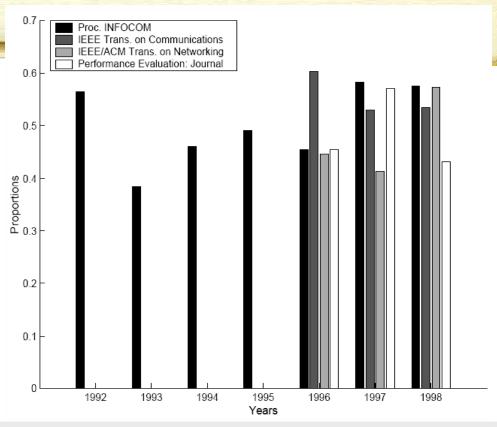

Grundlagen der Technischen Informatik (TI I)

Schaltnetze, Schaltwerke, Logikminimierung, Gatter, Speicher, Halbleiter, Transistoren, CMOS, AD/DA-Umsetzer


Overview of participants

Research topics

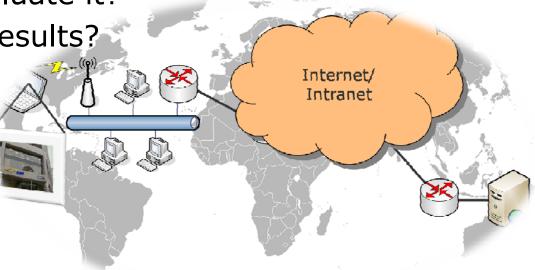
- Network architectures and communication protocols
 - Wired networks
 - Local Area Network (LAN)
 - Internet
 - Wireless networks
 - GSM, 3GPP, UMTS, LTE
 - Wireless Local Area Network (WLAN)
 - Mobile Ad-hoc Network (MANET)
 - Wireless Mesh Network (WMN)
 - Wireless Sensor Network (WSN)
 - Protocols
 - HTTP, TCP/UDP, IP
 - IEEE 802.11a,b,g
 - Internet of Things
 - Anytime, Anywhere, Anything


Given a system, how do you evaluate its performance?

Why a course about simulation?

- A survey of 2246 research papers on networks (1992-1998)
- About 51% of papers reported results from simulation

Pawlikowski et al., "On Credibility of Simulation Studies of Telecommunication Networks", IEEE Comms., Jan. 2002.


Why a course about simulation?

- Survey of all 151 papers published in Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing in 2000-2005
- About 75.5% of the papers reported results from simulation

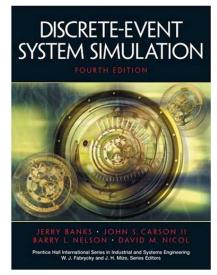
S. Kurowski et al. "MANET Simulation Studies: The Incredibles", Mobile Computing and Communications Review., no. 4, 2005.

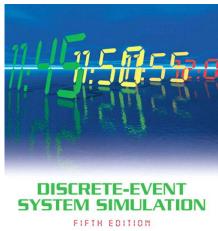
- What is a system?
- What is a model?
- What is an experiment?
- What is performance and how to measure it?
- On what does performance depend?
- How to build a model?
- How to numerically evaluate it?
- How to interpret such results?

- At the end of this course, you should ...
 - know about simulation principles
 - be able to build models of systems
 - be able to identify suitable performance metrics
 - be able to design and implement simple discrete event simulation programs
 - have some experience with a modern simulation tool
 - be able to **design** effective **experiments**
 - be familiar with basic statistical questions
 - know how to evaluate (simulation) experiment results
 - be aware of common pitfalls
- Focus is on practical aspects of implementing a simulator and simulation programs.

- This course does not deal with/is not a ...
 - mathematical analysis tools for performance evaluation
 - experimental approaches
 - probability and statistics course
 - programming course
 - computer networking course

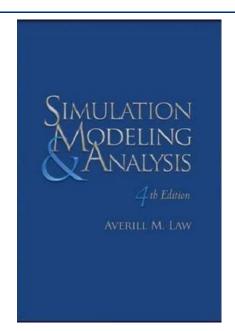
 However, all these topics will be touched or needed in some degree.

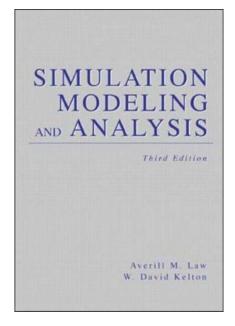

Prerequisities

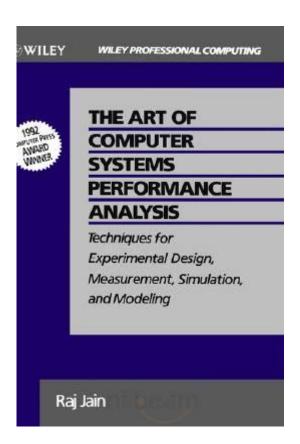

- Basics of probability theory and statistics
- Programming language
 - Python
 - C/C++
 - Java
- Package for statistical computations
 - R
 - Octave
 - Numpy/Scipy
- Spreadsheet tools
 - OpenOffice.Calc
 - MS Excel
- Knowledge about
 - Data communication and computer networks

Contents of the course

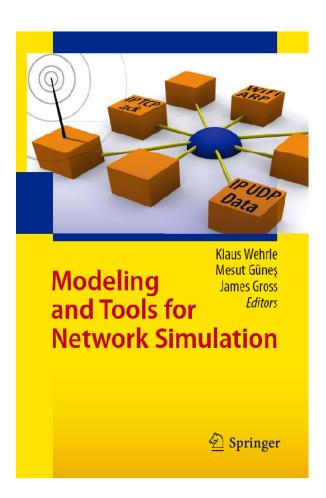
Chapter	Topic
1	Introduction to simulation
2	Simulation examples
3	General principles of discrete-event simulations
4	Introduction to network simulators
5	Statistical models in simulations
6	Random-number generation
7	Random-variate generation
8	Queuing models
9	Input modeling
10	Verification and validation of simulation models
11	Output analysis for a single model
12	Comparison and evaluation of alternative system designs
13	Design of experiments


- Main source of this course:
 - Jerry Banks, John Carson, Barry L. Nelson, David Nicol: Discrete-Event System Simulation, Fourth Edition, 2005, Prentice Hall
 - Fifth Edition, 2010, Prentice Hall
- General book on simulation with applications on
 - Manufacturing
 - Computer systems
 - Communication networks




Jerry Banks - John S. Carson II Barry L. Nelson - David M. Nicol

- Second source of this course:
 - Averill M. Law:
 Simulation Modeling and Analysis, 2007, McGrawHill
- General book on simulation



- Additional source of this course:
 - Raj Jain: The Art of Computer Systems Performance Analysis, 1991, John Wiley & Sons
- General book on performance analysis, deals with
 - Measurements
 - Simulation
 - Queueing theory
 - Experiment design

- Additional source of this course:
 - Klaus Wehrle, Mesut
 Güneş, James Gross:
 Modeling and Tools for Network Simulation,
 2010, Springer, ISBN 9783-642-12330-6
- Special book on how to model various layers of the ISO/OSI model for networks simulations
- Website:

http://www.springer.com/computer/communication+networks/book/978-3-642-12330-6

Simulation tool to use ...

Organizational

- Lecture
 - Friday, 10–12, Takustr. 9, Room SR 049
- Tutorials
 - Thursday, 10–12, Takustr. 9, Room SR 046
- Office hours
 - Prof. Güneş: Tuesday, 15:00-16:00h, Takustr. 9, Room 154
- News and updates
 - http://cst.mi.fu-berlin.de/
- Literature and Materials
 - Available on the homepage of the class