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Abstract Classical optimization methods often face great difficulties while dealing
with several engineering applications. Under such conditions, the use of compu-
tational intelligence approaches has been recently extended to address challenging
real-world optimization problems. On the other hand, the interesting and exotic
collective behavior of social insects have fascinated and attracted researchers for
many years. The collaborative swarming behavior observed in these groups pro-
vides survival advantages, where insect aggregations of relatively simple and
“unintelligent” individuals can accomplish very complex tasks using only limited
local information and simple rules of behavior. Swarm intelligence, as a compu-
tational intelligence paradigm, models the collective behavior in swarms of insects
or animals. Several algorithms arising from such models have been proposed to
solve a wide range of complex optimization problems. In this chapter, a novel
swarm algorithm called the Social Spider Optimization (SSO) is proposed for
solving optimization tasks. The SSO algorithm is based on the simulation of
cooperative behavior of social-spiders. In the proposed algorithm, individuals
emulate a group of spiders which interact to each other based on the biological laws
of the cooperative colony. The algorithm considers two different search agents
(spiders): males and females. Depending on gender, each individual is conducted by
a set of different evolutionary operators which mimic different cooperative
behaviors that are typically found in the colony. In order to illustrate the proficiency
and robustness of the proposed approach, it is compared to other well-known
evolutionary methods. The comparison examines several standard benchmark
functions that are commonly considered within the literature of evolutionary
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algorithms. The outcome shows a high performance of the proposed method for
searching a global optimum with several benchmark functions.

Keywords Swarm algorithms � Global optimization � Bio-inspired algorithms �
Computational intelligence � Evolutionary algorithms � Metaheuristics

1 Introduction

Computational intelligence has emerged as powerful tools for information pro-
cessing, decision making and knowledge management. The techniques of compu-
tational intelligence have been successfully developed in areas such as neural
networks, fuzzy systems and evolutionary algorithms. It is predictable that in the
near future computational intelligence will play a more important role in tackling
several engineering problems.

The collective intelligent behavior of insect or animal groups in nature such as
flocks of birds, colonies of ants, schools of fish, swarms of bees and termites have
attracted the attention of researchers. The aggregative conduct of insects or animals
is known as swarm behavior. Entomologists have studied this collective phenom-
enon to model biological swarms while engineers have applied these models as a
framework for solving complex real-world problems. This branch of artificial
intelligence which deals with the collective behavior of swarms through complex
interaction of individuals with no supervision is frequently addressed as swarm
intelligence. Bonabeau defined swarm intelligence as “any attempt to design
algorithms or distributed problem solving devices inspired by the collective
behavior of the social insect colonies and other animal societies” [5]. Swarm
intelligence has some advantages such as scalability, fault tolerance, adaptation,
speed, modularity, autonomy and parallelism [19].

The key components of swarm intelligence are self-organization and labor
division. In a self-organizing system, each of the covered units responds to local
stimuli individually and may act together to accomplish a global task, via a labor
separation which avoids a centralized supervision. The entire system can thus
efficiently adapt to internal and external changes.

Several swarm algorithms have been developed by a combination of deter-
ministic rules and randomness, mimicking the behavior of insect or animal groups
in nature. Such methods include the social behavior of bird flocking and fish
schooling such as the Particle Swarm Optimization (PSO) algorithm [20], the
cooperative behavior of bee colonies such as the Artificial Bee Colony (ABC)
technique [17], the social foraging behavior of bacteria such as the Bacterial For-
aging Optimization Algorithm (BFOA) [27], the simulation of the herding behavior
of krill individuals such as the Krill Herd (KH) method [13], the mating behavior of
firefly insects such as the Firefly (FF) method [41] and the emulation of the lifestyle
of cuckoo birds such as the Cuckoo Optimization Algorithm (COA) [28].
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In particular, insect colonies and animal groups provide a rich set of metaphors for
designing swarm optimization algorithms. Such cooperative entities are complex
systems that are composed by individuals with different cooperative-tasks where
each member tends to reproduce specialized behaviors depending on its gender [4].
However, most of swarm algorithms model individuals as unisex entities that per-
form virtually the same behavior. Under such circumstances, algorithms waste the
possibility of adding new and selective operators as a result of considering indi-
viduals with different characteristics such as sex, task-responsibility, etc. These
operators could incorporate computational mechanisms to improve several important
algorithm characteristics including population diversity and searching capacities.

Although PSO and ABC are the most popular swarm algorithms for solving
complex optimization problems, they present serious flaws such as premature
convergence and difficulty to overcome local minima [35, 36]. The cause for such
problems is associated to the operators that modify individual positions. In such
algorithms, during their evolution, the position of each agent for the next iteration is
updated yielding an attraction towards the position of the best particle seen so-far
(in case of PSO) or towards other randomly chosen individuals (in case of ABC).
As the algorithm evolves, those behaviors cause that the entire population con-
centrates around the best particle or diverges without control. It does favors the
premature convergence or damage the exploration-exploitation balance [3, 37].

The interesting and exotic collective behavior of social insects have fascinated
and attracted researchers for many years. The collaborative swarming behavior
observed in these groups provides survival advantages, where insect aggregations
of relatively simple and “unintelligent” individuals can accomplish very complex
tasks using only limited local information and simple rules of behavior [11]. Social-
spiders are a representative example of social insects [22]. A social-spider is a
spider species whose members maintain a set of complex cooperative behaviors
[32]. Whereas most spiders are solitary and even aggressive toward other members
of their own species, social-spiders show a tendency to live in groups, forming
long-lasting aggregations often referred to as colonies [1]. In a social-spider colony,
each member, depending on its gender, executes a variety of tasks such as preda-
tion, mating, web design, and social interaction [1, 6]. The web it is an important
part of the colony because it is not only used as a common environment for all
members, but also as a communication channel among them [23]. Therefore,
important information (such as trapped prays or mating possibilities) is transmitted
by small vibrations through the web. Such information, considered as a local
knowledge, is employed by each member to conduct its own cooperative behavior,
influencing simultaneously the social regulation of the colony.

In this paper, a novel swarm algorithm, called the Social Spider Optimization
(SSO) is proposed for solving optimization tasks. The SSO algorithm is based on
the simulation of the cooperative behavior of social-spiders. In the proposed
algorithm, individuals emulate a group of spiders which interact to each other based
on the biological laws of the cooperative colony. The algorithm considers two
different search agents (spiders): males and females. Depending on gender, each
individual is conducted by a set of different evolutionary operators which mimic
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different cooperative behaviors that are typical in a colony. Different to most of
existent swarm algorithms, in the proposed approach, each individual is modeled
considering two genders. Such fact allows not only to emulate in a better realistic
way the cooperative behavior of the colony, but also to incorporate computational
mechanisms to avoid critical flaws commonly present in the popular PSO and ABC
algorithms, such as the premature convergence and the incorrect exploration-
exploitation balance. In order to illustrate the proficiency and robustness of the
proposed approach, it is compared to other well-known evolutionary methods. The
comparison examines several standard benchmark functions which are commonly
considered in the literature. The results show a high performance of the proposed
method for searching a global optimum in several benchmark functions.

This paper is organized as follows. In Sect. 2, we introduce basic biological
aspects of the algorithm. In Sect. 3, the novel SSO algorithm and its characteristics
are both described. Section 4 presents the experimental results and the comparative
study. Finally, in Sect. 5, conclusions are drawn.

2 Biological Fundamentals

Social insect societies are complex cooperative systems that self-organize within a
set of constraints. Cooperative groups are better at manipulating and exploiting their
environment, defending resources and brood, and allowing task specialization
among group members [15, 25]. A social insect colony functions as an integrated
unit that not only possesses the ability to operate at a distributed manner, but also to
undertake enormous construction of global projects [14]. It is important to
acknowledge that global order in social insects can arise as a result of internal
interactions among members.

A few species of spiders have been documented exhibiting a degree of social
behavior [22]. The behavior of spiders can be generalized into two basic forms:
solitary spiders and social spiders [1]. This classification is made based on the level
of cooperative behavior that they exhibit [6]. In one side, solitary spiders create and
maintain their own web while live in scarce contact to other individuals of the same
species. In contrast, social spiders form colonies that remain together over a
communal web with close spatial relationship to other group members [23].

A social spider colony is composed of two fundamental components: its
members and the communal web. Members are divided into two different catego-
ries: males and females. An interesting characteristic of social-spiders is the highly
female-biased population. Some studies suggest that the number of male spiders
barely reaches the 30 % of the total colony members [1, 2]. In the colony, each
member, depending on its gender, cooperate in different activities such as building
and maintaining the communal web, prey capturing, mating and social contact (Yip
2008). Interactions among members are either direct or indirect [29]. Direct inter-
actions imply body contact or the exchange of fluids such as mating. For indirect
interactions, the communal web is used as a “medium of communication” which
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conveys important information that is available to each colony member [23]. This
information encoded as small vibrations is a critical aspect for the collective
coordination among members (Yip 2008). Vibrations are employed by the colony
members to decode several messages such as the size of the trapped preys, char-
acteristics of the neighboring members, etc. The intensity of such vibrations depend
on the weight and distance of the spiders that have produced them.

In spite of the complexity, all the cooperative global patterns in the colony level
are generated as a result of internal interactions among colony members [12]. Such
internal interactions involve a set of simple behavioral rules followed by each spider
in the colony. Behavioral rules are divided into two different classes: social inter-
action (cooperative behavior) and mating [30].

As a social insect, spiders perform cooperative interaction with other colony
members. The way in which this behavior takes place depends on the spider gender.
Female spiders which show a major tendency to socialize present an attraction or
dislike over others, irrespectively of gender [1]. For a particular female spider, such
attraction or dislike is commonly developed over other spiders according to their
vibrations which are emitted over the communal web and represent strong colony
members (Yip 2008). Since the vibrations depend on the weight and distance of the
members which provoke them, stronger vibrations are produced either by big spiders
or neighboring members [23]. The bigger a spider is, the better it is considered as a
colony member. The final decision of attraction or dislike over a determined member
is taken according to an internal state which is influenced by several factors such as
reproduction cycle, curiosity and other random phenomena (Yip 2008).

Different to female spiders, the behavior of male members is reproductive-
oriented [26]. Male spiders recognize themselves as a subgroup of alpha males
which dominate the colony resources. Therefore, the male population is divided
into two classes: dominant and non-dominant male spiders [26]. Dominant male
spiders have better fitness characteristics (normally size) in comparison to non-
dominant. In a typical behavior, dominant males are attracted to the closest female
spider in the communal web. In contrast, non-dominant male spiders tend to con-
centrate upon the center of the male population as a strategy to take advantage of
the resources wasted by dominant males [33].

Mating is an important operation that no only assures the colony survival, but also
allows the information exchange among members. Mating in a social-spider colony
is performed by dominant males and female members [16]. Under such circum-
stances, when a dominant male spider locates one or more female members within a
specific range, it mates with all the females in order to produce offspring [8].

3 The Social Spider Optimization (SSO) Algorithm

In this paper, the operational principles from the social-spider colony have been
used as guidelines for developing a new swarm optimization algorithm. The SSO
assumes that entire search space is a communal web, where all the social-spiders
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interact to each other. In the proposed approach, each solution within the search
space represents a spider position in the communal web. Every spider receives a
weight according to the fitness value of the solution that is symbolized by the
social-spider. The algorithm models two different search agents (spiders): males and
females. Depending on gender, each individual is conducted by a set of different
evolutionary operators which mimic different cooperative behaviors that are com-
monly assumed within the colony.

An interesting characteristic of social-spiders is the highly female-biased pop-
ulations. In order to emulate this fact, the algorithm starts by defining the number of
female and male spiders that will be characterized as individuals in the search
space. The number of females Nf is randomly selected within the range of 65–90 %
of the entire population N. Therefore, Nf is calculated by the following equation:

Nf ¼ floor ð0:9� rand � 0:25Þ � N½ �; ð1Þ

where rand is a random number between [0,1] whereas floorð�Þ maps a real number
to an integer number. The number of male spiders Nm is computed as the com-
plement between N and Nf . It is calculated as follows:

Nm ¼ N � Nf ð2Þ

Therefore, the complete population S, composed by N elements, is divided in two
sub-groups F and M. The Group F assembles the set of female individuals ðF ¼
ff1; f2; . . .; fNf gÞ whereas M groups the male members ðM ¼ fm1;m2; . . .;mNmgÞ,
where S ¼ F [MðS ¼ s1; s2; . . .; sNf gÞ, such that S ¼ s1 ¼ f1; s2 ¼ f2; . . .; sNf

�
¼ fNf ; sNfþ1 ¼ m1; sNfþ2 ¼ m2; . . .; sN ¼ mNmg.

3.1 Fitness Assignation

In the biological metaphor, the spider size is the characteristic that evaluates the
individual capacity to perform better over its assigned tasks. In the proposed
approach, every individual (spider) receives a weight wi which represents the solu-
tion quality that corresponds to the spider i (irrespective of gender) of the population
S. In order to calculate the weight of every spider the next equation is used:

wi ¼ JðsiÞ � worstS
bestS � worstS

; ð3Þ

where JðsiÞ is the fitness value obtained by the evaluation of the spider position si
with regard to the objective function Jð�Þ. The values worstS and bestS are defined
as follows (considering a maximization problem):
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bestS ¼ max
k2 1;2;...;Nf g

ðJðskÞÞ andworstS ¼ min
k2 1;2;...;Nf g

ðJðskÞÞ ð4Þ

3.2 Modelling of the Vibrations Through the Communal Web

The communal web is used as a mechanism to transmit information among the
colony members. This information is encoded as small vibrations that are critical
for the collective coordination of all individuals in the population. The vibrations
depend on the weight and distance of the spider which has generated them. Since
the distance is relative to the individual that provokes the vibrations and the
member who detects them, members located near to the individual that provokes
the vibrations, perceive stronger vibrations in comparison with members located in
distant positions. In order to reproduce this process, the vibrations perceived by the
individual i as a result of the information transmitted by the member j are modeled
according to the following equation:

Vibi;j ¼ wj � e�d2i;j ; ð5Þ

where the di;j is the Euclidian distance between the spiders i and j, such that
di;j ¼ si � sj

�� ��.
Although it is virtually possible to compute perceived-vibrations by considering

any pair of individuals, three special relationships are considered within the SSO
approach:

1. Vibrations Vibci are perceived by the individual i ðsiÞ as a result of the infor-
mation transmitted by the member c ðscÞ who is an individual that has two
important characteristics: it is the nearest member to i and possesses a higher
weight in comparison to i ðwc [wiÞ.

Vibci ¼ wc � e�d2i;c ð6Þ

2. The vibrations Vibbi perceived by the individual i as a result of the information
transmitted by the member b ðsbÞ, with b being the individual holding the best
weight (best fitness value) of the entire population S, such that
wb ¼ max

k2 1;2;...;Nf g
ðwkÞ.

Vibbi ¼ wb � e�d2i;b ð7Þ

3. The vibrations Vibfi perceived by the individual i ðsiÞ as a result of the infor-
mation transmitted by the member f ðsf Þ, with f being the nearest female indi-
vidual to i.
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Vibfi ¼ wf � e�d2i;f ð8Þ

Figure 1 shows the configuration of each special relationship: (a) Vibci, (b) Vibbi
and (c) Vibfi.

3.3 Initializing the Population

Like other evolutionary algorithms, the SSO is an iterative process whose first step
is to randomly initialize the entire population (female and male). The algorithm
begins by initializing the set S of N spider positions. Each spider position, f i or mi,
is a n-dimensional vector containing the parameter values to be optimized. Such
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Fig. 1 Configuration of each special relation: a Vibci, b Vibbi and c Vibfi
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values are randomly and uniformly distributed between the pre-specified lower
initial parameter bound plowj and the upper initial parameter bound phighj , just as it
described by the following expressions:

f 0i;j ¼ plowj þ randð0; 1Þ � ðphighj � plowj Þ
i ¼ 1; 2; . . .;Nf ; j ¼ 1; 2; . . .; n

m0
k;j ¼ plowj þ rand(0,1) � ðphighj � plowj Þ
k ¼ 1; 2; . . .;Nm; j ¼ 1; 2; . . .; n;

ð9Þ

where j, i and k are the parameter and individual indexes respectively whereas zero
signals the initial population. The function rand(0,1) generates a random number
between 0 and 1. Hence, fi;j is the j-th parameter of the i-th female spider position.

3.4 Cooperative Operators

3.4.1 Female Cooperative Operator

Social-spiders perform cooperative interaction over other colony members. The
way in which this behavior takes place depends on the spider gender. Female
spiders present an attraction or dislike over others irrespective of gender. For a
particular female spider, such attraction or dislike is commonly developed over
other spiders according to their vibrations which are emitted over the communal
web. Since vibrations depend on the weight and distance of the members which
have originated them, strong vibrations are produced either by big spiders or other
neighboring members lying nearby the individual which is perceiving them. The
final decision of attraction or dislike over a determined member is taken considering
an internal state which is influenced by several factors such as reproduction cycle,
curiosity and other random phenomena.

In order to emulate the cooperative behavior of the female spider, a new operator
is defined. The operator considers the position change of the female spider i at each
iteration. Such position change, which can be of attraction or repulsion, is computed
as a combination of three different elements. The first one involves the change in
regard to the nearest member to i that holds a higher weight and produces the
vibration Vibci. The second one considers the change regarding the best individual
of the entire population S who produces the vibration Vibbi. Finally, the third one
incorporates a random movement.

Since the final movement of attraction or repulsion depends on several random
phenomena, the selection is modeled as a stochastic decision. For this operation, a
uniform random number rm is generated within the range [0,1]. If rm is smaller than
a threshold PF, an attraction movement is generated; otherwise, a repulsion
movement is produced. Therefore, such operator can be modeled as follows:
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fkþ1
i ¼ fki þ a � Vibci � ðsc � fki Þ þ b � Vibbi � ðsb � fki Þ þ d � ðrand� 1

2Þ with probability PF
fki � a � Vibci � ðsc � fki Þ � b � Vibbi � ðsb � fki Þ þ d � ðrand� 1

2Þ with probability 1� PF

�
;

ð10Þ

where α, β, δ and rand are random numbers between [0,1] whereas k represents the
iteration number. The individual sc and sb represent the nearest member to i that
holds a higher weight and the best individual of the entire population S,
respectively.

Under this operation, each particle presents a movement which combines the
past position that holds the attraction or repulsion vector over the local best element
sc and the global best individual sb seen so-far. This particular type of interaction
avoids the quick concentration of particles at only one point and encourages each
particle to search around the local candidate region within its neighborhood ðscÞ,
rather than interacting to a particle ðsbÞ in a distant region of the domain. The use of
this scheme has two advantages. First, it prevents the particles from moving
towards the global best position, making the algorithm less susceptible to premature
convergence. Second, it encourages particles to explore their own neighborhood
thoroughly before converging towards the global best position. Therefore, it pro-
vides the algorithm with global search ability and enhances the exploitative
behavior of the proposed approach.

3.4.2 Male Cooperative Operator

According to the biological behavior of the social-spider, male population is
divided into two classes: dominant and non-dominant male spiders. Dominant male
spiders have better fitness characteristics (usually regarding the size) in comparison
to non-dominant. Dominant males are attracted to the closest female spider in the
communal web. In contrast, non-dominant male spiders tend to concentrate in the
center of the male population as a strategy to take advantage of resources that are
wasted by dominant males.

For emulating such cooperative behavior, the male members are divided into two
different groups (dominant members D and non-dominant members ND) according
to their position with regard to the median member. Male members, with a weight
value above the median value within the male population, are considered the
dominant individuals D. On the other hand, those under the median value are
labeled as non-dominant ND males. In order to implement such computation, the
male populationM ðM ¼ fm1;m2; . . .;mNmgÞ is arranged according to their weight
value in decreasing order. Thus, the individual whose weight wNfþm is located in the
middle is considered the median male member. Since indexes of the male popu-
lation M in regard to the entire population S are increased by the number of female
members Nf , the median weight is indexed by Nf þ m. According to this, change of
positions for the male spider can be modeled as follows:
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mkþ1
i ¼

mk
i þ a � Vibfi � ðsf �mk

i Þ þ d � ðrand� 1
2Þ if wNfþi [wNfþm

mk
i þ a �

PNm

h¼1
mk

h�wNf þhPNm

h¼1
wNf þh

�mk
i

� �
if wNfþi �wNfþm

8<
: ð11Þ

where the individual sf represents the nearest female individual to the male member
i whereas

PNm
h¼1 m

k
h � wNfþh=

PNm
h¼1 wNfþh

� �
correspond to the weighted mean of the

male population M.
By using this operator, two different behaviors are produced. First, the set D of

particles is attracted to others in order to provoke mating. Such behavior allows
incorporating diversity into the population. Second, the set ND of particles is
attracted to the weighted mean of the male population M. This fact is used to
partially control the search process according to the average performance of a sub-
group of the population. Such mechanism acts as a filter which avoids that very
good individuals or extremely bad individuals influence the search process.

3.5 Mating Operator

Mating in a social-spider colony is performed by dominant males and the female
members. Under such circumstances, when a dominant male mg spider ðg 2 DÞ
locates a set Eg of female members within a specific range r (range of mating), it
mates, forming a new brood snew which is generated considering all the elements of
the set Tg that, in turn, has been generated by the union Eg [mg. It is important to
emphasize that if the set Eg is empty, the mating operation is canceled. The range
r is defined as a radius which depends on the size of the search space. Such radius
r is computed according to the following model:

r ¼
Pn

j¼1 ðphighj � plowj Þ
2 � n ð12Þ

In the mating process, the weight of each involved spider (elements of Tg)
defines the probability of influence for each individual into the new brood. The
spiders holding a heavier weight are more likely to influence the new product, while
elements with lighter weight have a lower probability. The influence probability Psi
of each member is assigned by the Roulette method, which is defined as follows:

Psi ¼ wiP
j2Tk wj

; ð13Þ

where i 2 Tg.
Once the new spider is formed, it is compared to the new spider candidate snew

holding the worst spider swo of the colony, according to their weight values (where
wwo ¼ minl2 1;2;...;Nf gðwlÞ). If the new spider is better than the worst spider, the worst
spider is replaced by the new one. Otherwise, the new spider is discarded and the
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population does not suffer changes. In case of replacement, the new spider assumes
the gender and index from the replaced spider. Such fact assures that the entire
population S maintains the original rate between female and male members.

In order to demonstrate the mating operation, Fig. 2a illustrates a simple opti-
mization problem. As an example, it is assumed a population S of eight different
2-dimensional members (N = 8), five females ðNf ¼ 5Þ and three males ðNm ¼ 3Þ.
Figure 2b shows the initial configuration of the proposed example with three dif-
ferent female members f2ðs2Þ; f3ðs3Þ and f4ðs4Þ constituting the set E2 which is
located inside of the influence range r of a dominant male m2ðs7Þ. Then, the new
candidate spider snew is generated from the elements f2; f3; f4 and m2 which con-
stitute the set T2. Therefore, the value of the first decision variable snew;1 for the new
spider is chosen by means of the roulette mechanism considering the values already
existing from the set f2;1; f3;1; f4;1;m2;1

� 	
. The value of the second decision variable

snew;2 is also chosen in the same manner. Table 1 shows the data for constructing the
new spider through the Roulette method. Once the new spider snew is formed, its
weight wnew is calculated. As snew is better than the worst member f1 that is present
in the population S, f1 is replaced by snew. Therefore, snew assumes the same gender
and index from f1. Figure 2c shows the configuration of S after the mating process.
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Fig. 2 Example of the mating operation: a optimization problem, b initial configuration before
mating and c configuration after the mating operation
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Under this operation, new generated particles locally exploit the search space
inside the mating range in order to find better individuals.

3.6 Computational Procedure

The computational procedure for the proposed algorithm can be summarized as
follows:

Step 1: Considering N as the total number of n-dimensional colony members, define the
number of male Nm and females Nf spiders in the entire population S.
Nf ¼ floor ð0:9� rand � 0:25Þ � N½ � and Nm ¼ N � Nf , where rand is a random
number between [0,1] whereas floorð�Þ maps a real number to an integer number.

Step 2: Initialize randomly the female (F ¼ ff1; f2; . . .; fNf g) and male
(M ¼ fm1;m2; . . .;mNmg) members (where S ¼
s1 ¼ f1; s2 ¼ f2; . . .; sNf ¼ fNf ; sNfþ1 ¼ m1; sNfþ2 ¼ m2; . . .; sN ¼ mNm

� 	
and cal-

culate the radius of mating.

r ¼
Pn

j¼1
ðphighj �plowj Þ
2�n

for (i = 1;i < Nf + 1;i++)

for(j = 1;j < n+1;j++)

f 0i;j ¼ plowj þ randð0; 1Þ � ðphighj � plowj Þ
end for

end for

for (k = 1;k < Nm + 1;k++)

for(j = 1;j < n + 1;j++)

m0
k;j ¼ plowj þ rand � ðphighj � plowj Þ

end for

end for
(continued)

Table 1 Data for constructing the new spider snew through the Roulette method

Spider Position wi Psi Roulette

s1 f1 (−1.9,0.3) 0.00 –

s2 f2 (1.4,1.1) 0.57 0.22

s3 f3 (1.5,0.2) 0.42 0.16

s4 f4 (0.4,1.0) 1.00 0.39

s5 f5 (1.0,−1.5) 0.78 –

s6 m1 (−1.3,−1.9) 0.28 –

s7 m2 (0.9,0.7) 0.57 0.22

s8 m3 (0.8,−2.6) 0.42 –

snew (0.9,1.1) 1.00 –
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(continued)

Step 3: Calculate the weight of every spider of S (Sect. 3.1).

for (i = 1,i < N+1;i ++)

wi ¼ JðsiÞ�worstS
bestS�worstS

where bestS ¼ maxk2 1;2;...;Nf gðJðskÞÞ and
worstS ¼ mink2 1;2;...;Nf gðJðskÞÞ
end for

Step 4: Move female spiders according to the female cooperative operator (Sect. 3.4).

for (i = 1;i < Nf + 1;i++)

Calculate Vibci and Vibbi (Sect. 3.2)

If (rm<PF); where rm 2 randð0; 1Þ
fkþ1
i ¼ fki þ a � Vibci � ðsc � fki Þ þ b � Vibbi � ðsb � fki Þ þ d � ðrand� 1

2Þ
else if

fkþ1
i ¼ fki � a � Vibci � ðsc � fki Þ � b � Vibbi � ðsb � fki Þ þ d � ðrand� 1

2Þ
end if

end for

Step 5: Move the male spiders according to the male cooperative operator (Sect. 3.4).

Find the median male individual (wNfþm) from M.

for (i = 1;i < Nm + 1;i ++)

Calculate Vibfi (Sect. 3.2)

If (wNfþi [wNfþm)

mkþ1
i ¼ mk

i þ a � Vibfi � ðsf �mk
i Þ þ d � ðrand� 1

2Þ
Else if

mkþ1
i ¼ mk

i þ a �
PNm

h¼1
mk

h �wNf þhPNm

h¼1
wNf þh

�mk
i

� �
end if

end for

Step 6: Perform the mating operation (Sect. 3.5).

for (i = 1;i < Nm + 1;i ++)

If (mi 2 D)

Find Ei

If (Ei is not empty)

Form snew using the Roulette method

If (wnew [wwo)

swo ¼ snew
end if

end if

end if

end for

Step 7: If the stop criteria is met, the process is finished; otherwise, go back to Step 3
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3.7 Discussion About the SSO Algorithm

Evolutionary algorithms (EA) have been widely employed for solving complex
optimization problems. These methods are found to be more powerful than conven-
tional methods based on formal logics or mathematical programming [40]. In an EA
algorithm, search agents have to decide whether to explore unknown search positions
or to exploit already tested positions in order to improve their solution quality. Pure
exploration degrades the precision of the evolutionary process but increases its
capacity to find new potential solutions. On the other hand, pure exploitation allows
refining existent solutions but adversely drives the process to local optimal solutions.
Therefore, the ability of an EA to find a global optimal solutions depends on its
capacity to find a good balance between the exploitation of found-so-far elements and
the exploration of the search space [7]. So far, the exploration–exploitation dilemma
has been an unsolved issue within the framework of evolutionary algorithms.

EA defines individuals with the same property, performing virtually the same
behavior. Under these circumstances, algorithms waste the possibility to add new
and selective operators as a result of considering individuals with different char-
acteristics. These operators could incorporate computational mechanisms to
improve several important algorithm characteristics such as population diversity or
searching capacities.

On the other hand, PSO and ABC are the most popular swarm algorithms for
solving complex optimization problems. However, they present serious flaws such
as premature convergence and difficulty to overcome local minima [35, 36]. Such
problems arise from operators that modify individual positions. In such algorithms,
the position of each agent in the next iteration is updated yielding an attraction
towards the position of the best particle seen so-far (in case of PSO) or any other
randomly chosen individual (in case of ABC). Such behaviors produce that the
entire population concentrates around the best particle or diverges without control
as the algorithm evolves, either favoring the premature convergence or damaging
the exploration-exploitation balance [3, 37].

Different to other EA, at SSO each individual is modeled considering the gender.
Such fact allows incorporating computational mechanisms to avoid critical flaws
such as premature convergence and incorrect exploration-exploitation balance
commonly present in both, the PSO and the ABC algorithm. From an optimization
point of view, the use of the social-spider behavior as a metaphor introduces
interesting concepts in EA: the fact of dividing the entire population into different
search-agent categories and the employment of specialized operators that are
applied selectively to each of them. By using this framework, it is possible to
improve the balance between exploitation and exploration, yet preserving the same
population, i.e. individuals who have achieved efficient exploration (female spiders)
and individuals that verify extensive exploitation (male spiders). Furthermore, the
social-spider behavior mechanism introduces an interesting computational scheme
with three important particularities: first, individuals are separately processed
according to their characteristics. Second, operators share the same communication
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mechanism allowing the employment of important information of the evolutionary
process to modify the influence of each operator. Third, although operators modify
the position of only an individual type, they use global information (positions of all
individual types) in order to perform such modification. Figure 3 presents a sche-
matic representation of the algorithm-data-flow. According to Fig. 3, the female
cooperative and male cooperative operators process only female or male individ-
uals, respectively. However, the mating operator modifies both individual types.

4 Experimental Results

A comprehensive set of 19 functions, which have been collected from Refs. [18, 9,
21, 24, 31, 34, 39], has been used to test the performance of the proposed approach.
Table 4 in the Appendix A presents the benchmark functions used in our experi-
mental study. In the table, n indicates the function dimension, f ðx�Þ the optimum
value of the function, x� the optimum position and S the search space (subset of Rn).
A detailed description of each function is given in the Appendix A.

4.1 Performance Comparison to Other Swarm Algorithms

We have applied the SSO algorithm to 19 functions whose results have been
compared to those produced by the Particle Swarm Optimization (PSO) method

Initialization

Female 
cooperative operator

Male
cooperative operator

Mating
operator Communication

Mechanism

Fig. 3 Schematic representation of the SSO algorithm-data-flow
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Table 2 Minimization results of benchmark functions of Table 4 with n = 30. Maximum number
of iterations = 1,000

SSO ABC PSO

f1 xð Þ AB 1.96E−03 2.90E−03 1.00E+03

MB 2.81E−03 1.50E−03 2.08E−09
SD 9.96E−04 1.44E−03 3.05E+03

f2 xð Þ AB 1.37E−02 1.35E−01 5.17E+01

MB 1.34E−02 1.05E−01 5.00E+01

SD 3.11E−03 8.01E−02 2.02E+01

f3 xð Þ AB 4.27E–02 1.13E+00 8.63E+04

MB 3.49E−02 6.11E−01 8.00E+04

SD 3.11E−02 1.57E+00 5.56E+04

f4 xð Þ AB 5.40E−02 5.82E+01 1.47E+01

MB 5.43E−02 5.92E+01 1.51E+01

SD 1.01E−02 7.02E+00 3.13E+00

f5 xð Þ AB 1.14E+02 1.38E+02 3.34E+04

MB 5.86E+01 1.32E+02 4.03E+02

SD 3.90E+01 1.55E+02 4.38E+04

f6 xð Þ AB 2.68E−03 4.06E−03 1.00E+03

MB 2.68E−03 3.74E−03 1.66E–09
SD 6.05E–04 2.98E−03 3.06E+03

f7 xð Þ AB 1.20E+01 1.21E+01 1.50E+01

MB 1.20E+01 1.23E+01 1.37E+01

SD 5.76E−01 9.00E−01 4.75E+00

f8 xð Þ AB 2.14E+00 3.60E+00 3.12E+04

MB 3.64E+00 8.04E−01 2.08E+02

SD 1.26E+00 3.54E+00 5.74E+04

f9 xð Þ AB 6.92E−05 1.44E−04 2.47E+00

MB 6.80E−05 8.09E−05 9.09E−01

SD 4.02E−05 1.69E−04 3.27E+00

f10 xð Þ AB 4.44E−04 1.10E−01 6.93E+02

MB 4.05E−04 4.97E−02 5.50E+02

SD 2.90E−04 1.98E−01 6.48E+02

f11 xð Þ AB 6.81E+01 3.12E+02 4.11E+02

MB 6.12E+01 3.13E+02 4.31E+02

SD 3.00E+01 4.31E+01 1.56E+02

f12 xð Þ AB 5.39E−05 1.18E−04 4.27E+07

MB 5.40E−05 1.05E−04 1.04E−01

SD 1.84E−05 8.88E−05 9.70E+07

f13 xð Þ AB 1.76E−03 1.87E−03 5.74E−01

MB 1.12E−03 1.69E−03 1.08E−05

SD 6.75E−04 1.47E−03 2.36E+00
(continued)
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[20] and the Artificial Bee Colony (ABC) algorithm [17]. These are considered as
the most popular swarm algorithms for many optimization applications. In all
comparisons, the population has been set to 50 individuals. The maximum iteration
number for all functions has been set to 1,000. Such stop criterion has been selected
to maintain compatibility to similar works reported in the literature [42].

The parameter setting for each algorithm in the comparison is described as
follows:

1. PSO: The parameters are set to c1 ¼ 2 and c2 ¼ 2; besides, the weight factor
decreases linearly from 0.9 to 0.2 [20].

2. ABC: The algorithm has been implemented using the guidelines provided by its
own reference [17], using the parameter limit = 100.

3. SSO: Once it has been determined experimentally, the parameter PF has been
set to 0.7. It is kept for all experiments in this section.

The experiment compares the SSO to other algorithms such as PSO and ABC.
The results for 30 runs are reported in Table 2 considering the following perfor-
mance indexes: the Average Best-so-far (AB) solution, the Median Best-so-far
(MB) and the Standard Deviation (SD) of best-so-far solution. The best outcome for
each function is boldfaced. According to this table, SSO delivers better results than
PSO and ABC for all functions. In particular, the test remarks the largest difference
in performance which is directly related to a better trade-off between exploration
and exploitation.

Table 2 (continued)

SSO ABC PSO

f14 xð Þ AB −9.36E+02 −9.69E+02 −9.63E+02

MB −9.36E+02 −9.60E+02 −9.92E+02

SD 1.61E+01 6.55E+01 6.66E+01

f15 xð Þ AB 8.59E+00 2.64E+01 1.35E+02

MB 8.78E+00 2.24E+01 1.36E+02

SD 1.11E+00 1.06E+01 3.73E+01

f16 xð Þ AB 1.36E−02 6.53E−01 1.14E+01

MB 1.39E−02 6.39E−01 1.43E+01

SD 2.36E−03 3.09E−01 8.86E+00

f17 xð Þ AB 3.29E–03 5.22E−02 1.20E+01

MB 3.21E−03 4.60E−02 1.35E−02

SD 5.49E−04 3.42E–02 3.12E+01

f18 xð Þ AB 1.87E+00 2.13E+00 1.26E+03

MB 1.61E+00 2.14E+00 5.67E+02

SD 1.20E+00 1.22E+00 1.12E+03

f19 xð Þ AB 2.74E−01 4.14E+00 1.53E+00

MB 3.00E−01 4.10E+00 5.50E−01

SD 5.17E−02 4.69E−01 2.94E+00
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Figure 4 presents the evolution curves for PSO, ABC and the proposed algo-
rithm considering as examples the functions f1; f3; f5; f10; f15 and f19 from the
experimental set. Among them, the rate of convergence of SSO is the fastest, which
finds the best solution in less of 400 iterations on average while the other three
algorithms need much more iterations. A non-parametric statistical significance
proof known as the Wilcoxon’s rank sum test for independent samples [10, 38] has
been conducted over the “average best-so-far” (AB) data of Table 2, with an 5 %
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Fig. 4 Evolution curves for PSO, ABC and the proposed algorithm considering as examples the
functions a f1, b f3, c f5, d f10, e f15 and f f19 from the experimental set
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significance level. Table 3 reports the p-values produced by Wilcoxon’s test for the
pair-wise comparison of the “average best so-far” of two groups. Such groups are
constituted by SSO versus PSO and SSO versus ABC. As a null hypothesis, it is
assumed that there is no significant difference between mean values of the two
algorithms. The alternative hypothesis considers a significant difference between
the “average best-so-far” values of both approaches. All p-values reported in
Table 3 are less than 0.05 (5 % significance level) which is a strong evidence
against the null hypothesis. Therefore, such evidence indicates that SSO results are
statistically significant and it has not occurred by coincidence (i.e. due to common
noise contained in the process).

5 Conclusions

In this paper, a novel swarm algorithm called the Social Spider Optimization (SSO)
has been proposed for solving optimization tasks. The SSO algorithm is based on
the simulation of the cooperative behavior of social-spiders whose individuals
emulate a group of spiders which interact to each other based on the biological laws
of a cooperative colony. The algorithm considers two different search agents
(spiders): male and female. Depending on gender, each individual is conducted by a
set of different evolutionary operators which mimic different cooperative behaviors
within the colony.

Table 3 p-values produced
by Wilcoxon’s test comparing
SSO versus ABC and SSO
versus PSO, over the “average
best-so-far” (AB) values from
Table 2

Function SSO versus ABC SSO versus PSO

f1 xð Þ 0.041 1.8E−05

f2 xð Þ 0.048 0.059

f3 xð Þ 5.4E−04 6.2E−07

f4 xð Þ 1.4E−07 4.7E−05

f5 xð Þ 0.045 7.1E−07

f6 xð Þ 2.3E−04 5.5E−08

f7 xð Þ 0.048 0.011

f8 xð Þ 0.017 0.043

f9 xð Þ 8.1E−04 2.5E−08

f10 xð Þ 4.6E−06 1.7E−09

f11 xð Þ 9.2E−05 7.8E−06

f12 xð Þ 0.022 1.1E−10

f13 xð Þ 0.048 2.6E−05

f14 xð Þ 0.044 0.049

f15 xð Þ 4.5E−05 7.9E−08

f16 xð Þ 2.8E−05 4.1E−06

f17 xð Þ 7.1E−04 6.2E−10

f18 xð Þ 0.013 8.3E−10

f19 xð Þ 4.9E−05 5.1E−08

142 E. Cuevas et al.



In contrast to most of existent swarm algorithms, the proposed approach models
each individual considering two genders. Such fact allows not only to emulate the
cooperative behavior of the colony in a realistic way, but also to incorporate
computational mechanisms to avoid critical flaws commonly delivered by the
popular PSO and ABC algorithms, such as the premature convergence and the
incorrect exploration-exploitation balance.

SSO has been experimentally tested considering a suite of 19 benchmark
functions. The performance of SSO has been also compared to the following swarm
algorithms: the Particle Swarm Optimization method (PSO) [20], and the Artificial
Bee Colony (ABC) algorithm [17]. Results have confirmed a acceptable perfor-
mance of the proposed method in terms of the solution quality of the solution for all
tested benchmark functions.

The SSO’s remarkable performance is associated with two different reasons: (i)
their operators allow a better particle distribution in the search space, increasing the
algorithm’s ability to find the global optima; and (ii) the division of the population
into different individual types, provides the use of different rates between explo-
ration and exploitation during the evolution process.

Appendix A. List of Benchmark Functions

See Table 4

Table 4 Test functions used in the experimental study

Name Function S Dim Minimum

Sphere
f1ðxÞ ¼

Pn
i¼1

x2i
�100; 100½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;

f ðx�Þ ¼ 0

Schwefel 2.22
f2ðxÞ ¼

Pn
i¼1

xij j þ Qn
i¼1

xij j �10; 10½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

Schwefel 1.2
f3ðxÞ ¼

Pn
i¼1

Pi
j¼1

xj

 !2 �100; 100½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

F4
f4 xð Þ ¼ 418:9829nþPn

i¼1
�xi sin

ffiffiffiffiffiffiffi
xij jp� �� � �100; 100½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;

f ðx�Þ ¼ 0

Rosenbrock
f5ðxÞ ¼

Pn�1

i¼1
100ðxiþ1 � x2i Þ2 þ ðxi � 1Þ2
h i �30; 30½ �n n ¼ 30 x� ¼ ð1; . . .; 1Þ;

f ðx�Þ ¼ 0

Step
f6ðxÞ ¼

Pn
i¼1

xi þ 0:5b cð Þ2 �100; 100½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

Quartic
f7ðxÞ ¼

Pn
i¼1

ix4i þ random 0; 1ð Þ �1:28; 1:28½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

Dixon and
price

f8ðxÞ ¼ x1 � 1ð Þ2þPn
i¼1

i 2x2i � xi�1
� �2 �10; 10½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;

f ðx�Þ ¼ 0

Levy

f9ðxÞ ¼ 0:1

sin2 3px1ð Þ
þPn

i¼1
xi � 1ð Þ2 1þ sin2 3pxi þ 1ð Þ� �

þ xn � 1ð Þ2 1þ sin2 2pxnð Þ� �

8>>><
>>>:

9>>>=
>>>;

þ
Xn
i¼1

u xi ; 5; 100; 4ð Þ;

u xi ; a; k;mð Þ ¼
k xi � að Þm xi [ a

0 �a\xi\a

k �xi � að Þm xi\� a

8><
>:

�10; 10½ �n n ¼ 30 x� ¼ ð1; . . .; 1Þ;
f ðx�Þ ¼ 0

(continued)
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Table 4 (continued)

Name Function S Dim Minimum

Sum of
squares

f10ðxÞ ¼
Pn
i¼1

ix2i
�10; 10½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;

f ðx�Þ ¼ 0

Zakharov
f11 xð Þ ¼Pn

i¼1
x2i þ

Pn
i¼1

0:5ixi

� �2

þ Pn
i¼1

0:5ixi

� �4 �5; 10½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

Penalized

f12ðxÞ ¼ p
n

10 sinðpy1ÞþPn�1

i¼1
ðyi � 1Þ2 1þ 10 sin2ðpyiþ1Þ

� �þ ðyn � 1Þ2

8<
:

9=
;

þ
Xn
i¼1

uðxi ; 10; 100; 4Þ

yi ¼ 1þ xi þ 1ð Þ
4

u xi ; a; k;mð Þ ¼
k xi � að Þm
0

k �xi � að Þm

xi [ a

�a� xi � a

xi\a

8><
>:

�50; 50½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

Penalized 2

f13ðxÞ ¼ 0:1

sin2ð3px1Þ

þPn
i¼1

ðxi � 1Þ2 1þ sin2ð3pxi þ 1Þ� �
þðxn � 1Þ2 1þ sin2ð2pxnÞ

� �
8><
>:

9>=
>;

þ
Xn
i¼1

uðxi ; 5; 100; 4Þ
where u xi ; a; k;mð Þ is the same as Penalized function.

�50; 50½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

Schwefel
f14ðxÞ ¼

Pn
i¼1

�xi sin
ffiffiffiffiffiffiffi
xij jp� � �500; 500½ �n n ¼ 30 x� ¼ ð420; . . .; 420Þ;

f ðx�Þ ¼ �418:9829� n

Rastrigin
f15ðxÞ ¼

Pn
i¼1

x2i � 10 cosð2pxiÞ þ 10
� � �5:12; 5:12½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;

f ðx�Þ ¼ 0

Ackley
f16ðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

x2i

s !

� exp
1
n

Xn
i¼1

cos 2pxið Þ
 !

þ 20þ exp

�32; 32½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

Griewank
f17 xð Þ ¼ 1

4000

Pn
i¼1

x2i �
Qn
i¼1

cos xiffi
i

p

 �

þ 1 �600; 600½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

Powelll f18 xð Þ ¼
Xn=k

i¼1
x4i�3 þ 10x4i�2ð Þ2þ5 x4i�1 � x4ið Þ2

þ x4i�2 � x4i�1ð Þ4þ10 x4i�3 � x4ið Þ4
�4; 5½ �n n ¼ 30 x� ¼ ð0; . . .; 0Þ;

f ðx�Þ ¼ 0

Salomon
f19 xð Þ ¼ � cos 2p

ffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

x2i
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