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Abstract—In this paper we present an approach to control
a real car with brain signals. To achieve this, we use a brain
computer interface (BCI) which is connected to our autonomous
car. The car is equipped with a variety of sensors and can
be controlled by a computer. We implemented two scenarios
to test the usability of the BCI for controlling our car. In the
first scenario our car is completely brain controlled, using four
different brain patterns for steering and throttle/brake. We will
describe the control interface which is necessary for a smooth,
brain controlled driving. In a second scenario, decisions for
path selection at intersections and forkings are made using the
BCI. Between these points, the remaining autonomous functions
(e.g. path following and obstacle avoidance) are still active. We
evaluated our approach in a variety of experiments on a closed
airfield and will present results on accuracy, reaction times and
usability.

I. INTRODUCTION

Autonomous cars play an important role in current robotics
and A.I. research. The development of driverless cars started
in the late ’70s and ’80s. Ernst Dickmann’s Mercedes Benz
achieved a travel velocity of 100 km/h on restricted highways
without traffic [3]. In the DARPA Grand Challenge 2005,
autonomous cars drove off-road on desert terrain, several of
them reaching the finish line [9]. DARPA’s Urban Challenge
of 2007 demonstrated that intelligent cars are able to handle
urban scenarios and situations with simulated traffic [10].
Lately, autonomous cars have been driving through real world
traffic for testing purposes in urban and rural areas alike [8].

This research lead to the introduction of various driver
assistance systems for street cars. One key aspect for driver
assistance systems is how the interface between human and
machine affects usability. This interface question is more
important for people without full bodily control. Brain Com-
puter Interfaces can be a solution here. Recently, BCI-systems
have become relatively affordable and allow people to interact
directly with their environment [5]. Another big field lies in
human interaction within computer games, e.g. in the research
game “Brain Basher” [1] or in [6]. As a sub-field of BCI
research, BCI using motor imagination brain patterns has
become popular, where the user has to think of a motion
instead of performing it physically [4]. In other work, users
could control mechanical devices with EEG patterns [7]. In
this paper we want to present a solution where a human
controls a car just by using brain signals, i.e., without need
for any physical interaction with the car.

In a first application, computer-aided free driving allows
the passenger to claim steering- and speed-control in special
areas. The car prevents traffic rule-violations and accidents by
reclaiming control before they happen. The second application
implements a semi-autonomous path-planning, where a car
drives autonomously through a road-network until it arrives
at so called decision points. Typically located at crossings,
decision points require the passenger to choose which way to
drive next.

The paper is structured as follows: Section II introduces
the autonomous car “MadeInGermany” and the applied BCI
hardware. In Section III we describe the training process
and the classification approach used. Section IV presents the
developed usability interface which enables a human to easily
and safely control the car using brain patterns, followed by
Section V, which shows experimental results of the presented
approach. Section VI summarizes the paper and suggests
future work.

II. AUTONOMOUS CAR AND BCI HARDWARE

Fig. 1. The autonomous car “MadeInGermany”

A. Autonomous Car

Our autonomous car “MadeInGermany” served as a test
platform c.f. Fig. 1: a modified Volkswagen Passat, equipped
with a variety of different sensors and a drive by wire control
via CAN bus. An introduction to these sensors is necessary



at this stage, as they are used in the here-described semi-
autonomous mode. The platform is equipped with six laser
scanners, three at front and three at the back. Additionally, on
top of the car a rotating laser scanner from Velodyne scans
the near environment, c.f. Fig. 2. Further, the car has different
radar sensors for obstacle detection and cameras, which are
used for 3D feature extraction, lane and traffic light detection.
The car actuators, i.e., gear shifting, motor and brake control
are manipulated via CAN bus.

A modular architecture allows separate software-
components for the different sensors and actuators on
each car, while utilizing the same modules for decision-
making and other higher level functions. Besides GPS and
CAN data, the car relies on camera, lidar and radar sensors.

Besides, the authors want to mention, that the architecture
described in this paper is also applied to a semi-autonomous
wheelchair, c.f. Fig. 3, but in this paper we want to focus on
the application to the semi-autonomous car.

Fig. 2. Sensor configuration of “MadeInGermany”

Fig. 3. Autonomous wheelchair equipped with Kinect and lidar sensors.

B. Brain Computer Interface
The brain computer interface used in this approach is a

commercial product, the Epoc cap from Emotive. It has 16
EEG sensors which measure potential differences on the scalp.
A contact fluid is necessary for good recognition. As a first
step, the device has to be trained to the brain patterns of a user.
The 16 sensor readings are mapped to four different direction
classes or to the neutral class. Unfortunately we had no access
to the sensor readings of the head sensors, thus, the first
classification process was not transparent. The classification
result is used by the controller module to generate throttle,
brake and steering commands.

Fig. 4. Epoc neuroheadset from Emotive. The cap is connected wirelessly
to the computer.

III. TRAINING AND CLASSIFICATION

In the training phase the user can decide whether to control
the steering only (two classes) or to also control steering
and velocity (four classes). The classification program then
asks the user to sequentially think of the different direction
schemes. Many users tend to think of different motions, i.e.
they think of moving the right arm, without really performing
those motions. Thus, certain motor images do activate different
regions in the brain, but not necessarily the same regions as
would be activated during real motions [2]. The corresponding
electric brain patterns are measured by the BCI. Usually, this
method is called “Motor Imagery”.

The training process must be executed every time the user
puts the cab on his head. After some time, a retraining can
be necessary. After the training process, the user can estimate
the quality of classification by performing an evaluation test.
If classification is not sufficiently correct, a retraining is
necessary; sometimes the user must choose other patterns, e.g.
to think of other motions or images.

IV. INTERFACE DESIGN

A. Requirements
With the free drive controller and BrainChooser alike,

design of interface is essential for BCI usability. Important
aspects we focused on were



• stability and smoothness of executed actions,
• robustness to falsely classified brain patterns,
• safety of executed maneuvers with respect to physical

limitations and to the surrounding area,
• minimality of necessary actions for maneuvers.

. Two solutions were developed and tested on the closed
Tempelhof airfield, for which we designed a demonstration
course, see Fig. 5.

Fig. 5. Test parcours on closed Berlin-Tempelhof airfield.

B. Free Drive

In free drive mode the operator has access to steering
and speed control. Accidents are prevented by constantly
monitoring the operator’s decisions. If a collision is imminent
or if the car is about to leave the free drive zone, the computer
immediately stops the car.

a) Control Actions.: The four brain commands (“left”,
“right”, “push”, “pull”) are mapped to steer and velocity com-
mands as follows: Commands “left” and “right” increase or
decrease the current steering wheel angle. Commands “push”
and “pull” increase or decrease the desired velocity. This
solution proved superior compared to giving direct throttle
or brake commands, as it is easier to maintain a certain
speed. When none of the four commands is detected, the
velocity stays constant. The steering angle stays constant for
one second, and then is reduced (or respectively increased)
towards zero position, in which the car moves straight.

b) Control Frequency.: Steering a car requires the driver
to be able to execute steering motion with slow response
times. To allow filtering of noisy brain signals, we allowed
only one steering command per second in earlier tests. Then,
a large steering angle was added to the current position. In
this solution the driver had problems to execute small steering
angles, the response times were shown to be too long. In
further tests a control frequency of 5 Hz and a steer step
of 0.6 rad proved to be a good solution, meaning that one
revolution of the steering wheel takes about two seconds. The
velocity can be increased or decreased by 0.15 m/s in each
step. The steering angle is limited to ±2.5π. Velocities are
cropped between 0 and 10 m/s.

c) Steering.: When no “left” or “right” command is
received for more than one second, the steering wheel returns
to neutral position. At higher velocities (>2 m/s), the steering
wheel turns more slowly and the steering angle limits are
reduced. This prevents excessive centrifugal forces and allows
the driver to stay on a desired trajectory without causing
oscillations. The steering angle ω, depending on the velocity
of the car v in m/s is limited to the following values (in rad):

ω = 2.5π ∗min(1.0, 2.0/v) (1)

Accordingly, the steering angle change δω within each time
step is:

δω = 0.6π ∗min(1.0, 2.0/v) (2)

When the driver is accelerating or decelerating (“pull” or
“push” commands), we also reduce the steering angle.

d) Steer Angle Smoother.: Sending steering angle com-
mands to the steering controller with 5 Hz only causes non-
smooth steering maneuvers. The steer controller works with
100 Hz, therefore we implemented a steering angle smoother,
which linearly extrapolates 20 desired angle values (one value
for each 10 ms) for the controller. The result was a very soft
turning steering wheel.
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Fig. 6. Steer Angle Smoother, black dotted curve shows the raw angle values
at 5 Hz; blue, red and green curves show interpolated values for interpolation
frequencies higher, equal or lower than 5 Hz.

e) Velocity Controller.: The desired velocity is input
to a PID-controller. The PID-controller generates positive or
negative output values. Positive outputs are weighted and
mapped to throttle commands, negative outputs are similarly
mapped to brake commands.

As experiments will show later, staying on a given trajectory
can be hard at higher velocities, so an application on open
traffic is far away. Therefore we implemented and tested
another solution for the BCI, in which it assists the human in
deciding which direction to take; all driving and safety relevant
decisions are made by the car.

C. BrainChooser

While the autonomous car usually plans the best trajectory
through the road network to reach its destination, the Brain-
Chooser application allows the passenger to modify the route
at certain decision points by using the BCI device.



The road network is presented as a directed graph of
way-points which are connected by lanes. Curved lanes are
approximated by spline interpolation over the way-points. Fig.
7 shows the spline interpolation of the road network graph with
the car at a decision point for two possible directions.

Fig. 7. A spline interpolation of the road network with a point cloud from
the lidar-scanner for detecting obstacles. A path along the right lane has been
chosen at the decision point in front of the crossroad, as indicated by the
highlighted red-green line.

To find a desired trajectory in the road network, weights are
assigned to lanes representing the distance, speed-limit and
obstacles on the lanes, if necessary. When the car reaches a
decision point where an operator’s choice is required, e.g. an
intersection, the operator is requested to choose a direction.
The request is executed with the help of a synthetic voice
recording. Once a choice was made, the chosen trajectory on
the road network is processed and executed by the steering
and velocity controller.

At decision points, the operator is requested by voice
recording to input a direction with the BCI. Since it’s usually
not possible to hold a brain pattern steady over a long period of
time, messages with detected patterns arrive at irregular inter-
vals and include false positives. To robustly classify the brain
pattern into one of the four categories, four variables (one for
each possible pattern) accumulate the detection-probabilities.
The variable which first passes a certain threshold defines the
operator’s decision. This method proved to be relatively robust
to false detections. It also gives the operator the required
time to enter the desired direction. To prevent distraction,
no audio-feedback is given during the selection. However, a
display presents the currently detected pattern, resulting in
faster decisions.

V. EXPERIMENTS

A. Benchmarks

We conducted different experiments on the former Tempel-
hof airport in Berlin.

Experiment 1: At first we measured the accuracy of
control. The first task was to keep the car on an infield course,
see Fig. 5, using “left” and “right” patterns for steering only.
The velocity was set to 2 meters per second. The driver had
to drive the track for three laps to see whether the accuracy
remained constant over time. The resulting traces are depicted
in Fig. 8; the errors are shown in Fig. 13.

Experiment 2: In the second experiment the driving
person had to control throttle and brake in addition to the
steering commands for left and right. The car was now able
to accelerate from 0 to 3 meters per second. The resulting
trace is shown in Fig. 11, the errors are shown in Fig. 13.

Experiment 3: To check the lateral error to the lane at
higher speeds, we designed another track with long straight
lanes and two sharp corners. The velocity was fixed to 5 meters
per second and like in the first experiments, the driver had to
steer left and right only, trying to stay at the reference lane. The
resulting trajectory is shown in Fig. 12, the errors in Fig. 13.

Experiment 4: We checked the response time of the test
person. The test person received different commands, such
as “left”, “right”, “push” or “pull” from another person and
had to generate the corresponding brain pattern - this had to
be recognized by the control computer. The time from the
command until the recognition within the control computer
was measured. We also measured falsely classified patterns.

Experiment 5: In this experiment, we tested the second
module, the BrainChooser. Here, at intersections, the operator
was asked to decide for the left or the right route. Then the
test person had about ten seconds to decide for left or right
direction. This long decision phase helps to filter out noise
and ensures that the test person was generating the desired
pattern over a longer time, reducing the risk of coincidentally
generated patterns.

B. Experimental Results

Experiment 1: At the beginning of the first experiment
we marked the desired lanes on the airfield. As we found, on a
flat surface those lanes are hard to see from greater distances.
Moreover, it is difficult for a human driver to estimate his
distance to the middle of the lane with centimeter accuracy.
Therefore the test person had access to a computer monitor,
which displayed a model of the car on the virtual track from
bird’s eye perspective. The test person succeeded in keeping
a close distance to the desired trajectory, while only having to
steer the car. We performed three tests to observe the variance
between different laps. The standard deviation of the lateral
error function over time was 1.875 meters for one lap, the
error function is shown in Fig. 9. One lap lasted for about 10
minutes. In the following laps this error did not diverge by
more than 0.2 m. The angular error standard deviation was
0.20 rad. The traces of the driven laps are shown in Fig. 8.
Fig. 13 comprises the results of the first three experiments.



Fig. 8. Experiment 1: Infield test course. The test person had to control
the car with two steering commands (“left” and “right”). Velocity was set to
2 meters per second. The traces of all three driven laps are depicted (red).
Reference trace of the original track in blue.

Fig. 9. Experiment 1: Lateral error of the car to the reference trajectory.

Fig. 10. Experiment 1: Orientation error of the car to the reference trajectory.

Fig. 11. Experiment 2: Infield test course. The test person had to control
the car with four commands (“left”, “right”, “push”, “pull”) to steer the car
and to adjust the velocity, 0-3 meters per second. The traces of the car (red)
and of the original lap (blue) are depicted.

Experiment 2: The test person managed to control the car,
controlling the velocity and the steering wheel. However, the
accuracy of steering control was reduced, compared to Exp.
1, resulting in a larger standard deviation of the lateral error,
which was 2.765 m. The standard deviation of the orientation
was 0.410 rad and, thus, larger as well.

Experiment 3: The lateral error became even greater on
the speedway. The speed was set to 5 meters per second and
the test person tried to focus on heading in the right direction
(keeping the orientation error small) rather than reducing the
lateral distance. This is due to the fact that at higher speeds,
the target point for orienting the car is displaced forwards. The
standard deviation of the lateral error was 4.484, the standard
deviation of the orientation error was 0.222 rad. The results
are contained in 13.

Experiment 4: In this experiment we measured the time
it takes to generate a pattern with the brain and to classify it.
Results are shown in Fig. 14. Over 60 percent of the brain
commands could be generated within 5 or less seconds, about
26 percent even within two seconds or less. In 20 percent of all
cases the generated pattern was wrong. This was usually due
to concentration problems of the test person. After a while,
at latest after one hour a new training of the brain patterns
is necessary. Further, after using the BCI for 90 minutes we
experienced some tiredness of our test subject, which results



Fig. 12. Experiment 3: Speedway test course. As in the first experiment, the
test person had to control the car with two steering commands. Velocity was
set to 5 meters per second. The traces of the car (red) and of the original lap
(blue) are depicted.

σlateral
[m]

σangle
[rad]

Infield 2m/s, 2 DOF 1.875 0.200
Infield 3m/s, 4 DOF 2.765 0.410

Speedway 5m/s, 2 DOF 4.484 0.222

Fig. 13. Error measurements: Lateral distance to reference trajectory in
meters and orientation error in rad. 2 or 4 DOF refer to the two or four
patterns, the test person has to generate.

in longer response times or higher inaccuracies.
Experiment 5: In this experiment for the BrainChooser

the test person achieved correctly classified directions in more
than 90 percent of cases.

VI. CONCLUSION AND FUTURE WORK

Brain-computer interfaces pose a great opportunity to in-
teract with highly intelligent systems such as autonomous
vehicles. While relying on the car as a smart assistance system,
they allow a passenger to gain control of the very essential
aspect of driving without the need to use arms or legs. Even
while legal issues remain for public deployment, this could
already enable a wide range of disabled people to command a
vehicle in closed environments such as a parks, zoos, or inside
buildings.

Free drive with the brain and BrainChooser give a glimpse
of what is already possible with brain-computer interfaces for
commanding autonomous cars. Modifying the route of a vehi-
cle with a BCI is already an interesting option for applications
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falsely
class.

percent 26 % 36 % 10 % 9 % 20 %

Fig. 14. Experiment 4: Reaction times. The test subject is told to generate a
certain pattern. A pattern counts as recognized, when the computer recognizes
the correct class.

that help disabled people to become more mobile. It has been
proven that free driving with a BCI is possible, but the control
is still too inaccurate for letting mind-controlled cars oper-
ate within open traffic. The semi-autonomous BrainChooser
overcame this weakness, and decisions were performed with
a high precision. Improvements of the BCI device could
have multiple positive effects. One effect, of course, would
be a more accurate control of the car, i.e., a more accurate
steering and velocity control in free drive mode. Further, it is
desirable to be able to distinguish more than four brain patterns
in the future. This would enable the driver to give further
commands, e.g., switching lights off and on, or setting the
onboard navigation system to the desired location by thought
alone.

More detailed experiments regarding this decline of concen-
tration over time and within the context of car driving will be
future work as well.
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