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Abstract. Information transfer among foragers is key for efficient allo-
cation of work and adaptive responses within a honey bee colony. For
information to spread quickly, foragers trying to recruit nestmates via
the waggle dance (dancers) must reach as many other non-dancing for-
agers (followers) as possible. Forager bees may have different drives that
influence their motion patterns. For instance, dancer bees need to widely
cover the dance floor to recruit nestmates, the more broadly, the higher
the food source profitability. Followers may instead move more errati-
cally in the hope of meeting a dance. Overall, a good mixing of individ-
uals is necessary to have flexibility at the level of the colony behavior
and optimally respond to changing environmental conditions. We aim
to determine the motion pattern that precedes communication events,
exploiting a data-driven computational model. To this end, real observa-
tion data are used to define nest features such as the dance floor location,
shape and size, as well as the foragers’ population size and density dis-
tribution. All these characteristics highly correlate with the bees walking
pattern and determine the efficiency of information transfer among bees.
A simulation environment is deployed to test different mobility patterns
and evaluate the adherence with available real-world data. Additionally,
we determine under what conditions information transfer is most effi-
cient and effective. Owing to the simulation results, we identify the most
plausible mobility pattern to represent the available observations.

1 Introduction

Honey bee colonies, along with ant and termite colonies, are the best-known
examples of superorganisms, social groups made up of members of the same
species which display signs of self-organization and collective intelligence [16,22].
The honey bee foraging behavior has been intensely studied by the scien-
tific community. Nevertheless, despite the general mechanisms underlying self-
organization during foraging activities being well understood [11,17], there is still
much to learn about the effects of individual differences among bees and how
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such differences impact the overall behaviors. In particular, information transfer
among foragers is a key aspect, as it determines how the colony flexibly modu-
lates the workload and adapts to external contingencies and internal demands.
For information transfer, a good mixing of individuals is necessary, and this is
supported by the ability of workers to move and meet other workers carrying
valuable information.

The goal of this study is to understand how the motion patterns of foragers
influence information exchanges. More specifically, we focus on waggle dances,
whereby foragers recruit nestmates to valuable food patches. We aim at iden-
tifying the features of the motion pattern followed by bees before dancing and
following behaviors. To this end, real observational data are used to define fun-
damental environmental properties (comb surface characteristics) such as dance
floor location, shape and size, as well as colony features such as forager popula-
tion size and density distribution, all characteristics that highly correlate with
the bees motion pattern [14]. Then, a simulation environment is deployed to test
different mobility patterns for forager bees within the hive. To determine the
mobility pattern of simulated bees, we assume that foragers may or may not
take into account the detailed characteristics of the dance floor. A correlated
random walk model [1,6] follows the assumption that only an approximate loca-
tion for the dance floor is known to the bees, which is modelled as a location bias
toward which bees turn with a fixed probability. Conversely, a random waypoint
model [2]) follows the assumption that the location and dimensions of the dance
floor are known, as the model postulates that displacements are determined by
randomly sampling target locations within the relevant areas. From simulations,
we also obtain the interaction rate among foragers, which shows under what
conditions information transfer is most effective and efficient. On such a basis,
can we shed light on the most plausible assumptions by matching real-world
observations with the simulations resulting from different mobility patterns?
Answering this question will provide interesting hypotheses for further study-
ing the information transfer abilities among forager bees, and will also suggest
design principles for the efficient implementation of swarm robotic systems.

In the following, we describe the methodology used to model the environ-
mental properties of the hive and to test the selected mobility patterns in our
simulation environment (see Sect. 2). Then, we present and evaluate the results
obtained from simulations in Sect. 3. Finally, in Sect. 4 we discuss the plausibility
of the different mobility patterns being presented, and propose as a follow up to
this work a detailed comparison between our simulation results and real-world
data at the single trajectory level.

2 Methodology

As mentioned above, this study is grounded on real-world data, which were
obtained using the BeesBook System [18], an experimental system that allows
tracking marked bees within an observation hive during weeks. The system is
highly reliable, localizing markers with a 98% recall at 99% precision and decod-
ing more than 98% of the markers correctly [3,21]. A BeesBook dataset consists



Motion Dynamics of Foragers 205

of a list of registers detailing the position and identity of each marked bee—once
detected—for each video frame during the full extension of the experimental
season. Additionally, through the Waggle Dance Detector module [19], the Bees-
Book system provides a record of dance activity that enumerates all detected
dances, including duration and location on the honeycomb surface.

From this dataset, we obtained valuable information such as the spatial dis-
tribution of foragers and of the dances they performed, as well as the average
speed of foragers. This information was used to define models for the dance floor
and the density distribution of foragers on the honeycomb surface. This process
is explained in the following section.

2.1 Data Preprocessing

The dataset used for the analysis was collected in 2016 during the months of
July and August in Berlin, Germany. From this dataset, we considered 12 days
between August the 8th and August the 19th, 2016. To focus our attention on the
spatial distribution of foragers and dances, we first analyzed the local weather
conditions—solar radiation, temperature and rainfall—during the experiment
dates. These are known to impact foraging and, consequently, dancing activity
[5,8]. From the analysis, we decided to limit the observation time window
between 10:00 and 16:00 UTC+2, which covers the most favorable conditions
for foraging and accordingly recorded the most relevant dance activity (see the
top-left panel in Fig. 1). Overall, we considered a dataset with a total of 72 h,
that shows fairly similar activity across all days and hours.

2.2 Foragers and Dances Distribution Models

Once obtained the dataset for the analysis, we extracted the information about
the distribution of foragers and dances over the comb, in order to obtain an
empirical model. In the case of the dance distribution, we observed that, within
the considered time window, the dance rate was substantially homogeneous (see
top-right panel in Fig. 1). Hence, we focused on the spatial distribution only.
We began by dividing the surface of the comb in 21× 37 cells of ( 1 cm2) surface
(the dimensions of the comb used during the recording season was (21 × 37 cm)).
Then, we computed the total number of dances for each cell during a day, as
well as over the full temporal extension of the dataset. As the differences in the
spatial distribution across days were negligible, we focused on the cumulative
distribution over all days. This cumulative distribution was then normalized
to represent the probability of a dance occurring in each of the defined cells.
Finally, we fitted a 2D Gaussian function using non-linear least squares method
to define a model for the dance floor (Gaussian centred at μd = (8.17, 12.42)
with standard deviation σd = (4.92, 3.96) and with standard deviation errors of
[5.28e−2, 4.25e−2, 7.53e−2, 6.02e−2], see the inset in the left panel of Fig. 2)

For the foragers’ spatial distribution, first foragers were identified based on
their social interaction patterns and spatial distributions in the nest [20], then
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Fig. 1. Top left: Distribution of dances over multiple days. The number of waggle runs
detected by the BeesBook system over a time interval of 1 min is displayed through-
out the different days. Note that each dance consists of multiple waggle runs. Top
right: Cumulative number of dances over different days. The cumulative distribution
is approximately linear over the different days, indicating a constant rate of dances,
although this rate differs from day to day. Bottom left: Hellinger distance between con-
secutive empirical density distributions during a day. Density distributions are com-
puted over time intervals of 10 min, and compared to the previous time interval to
show variations over time. Bottom right: Hellinger distance between empirical den-
sity distribution over 10-min intervals, and the overall model obtained from the whole
dataset.

a grid over the image of the comb surface was defined. This grid, however, com-
prised of 46× 70 cells, following the original structure of the BeesBook data-set.
All the spatial parameters obtained for the model were later scaled properly.
We then extracted the time series of the positions of all foragers, splitting the
time series of each day into intervals of 10 min, and computing the cumulative
distribution of foragers on the grid within each interval. These empirical distri-
butions computed over these intervals were used to evaluate their homogeneity
over time. To this end, we computed the similarity between distributions by
means of the Hellinger distance [10]. The analysis shows that foragers density
is fairly consistent during the selected window of time (see bottom-left panel in
Fig. 1).

Similar to the dance distribution, once we validated the temporal homogene-
ity of the foragers’ density, we computed the normalized-cumulative distribution
over the full temporal extension of the dataset. Finally, to obtain a parametric
model of the forager density, we fitted a 2D Gaussian function to the cumu-
lative distribution using non-linear least squares method (Gaussian centred at
μp = (8.73, 11.07) cm, with standard deviation σp = (9.99, 5.60) cm and with
standard deviation errors of [7.62e−2, 4.29e−2, 1.20e−2, 6.14e−2], see Fig. 2 left).
We computed the Hellinger distance between model and distributions of foragers
over time to verify that the model was providing a good representation over and
across different days (see bottom-right panel in Fig. 1). This analysis revealed
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that the model grasps sufficiently well the empirical density distribution of for-
agers extracted from the data across the full observation period.

Overall, the Gaussian models match reasonably well the real-world data, as
shown in Fig. 2 left. In particular, the model for the density distribution of
foragers matches visibly well to real-world data, also confirmed by the small
Hellinger distance of 3.59e−2. Conversely, the Gaussian model for dances has a
worse match to the observation data, mainly due to the absence of parts of the
dances, as the observation camera for detecting dances was covering only the
bottom-left section of the honeycomb close to the entrance. It is interesting to
notice that the distribution of dances is similar to the density distribution, but
shifted towards the entrance to the honeycomb. We hypothesize that such a shift
stems from the fact that dances are executed right after the forager has returned
from a foraging trip. Hence, they could be performed closer to the entrance as
the forager trajectory starts there.

2.3 Multi-agent Simulations

We have built a simulation environment prepared to progressively incorporate
the features derived from the real-world observations, and to test the effect of
different mobility patterns. The virtual arena is customized after the dimensions
of the honeycombs used during the experimental seasons (21×37 cm). Since our
study focuses on mobility patterns that precede and follow dance communication
activity, we only simulate the behavior of forager agents. For each simulation,
we consider a forager population of 200 agents, that corresponds to the aver-
age number of foragers observed during the experimental season. We divided
the forager population into two groups, dancers and followers. According to the
literature [7], between 5% and 10% of the colony population engage in foraging
activities, depending on the colony size and the resources available in the vicin-
ity of the hive. For the colony studied during the experimental season and for
the days we consider to define our models, around 35% of the colony population
was identified as being part of the forager class. For simplicity, we consider in
our simulations 20% of the forager population (or 7% of the colony population)
as dancers (hence, at any time, we count 40 dancers and 160 followers). While
both dancers and followers adopt the same mobility pattern and move over the
comb surface at the same average speed (fixed to 5 mm/s in compatibility to the
observation data), they display different behaviors concerning dance communi-
cation. Dancer agents are the only ones that can switch from move to dance
state, during which they stay still in place and broadcast their known foraging
site. The foraging site is not relevant for the present study, hence it is fixed
and identical for all dancers. In order to reproduce the uniform distribution
of dances over time observed on the experimental data, dancer agents stop and
dance with a fixed probability per unit time pd, which can be tuned to reproduce
the rate observed experimentally in a given day. Considering that the simulation
is advanced by one step every 0.25 s, to obtain in average 400 dances in a day
we set pd = 1.16e−4. Each dance event lasts a fixed amount of time (3 s).
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Followers, on the other hand, continuously patrol their vicinity in search of
dancing agents (move state). When they come close enough to an agent actively
dancing (within 1 body length, i.e., 2 cm), they switch to the follow state, also
standing still in place until the dancer ends its broadcast. If the interaction
between dancer and follower(s) lasts long enough (>0.25 s), the communication is
considered successful and the follower acquires knowledge of the foraging location
communicated by the dancer.

The simulations employ the Gaussian model for the density distribution of
foragers to determine the mobility pattern of the bees. At initialization, dancers
are positioned at the bottom-left corner of the arena, which corresponds to the
entrance to the hive, while followers are initialized at random positions on the
comb surface following the density distribution model. For each mobility pattern,
dancer agents evaluate at each step whether to dance or not, while followers stop
only when they perceive a dance in their proximity, as specified above. After
performing a dance, the agent is removed from the arena and a new dancer is
introduced at the entrance. In this way, we mimic the behavior of dancer bees
that leave the hive after unloading and communicating the foraging source to
their nestmates [4,15]. Also, in this way we want to test the hypothesis that the
dance distribution is shifted due to a bias in the starting position of the dancers’
trajectories.

In this paper, we report the results for two different mobility patterns adapted
to the density distribution model: a random waypoint model (RWM) and a
biased correlated random walk (CRW). The former uses the foragers density
model as a probability distribution function to draw intermediate location goals.
The latter uses the estimated center of the dance floor as a bias for the random
walk. The details are provided below. Other mobility patterns like Lévy walks
[1] could be considered, which are however less suited for a constrained space
like the beehive.

Random Waypoint Model (RWM). This mobility pattern allows agents to explore
the whole arena by choosing a random destination and moving straight until the
destination is reached. In our simulations, the choice of the new destination is
proportional to the empirical density distribution of foragers. More specifically,
each new destination is drawn randomly exploiting the 2D Gaussian model we
obtained from real-world data. Whenever agents stop—to dance or to follow a
dance—they lose memory of their previous destination, and a new one is drawn
when motion is resumed. This mobility pattern assumes that foragers have some
knowledge of their location over the honeycomb—i.e., a map—that they exploit
to choose where to move next.

Biased Correlated Random Walk (CRW). A correlated random walk is the
simplest mobility pattern that can be imagined for the bees, as well as for
many biological and artificial systems [1,6,9]. With this model, agents alternate
straight walks and random turns. In this simulations, the duration of the straight
walks is sampled from a folded normal distribution N(0, σw), with σw = 0.75 s.
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The turning angle is instead drawn from a wrapped Cauchy distribution, char-
acterized by the following probability density function:

fC(θ;μ, ρ) =
1 − ρ2

2π (1 + ρ2 − 2ρ cos (θ − μ))
. (1)

where μ represents the average and ρ the skewness of the distribution. In our
simulation, μ = 0 implies that the turning angle is correlated with the current
direction of motion, while the parameter ρ is varied to control the degree of
correlation of the random walk, obtaining different levels of persistence in moving
towards a given direction. Considering that 0 ≤ ρ < 1, smaller values lead to a
more uniform distribution, hence less correlated walks, while higher values of ρ
correspond to a skewed distribution, hence highly correlated walks.

The location bias parameter β is used to calibrate the agents’ bias to move
towards the center of the foragers’ density distribution. At every turning event,
the agent evaluates whether to draw a new random angle or to orientate towards
the center of the foragers’ density model, based on the probability β. In the
latter case, a Gaussian noise N(0, σβ) is also added to the rotation angle, with
σβ = 0.2π. This value has been empirically tuned to account for imprecision in
the rotation towards the center of the dance floor.

While moving, agents can reach the borders of the arena. Since only one
side of the comb is simulated, the arena is considered to be bounded, and when
agents come across one of the borders during their motion, they stop and change
direction moving away from the border towards the center of the forager density
distribution. Additionally, whenever agents stop to dance or to follow a dance,
they lose memory of the previous direction of motion, and they chose a new
orientation uniformly-random as soon as they resume motion.

3 Results

We performed extensive simulations to understand the effect of the mobility
pattern on (i) the density distribution of agents during simulations, (ii) the
distribution of dances by simulated agents and (iii) the ability to transfer infor-
mation between dancers and followers. In all simulations, dancers and followers
employ the same mobility pattern. We implemented a total of thirteen different
scenarios: one with RWM calibrated with the empirical density distribution of
foragers, and 12 with the CRW by varying the parameters ρ ∈ {0, 0.3, 0.6, 0.9}
and β ∈ {0.01, 0.05, 0.1}. For each scenario, we ran 100 simulations, each one for
T = 28800 time steps, equivalent to 2 h of colony activity. Similar to what was
done with the real-world observation data, we divide the arena in a grid to com-
pute the spatial distribution of foragers and dances. We also record which dancers
and followers interact during dance communication events (dance partners) to
analyze the information transfer and the level of mixing in the population.
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The density distribution of all forager agents under the RWM mobility pat-
tern is shown in Fig. 2 right. The correspondence with the Gaussian model
calibrated on the empirical density distribution of foragers is remarkable, as also
testified by the small Hellinger distance between the empirical density distribu-
tion and the simulations, which averages to 0.028 (see Fig. 4). This is somewhat
expected given that the RWM exploits the full Gaussian model of the empiri-
cal density distribution to determine target destinations; hence movements are
constrained within the areas with higher observed density. The distribution of
dances shows a pattern similar to the forager density, with a negligible shift
towards the entrance. This is because the RWM is characterized by a quick dif-
fusion towards the area in which target destinations are sampled, hence it is not
impacted significantly by the initial position of the (dancer) agents.

Fig. 2. Left: Overall empirical density distribution of foragers computed on the
whole dataset. The background heatmap represents the empirical density distribu-
tion obtained from data. The white isolines represent the Gaussian model fitted on the
data (centred at μp = (8.73, 11.07) cm, with standard deviation σp = (9.99, 5.60) cm).
Inset: overall dance distribution obtained from data. The black isolines correspond to
the Gaussian model fitted on these data (center at μd = (8.17, 12.42) with standard
deviation σd = (4.92, 3.96)). Note that the observation camera for dance events covers
only the bottom-left part of the honeycomb, hence data points on the right part are
missing. Right: density distribution of foragers obtained from simulations using the
RWM. The heatmap corresponds to the distribution, while the white isolines corre-
spond to the Gaussian model estimated from the real-world data. Inset: distribution
of dances obtained from simulations. The black isolines correspond to the Gaussian
model estimated from the data.

When the CRW mobility pattern is employed for dancers and followers, the
interplay between persistence in motion and bias to return to the dance floor
strongly determines the spatial distribution of the agents, as shown in Fig. 3.
Specifically, the larger the location bias β, the narrower the dispersion of agents
around the center of the density distribution model. Indeed, when the agents
orientate towards the dance floor center with higher probability, they remain
clustered and do not diffuse much across the honeycomb. The correlation coeffi-
cient ρ instead determines how much an agent would persist in a chosen direction.
Generally speaking, higher values of ρ correspond to larger diffusion. This is par-
ticularly visible when the location bias β is small (left column in Fig. 3), but
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has the opposite effect with a strong location bias. Indeed, if an agent frequently
reorients towards the center, a high persistence will contribute to move to it
even during the subsequent walks, while a small persistence would make agents
quickly bend in a completely different direction, hence reducing the impact of
the location bias. By comparing the Hellinger distance obtained over the 100
runs shown in Fig. 4, we observe that the best values are for an intermediate
level of β, while we observe that ρ has smaller effects, with opposite trends for
small or high values of β. Compared to the RWM, the CRW density distributions
are slightly worse, but not much difference is observable for β = 0.05.

Fig. 3. Density distribution of foragers for each combination of β and ρ tested with
simulations. The insets represent the distribution of dances for the same combination
of parameters.

The insets in Fig. 3 show the dance distribution obtained with simulations
when the CRW mobility pattern is employed, and compare to the Gaussian fit
obtained from real-world data (black). The shift towards the entrance is remark-
able especially for low location bias (β = 0.01) and for small CRW persistence
(ρ = 0). The former entails that movements are not frequently oriented toward
the center, the latter entails a small diffusion of the agents. Hence, dancers do
not reach the dance floor quickly and dances are mostly performed close to
the entrance. Conversely, when β is high, dancers quickly stabilize their motion
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around the final distribution, and the shift towards the entrance is less visi-
ble, in a similar way to what observed with the RWM. Intermediate values of
the location bias correspond to the best qualitative match between the dance
distribution observed in simulation and the model obtained from real data.

Fig. 4. The Hellinger distance computed between the density distribution obtained in
each of the 100 simulation runs, compared to the Gaussian model obtained from the
empirical density distribution.

Finally, we analyze the information transfer efficiency for all the studied
scenarios (see Fig. 5). To this end, we compute the convergence time as the
time required for all followers to obtain information about the foraging site
by attending to one dance, at least. We compute the cumulative distribution
function of the convergence times across the 100 runs using the Kaplan-Meier
estimation [12], censoring those runs that do not converge within the allotted
time. We fit a Weibull distribution on the estimated function and use the fitted
function to compute average and standard deviation of the convergence times.
The average values are shown in the left panel of Fig. 5. Additionally, we show
the average number of followers for each dance event (middle panel) and the
redundancy of information received by a forager, computed as the number of
different dance partners encountered during the simulation (right panel). The
RWM leads to rather fast convergence, with a moderate number of interactions
and mild redundancy (see the red arrow on the colorbars in Fig. 5). Concerning
the CRW, it is possible to note that, the higher the location bias β, the faster
the transfer of information between dancers and followers. This is because the
foragers are compact around the center of the dance floor, and interactions are
numerous (higher number of followers per dance event) but also very redundant
(higher number of partners per follower). Also in this case, the CRW persistence
ρ has opposite effects depending on the location bias β, as the two parameters
concur in determining the diffusion of agents away from the dance floor.
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Fig. 5. Information transfer efficiency and effectiveness with different mobility pat-
terns. Each panel represents the average over 100 runs. The matrices show the results
for CRW. The results for the RWM are indicated by a red triangle on the colorbar.
Left: Average convergence time. Centre: Average number of followers for each dance
event. Right: Redundancy of information received, computed as the average number of
different partners recorded for each follower agent.

4 Discussion and Conclusions

The comparison made between the empirical density distribution and the simu-
lated one allows us to speculate about the plausibility of the mobility pattern we
have implemented. The RWM is clearly the one that produces the best match.
However, its implementation would entail that bees are precisely aware of their
location over the honeycomb, relying on a kind of map to choose the next loca-
tion to move to. Additionally, the negligible shift towards the entrance observed
in the distribution of dances also makes less plausible the RWM. In fact, to
obtain a better match, dancer bees should employ a different map than followers
bees, but as each forager can take both roles, it would be difficult to imag-
ine that the employed map changes according to the role. On the contrary, the
CRW model is based on much more parsimonious assumptions. Here, we assume
only that bees can re-orient towards the dance floor—with noise—with a certain
probability. Having a sense of the direction of the dance floor is a much less
cognitively-demanding ability than a complete map of the honeycomb. Addi-
tionally, the CRW provides a better match for the distribution of dances, for the
same parameters that minimize the difference between empirical and simulated
density distribution of foragers (i.e., β = 0.05). Finally, the ability to trans-
fer information among foragers—as observed with the CRW—also suggests that
intermediate levels of location bias allow to satisfactory deal with the trade-off
between convergence time and redundancy.

Future work will attempt to confirm the above discussion by looking at the
detailed bees trajectories available from the BeesBook system. By looking at
the real trajectories, a data-driven model can be made to determine what type
of motion foragers perform, and how this is impacted by the local density of
bees. Most importantly, we want to differentiate the trajectories that precede a
dance communication event, to distinguish between dancers, followers and “idle”
foragers, in order to understand how the behavioral state of foragers impacts
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on its motion. We could actually observe differences between them that could
support better techniques to spread information rapidly within the swarm. The
gathered knowledge can be very useful to improve the design of artificial bee-
inspired systems (e.g., swarm robotics systems [9,13]).
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