

Automated Data Labeling of Driving Recordings for the
Use in supervised-learning Applications for Sensor Fu-
sion

A thesis presented for the degree of
Master of Science in Computer Science.

Eike Taegener, Freie Universität zu Berlin, Germany
Matriculation number: 5184853
Contact: eike.taegener@fu-berlin.de
Date of submission: February 21, 2024
Version: Final Version

Supervisor:
Claas-Norman Ritter 1, Freie Universität zu Berlin, Germany

Reviewers:
Prof. Dr. Daniel Göhring 2, Freie Universität zu Berlin, Germany
Prof. Dr. Tim Landgraf 3, Freie Universität zu Berlin, Germany

Short Abstract:
Gathering to train different machine learning models was not as easy as today.
Analyzing and labeling these data is time- and human-consuming, particularly if
data from several sensors are gathered. Furthermore, the labeling process gets
more complex if the data representation is complex.
In this Master thesis, an Automated Data Labeling Pipeline is proposed, imple-
mented, and evaluated. The pipeline takes driving recordings of theDahlemCen-
ter for Machine Learning and Robotics as input. A ROS bag reader extracts the
most relevant data. Two stages process the stored camera images (Image Pro-
cessing Stage) and the LiDAR point cloud data (LiDAR Processing Stage. The
last stage consists of a Sensor Fusion, where the image and LiDAR data pro-
cessing results are fused to form a sensor fusion dataset.
Each pipeline stage is evaluated on its own. Furthermore, several publicly avail-
able datasets and a newly created one are used to train different object detection
models.
By completing this Master thesis, an Automated Data Labeling Pipeline to sup-
port a human labeler is realized.

Citation:
Eike Taegener, Automated Data Labeling of Driving Recordings for the Use in
supervised-learning Applications for Sensor Fusion, Freie Universität zu Berlin,
Master Thesis, 2024. (unpublished)

1 Dept. of Computer Science and Mathematics, Dahlem Center for Machine Learning and Robotics
2 Dept. of Computer Science and Mathematics, Dahlem Center for Machine Learning and Robotics
3 Dept. of Computer Science and Mathematics, Dahlem Center for Machine Learning and Robotics

Abstract

Gathering data to train different machine learning models was not as easy as to-
day. In the context of autonomous vehicles, one can buy a GoPro action camera
and put it into a car. While the car moves, the camera records the environment
and stores the footage as a video file. The footage contains explicit information
on objects, such as other cars, pedestrians, and traffic signs.

Making the gathered data applicable to AI models, the video footage is con-
verted to images in the first place. A human labeler analyzes the images, focusing
on several objects of interest. He annotates each object instance and stores the
results on the host system. This process can take a long time. If the driving record-
ing consists of thousands of images and multiple objects of interest exist, the la-
beling process can take days. The time effort increases rapidly when other sensor
data, such as LiDAR, is gathered. LiDAR data is more complex than images be-
cause LiDAR creates point cloud data in the 3D space. An object consists of a
point cloud of hundreds or thousands of 3D points. Furthermore, LiDAR does not
distinguish between ground and non-ground points. The multi-dimensional repre-
sentation of objects, as well as the non-discrimination of ground and non-ground
points makes the labeling process much more complex and time-consuming.

In this master thesis, an Automated Data Labeling Pipeline to support a human
labeler in his work and mitigate the time-consuming labeling process is proposed.
The pipeline takes driving recordings of the Dahlem Center for Machine Learning
and Robotics stored as ROS bag files as input. A ROS bag reader extracts the
images of the front, left, right, and rear cameras and the LiDAR data. A segmenta-
tionmodel based onDINOv2 [1] features calculates the segmentationmap of each
image. Furthermore, YOLOv8models detect different objects in each image. The
LiDAR data is filtered by ground/obstacle segmentation using GroundGrid [2]. A
DBSCAN [3] algorithm clusters the remaining non-ground LiDAR data. The ob-
jects found in the LiDAR data and the visual objects are fused at the end of the
pipeline to generate a sensor fusion dataset.

The evaluation takes several datasets and metrics into account. For training
and validating the YOLOv8 models, the nuImages [4], GTSDB [5] datasets, and a
traffic light dataset are used. The segmentation model is evaluated based on the
CityScapes dataset. Furthermore, the sensor fusion is weakly evaluated on the
KITTI [6] dataset. Several data used for the evaluation are taken from a ROS bag
file, showing its application to the data of the Dahlem Center for Machine Learning
and Robotics.

By completing this master thesis, an Automated Data Labeling Pipeline to sup-
port a human labeler is realized.

Zusammenfassung

Daten zu sammeln, um verschiedene Machine Learning Modelle zu trainieren,
war noch nie so einfach wie heutzutage. Im Kontext von autonomen Fahrzeugen,
jemand kann sich eine GoPro Actionkamera kaufen und in sein Auto installieren.
Die Kamera nimmt die Umgebung auf, während das Auto bewegt wird und spe-
ichert die Aufnahmen als Video-Datei. Die Bilddaten enthalten explizite Informa-
tionen zu den verschiedensten Objekten, wie Autos, Fußgänger und Verkehrsze-
ichen.

Um die Daten für AI Modelle verwendbar zumachen, müssen die Videodateien
zu einer Bildserie umgewandelt werden. Ein menschlicher Labeler analysiert
dann die Bilder bezüglich bestimmten Objekten. Die verschiedenen Objektin-
stanzen werden annotiert und auf dem System gespeichert. Dieser Prozess kann
sehr viel Zeit in Anspruch nehmen, insbesondere wenn das Videomaterial sehr
lang ist, aus mehreren tausend Bildern besteht und meherere Objekte annotiert
werden sollen. Der zeitliche Aufwand vergrößert sich enorm, sobald Daten von
anderen Sensorsystemen wie LiDAR gelabelt werden sollen. LiDAR Daten sind
um ein Vielfaches komplexer als Bilder, weil die Punktwolken im 3D-Raum erstellt
und gespeichert werden. Außerdem besteht ein einzelnes Objekt aus hunderten
oder tausenden 3D Punkten. Die mehrdimensionelle-Darstellung von Objekten,
als auch die nicht Unterscheidung zwischen Boden und nicht-Boden Punkten tra-
gen dazu bei, dass der Labelprozess komplexer wird und mehr Zeit braucht.

In dieser Masterarbeit, wird eine automatische Datenlabelungspipeline um
einen menschlichen Labeler zu unterstützen und den Zeitaufwand zu verringern,
vorgestellt. Die Pipeline nimmt Aufnahmen von Fahrten vom Dahlen Center for
Machine Learning and Robotics als Input. Ein ROS bag reader extrahiert die
Bilder von den vier installierten Kameras (Front, Links, Rects und Heck), als
auch die LiDAR Daten. Ein Segmentierungsmodel, basierend auf DINOv2 [1]
Features berechnet eine Segmentierungskarte für jedes Bild. Desweiteren wer-
den YOLOv8 Modelle detektiert verschiedene Objekte in den Bildern. Die LiDAR
Daten werden durch ein GroundGrid [2] in Boden/Hindernisse unterschieden. An-
schließend wird ein DBSCAN [3] Algorithmus verwendet, um Objekte zu finden.
AmEnde der Pipeline werden die gefundenen Bildobjektemit den LiDAR-Objekten
fusioniert und ein Sensor Fusion Datensatz wird erstellt.

Die Evaluierungwird auf denDatensätzen nuImages [4],GTSDB [5] und einem
Ampel Datensatz ausgeführt. Das Segmentierungsmodel wird durch denCityScapes
[29] Datensatz evaluiert. Das Sensor Fusion Modul wird mit Hilfe des KITTI [6]
evaluiert. Am Ende wird die gesamte Pipeline anhand einer Fahrtaufzeichnung
vom Dahlem Center for Machine Learning and Robotics evaluiert.

Durch die Abarbeitung der verschiedenen Pipelinemodule wird eine automa-
tische Datenlabelungspipeline realisiert, die einen menschlichen Labeler unter-
stützen kann.

Table of Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Outline of Contribution . 7
1.4 Structure of the Thesis . 7

2 Basics . 9
2.1 Camera . 9
2.2 LiDAR . 11
2.3 Sensor Fusion . 14

2.3.1 Sensor Calibration . 14
2.3.2 Fusion Levels . 16

2.4 Computer Vision Tasks . 18
2.5 Types of Learning . 19

2.5.1 Supervised Training . 19
2.5.2 Unsupervised Training . 20
2.5.3 Semi-Supervised Training 20

2.6 Metrics . 21
2.7 Architectures . 22

2.7.1 Convolutional Neural Network (CNN) 22
2.7.2 Vision Transformer (ViT) . 24

2.8 Technologies . 26

3 Automated Data Labeling Pipeline . 28
3.1 Folder Structure . 29
3.2 Data Extractor . 30
3.3 Image Processing . 31

3.3.1 Semantic Segmentation . 31
3.3.2 Object Detection . 39

3.4 LiDAR Processing . 41
3.4.1 LiDAR Filtering . 42
3.4.2 LiDAR Clustering . 46
3.4.3 Object Tracking . 48

3.5 Sensor Fusion . 51
3.5.1 Occlusion Check . 51
3.5.2 Segmentation Map Filtering 53
3.5.3 Object Matching . 53
3.5.4 Post Processing . 54

3.6 User Interface . 55

3.7 Overview . 56

4 Evaluation . 59
4.1 Image Processing . 59

4.1.1 Semantic Segmentation . 59
4.1.2 Object Detection . 60
4.1.3 Datasets . 61
4.1.4 Metrics . 65
4.1.5 Traffic Sign Model . 65
4.1.6 Traffic Light Model . 70
4.1.7 Vehicle Model . 73
4.1.8 Pedestrian Model . 75
4.1.9 Run Time . 77

4.2 Hungarian Algorithm . 77
4.3 LiDAR Processing . 78

4.3.1 Evaluation Procedure . 79
4.3.2 Point Cloud Filtering with Markov Random Fields 79
4.3.3 Point Cloud Filtering with GroundGrid 80

4.4 Sensor Fusion . 82
4.4.1 LiDAR to Camera Projection 82
4.4.2 Object Matching . 84

5 Conclusion . 87
5.1 Discussion of Results . 87
5.2 Limitations . 88
5.3 Future Work . 89

References . 91

6 Appendix . 95

List of Tables

1 Memory Consumption and Performance of the different DINOv2
models on semantic segmentation task on CityScapes validation
data split with a linear classifier (lin.) and with multiscale (+ms) [1]. 33

2 Status of the requirements of the User Interface. A short description
of the requirements and how and where they are fulfilled is given. . 58

3 mIoU of the different segmentation head configurations, evaluated
on the validation split of the CityScapes dataset. The mIoU is cal-
culated pixel-wise. All models are trained on the same amount of
epochs (100), the same learning rate of 0.003, and the same opti-
mizer with momentum of 0.9. 60

4 Number of annotations per traffic light phase in the validation and
training split, as well as the overall sum in the whole dataset. . . . 61

5 Number of annotations for each relevant class of the nuImages
dataset for the training (center column) and the validation (right col-
umn) split. 62

6 YOLOv8 models that are tested. The image size refers to whether
the validation and training images have arbitrary or common sizes.
The imgsz is the YOLOv8 parameter that determines the reshaping
of the input image while training and validation. 66

7 Comparison of the best models for arbitrary and common training
and validation image size. 70

8 Precision, Recall, mAP50, and mAP50-95 at the end of the training
for the iterative and ad-hoc trained model. 72

9 Precision, Recall, mAP50, and mAP50-95 values after ten epochs
at the end of the training . 74

10 Summary of the model’s performance. 74
11 Precision, Recall, mAP50, and mAP50-95 at the end of the training

for the iterative and ad-hoc trained model. The results after ten
epochs of the smaller imgsz model are shown too. 76

12 Results of evaluating different implementation variants, using the
NumPy and pandas package. The variants (1), (2), (3), (4), (5),
and (6) are all using the NumPy package. The variant (7) is imple-
mented with the pandas package. All shown times are in millisec-
onds per .1000 runs. 78

13 Performance of the channel-based initial classification regarding
the first 40 LiDAR scans of the SemanticKITTI dataset. 79

14 Accuracy evaluation of my implementation of theGroundGrid, com-
pared to the original paper and further works [2]. 81

7

15 The growth factor development regarding the different rings (cor-
responding to channels) based on a LiDAR scan with almost no
obstacles in the way. 97

16 Example for applying the Hungarian Algorithm. An optimal assign-
ment is (J1, W3), (J2, W2), (J3, W1), and (J4, W4). 98

17 Re-calibrated parameters of the camera’s extrinsic parameters. . . 105

List of Figures

1 Residual building block of the ResNet architecture. [11] 3

2 Velodyne HDL-64E LiDAR sensor. It consists of 64 laser emitters,
split into four groups of 16 emitters and two groups of 32 laser re-
ceivers. 11

3 Resolution difference between a LiDAR scanner (on the right) and
a high-resolution radar (on the left) [26]. 13

4 Example for the projection of LiDAR data onto a camera image.
The different colors refer to different objects found by a clustering
algorithm. 15

5 Illustration of the working principle of Data Level Fusion [27]. . . . 16
6 Illustration of the working principle of Decision Level Fusion [27]. . 17
7 Illustration of the working principle of Feature Level Fusion [27]. . . 17
8 Convolution layer architecture with its different components. The

stride of the kernel is set to one, as well as the padding. The re-
sult of applying a kernel of size 2×2 to a tensor of size 3×3 is an
activation map of size 2×2. 23

9 Illustration of how a Pooling layer works based on average and
maximum pooling. 23

10 Architecture of the AlexNet Convolutional Neural Network [8]. It
consists of five conv layers, three max-pool layers with kernel size
3×3, and three FC layers. After each conv layer, a ReLU activation
function is applied. 24

11 On the right: Architecture of a Vision Transformer on an object clas-
sification downstream task. On the left: Architecture of a Trans-
former Encoder Building Block [17]. 25

12 (left)ScaledDot-Product Attention. (right)Multi-Head Attention con-
sists of several Scaled Dot-Product Attention Blocks running in par-
allel [28]. 26

13 Illustration of the Automated Data Labeling Pipeline. 28
14 Proposed folder structure with an example ROS bag file. 29
15 Rectification results based on an example image. Note the imper-

fection of the rectification process: (left) Distorted image taken with
a camera, equipped with a fisheye lens. (right) Same image, but
after rectification. 31

16 Final segmentation head to generate the segmentation maps. . . . 34
17 Number of finely annotated pixels (y-axis) per class and their asso-

ciated categories (x-axis) [29]. 35
18 Workflow of the segmentation stage. 36

9

19 Segmentation map issues if the aspect ratio of the image is not the
same as of the training data. A reason for this could be that the
crop of the image is square, benefiting images with an aspect ratio
in which a square can perfectly fit. 37

20 Example image on which the segmentation based on different inter-
polation factors is performed. The image is taken from theCityScapes
dataset. 37

21 Segmentation map of the image without interpolation. 38

22 Segmentation map of the image with interpolation by a factor of 2. 38

23 Segmentation map of the image with interpolation by a factor of 3. 38

24 Object Detection Stage. The different colors of the bounding boxes
indicate the results of the different models, put together. 41

25 LiDAR Processing overview. 42

26 Loopy Belief Propagation: Illustration of the message sent from the
node node to the node clockwise. The node node has to wait until it
receives the messages from the nodes counterclockwise, forward,
and backward. 44

27 Ground/Obstacle segmentation based on the GroundGrid. left: In-
put point cloud data with ground points. right: point cloud data with-
out ground points. The x-axis and y-axis represent the distance [m]
from the ego-vehicle. 46

28 Visualized eps estimation. 47

29 Overview of the Sensor Fusion Stage. 51

30 Overview of the automated data labeling pipeline and its stages.
The stages are completely separate from each other and can be
executed simultaneously. 57

31 Number of annotations for each traffic sign across the training dataset
(blue bars) and the validation dataset (red bars). The y-axis rep-
resents the number of annotations for each traffic sign. The x-axis
shows the IDs of the corresponding traffic signs determined by the
traffic sign catalog. 64

32 Box, cls, and dfl loss for different trained traffic sign models with
different YOLOv8 parameters and arbitrary training and validation
image size. The greenish lines correspond to the train and vali-
dation loss of the YOLOv8 model by setting the imgsz-parameter
to 640. The blueish lines correspond to the model by setting the
imgsz-parameter to 1280. 67

33 Recall and Precision of different trained traffic sign models with dif-
ferent YOLOv8 parameters and arbitrary training and validation im-
age size. The green line corresponds to the YOLOv8 model by
setting the imgsz-parameter to 640. The blue line corresponds to
the model by setting the imgsz-parameter to 1280. 67

10

34 Box, cls, and dfl loss for different trained traffic sign models with
differentYOLOv8 parameters and a common training and validation
image size. The reddish lines correspond to the train and validation
loss of the YOLOv8 model by setting the imgsz-parameter to 832.
The reddish lines correspond to the model by setting the imgsz-
parameter to 1280. 68

35 Recall and Precision of different trained traffic sign models with dif-
ferent YOLOv8 parameters and a common training and validation
image size. The red line corresponds to the YOLOv8model by set-
ting the imgsz-parameter to 832. The blue line corresponds to the
model by setting the imgsz-parameter to 1280. 68

36 Box, cls, and dfl loss for the ad-hoc traffic light model (blueish lines)
and the iterative trained model (greenish lines). All models are
trained with a fixed imgsz-parameter of 832. 71

37 Training (blue) and validation (red) evaluation of the vehicle model
for each epoch. From top to bottom: performance of predicting the
bounding boxes (box loss), performance of predicting the class of
the object correctly (cls loss), performance of distribution of bound-
ing box boundaries (dfl loss). 73

38 Training and validation evaluation of the tested pedestrian mod-
els. The blueish lines show the model trained with an imgsz of
1280. The reddish lines show the model trained with an imgsz of
640. From top to bottom: performance of predicting the bounding
boxes (box loss), performance of predicting the class of the ob-
ject correctly (cls loss), performance of distribution of bounding box
boundaries (dfl loss). 76

39 Poor calibration of the LiDAR to the left camera.. 83
40 Better calibration of the LiDAR to the left camera. 84
41 Sensor Fusion evaluation on the image 000000.png of sequence

20 of the KITTI dataset. Only objects that could be mapped to a
LiDAR object are shown. The colors are the same for a bounding
box and the corresponding LiDAR object. 85

42 Sensor Fusion evaluation on the image 000111.png of sequence
20 of the KITTI dataset. Only objects that could be mapped to a
LiDAR object are shown. The colors are the same for a bounding
box and the corresponding LiDAR object. 86

43 Sensor Fusion evaluation on the image 000129.png of sequence
20 of the KITTI dataset. Only objects that could be mapped to a
LiDAR object are shown. The colors are the same for a bounding
box and the corresponding LiDAR object. 86

44 Sensor Fusion evaluation on the image 000753.png of sequence
20 of the KITTI dataset. Only objects that could be mapped to a
LiDAR object are shown. The colors are the same for a bounding
box and the corresponding LiDAR object. 86

45 All Traffic Signs that are included in the dataset. 99
46 Start User Interface of the Automated Data Labeling Pipeline. . . . 105

11

47 Default Execution User Interface. The requirements R-1, R-2, R-3,
R-4, R-5,R-6, R-7, R-8 are all implemented as buttons on the left
side. 106

48 Execution User Interface of the Object Detection Stage. The re-
quirement R-11 is implemented with functionality to change or re-
move an object detection result. 106

49 Execution User Interface of the LiDAR Tracking of LiDAR objects.
The requirement R-10 is implemented here. 107

50 Execution User Interface of the Sensor Fusion visualization. The
requirement R-10 is implemented here. 107

51 Training User Interface. The requirement R-14 is implemented.
Several pieces of information are shown. 108

List of Source Codes

6.1 Calculate the average growth factor for the Velodyne model HDL-
64E, in Python. 95

6.2 Implementation of the tested Hungarian Algorithm with different,
tested variants, in Python. 100

6.3 Load an image of the DTLD, in Python. 105

1 Introduction
In the chapter Introduction, the motivation for this work is described.

Related and relevant work to this work is named and explained in 1.2. They are
categorized into Object Classification and Detection, Extracting Visual Features
and Segmentation, and Data Labeling and Dataset Generation. Furthermore, dif-
ferent works on the same topic are presented and compared to each other. Addi-
tional information is given too.

InOutline of Contribution, the outline of this work is given. The goal that should
be achieved at the end is named and explained. Furthermore, the approach to
the work is described as well.

The chapter ends with the Structure of the Thesis in 1.4.

1.1 Motivation
In the last few years, artificial intelligence has become more and more important
for different economic sectors and our daily lives. Different AI models are spe-
cialized for different purposes, for instance, object recognition and classification.
Furthermore, recent developments in machine learning allow the real-time ap-
plication of different models in autonomous vehicles and similar real-time areas.
Due to this development, car manufacturers push towards autonomous driving [7].

Guaranteeing safety needs an AI model, that is trained on hundreds of thou-
sands of data. Achieving reliability, accuracy, and generalizability is the main goal
while training AI models for different tasks. This is only possible if large datasets
of real driving recordings exist and are pre-labeled.

Different researchers demonstrated that the performance and generalization
ability of machine learning models are strongly related to the used training data
and the model’s architecture. With more diverse data, a model can better gener-
alize to new, unseen data. Furthermore, using more different samples from the
same objects leads to a better detection performance for the corresponding ob-
jects. All in all, more labeled training data leads to an overall performance boost
in accuracy and generalization ability. But to achieve this, a large pre-labeled
dataset is needed if models are used that are trained by supervision.

Labeling data is a time and human-resources-consuming task. This is due to
the labeling process. For instance, a human labeler must analyze an image and
find each relevant object within it. Next, he has to mark every instance of the

Introduction 1

found object and save the results on the system. With an increasing number of
samples and an increasing number of objects within one image, the task takes
more time.

The time problem increases rapidly if the data isn’t as simple to analyze as an
image is. For instance, LiDAR data are more complex than images due to the
spatial distribution of information across the 3D space. Furthermore, an object
can consist of hundreds of 3D points, where all points have to be marked as the
object in question. This is not an easy task if visual context is missing and only
LiDAR data is collected.

In this thesis, an automatic data labeling pipeline is proposed to mitigate the
time and human-resource problem of manual data labeling. In particular, different
approaches for different tasks are examined and evaluated. The question of how
to design and implement an automatic data labeling pipeline to support a human
labeler is answered. Furthermore, the final pipeline is evaluated in great detail
regarding accuracy, run-time, memory consumption, and applicability. The source
code is available at GitLab1.

1.2 Related Work
In Related Work, various works related to object classification, detection, and lo-
calization are presented. Different architectures for different purposes are illus-
trated. Furthermore, Related Work on automatic dataset generation, extracting
visual features, and image and video segmentation are presented too.

Object Classification and Detection In [8], the authors proposed one of the
first and largest convolutional neural networks, called AlexNet, by the time. The
proposed network consists of five convolutional layers and three fully-connected
layers for the final classification. It has around 60 million parameters and consists
of 650.000 neurons, for the time a huge network. The authors executed several
experiments and found that their results could be improved by simply using faster
GPUs and larger training datasets. Furthermore, their proposed architecture is
limited by the amount of available memory and the tolerated training time, they
were willing to spend to achieve better classification results. This means, that
their AlexNet architecture could be further improved by training the model longer
and providing more memory to store the model. At the ImageNet LSVRC-2010
contest [9], where 1.2 million high-resolution images should be classified, AlexNet
achieved a top-1 error rate of 37.5%. The top-1 error rate is the proportion of the
time the classifier doesn’t provide the highest score to the correct class.

The authors of [10] followed the idea of deeper networks to achieve better
performance and proposed the VGG-model family. Their models have a depth

1 Automated Data Labeling Pipeline: https://git.imp.fu-berlin.de/taegenee98/thesis.git

Introduction 2

between 16 and 19 weight layers, resulting in 134 million and 144 million param-
eters respectively. The architecture consists of several convolutional layers with
filter size 3, spatial pooling layers, mainly max-pooling layers with size 2 and stride
2, and three fully-connected layers for the final classification. Between each pair
of convolutional layers, a ReLU activation function is applied. The convolutional
layers are chosen in such a way, that they reduce the parameters needed. For
instance, a 5x5 kernel can be represented as two convolutional layers with a 3x3
kernel each, resulting in the same output size, such as the 5x5 kernel, but with
fewer parameters needed. Another advantage is that two convolutional layers
provide one additional non-linear rectification layer in between them. The VGG-
19 achieves 24.8% top-1 validation error, outperforming AlexNet by 12.7%. The
corresponding top-5 validation error is 7.5%. The training of CNNs is a time-
consuming task. Training a VGG-19 with 19 weight layers needs several days but
its performance is promising. The authors pointed out, that an increased depth is
beneficial for classification accuracy.

The authors of [11] leveraged the idea of increased depth. They proposed
residual learning and experimented with Residual Convolutional Neural Networks
(R-CNN). With residual learning, they developed a 152-layer ResNet (Residual
Network) that achieves an error rate of 3.57% on the ImageNet test set. Despite
its high depth, it has a lower complexity than compared to the VGG-19. The VGG-
19 model has 19.6 billion FLOPs (Floating Point Operations Per Second), while
the ResNet-152 has only 12 billion FLOPs, regarding its much bigger depth. To
achieve depth and lower complexity, the authors proposed special building blocks
for residual learning. One such block is illustrated in Figure 1. A central finding is
that depth is not everything. With increasing depth, optimization becomes more
and more important because of exploding and vanishing gradients. They use
batch normalization and other regularization techniques to deal with these prob-
lems and subsequently increase the performance of their architecture.

Figure 1: Residual building block of the ResNet architecture. [11]

Introduction 3

To show the applicability to object detection, they adopted a FASTER R-CNN
model and replaced the VGG-16 feature extractor with a ResNet-101. With this
modification, they achieved an increase of 6% in COCO’s standard metric, which
corresponds to a 28% relative improvement over the prior model, demonstrating
the superiority of deeper models.

The aforementioned approaches are quite good for object classification, but
they struggle with object detection. Object detection is more complicated because
it doesn’t classify objects within an image only, but also provides object localiza-
tion with bounding boxes, that encapsulate the classified objects. Furthermore, a
confidence value is computed as well.

In [12], R-CNN is introduced. It is the first deep convolutional neural network
for object detection and semantic segmentation. R-CNN is a two-stage detector,
meaning it first generates region proposals where objects might lay. Then it ex-
tracts fixed-length feature vectors via a CNN and finally classifies each region by
a specialized linear Support Vector Machine (SVM). The newly proposed method
achieved 53.3% mAP on the PASCAL VOC-2012 dataset [13], outperforming the
state-of-the-art by the time. They pre-trained the network on a large auxiliary
dataset, removed the last 1000-way classification layer, and trained a (N+1)-way
classification layer on a small, domain-specific dataset. As a feature extractor,
they used a VGG-16 model. The final classification is done by an SVM, specially
trained on one class each.

In 2015, Redmond et al. introduced You Only Look Once (YOLO) [14], a real-
time object detection approach that achieves a processing speed of 45 frames per
second (fps) in the base model. They also proposed a Fast YOLO model, pro-
cessing 155 fps. The authors framed object detection as a ”regression problem
to spatially separated bounding boxes and associated class probabilities”. This
means that a single neural network predicts bounding boxes and class probabil-
ities directly from full images in one evaluation. In contrast, R-CNN is a region
proposal-based two-stage detector with a complex pipeline. The first version of
YOLO has several limitations, such as strong spatial constraints, which can lead
to problems with small objects that appear in groups. Furthermore, YOLO strug-
gles to generalize to objects in new or unusual aspect ratios or configurations,
and their used loss function treats all errors the same even though errors in small
bounding boxes have a much greater effect than ones in bigger bounding boxes.

To mitigate the limitations of the first YOLO version, the same authors released
two consecutive improvements of YOLO, called YOLOv2 [15] and YOLOv3 [16].
The main aim was to make YOLO better and stronger while staying fast. They
used more diverse images with new objects to increase the vocabulary and ro-
bustness of the YOLOmodel. Both improvedmethods use a new feature extractor
network, named Darknet-19 and Darknet-53 respectively. Furthermore, an error
analysis was carried out. Based on the results of this analysis, the author focused
on improving recall and localization because a high number of errors were due to

Introduction 4

localization errors. Additionally, they simplified the architecture while increasing
the mAP.

Several researchers tried to improve the YOLO architecture in the last couple
of years. The main changes are made to the training strategy and the architecture
to make it better, faster, and stronger. The latest version is YOLOv82, developed
andmaintained byUltralytics. YOLOv8 is based on the original YOLO architecture
while being fast and efficient. It applies to several computer vision tasks, such as
object detection and tracking, instance segmentation, and image classification. It
is much faster than the original YOLO and provides a much better performance.

Extracting Visual Features and Segmentation Reliable and consistent visual
features are essential for different computer vision tasks, such as classification
and segmentation. The main aim is to generate features from an input image that
are very distinct from each other if they represent different objects.

In the past, convolutional neural networks were used to extract meaningful
and consistent features of an image. These features were then fed to a classi-
fication head, which performed the object classification. In 2021, Dosovitskiy et
al. proposed the transformer architecture for images, called Vision Transformers
(ViT) [17]. The authors found that when pre-trained on a large amount of data,
Vision Transformer attains excellent results compared to state-of-the-art CNNs.
Furthermore, they require substantially fewer computational resources to train.
Dosovitskiy et. al. experimented with the transformer structure and different-sized
datasets and found that a model has to be trained on a dataset consisting of 14
million to 300 million images to generate good, reliable features. Otherwise, its
performance is not great. Another finding is that models with smaller patch sizes
are computationally more expensive. An image is split into patches of fixed size.
If the size of the patches decreases, more patches are needed to split an image
completely. This increases the required computational resources.

Based on the findings of Dosovitskiy et al. and the emergence ofViTs, Caron et
al. proposed self-distillation with no labels (DINO) [18]. They found out that self-
supervised ViT features contain explicit information about the semantic segmen-
tation of an image. These findings do not emerge with CNNs. The ViT-generated
features lead to a 78.3% top-1 accuracy performance on ImageNet with a k-NN
classifier on top of the ViT. Another finding is that the self-supervised ViT mod-
els lead to better results for semantic segmentation compared to fully supervised
ones. Following the success of self-supervised ViTs, they distilled several publicly
available pre-trained DINO models.

Following the success ofDINO, the same authors proposed a modified version
of its approach, namely DINOv2 [1]. They revisited the architecture and combined
different techniques to scale pre-training in terms of data and model size. To train

2 Ultralytics YOLOv8: https://github.com/ultralytics/ultralytics (Online, Accessed: February 21,
2024)

Introduction 5

their new model they generated their own curated dataset with over 142 million
images, called LVD-142M. The resulting ViT processes image patches with size
16x16 pixels to generate visual features for image classification (image-level) and
segmentation (pixel-level). Following their first approach, they distilled several
smaller models from their big one, namely ViT-s/14 for the small model, ViT-b/14
for the base model, ViT-l/14 for the large model, and ViT-g/14 for the giant model.
Thesemodels are all publicly available. Furthermore, they performed downstream
tasks, such as semantic segmentation and image classification. They used a sim-
ple linear segmentation head on top of their ViT base model, archiving 71.3%
mIoU, while their boosted version achieved 81.0% mIoU on the CityScapes val-
idation data split, showing its good performance with quite simple segmentation
heads.

In [19], the authors presented a new architecture addressing any image seg-
mentation task, named Mask2Former. Mask2Former achieved a new state-of-
the-art performance and is built upon a simple meta-architecture. The first part
is a backbone feature extractor, that generates meaningful and reliable features
from an image. The second one is a pixel decoder, followed by a transformer de-
coder. The authors proposed several improvements over the meta-architecture.
They use masked attention instead of cross-attention. Furthermore, to help the
detection and segmentation of small objects, multi-scale high-resolution features
are used. Further optimization improvements are proposed as well. The last im-
provement, regarding the training duration, is the use of a few randomly sampled
points to calculate the mask loss. This requires less time than computing the
mask loss on the complete output, securing the possibility of more epochs while
needing the same amount of time.

Data Labeling and Dataset Generation Data labeling and subsequent dataset
generation is a labor-intensive process in which humans are mainly involved. To
create a dataset for object classification, a human has to analyze each image sep-
arately and annotate a label for each identified object. This is time-consuming. If
the goal is a large dataset, the data labeling is human-consuming because sev-
eral people are working on the labeling task. Furthermore, the labeling process
gets more time-consuming if the data becomes more complex to analyze. For
example, a dataset consisting of images and corresponding LiDAR data should
be created.

Someworks are trying tomitigate this problem by using neural networks to help
the human labeler or label unlabeled datasets fully automatically. In [20], the au-
thors developed an approach complementary to cooperative learning. The main
idea is that a model labels different samples. Difficult samples are also labeled
by a human, functioning as a reasoning tool for the model. The human-annotated
sample is then used to enhance the model’s accuracy. This process is carried out
for a long time. If the human labeler is encouraged by the model’s performance,
he can delegate the labeling task to the machine entirely. Additionally, the authors
took several inter-human-machine problems into account and described how to

Introduction 6

mitigate these.

The authors of [21] proposed a fully automated data labeling pipeline to anno-
tate radar data and camera images simultaneously. For their pipeline, they used
a YOLOv3 model that detects objects within images. Corresponding radar point
cloud data is clustered by DBSCAN [22]. Afterward, the cluster centroids are pro-
jected onto the image. Next, the centroids are associated with the bounding box
centroids of the image objects, using the Hungarian Algorithm [23]. Even if the
YOLOv3model fails to detect objects within frames due to bad illumination or sim-
ilar, the pipeline can label the radar point clouds. The idea to realize this is that an
object is continuously tracked across several radar scans. If the tracked object is
identified by the YOLOv3 in one image, the point cloud data can be labeled across
all consecutive frames. The tracking is realized by another use of the Hungarian
Algorithm to match the objects across consecutive radar scans.

1.3 Outline of Contribution
This thesis conceptualizes, develops, implements, and evaluates a fully auto-
mated data labeling pipeline for driving recordings saved as ROS bag files. Dif-
ferent models for different tasks are analyzed and evaluated. Different pipeline
stages group the functionalities and requirements. Besides the requirements, the
problem definition, different approaches, and the output of the pipeline stages are
described. Furthermore, the possible usage of the different outputs is explained
as well.

Different algorithms and approaches are discussed and compared regarding
their run-time, memory consumption, and complexity. The data labeling pipeline
should support a human labeler but not need to perform in real-time. It has to be
reliable and have high accuracy, such that the human labeler does not have to
correct many miss-classifications in the images and miss-matchings in the sensor
fusion. Furthermore, functionalities are designed and implemented such that the
labeler can correct miss-classifications.

1.4 Structure of the Thesis
The structure of this thesis is as follows.

In the second chapter Basics general information about autonomous vehicles
is given. The sensor systems LiDAR and camera are described. They are com-
pared to each other regarding their advantages, limitations, and applicability in the
context of autonomous vehicles. The topic of sensor fusion is described in great
detail. Different computer vision tasks that are relevant to this work are explained.
The used machine learning architectures are explained and their functionality is
described. Additionally, the different types of learning are explained as well. Fi-
nally, the technologies used in this work are presented.

Introduction 7

The chapter Data Labeling Pipeline starts with the proposal of an automatic
data labeling pipeline for driving recordings stored as ROS bag files. The proposal
is followed by a detailed description of the different stages of the pipeline. Design
choices and different approaches are explained and compared. Implementation
details are provided for each stage as well as the training and validation routines
of object detection and classification models. Furthermore, the architecture of the
models used is illustrated and described. At last, the question of how the data is
processed and the output is used is answered.

In the fourth chapter Evaluation, the proposed pipeline is evaluated regarding
different aspects. First, all stages are evaluated individually. Their performance,
regarding different metrics, is measured. Furthermore, their run-time is evaluated
and illustrated. For general evaluation of the different detection and classification
models, several publicly available datasets, such as CityScapes [29] and nuIm-
ages [4] are used. A final test is carried out on an original driving recording of
the Dahlem Center for Machine Learning and Robotics. To do this, segmenta-
tion maps, objects, and LiDAR mappings are determined by hand to generate a
validation set on real, unseen data. Furthermore, its applicability is demonstrated.

In the final chapter, Conclusion, the results of this thesis are described and
discussed. Whether the goal of proposing a fully automatic data labeling pipeline
for driving recordings has been achieved is discussed. Limitations to this work
are described and their impact is explained. Finally, possible Future Work is de-
scribed. Additionally, strategies to enhance the proposed pipeline are presented
as well.

Introduction 8

2 Basics
The basics of different sensor systems, sensor fusion, machine learning models,
and learning paradigms will be explained in this chapter.

In the sections 2.1 and 2.2, the sensor systems Camera and LiDAR are in-
troduced. Their advantages and limitations are explained. Furthermore, their
application areas in cars are named. This is followed by the introduction of Sen-
sor Fusion and the explanation of inter-sensor calibration as well as the different
Fusion Levels in section 2.3.

Section 2.4 deals with the Computer Vision Tasks. The tasks relevant to this
work are described and their differences are pointed out.

Different Types of Learning are described in section 2.5.

For the evaluation, several metrics are used. These are described in section
2.6.

The chapter ends with the introduction and explanation of the most relevant
machine learning Architectures in section 2.7 and the used Technologies in 2.8.

2.1 Camera
A camera is an image-producing hardware. It consists of a sensor, a lens, and
corresponding circuits. Cameras can take gray-scaled or colorful images and are
usable in several different environments. In a cell phone to take pictures and
record videos, in a notebook as a webcam, within buildings as security features,
and many more.

Areas of Application in Cars Cameras are used for several assistance sys-
tems: Parking, lane change, lane keeping, and reversing assistance. Additionally,
they are used to recognize and classify traffic signs and determine the traffic light
phase on the current lane. Furthermore, they are applicable as security features
to track and record who comes close to the car (e.g., Tesla’s Guard mode1).
Emerging regulations propose the monitoring of the driver to detect if the driver is
responsible, awake, and concentrated2. If not, a signal tone is emitted, such that

1 Teals Wächter-Modus: https://www.tesla.com/ownersmanual/model3/de_lu/GUID-56703182-
8191-4DAE-AF07-2FDC0EB64663.html (Online, German, Accessed: February 21, 2024).

2 BMDV - Bundesamt für Digitales und Verkehr: URL: https://bmdv.bund.de/SharedDocs/EN/Articles
/StV/Roadtraffic/new-vehicle-safety-systems.html (Online, Accessed: February 21, 2024).

Basics 9

the driver is woken up and reminded that he should be concentrated and respon-
sible while the car is moving.
Another application is object recognition and classification within images. Cam-
era images deliver structural information of an object in the corresponding field of
view. This information is usable for object recognition and classification of pedes-
trians, cars, traffic lights, and more.

Advantages In recent years, camera sensors have gotten smaller while taking
better pictures with each iteration. Especially nanotechnology plays a huge part
in this development. With it, cameras can have the size of a grain of sand and
take meaningful pictures. For instance, such cameras are usable in surgery or
similar.
With the introduction of mass production, the price of a camera gets cheaper and
cheaper. Today, car manufacturers can fit cameras everywhere in the car due to
the small form factor and the low costs. This is obvious because cars are already
equipped with cameras to detect traffic signs without compromising the view of
the driver. They are mounted at the top center of the windshield.
A camera image contains rich data, such as coloring and object shape. These
data are important for object classification and recognition. Especially coloring is
used to determine the traffic light phase. This is not possible with LiDAR sensors
due to their working mode, for instance.

Limitations Taking a good enough image for computer vision tasks relies on
different factors. In severe weather conditions, such as heavy rain, fog, or snow,
the camera can struggle to take meaningful images because of the bad visibility
of different objects. Bad illumination, especially in the dark, is a huge challenge.
Because of the missing light, the camera might take only black images, meaning-
less for object detection. Furthermore, a camera can be blinded by the sun’s light
like a human if the lens and shutter do not adjust in time. For instance, this can
be the case at the end of a tunnel.
Another limitation is that image processing is more expensive than LiDAR data
processing. Each image consists of three channels (RGB) unless the image is
gray-scaled from the beginning. Furthermore, an image contains several hun-
dreds of information, leading to a high consumption of memory storage. Besides
these two factors, algorithms working with camera images are mostly computa-
tionally expensive.
To cope with the aforementioned limitations, car manufacturers build specific chip-
sets only for image processing. They are more energy and computationally-
efficient than regular central processing units.
Another limitation is the calibration of cameras. Most cameras used in vehicles
are equipped with a fisheye lens, such that the taken image is distorted but con-
tains a larger field of view. Calibration regarding the distortion of the images is
needed to rectify the image and make it usable for other tasks. This calibration is
done whenever the car is in a service center. Otherwise, algorithms based on rec-
tified camera images might deliver wrong results, leading to possible misbehavior
of the car.

Basics 10

2.2 LiDAR
LiDAR stands for Light Detection and Ranging and is based on the Time-of-Flight
(ToF) principle like radar sensors. LiDAR is also referred to as ToF sensor, laser
scanner, and laser radar. Furthermore, LiDAR is a 3-D sensor that produces data
derived in time and 3D space.

Areas of Application in Cars LiDAR is a quite new and expensive technology
compared to radar and cameras. Hence, it is not much used in vehicles yet.
However, somemanufacturers already implemented them in the front of their cars.
For instance,Mercedes implements a solid-state LiDAR sensor in the front of their
cars to detect objects, replacing prior radar sensors [24].
Furthermore, LiDAR enables 360-degree scans while the sensor is packed into
a small form factor. They are usable to detect different objects around the car.
These scanners are mainly mounted on the roof of a car, leading to the possibility
that objects behind other objects are recognized. For instance, a child behind a
car can be detected, providing more security and safety for the driver and their
surrounding.

Figure 2: Velodyne HDL-64E LiDAR sensor. It consists of 64 laser emitters, split
into four groups of 16 emitters and two groups of 32 laser receivers.

LiDARBasics A LiDAR system consists of a laser source that emits laser pulses,
a scanner, and a detector. It is an active sensing method that is based on the ToF
principle. Figure 2 shows a Velodyne HDL-64E3 LiDAR sensor. It has 64 laser
emitters and 64 receivers.
A typical LiDAR sensor emits pulsed light waves into the surrounding environ-
ment. These pulses bounce off surrounding objects and return to the sensor. The

3 Image from MDPI: https://www.mdpi.com/2072-4292/2/6/1610# (Online; Accessed: February 21,
2024)

Basics 11

sensor uses the time it took for each pulse to travel from the emitter to the detector
to calculate the distance it finally traveled by

d =
c ·∆t

2
(2.1)

with the speed of light c and the time difference between sending and receiving
the emitted laser pulse ∆t.

Types of LiDAR Sensors LiDAR sensors differ in their technique to enlighten
the environment and their applicability. The used techniques can be categorized
as scanning LiDAR, where the distance measurements are gathered successively
by scanning the surrounding bit for bit and non-scanning LiDAR, where all distance
measurements are gathered simultaneously.
Scanning LiDAR can be divided further into mechanic and solid-state LiDAR. The
mechanic LiDAR works mostly with a motorized mirror that is rotated to reflect the
laser pulses. Disadvantages are the mechanical wear and the size of the com-
plete module. This limits its applicability. On the other hand, solid-state LiDAR can
use a mirror moved by electromagnetism or an antenna array like radar. Advanta-
geous is the elimination of all mechanical parts as well as enabling the possibility
to mount a LiDAR sensor directly onto a chipset. Furthermore, this leads to a
possible smaller form factor for autonomous vehicles. The main disadvantage is
that re-calibration is needed if the temperatures are changing rapidly. With rapid
temperature changes, the mirrors can drift out of alignment. They may not main-
tain calibration [25] and produce wrong results if not re-calibrated.
The development of a solid-state LiDAR with antenna arrays is inspired by radar.
The main advantage is a small form factor, using electromagnetic waves with a
wavelength of 905 nanometers (nm) or 1550nm, depending on the used sensor.
The main limitation is that small failures inside the antenna arrays can lead to big
problems, such as an object appearing further to the right than it is due to a sig-
nal being wrongly detected by the wrong antenna. Furthermore, other calculation
errors can occur if the array is damaged.
Non-scanning LiDAR is also referred to as flash LiDAR. Its working principle can
be described as a camera flash. The LiDAR’s flash enlightens the complete
scenery at once. The main problem is to choose between a strong flash intensity
to measure the environment and receive strong enough signals and a sensitive
detector to be easy on the eyes. If not carefully tested, a safety issue can occur
for pedestrians and other traffic participants.

Advantages Depending on the sensor type, LiDAR can detect objects at dis-
tances ranging between a few meters to more than 240 meters. The capability
to provide a field of view of 360-degree depends on the sensor type as well. For
instance, solid-state LiDAR sensors can only emit laser pulses in one direction,
whereasmechanical sensors can scan 360 degrees due to their mechanical parts.
Compared to radar, only one LiDAR sensor is needed to produce 360-degree
scans. To achieve this with radar multiple sensors would be needed with corre-
sponding inter-sensor calibration, making it an inapplicable procedure.

Basics 12

Because LiDAR’s wavelength is a multiple smaller than the ones of compara-
ble radar sensors, its resolution is much higher. Higher resolution enables the
possibility of detecting smaller objects, leading to better classification and object
recognition performance. Figure 3 illustrates the difference in resolution. The col-
oring is based on the distance to the sensor and not object-type specific. On the
left side, an image produced by a LiDAR scanner is shown. On the right side,
the same scene is shown but scanned with a high-resolution radar. The LiDAR
sensor produces scans with a much better resolution and fidelity to detail. For
instance, the human’s shape is sharper in the LiDAR scan compared to the radar
one. Furthermore, the one human in the radar scan is almost not distinguishable
from the object to the left due to its representation as a block-like structure.
Without the coloring, one may not be able to distinguish the humans from the car
in the right image.
Especially at night, a LiDAR sensor outperforms a camera sensor by a huge mar-
gin. In case no external light source is available, camerasmay not takemeaningful
images. They are mostly black and do not contain any useful and usable informa-
tion. LiDAR has its own light source and can be used without problems at night
and without the need for an external light source.

Figure 3: Resolution difference between a LiDAR scanner (on the right) and a
high-resolution radar (on the left) [26].

Limitations LiDAR is a sensing method that is unable to distinguish between
different colors because of its mode of operation.
LiDAR is a quite new technology and is at the moment more expensive than a
comparable radar sensor. For instance, a Velodyne VLP-16 LiDAR sensor costs
approximately 4.600$4, while a radar sensor costs approximately 200$5.
In severe weather conditions, a LiDAR scanner might struggle with damped sig-
nals due to heavy rain and similar. Additionally, such as cameras, LiDAR sensors
are prone to blinding by the sun because of the supersaturation of the photoelec-
tric sensors.

4 Rockwell Automation: Puck by Velodyne, URL: https://store.clearpathrobotics.com/products/puck
(Online; Accessed: February 21, 2024)

5 carparts onlineshop: Radarsensor Mercedes Bosch, URL: https://www.carparts-
onlineshop.com/de/radarsensor-a2139058613-mercedes-0203304134-bosch-0203304134.html
(Online; Accessed: February 21, 2024)

Basics 13

It does not always require to be bad weather such that LiDAR produces wrong
detections. A LiDAR scanner can produce a point cloud behind the ego-vehicle
due to the exhaust gases. This happens when the light pulses are reflected by
the small gas particles.
The maximum scanning distance of LiDAR is smaller than radar. LiDAR only pro-
vides distances up to 240 meters (Velodyne VLS-128 or Velodyne Alpha Prime),
while radar achieves up to 300 meters.
The last issue is the energy consumption of LiDAR scanners. E.g., a Velodyne
VLP-16 scanner consumes 8W while needing 9V-18V. A comparable front radar
sensor consumes less than 4W. The energy consumption increases with more
lines that can be scanned. A Velodyne VLP-16 scans up to 16 different lines,
while the newer Velodyne Alpha Prime can scan up to 128 lines but consumes
22W 6.

2.3 Sensor Fusion
Sensor Fusion describes the information and data fusion between different sen-
sors, such as LiDAR and camera or radar and camera. The goal is to enrich
the data of different sensors and make classifications, predictions, and detections
more reliable and robust. Furthermore, sensor fusion can save computational
resources by connecting and analyzing data of one sensor and applying these
results to other ones.

The sensor fusion process consists of three separate steps. First, different
sensors are compared. Following the comparison, an appropriate sensor config-
uration for a certain use case is selected. Next, the different sensors are calibrated
regarding a global origin. This is mostly somewhere in the ego-vehicle. At the end,
the sensor fusion is performed.

2.3.1 Sensor Calibration
Sensor Calibration, in the context of LiDAR-camera fusion, consists of the follow-
ing steps: point cloud filtering, coordinate calibration and error calibration. The
different calibration steps are executed in advance because the sensors need to
be calibrated before their information can be fused. Otherwise, wrong data may
be fused, resulting in false fusion data.

Following, each sensor calibration step is described individually.

Point Cloud Filtering Radar and LiDAR sensors create 3D data points but they
are not distinguished between relevant and irrelevant points. For instance, a Li-
DAR scanner does not distinguish between points lying on the ground or being

6 Velodyne Alpha Prime datasheet: https://www.mapix.com/wp-
content/uploads/2019/11/VelodyneLidar_AlphaPrime_Datasheet.pdf (Online; Accessed: Febru-
ary 21, 2024)

Basics 14

reflected by a car’s side. To remove such points, point cloud filtering is applied to
filter noise and useless detection results, such as ground points or similar. Fur-
thermore, an object detection algorithm can be applied to only gather the objects
within the LiDAR scan. Subsequently, the filtering reduces the number of relevant
data points for the analysis.
Different works propose methods for noise filtering and target extraction.

Coordinate Calibration The data produced by different sensors differ in their
representation and origin. For instance, radar and LiDAR sensors create 3D data
points with the sensor’s position as the origin. In comparison, the camera pro-
duces 2D data with the camera’s position as the origin. Appropriate sensor fusion
is only possible if the different sensor coordinate systems are calibrated regard-
ing one global origin. Hence, different transformation matrices are calculated to
transform LiDAR data from the LiDAR coordinate system to the car’s coordinate
system. Then from the car’s coordinate system to the camera’s coordinate sys-
tem. Furthermore, the projection from the 3D space to the 2D space is calculated
as well. A projection of point cloud data onto the corresponding image is illustrated
in Figure 4.

Figure 4: Example for the projection of LiDAR data onto a camera image. The
different colors refer to different objects found by a clustering algorithm.

Error Calibration Sensor data may be poor and contain errors. Furthermore,
mathematical calculations can contain errors if the results are rounded or similar.
Especially, the projection from 3D data onto a 2D plane can produce projection

Basics 15

errors due to unfinished or bad calibration. This could be the case as well if the
camera images are rectified from a distorted one.
To cope with these errors, error calibration is carried out.

2.3.2 Fusion Levels
3D data and vision information are fusible in different ways. Each of them has ad-
vantages. For instance, data level fusion achieves the most reliable data and uses
most of the original data but depends on the availability of enough data points.
Furthermore, a hidden security danger exists while using data-level fusion. For
decision and feature-level fusion, the point cloud data are preprocessed.

Data Level Data Level Fusion is imaginable as the determination of Regions of
Interest (ROI). After the filter and error calibration, a clustering algorithm deter-
mines objects of interest in the point cloud data. The cluster centroids are calcu-
lated. Next, the cluster centroids are projected via the calculated transformation
matrices from 3D onto a 2D plane. The projected cluster centroids are mapped
onto the corresponding camera image. A bounding box, representing the approx-
imation of the possible object, is assigned to each cluster. Each bounding box
represents an ROI which is fed into an object detection model to classify the ob-
ject inside the image part. Figure 5 illustrates this process for a simplified image
and radar output.
The determination of ROIs reduces the analysis of irrelevant parts of the corre-
sponding image significantly. Only the image portions, which lay inside an ROI,
are considered for the classification. Nevertheless, the determination of ROIs
leads to a hidden security danger, especially if the point cloud data aren’t accu-
rate. The problem of possibly not detecting objects is a security danger emerging
with the use of Data Level Fusion only.

Figure 5: Illustration of the working principle of Data Level Fusion [27].

Decision Level The fusion of the individual classification and detection results
of the point cloud data and the camera images is called Decision Level Fusion.
The point cloud data and camera images are processed individually by object
detection algorithms. The output of each processing is a list of possible objects
with assigned information. Both pieces of information are fused into one final

Basics 16

result. The process of Decision Level Fusion is illustrated in Figure 6.
Problematic is the computational effort that has to go into the different detection
systems. It is much higher than the effort for the Data Level Fusion because
of the missing ROIs, which shrinks the image into computational smaller areas.
An advantage of this approach is that the hidden security danger is mitigated by
applying a sliding window to the camera image and analyzing the complete one.

Figure 6: Illustration of the working principle of Decision Level Fusion [27].

Feature Level In Feature Level Fusion, the features of the point clouds (e.g., po-
sition, azimuth, velocity, etc.) and camera (size, object class, etc.) are extracted.
For instance, the background class of the image is removed, while other features
such as the object classes are extracted. Figure 7 illustrates the Feature Level
Fusion process. After the extraction, the point cloud data and extracted informa-
tion are transformed into an image-wise form. Next, the point cloud image and
the camera image are fused. An object detection algorithm analyzes the fused
features and outputs different detected objects.

Figure 7: Illustration of the working principle of Feature Level Fusion [27].

Basics 17

Difficulties While using sensor fusion, different difficulties may occur. The most
important one is the development of efficient algorithms that process point cloud
data and images in real-time to make them applicable to autonomous vehicles.
Otherwise, they are a security danger in autonomous vehicles and are not usable
in real-life applications because a car may react too late. Another difficulty is the
network and point cloud pruning. In network pruning, we are interested in remov-
ing unnecessary parts of the neuronal network to increase its processing speed
while being accurate and fast. Point cloud pruning is more difficult to carry out.
The goal is to create efficient algorithms that clean and filter unnecessary point
cloud data while the hidden security danger does not increase. The important
point cloud data should remain in the end.

2.4 Computer Vision Tasks
Computer Vision is a subfield of machine learning. It deals with anything that hu-
mans see and perceive. If we look at an image, we first identify objects in it. We
try to find relations between the objects and the scenery or try to recognize the
place in the image. Sometimes, we look at an incomplete or damaged image and
use our knowledge and experience to determine what is missing from it.

All of the aforementioned situations are Computer Vision Tasks. It includes dif-
ferent methods for acquiring, processing, analyzing, and understanding images.

Following, I describe the relevant Computer Vision Tasks for this work.

Object Classification Object classification is a fundamental task in vision recog-
nition that aims to automatically assign a label or class to an unknown or unlabeled
example, mainly an image. The model is given an image with one portrayed ob-
ject as input and computes to which class the object may belong. It automatically
assigns the predicted label to the image. Unlike object detection, image classifi-
cation typically pertains to single-object images.
Typical classification tasks are face expression classification and plant species
classification. For each of these tasks, an object classification model is trained on
a big preprocessed dataset consisting of hundreds or thousands of samples with
corresponding annotations.
E.g., Google Lens7 is a highly known and well-trained classification model.

Object Detection Object detection is a more advanced task than object clas-
sification because it consists of two steps. First, an object detection model tries
to find all positions of the known objects within an image, namely the localization
step. Second, the model classifies the detected objects and assigns a separate
label to each object. In short: Object detection is the task where objects are lo-
calized and classified.

7 Google Lens: https://lens.google/intl/de/ (Online; Accessed: February 21, 2024)

Basics 18

Compared to object classification, detection can detect several objects within one
image, while classification is mainly restricted to one object per image.

Image Segmentation Image segmentation describes the partitioning of an im-
age into multiple parts or regions. It is a commonly used technique in digital image
processing and analysis. The different regions or parts of an image are deter-
mined by the characteristics of the pixels. One can split image segmentation into
three distinct tasks. These are semantic segmentation, instance segmentation,
and panoptic segmentation.
In Semantic Segmentation each pixel of an input image is associated with one
class or category, such as car, pedestrian, sky, or others. The target is to produce
a pixel-wise segmentation map of an image. One is not interested in how many
objects of the same class are in the image. For instance, there is no interest in
how many cars are in the image. The only relevant information is that there are
cars and where they are.
Instance Segmentation is a special form of semantic segmentation that deals
with detecting and delineating each distinct instance of an object in an image. It
detects all instances of a class while decomposing the separate instances of any
segmented class. For instance, instance segmentation is capable of detecting
several cars, while semantic segmentation returns only one mask for all cars in
the image.
Panoptic Segmentation fuses instance and semantic segmentation and assigns
a semantic label based on the class definition and an instance ID from the instance
segmentation to each pixel of the original image.

2.5 Types of Learning
Training a machine learning model can be done in one of three different learning
paradigms. These paradigms are supervised, unsupervised, and semi-supervised
learning. Each paradigm has its own applicability, advantages, and limitations.

Following, each learning type and in which context they are used is described.
Furthermore, the structure of the underlying datasets and examples of their appli-
cability are given.

2.5.1 Supervised Training
Supervised training is characterized by the availability of a dataset consisting of a
collection of labeled examples. A labeled example (x, y) is an element x, called a
feature vector, and the corresponding label y. For instance, a dataset consisting
of images of fruits with corresponding annotations for object classification can be
used for supervised training. The annotation can be something such as the name
of the fruit or its growth state.

The supervised training paradigm is used to predict or classify data accurately.
The final layer of a supervised training model is a classification layer with n neu-

Basics 19

rons representing the different labels. For training, the model predicts a label
based on the input data. The prediction is compared with the ground truth label
and a loss is calculated. Subsequently, the weights of the model are adjusted
based on the loss. This procedure helps the model to predict the data appro-
priately if the process is carried out multiple times. At the training end, a model
should be produced that takes a feature vector x as input and returns a label y.
Compared to the ground truth, the model should not make many mistakes on
unknown samples.

2.5.2 Unsupervised Training

Unsupervised training uses only unlabeled data to make predictions. The dataset
is a large collection of unlabeled samples x. For instance, the dataset could be a
collection of images without annotations.

The main goal of unsupervised learning is to find structures within the data
and cluster them. Furthermore, typical applications are data clustering to find
similar objects within the data and outlier detection. To achieve this, a model has
to learn features and structures from the data. For instance, the model is fed all
data where each sample x is a feature vector of dimension n. A model may try to
find a separation of the data inside the n-dimensional space, called clusters. This
process is called model fitting. If the fitting is finished, one can input unseen data
into the model and get a prediction for the input’s class based on the underlying
dataset.

2.5.3 Semi-Supervised Training

In semi-supervised training, a dataset consisting of labeled and unlabeled exam-
ples is used, while the quantity of unlabeled examples is much higher than the
labeled ones. The core idea is to treat a sample differently based on whether it
has a label or not. The labeled sample is processed using traditional supervision
to update the model’s weights. For unlabeled data, the underlying algorithm tries
to minimize the difference in prediction between other similar training samples.

The main issue of having much less labeled training samples is the danger of
bad generalization onto the unlabeled samples. The model may predict the la-
beled samples well but can struggle with the unlabeled ones.

The labeled samples function as sanity checks and ground truth data. They
add structure to the learning problem by establishing how many classes are there
and which clusters correspond to which classes. The unlabeled samples provide
contextual information with which the shape and distribution of the whole dataset
can be estimated.

Basics 20

2.6 Metrics
For the evaluation of different machine learning models, one can rely on several
metrics.

The relevant metrics for this work are Precision, Recall, F1, IoU, Accuracy,
mIoU, and mAP.

The value calculation is based on the prediction results of the different models.
In the case of a binary classification problem, the following definition is made. A
True Positive (TP) is a prediction that is the same as the ground truth but is the
relevant class. A False Positive (FP) is a prediction that has the same class as
the relevant class, but the ground truth is the irrelevant class. A True Negative
(TN) is a prediction that is the same as the ground truth but is the irrelevant class.
A False Negative (FN) is a prediction that has the same class as the irrelevant
class, but the ground truth is the relevant class.

For a multi-classification problem, the values are taken for each class individ-
ually and then calculated into one value.

The Precision describes the fraction of relevant retrieved instances among all
retrieved instances. It is also referred to as a positive prediction value. A high
Precision shows that the model does almost no false positive classifications.

Precision =
TP

TP + FP
(2.2)

TheRecall describes the possibility of a model to predict the relevant instances
from a given dataset correctly. It is also referred to as sensitivity. A high Recall
shows that the model does almost no false negative classifications.

Recall =
TP

TP + FN
(2.3)

The F1-Score is the harmonic mean of Precision and Recall. The score varies
between zero and one. If the score tends to one, it means that the Precision and
Recall are high. If the score tends to zero, the opposite is the case.

F1 =
2 · precision · recall
precision+ recall

=
2 · TP

2 · TP + FP + FN
(2.4)

The IoU describes the Intersection over Union of the relevant retrieved in-
stances regarding all retrieved instances plus the wrongly classified instances
that are relevant. It describes the proportion of the correctly predicted relevant
instances among all relevant retrieved instances.

IoU =
TP

TP + FP + FN
(2.5)

Basics 21

The Accuracy describes the fraction of correctly classified instances among
all instances of a given dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.6)

The mIoU describes the mean Intersection over Union and is a common eval-
uation metric in semantic image segmentation. To gather the mIoU the IoU of
each class are summoned and divided by the number of classes.

The mAP describes the mean Average Precision and is a standard metric to
evaluate the performance of object detection algorithms such as YOLO orR-CNN.
It is the average of Average Precision of each class. The mAP incorporates the
trade-off between Precision and Recall and considers both FP and FN.

2.7 Architectures
A variety of models for different machine learning tasks exist. Some are more ap-
propriate for certain tasks than others. For instance, a Linear Regression Model
(LR) is more suited to predict future incomes than a Deep Neural Network (DNN).
The predictions of a DNN might be good as well, but its architecture may be way
bigger than the architecture of a LRmodel. Furthermore, the computational cost of
an LR model is a fraction of the costs of a DNN because of its reduced complexity.

Next, I will describe the most important architectures for this work: The Con-
volutional Neural Network (CNN) and Vision Transformer (ViT).

2.7.1 Convolutional Neural Network (CNN)
A CNN is a Neural Network consisting of three main layers: Convolutional Layer,
Pooling Layer, and Fully-Connected Layer. Further calculations, such as normal-
ization or similar, are integrated as separate CNN parts.

Convolutional Layer The Convolutional Layer (conv layer) is the core building
block of a CNN. A conv layer processes mainly 2D data but can be extended to 3D
data. It takes a tensor of shape n× h×w as input, where n is the number of inputs,
h is the height, and w is the width. The output of a conv layer is an abstracted
feature map from the image, also referred to as an activation map. The height
and width of the activation map may be smaller than the shape of the input data.
The conv layer consists of the input tensor, the output activation map, and a set
of filters whose parameters have to be learned. The filter, often referred to as
the kernel, has a height and width, which are smaller than those of the input im-
age. The filters run over the input tensor in the fashion of a sliding window. The
selected image part is multiplied by the different filter values. The results of this
calculation are stored as an entry of the different activation maps, one for each
filter. This procedure is done for the complete image to obtain the complete ac-
tivation maps, one map for each filter. The filter’s function can be modified by

Basics 22

additional parameters. In default settings, the windows slide over each column
and row of the input tensor one after another. With increasing stride, one can
skip over several columns and rows. This shrinks the activation map more rapidly
compared to the default settings.
Figure 8 illustrates how the different components of a conv layer work together
and how the activation map is calculated.

Figure 8: Convolution layer architecture with its different components. The stride
of the kernel is set to one, as well as the padding. The result of applying a kernel
of size 2×2 to a tensor of size 3×3 is an activation map of size 2×2.

Pooling Layer The Pooling Layer (pool layer) lies between two conv layers. Its
main task is to reduce the dimensionality of feature maps produced by a conv
layer while obtaining the most important features of it. It clusters the output of
neurons at one layer into a single neuron in the next layer. The pool layer has a
height and a width, defining the sliding window’s size.
Different types of pooling methods are used in machine learning. The most popu-
lar ones are max and average pooling. Figure 9 illustrates how max-pooling and
average-pooling works: A kernel with size 2x2 slides across a feature map of size
4x4. Each time the kernel slides further, the maximum or average value within
the kernel’s field of view is calculated. The calculated value is stored as output for
this operation. This process is repeated until the kernel reaches the bottom right
corner of the input feature map. The output of the pooling layer can then be used
for further operations. For example as input to the next conv layer.

Figure 9: Illustration of how aPooling layer works based on average andmaximum
pooling.

Basics 23

Fully-Connected Layer Fully-Connected Layers (FC layers) are neural net-
works where each neuron of a layer is connected with each neuron of the prior and
the next layer. It is the same as a Multilayer Perceptron (MLP). Before the output
of the last pool layer or conv layer is fed into the FC layers, the output tensor is
flattened to map a value to each neuron. Then, the flattened matrix goes through
a fully connected layer to classify the image or the input data of the CNN.

Figure 10 illustrates the architecture of a simple CNN (AlexNet). More complex
CNNs are available. The VGG-16 (Very Deep Convolutional Neural Network)
is well known. It has a depth of 16 convolutional layers and consumes roughly
533MB of storage, making implementation and training of it a time-consuming
task.

Figure 10: Architecture of the AlexNet Convolutional Neural Network [8]. It con-
sists of five conv layers, three max-pool layers with kernel size 3×3, and three FC
layers. After each conv layer, a ReLU activation function is applied.

2.7.2 Vision Transformer (ViT)
The arising of Vision Transformers (ViT) goes back to the work of Dosovitskiy et
al. [17]. They tested the applicability of well-known transformers on computer
vision tasks.

Transformers are well-studied in the area of Natural Language Processing
(NLP). They are already used in ChatGPT8, for instance. Dosovitskiy et al. found
out that a well-trained Transformer Encoder can extract good visual features for
computer vision tasks.

Figure 11 illustrates the architecture of a Vision Transformer with a Multilayer
Perceptron classification head. The classification head is replaceable by other

8 ChatGPT: https://chat.openai.com (Online; Accessed February 21, 2024)

Basics 24

Figure 11: On the right: Architecture of a Vision Transformer on an object clas-
sification downstream task. On the left: Architecture of a Transformer Encoder
Building Block [17].

processing heads for other vision tasks with ease. For instance, the classification
head can be replaced by an image segmentation head. A ViT works as follows:
First, the input image is divided into several patches of fixed patch size, which
are subsequently flattened. The flattening has to be performed to transform the
2D or 3D image patches into the interpretable input for a Transformer Encoder.
Next, linear projection is performed to produce lower-dimensional linear embed-
dings from the patches. The last step is the addition of positional embeddings to
each flattened patch to create a relationship between the different patches. These
positional embeddings for flattened image patches can be interpreted as the po-
sitional embeddings of words in a sentence in the context of NLP. Afterward, the
sequences are fed as input to a standard Transformer Encoder, which generates
vision feature vectors.

Although the Transformer Encoder is a standard one, it has to be pre-trained
on a large dataset to generate meaningful and reliable visual features across dif-
ferent appearances of the same object in different images. The training happens
in a fully supervised manner a priori to the actual downstream task. For instance,
the DINOv2 ViT models [1] are all distilled from a model that was trained on the
LVD-142M, which consists of 142 million images.

Based on the transformer’s visual features, an MLP is fine-tuned on a much
smaller downstream dataset for image classification or similar. This MLP takes
the visual features as input and predicts the label of the original image. To achieve
high performance, the visual features have to be very distinct from each other for
different objects but have to be very similar for the same objects.

Basics 25

The ViT’s Transformer Encoder consists of blocks of Norm Layers,Multi-Head
Attention Networks, and Multilayer Perceptrons. Furthermore, residual connec-
tions before each norm layer, after each multi-head attention layer, and multilayer
perceptron are added. Several of these blocks are put together to create a com-
plete Transformer Encoder.

”Attention functions can be described as mapping a query and set of a key-
value pair to an output, where the query, keys, values, and output are all vectors.
The output is computed as a weighted sum of values, where the weight assigned
to each value is computed by a compatibility function of the query with the corre-
sponding key.” [28].

Figure 12: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention con-
sists of several Scaled Dot-Product Attention Blocks running in parallel [28].

The multi-head attention mechanism is illustrated in Figure 12. The multi-head
mechanism consists of multiple scaled dot-product attentions, running all in par-
allel. The several output values of the multiple scaled dot-product attentions are
concatenated and once again projected, resulting in the final values.

A distinct feature of Vision Transformers compared to standard Transformers
is that a ViT does not need a decoder. The only thing that matters is the output
of the encoder network. All downstream computer vision tasks are performed on
the output of the Transformer Encoder.

2.8 Technologies
Different technologies are used to design, implement, and evaluate the automated
data labeling pipeline. Each used technology is described briefly.

Python Python is a universal programming language with the main focus on
readability and shortcode. It comes with dozens of useful packages and is a per-

Basics 26

fect fit for prototyping. In this work, several scientific and graphical packages are
used, such as pandas, PyTorch, Torchvision, Ultralytics, and Tkinter.
Tkinter is a package that provides functionalities to build a graphical user interface.
Ultralytics provides different machine learning models, such as YOLO, which are
used in this work. The functionality to train a pre-trained model with a new classi-
fication head is provided too.
Furthermore, Python comes with an integrated ROS package, namely rospy. This
package allows the direct integration of ROS into the Python environment without
any trouble. Additionally, the package rosbag comes with the functionality to read
driving recordings, which are saved as ROS bag files.

ROS ROS stands for Robot Operating System and is used to control the au-
tonomous vehicle of the Dahlem Center for Machine Learning and Robotics. It
is a framework for developing different kinds of robots, such as football robots or
autonomous vehicles. It is universally applicable and easy to integrate into the
Python environment. All driving recordings are saved as ROS bag files.

LabelImg LabelImg is a special Python package with an easy-to-use user inter-
face. LabelImg provides functionality to store the labeled images in either YOLO
or COCO format. Rectangles can be drawn around obstacles and one or more
labels can be associated with bounding boxes. With LabelImg, its own training
and validation dataset is created to evaluate the performance of several object
detection models and to train the models on more data, if needed.

Draw.io Draw.io is a free software to create different kinds of diagrams, ranging
from UML to general ones. It comes with support for several cloud storage, such
as OneDrive by Microsoft or Google Drive. Besides its online presence, it is also
a desktop application downloadable.

Training computer All models are trained on the same computer, in the same
configuration. The system is powered by two Nvidia 1080 Ti GPUs with a com-
bined 24GB RAM.

Basics 27

3 Automated Data Labeling Pipeline
In this chapter, the automated data labeling pipeline is proposed. The question of
how the pipeline works, what data it takes as input, and what data it produces is
answered.

In section 3.1, a special folder structure is introduced for storing the different
kinds of data.

Figure 13 illustrates the proposed Automated Data Labeling Pipeline. The
pipeline consists of several processing stages. The input data is processed by
the Data Extractor which extracts the relevant data for the pipeline and stores
them in a newly defined Folder Structure. The details of the Data Extractor are
given in section 3.2. The defined folder structure is explained in section 3.1.

Figure 13: Illustration of the Automated Data Labeling Pipeline.

Following the Data Extractor, the extracted images are processed by the Im-
age Processing stage, described in section 3.3. The generation of segmentation
maps and execution of the object detection is performed in this stage.

Next, the extracted LiDAR data are processed in the LiDAR Processing stage,
described in section 3.4. The LiDAR data are cleaned and objects are found in
there.

The last stage is the Sensor Fusion, described in section 3.5. The results of
the Image Processing and LiDAR Processing stages are fused. The output of the
sensor fusion stage is then stored as a sensor fusion dataset usable in supervised
sensor fusion applications.

The Requirements of the user interface and the implementation details of it,
as well as a usage instruction, are described in section 3.6.

The complete overview, of how the stages are interconnected is described and
visualized in section 3.7. Furthermore, it brings the chapter to a close.

Automated Data Labeling Pipeline 28

3.1 Folder Structure
A special folder structure is introduced to save the different outputs of the auto-
mated data labeling pipeline. The folder structure is split into several subcate-
gories, defined by the different stages of the pipeline. The data held by a ROS
bag file are stored in a special folder for each processed ROS bag, determined by
the bag’s name. The camera images are further divided by the orientation of the
camera. This means that all front and rear camera images are stored in separate
subfolders of the image main folder.

The LiDAR scans are stored in the sub-folder lidar.

The labels of the object detection models are stored in the subfolder labels.

The different segmentation maps are also stored in the subfolder segmenta-
tion.

The folder structure with an example ROS bag file is shown in Figure 14.

Figure 14: Proposed folder structure with an example ROS bag file.

The data of each ROS bag are stored in separate folders, determined by the
bag’s name. This is done due to the needed mapping between LiDAR scans and
the corresponding camera images. Each LiDAR scan is describable by four cam-
era images. One for each perspective.

Another issue is that the LiDAR and the cameras have different refreshing
rates. LiDAR operates on 10Hz, while each camera operates on 30Hz. This
means that the LiDAR scans every 0.1 seconds the environment, while a camera
takes every 0.033 seconds an image. Furthermore, the cameras do not take the
pictures at the same time. Hence, a LiDAR scan has to be mapped to the closest

Automated Data Labeling Pipeline 29

image of each camera regarding the timestamp of the LiDAR scan.

Furthermore, a separate folder makes the processing easier because the data
of different bag files do not have to be renamed. For instance, an image of the
front camera has the name broadrreachcam_front_1461942440681981837. It’s
much simpler to access the images of one ROS bag through the bag’s name in-
stead of saving all images to one folder without structure.

In the end, each ROS bag is interpreted as a sequence of the later dataset.

3.2 Data Extractor
The Data Extractor is the first stage of the automatic data labeling pipeline. It
consists of a ROS bag file reader and a data extractor.

The ROS bag reader takes a bag file containing a driving recording as input
and extracts the compressed images from the front, right, left, and rear cameras
as well as the LiDAR data. These data are passed to and processed by the data
extractor. The data extractor rectifies the compressed images and extracts the
LiDAR data to make them usable at later stages.

Implementation Details Each camera is equipped with a fisheye lens and pro-
duces compressed images. The fisheye lens distorts every captured image. To
use the image properly, the rectification of each one is needed. The rectifica-
tion works as follows. First, the rectification matrix, camera matrix, and distortion
coefficients corresponding to the given camera orientation are loaded from the
fub_mig-repository1, a sub-project of the Autonomos Labs GitLab. Next, the im-
age is loaded from the ROS bag file as a compressed image message. The com-
pressed image message is converted to cv2. Afterwards, the rectification matrix,
camera matrix, and distortion coefficients are applied to the image, resulting in the
rectified image. At last, the processed image is stored on the host system. The
rectification of an example image is shown in Figure 15.
The extraction of the LiDAR data requires the use of an additional python package,
named velodyne_decoder2. The decoder works on differentVelodynemodels and
applies the corresponding configuration file to the point cloud data directly. It takes
the velodyne_packets messages as input. The decoded message is transformed
into a pandas DataFrame and subsequently saved as csv-file on the host system.
Besides the raw data, a summary file for each folder is generated, containing the
timestamp of each file and the corresponding file name.

1 fub_mig git-repository: https://git.imp.fu-berlin.de/autoauto/fub_mig (Online, Accessed: February
21, 2024)

2 velodyne_decoder: https://pypi.org/project/velodyne-decoder/1.0.1/ (Online, Accessed: February
21, 2024)

Automated Data Labeling Pipeline 30

Figure 15: Rectification results based on an example image. Note the imper-
fection of the rectification process: (left) Distorted image taken with a camera,
equipped with a fisheye lens. (right) Same image, but after rectification.

I have to note that the rectification of an image is not perfect. This can be
seen in Figure 15. In the left image, the traffic sign is distorted and the blue car
on the left-hand side is squashed. Compared to the right image, the traffic sign is
straightened and the blue car on the left-hand side is rectified. But the car’s wheel
on the right side of the image is distorted. This is not the case in the distorted
image on the left side.

Another issue is that the field of view of the right image is much smaller com-
pared to the left one. This is obvious because the beige house on the left side is
missing in the right image.

3.3 Image Processing
The Image Processing consists of two individual tasks. A segmentation task to
generate segmentation maps and an object detection task to detect different ob-
jects within an image. Each task can be processed on its own and computed on
the before-processed and rectified images.

Following, I will describe each task individually. Furthermore, I explain how
the different outputs can be used for different stages in the pipeline and how they
are used at the end.

3.3.1 Semantic Segmentation
The Semantic Segmentation is performed at first in the image processing stage.
It takes an image as input and returns a granular segmentation map based on
the following semantic categories. Unlabeled, Road, Sidewalk, Building, Wall,
Fence, Pole, Traffic Light, Traffic Sign, Vegetation, Terrain, Sky, Person, Rider,
Car, Truck, Bus, Train, Motorcycle, and Bicycle, following the class definition of
the CityScapes dataset [29].

Automated Data Labeling Pipeline 31

The segmentation model consists of a feature extractor and a segmentation
head. The feature extractor’s goal is the creation of reliable and meaningful fea-
tures of several image patches. The features should be distinguishable from other
ones, such that a categorical connection between different patches can be found.
For instance, the features of a patch containing a car should be distinguishable
from a patch of the sky. This should apply to patches of different orientations,
sharpness, and illumination.

On top of the feature extractor, a segmentation head is applied. It takes the
generated features of the feature extractor as input and predicts the category of
each patch. Afterward, the predictions are assembled such that a segmentation
map is gathered.

Following, I describe several implementation details, the model’s architecture,
the training and validation routine, and the detailed processing of an image.

Furthermore, I give two approaches to how the segmentation map can be
used.

Implementation Details I’ve implemented semantic segmentation on top of a
DINOv2 model due to its robust and reliable visual features. Different DINOv2
models exist and are trained on a large dataset (LVDS-142M) consisting of 142
million different images. They produce reliable, meaningful, and distinct features
for semantic segmentation or classification problems.
DINOv2 is originally applied to a Vision Transformer (ViT) with a patch size of
16x16 pixels, while publicly available pre-trained models are ViTs with a patch
size of 14x14 pixels. The publicly available models are distilled from the model
with the larger patch size.
As the vision feature extractor the DINOv2 ViT base model with patch size 14,
referred to as DINOv2 ViT-B/14, is used. The selection of this model is a trade-off
between memory consumption and relative performance gain compared to the
other models. Table 1 shows the memory consumption and the performance on
a semantic segmentation task on the CityScapes dataset for each model respec-
tively. The ViT-B/14 model consumes around 330MB storage with its 86 million
parameters and achieves 80.0% mIoU on the CityScapes dataset in the multi-
scale setting. The much larger ViT-L/14 model achieves a relative performance
gain of +0.9% compared to the base model while consuming 1.13GB of storage.
Besides themodel’s size, the patch size is an important factor for the performance.
The shown performance on the semantic segmentation task is achieved with a ViT
with a patch size of 14x14. Unfortunately, the authors did not release the ViT with
a patch size of 16x16, so I’m bound to use ViTs with a smaller patch size. How-
ever, with a smaller patch size, a performance boost is possible regarding the
mIoU. This is because the mIoU is calculated by comparing the ground truth data
with the predicted segmentation map on the pixel level. A finer segmentation map
can be generated if the image size is fixed but the patch size decreases. This is
because the image is split into more patches than previously. But this comes with

Automated Data Labeling Pipeline 32

the cost of the need for more computational resources because more patches
have to be computed.
On top of the DINOv2 base model, a segmentation head consisting of one linear
layer and one conv layer with kernel size one and stride one. Between the two dif-
ferent layers, a GeLU activation function is applied [30]. The conv layer functions
as a classification layer, classifying the different patches into one of 20 distinct
categories.

mIoU
Architecture Memory lin. +ms

DINOv2

ViT-S/14 21M Parameters 66.6 77.1
ViT-B/14 86M Parameters 69.4 80.0
ViT-L/14 0.3B Parameters 70.3 80.9
ViT-g/14 1.1B Parameters 71.3 81.0

Table 1: Memory Consumption and Performance of the different DINOv2 models
on semantic segmentation task on CityScapes validation data split with a linear
classifier (lin.) and with multiscale (+ms) [1].

Model Architecture The model’s architecture is presented in Figure 16.
The DINOv2 backbone takes an image as input and outputs the patch tokens of
the last four ViT layers, following the analysis of the authors of [1]. Afterward, the
gathered patch tokens are concatenated to serve as input to the segmentation
head.
The architecture of the segmentation head is experimentally determined. It con-
sists of one linear layer and one conv layer that determines the corresponding
class. The input size of the linear layer is determined by the embedding dimension
of the DINOv2 base model. I’m using the output of the last four layers, following
the idea of [1], resulting in four times 768 neurons as input size. The embedding
size is multiplied by four because each DINOv2 layer outputs a feature vector of
size 768. The corresponding output size of the first layer is 1024.
The linear layer’s output is reshaped to an image-like form of height tokens times
width tokens such that the output of the final conv layer can be resized to the in-
put image’s size afterward. After the reshaping, a conv layer with an input size of
1024 and an output size of 20 is applied to classify each patch token. The conv
layer takes a single patch at once and outputs the corresponding category. The
complete segmentation is gathered by running all patches through the conv layer.
The last step of the segmentation head consists of upsampling the output of the
conv layer to the size of the input image to retrieve the corresponding segmenta-
tion map.
The model is implemented in such a way that images of different aspect ratios can
be processed.

Automated Data Labeling Pipeline 33

Figure 16: Final segmentation head to generate the segmentation maps.

Training To train the implemented segmentation head on top of the DINOv2
ViT-B/14 model, the CityScapes dataset is used. The training split of the dataset
contains 2975 images with corresponding segmentation masks as ground truth
data.
As a penalty criterion, CrossEntropyLoss with initialized weights is used. The
weights of the CrossEntropyLoss are initialized due to the unbalance of the num-
ber of finely annotated pixels per class in the training split. Figure 17 shows this
unbalance. The optimizer is Stochastic Gradient Descent (SGD) with a static
learning rate of 0.001 and momentum of 0.9. Each parameter was experimentally
determined. The model is finally trained for 100 epochs to get the best model
possible.
Dealing with the insufficient number of training samples requires several data aug-
mentation techniques. First, the sample is randomly resized by a factor between
1.5 and 4.5 of the original image size. The random resizing follows the advice of
[1], where multi-scale training is applied to achieve a performance boost. Follow-
ing, random mirroring and random Gaussian blur are applied. The last fix aug-
mentation is a random crop, selecting randomly a portion of the resized image of
size 672x672 pixels corresponding to 48x48 patches.
After the standard augmentations, two more augmentations, randomly selected
from an augmentation pool, are applied. The idea of the augmentation pool goes
back to the work of Cubuk et al. [31]. The authors experimented with several
augmentations and measured if a performance gain was achieved.
The augmentation pool consists of the following augmentations. The identity aug-
mentation returns the original image patch. The sharpness augmentation changes
the sharpness of an input image by a factor between −2 (less sharp) and +5
(sharper). The next selectable augmentation regards the brightness value of an
image. Its factor lies between −2 (less bright) and +2 (brighter). The last color
value regarding augmentation is the gray scaling of an image. The last possible
augmentation is a rotation by a random angle between 1 and 45 degrees.
For each training image, two additional augmentations are applied to artificially

Automated Data Labeling Pipeline 34

generated unseen and new images. The augmented image is the model’s input.
The layer’s weights are updated by the mean loss with backpropagation. After
applying the backpropagation, the optimizer is applied.
The model is trained for 100 epochs to gather the best possible model. Further-
more, the individual checkpoints are saved such that one can start from the latest
stage if one wants to retrain the model with other or more data.

Figure 17: Number of finely annotated pixels (y-axis) per class and their associ-
ated categories (x-axis) [29].

Validation The validation is carried out after each training epoch. The corre-
sponding dataset split of the CityScapes dataset consists of 500 different images
with additional segmentation masks.
For the validation process, each image is randomly resized by a factor between
1.5 and 4.5 of the original image size. Afterward, a random crop with a crop size
of 672x672 is applied.
The performance of the model is tracked during each validation run to find the
best model over the whole training routine. The performance for each category
is tracked, as well as for the whole predicted segmentation map. For both eval-
uations, the mean Intersection over Union (mIoU) of the predicted segmentation
map and the ground truth data is calculated. Furthermore, the Intersection over
Union (IoU) of each class is calculated separately.
Each evolution is tracked as a checkpoint and the corresponding evaluation data
is stored in a txt-file. The model with the best performance is defined by the high-
est mIoU. The mIoU is tracked over the whole training process. If the current
model has a higher mIoU than the best model, the current model is considered to
be the best. The model weights are stored separately from the checkpoints.

Automated Data Labeling Pipeline 35

Figure 18: Workflow of the segmentation stage.

Segmentation Process After training and validation, the semantic segmenta-
tion model can be applied to images of different ROS bag files.
The segmentation is illustrated in Figure 18 and works as follows. First, the input
image is scaled so that it has the same aspect ratio as the training data (two-to-
one). Otherwise, the image would be overdrawn with lines. Figure 19 shows this
issue using the original image size. Next, the image is resized with its new height
and width by the formula

w = round(old_width/14) · 14 (3.1)
h = round(old_height/14) · 14 (3.2)

such that the height and width are a multiple of 14 and have the same shape as
the original training data. The old height and width are divided by 14, rounded,
and multiplied by 14. This has to be done due to the required patch size of the
DINOv2 models. Otherwise, the ViT cannot proceed with the image because the
image patches cannot be generated. This leads to the possibility that the pro-
cessed image may be a bit smaller or larger than the original one.
Next, the input image is interpolated by a factor of three to artificially decrease the
patch size of the model. An interpolation by a factor of three leads to a factual
patch size of 4x4 pixels per patch instead of 14x14 pixels. This can be done be-
cause the model was trained with multi-scale training ranging between a factor of
1.5 and 4.5. If the original image size were used, the segmentation map would
become very pixelated (big chunks of one category) and the edges of the objects
would not be as clear. The resizing leads to a much finer segmentation map.
The Figures 20, 21, 22, and 23 illustrate the difference in the input image’s size
and the resulting segmentation maps. It is clear to see that the segmentation map
without interpolation more boxy is than the other ones. The edges are better dis-
tinguishable from the other segmentation categories.
Next, the input image is split into multiple chunks of size 672x672 pixels, corre-
sponding to the random crop size of the training and validation routines. This is

Automated Data Labeling Pipeline 36

mostly done for resource reasons. If the complete interpolated image is fed into
the model, the RAM of the CPU and GPU overflows.
Each interpolated image crop is processed by the segmentation model individu-
ally. The obtained segmentation maps of each piece are put together into one
segmentation map, representing the segmentation map of the complete input im-
age. The final segmentation map is stored in the segmentation subfolder of the
pipeline’s folder structure.

Figure 19: Segmentation map issues if the aspect ratio of the image is not the
same as of the training data. A reason for this could be that the crop of the image
is square, benefiting images with an aspect ratio in which a square can perfectly
fit.

Figure 20: Example image on which the segmentation based on different interpo-
lation factors is performed. The image is taken from the CityScapes dataset.

Automated Data Labeling Pipeline 37

Figure 21: Segmentation map of the image without interpolation.

Figure 22: Segmentation map of the image with interpolation by a factor of 2.

Figure 23: Segmentation map of the image with interpolation by a factor of 3.

Applicability I developed two application ideas for the segmentation map of an
image. The first idea is to use the segmentation map to retrieve only the rele-

Automated Data Labeling Pipeline 38

vant parts of an image. For instance, only extracting all parts that lay on the car
category of the segmentation map. The extracted parts are then the input of the
object detection stage, where only specialized detection models are applied. For
instance, a specialized model, only trained on car data, is applied to the afore-
mentioned parts of the image.
The second idea regards a further filtering stage for point cloud data based on
the segmentation map. LiDAR and radar data contain several points that are not
relevant for object matching in the sensor fusion stage. For instance, points that
lay on buildings or fences are not relevant for the sensor fusion but are relevant
to be found as objects in the LiDAR or radar data. These points should be re-
moved before the object matching between camera and LiDAR or camera and
radar objects is carried out.

3.3.2 Object Detection
Themain task of the object detection stage is to find different objects in the camera
images. The objects are categorized into vehicles, pedestrians, traffic signs, and
traffic lights. For each category, a specialized model is trained on a corresponding
dataset.

Datasets

Different Datasets are used to train the object detection models. Following, each
used dataset is described briefly. Furthermore, advantages and disadvantages
are presented, and if needed, extensions to the dataset are explained.

German Traffic Sign Detection Benchmark The GTSDB [5] was introduced
on the IEEE in 2013. It is a single image detection dataset for use in computer
vision, pattern recognition, and image-based driver assistance. It consists of 900
images, divided into 600 training and 300 evaluation samples. The images are
taken from an ego-vehicle’s point of view. The authors defined 42 different classes
that they annotated across the dataset.
It is the only publicly available dataset that contains only German traffic signs.
Compared to other datasets for vision tasks, it is very small, containing only 900
images in total. Furthermore, Germany has approximately over 200 different traf-
fic signs, while the GTSDB only represents a fraction of it. The selection of the
annotated traffic signs seems to be random because some signs exist in different
directions, but the dataset contains only one of them. Additionally, the names of
the traffic signs are not right either.
To mitigate these issues, the GTSDB is extended and the class definitions are
redefined based on the official German traffic sign catalog. Furthermore, more
different types of traffic signs are added. The newly created dataset is available
at https://git.imp.fu-berlin.de/taegenee98/gtsd.

nuImages nuImages [4] is a special split of the original nuScenes dataset by
providing 93.000 2D annotated images from a much larger pool of data. Sev-
eral camera images are provided, resulting in a total of 1.200.000 camera images

Automated Data Labeling Pipeline 39

at the nuScenes dataset. The nuImages dataset is available, like the nuScenes
dataset, as free to use strictly for non-commercial purposes.
The data annotation for the 93.000 images with 2D bounding boxes results in
800.000 foreground objects and 100.000 semantic segmentation masks. nuIm-
ages provides several main classes with many sub-classes. For instance, the
class pedestrian is split into an adult, child, construction worker, personal mobil-
ity, police officer, stroller, and wheelchair. The split into several sub-classes is
a good idea because an autonomous vehicle should react differently if different
pedestrians walk onto the road or different pedestrians are recognized. For in-
stance, a child does not always act rationally.
Based on the nuImages dataset, several specialized object detection models are
trained. For instance, an individual pedestrian and vehicle model are trained. The
classes of each model correspond to the sub-classes of the dataset.

Traffic Lights The traffic light dataset3 is a publicly available dataset for traffic
light recognition. It represents several different traffic light types straight, only
right, only left, and more. Furthermore, the authors of this dataset defined the
traffic light phases.
The dataset consists of 3.000 images, where 2.600 belong to the training split and
400 to the validation split.
The central issue of this dataset is that it does not consist of only German traffic
lights and is mixed with other traffic lights from other countries. Furthermore, the
only labels that are added are the traffic light phase and not the pictogram of the
traffic light. The pictograms are also interesting because some traffic lights only
indicate that one is allowed to go straight or left.

Implementation Details

To realize the object detection, I use the YOLOv8 model from Ultralytics. The
YOLOv8model is based on the original YOLO paper and is much faster and more
precise than all other models.

I’ve trained four models. One for pedestrian detection, one for vehicle detec-
tion, one for traffic light detection, and one for traffic sign detection.

Themodels are trained on the aforementioned datasets. The number of epochs
varies from model to model because the datasets have different sizes.

To detect all objects in an image, the different models are processed individ-
ually and their results are put together at the end. This process is illustrated in
Figure 24.

3 Traffic Light Detection Dataset: URL: https://www.kaggle.com/datasets/wjybuqi/traffic-light-
detection-dataset (Online; Accessed: February 21, 2024)

Automated Data Labeling Pipeline 40

Figure 24: Object Detection Stage. The different colors of the bounding boxes
indicate the results of the different models, put together.

The model’s output is saved in YOLO-Format in the label folder.

The YOLO-Format is a definition of how the results of the object detection are
stored. An object is saved as one line of a text file. The values, except the first
value, are all relative to the width and height of the image. The first entry is the
label, represented by an integer. The second and third values describe the center
point of the object in the image. The value varies between zero and one. The
fourth and fifth values describe the width and height of the object. For instance,
the line ’0 0.5 0.5 0.9 0.9’ describes an object with label 0. Its center is in the
center of the image, described by ’0.5 0.5’. Its width and height are 90% of the
image’s width and height, described by ’0.9 0.9’. All in all, the object in question
fills almost the entire image.

3.4 LiDAR Processing

The LiDAR Processing consists of two successive tasks. The first one can be
summoned under LiDAR Filtering. The second one is summoned as clustering
and object detection within the LiDAR data.

At last, the clustered LiDAR data are put into object tracking to track an object
across consecutive frames.

Following, I’ll describe every task in great detail. Furthermore, I give insights
into the implementation and compare different approaches for LiDAR Filtering.

The complete LiDAR processing is illustrated in Figure 25.

Automated Data Labeling Pipeline 41

Figure 25: LiDAR Processing overview.

3.4.1 LiDAR Filtering
The filtering of LiDAR points is necessary because the sensor does not distin-
guish between relevant and irrelevant detections. Irrelevant detections can be
points that lay on the ground or noise generated by exhaust gases for example.
These ground and noise points are useless for the detection of objects within the
LiDAR data. They would make the object finding much harder.

Two approaches to segmenting ground points from obstacle points are eval-
uated. The approaches are distinct from each other and use different data and
techniques to achieve ground segmentation. Following, both approaches are de-
scribed in great detail. Furthermore, the selected approach for the automatic data
labeling pipeline is named based on different criteria.

Following, I describe each filtering step in great detail and give insights into
the implementation.

Ground Segmentation using Markov Random Fields

The first approach is based on the Ground Segmentation Algorithm for Sloped
Terrain and Sparse LiDAR Point Cloud paper [32] and consists of two subsequent
steps. A channel-based initial classification is followed by a ground map and final
classification, resulting in an obstacle-ground segmentation.

The first stage is a channel-based initial classification. Channels are created
by dividing the 360-degree scan into fixed portions of fixed angular size. The
authors used a 2-degree split value. This means that the 360-degree scan is split
into 180 channels of 2-degree horizontal representation each. After the channel
creation, the points are sorted by their relative distance to the LiDAR sensor in
ascending order. Next, several geometric features are evaluated on each channel,
searching for ground and obstacle evidence. The algorithm, shown in Algorithm 1,
decides if a point is a ground or an obstacle point based on the following heuristic
rules.

Automated Data Labeling Pipeline 42

Algorithm 1 Channel Ground Segmentation [32].
1: Input: Channel’s points
2: Output: Obstacle-ground labels
3: l0 ← Ground
4: for all p ∈ C
5: if CheckNoise(p)
6: continue
7: end if
8: switch l(i−1) do
9: case Ground

10: li ← CheckObstacle(pi, p(i−1), pg)
11: end case
12: case Obstacle
13: li ← CheckGround(pi, p(i−1), pg)
14: end case
15: case Doubt
16: li ← CheckBoth(pi, p(i−1), pg)
17: if li ̸= Doubt
18: CorrectDoubtPoints(li)
19: end if
20: end case
21: end switch
22: end for

Heuristic Rules The following two heuristic rules are defined to find obstacle
evidence. Only one of them has to be met such that a point is considered an ob-
stacle.
The first one considers the maximum allowed slope. The gradient between the
current point and the previous one is calculated. If the gradient exceeds a thresh-
old αΘ, the current point is considered to belong to an obstacle.
The second considers the distance of the current point compared to the previous
one. If the current point is closer to the sensor than the previous one, the current
point is considered to belong to an obstacle.
Both rules can be triggered by ground imperfections or irrelevant, small objects,
such as bumps, grass, or curbs. To avoid false classification, found obstacle ev-
idences have to be confirmed by a relevant height difference. This height differ-
ence is calculated between the tentative obstacle point and the last ground point.
If the difference exceeds a threshold αh the point is considered as an obstacle,
otherwise it is classified as doubt.
Likewise, three heuristic rules for ground evidence are defined. But contrary to
the obstacle rules, the ground rules have to be simultaneously met to consider a
point as ground.
First, the expected distance is checked. The assumption is that the current point
is farther away from the sensor than the last ground point.
The second rule considers a height reduction. This means that the height of the
current point has to be lower than the height of the previous point. This may mean

Automated Data Labeling Pipeline 43

that the obstacle is over and the ground is hit again.
The third rule checks if the current point has a similar height to the last classified
ground point.
If doubt points are not solved at the end or before a certain distance, the obstacles
evidences are assumed not to be strong enough and, therefore all doubt points
are corrected to ground.

The second and final step is the re-classification of the point cloud data. The
re-classification is performed based on the solution of a Loopy Belief Propagation
algorithm for a Markov Random Field.

The first step of the re-classification is the creation of a polar grid map, which
is interpreted as an undirected graph, corresponding to a Markov Random Field
with four neighbors: Forward, backward, clockwise, and counterclockwise. Each
cell defines a portion of the surrounding area in terms of angle and radial distance
(∆Θ, ∆r). The cell holds the information on the points’ height and initial classifi-
cation from the channel-based initial classification.

Figure 26: Loopy Belief Propagation: Illustration of the message sent from the
node node to the node clockwise. The node node has to wait until it receives the
messages from the nodes counterclockwise, forward, and backward.

Next, the Loopy Belief Propagation (LBP) algorithm is applied to solve the
MRF. The LBP sends messages through the graph, but only if the current node
has received all messages from its neighbors, except from the one it wants to
send the message. Figure 26 illustrates the message sending. The node wants
to send its message to its neighbor clockwise. It has to wait until it receives all
messages from its neighbors forward, backward, and counterclockwise. If this
is the case, the node sends its message to clockwise. To meet the assumption
that a node has to wait for all messages to arrive before the node can send, all
messages of the MRF are initialized beforehand. This guarantees the successful
execution of the LBP.

Automated Data Labeling Pipeline 44

After a certain number of iterations, the LBP stops and the belief vector for
each node is calculated. The label with maximum belief (minimum cost) is se-
lected as an optimal label. The label represents the height value of a certain cell.

In the final step, the LiDAR points are re-classified by comparing their height
with the optimal label from the MRF solution.

Implementation Details The channel-based initial classification is implemented
with a for loop, iterating over all channels. The points are sorted ascending by their
distance to the sensor. For the classification, the algorithm, presented in Algorithm
1, is applied to each point of each channel. The result is stored as an additional
pandas column to the DataFrame, containing all LiDAR points.
The parameters and threshold values for the initial classification are taken from
the paper [32].
The polar grid map for the final re-classification is represented as a graph. For
this, a dictionary is used for storing each node with its corresponding values and
neighbors. After inserting all points, the LBP algorithm is applied to the polar
grid. The LBP sends messages around the defined graph in the order forward,
clockwise, counterclockwise, and backward. Following the authors’ advice, all
messages of each graph’s node are initialized with zero.
After five iterations of the LBP, the belief vector of each graph is computed. The
belief vector shows values for all possible height values. We are interested in the
height with the lowest value. Based on the belief vector’s result, the LiDAR points
of each node are re-classified regarding the new ground height.

Ground Segmentation using Height Variance

The second approach to achieve ground segmentation uses aGroundGrid [2] and
different values computed by the points’ height. Compared to the first approach,
it is a much simpler one and much easier to implement. Although an open-source
implementation exists, it can’t be directly used because of the special use case in
the pipeline. The original GroundGrid is implemented for the segmentation o se-
quential data, using the odometry data of the car, where I proceed only one point
cloud at once, without positional information. This means I had to implement the
GroundGrid on my own and adjust it to the pipeline’s use case.

The space around the autonomous vehicle is interpreted as a grid where each
cell has a size of length times width. Furthermore, several layers are defined on
top of the grid map. These layers have the same structure as the original grid
map but hold different information. The layers are min ground height, max ground
height, average ground height, point count for each cell, and height variance.

The aforementioned information is used to generate a terrain elevation map
that is used to segment the point cloud data into ground and non-ground points.
To do this, the ground height of each cell of the grid map is attached to the terrain
elevation map.

Automated Data Labeling Pipeline 45

Implementation Details The space around the sensor is split into fix-sized cells
of size 0.33 meters times 0.33 meters, creating the ground grid. The width and
length of each square are experimentally determined by the authors. It is a com-
promise between accuracy and computational performance.
The maximum covered distance for the Velodyne models HDL-64E and VLS-128
are used to limit the size of the ground grid. The maximum detection distance of
an HDL-64E sensor is 120 meters, which is equivalent to a ground grid size of
726x726 cells. In contrast, the VLS-128 sensor covers 245 meters, correspond-
ing to a ground grid size of 1.484x1.484 cells.
In advance of the rasterization of the point cloud data, an outlier detection is per-
formed, where points are removed that lie under the already known ground. These
points arise if a light pulse is reflected to the ground by a car. Because of the
ToF principle, the LiDAR sensor computes the point much lower than it truly is.
These miss-computations are the most harmful points because they can corrupt
the height estimation at the end.
Following the outlier detection, the point cloud is rasterized and the aforemen-
tioned layers are updated, such as min and max ground height, the number of
points in a grid cell, the average height, and the height variance inside the cell.
At last, the ground height is estimated for each cell, based on the direct neigh-
borhood. The neighborhood is either a 3x3 square cell or a 5x5 square with the
current cell as the center cell, depending on the distance to the sensor. Based on
the ground estimation, the point cloud is classified and a ground label is assigned.

Figure 27: Ground/Obstacle segmentation based on the GroundGrid. left: Input
point cloud data with ground points. right: point cloud data without ground points.
The x-axis and y-axis represent the distance [m] from the ego-vehicle.

Figure 27 illustrates the results of the ground segmentation approach based
on the GroundGrid.

To filter the LiDAR point cloud data of the Dahlem Center for Machine Learning
and Robotics, the GroundGrid implementation is used.

3.4.2 LiDAR Clustering
The second step of the LiDAR processing is the clustering of the remaining points
with an adaptive Density-Based Spatial Clustering of Applications with Noise (DB-

Automated Data Labeling Pipeline 46

SCAN) algorithm for LiDAR points. This version of DBSCAN is based on [3] and
estimates the parameters eps and minPts dynamically.

The estimation of feps is expressed in Equation 3.3. The first term considers
the increase of the eps parameter based on the distance d of the selected LiDAR
point to the LiDAR sensor as origin. One can assume that the LiDAR point cloud
of an object gets sparser the further away the object is and gets denser the nearer
the object is. The distance d is the Euclidean distance from the point to the data
origin. The second term takes the density per square meter into account with den-
sity describing the density value of the corresponding cell of the grid map used
in the filtering step. Both terms are inspired by the adaptive DBSCAN paper [3],
where the authors found that eps is proportional to the distance and proportional
to density−1. The growth factor g = ln(1.077938182482261) is determined by ana-
lyzing the distance between the ground point rings of the Velodyne sensor. The
underlying and used data can be found in Table 15 in the Appendix. I’m using
the experimentally determined growth factor because it’s determined by using the
measurements and not theoretically determined by considering the optimal value
of the datasheet.

eps = (0.15 · eln(g)·
d
2) · 0.6 + (8 · 1

density+ 9
+ 0.1) · 0.7 (3.3)

The growth function is multiplied by 0.15 to guarantee at a very small distance
an eps value of at least 0.15. Furthermore, it regularizes the e function in such a
way that the function grows very slowly in the first 50 meters. Furthermore, the
growth value is multiplied by the half distance such that the e function increases
with the distance to the LiDAR sensor. The distance is halved to decrease the
impact of the distance. Figure 28 illustrates the eps estimation based only on the
first term.

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

2

4

6

8

distance

ep
s

eps

Figure 28: Visualized eps estimation.

The density term is multiplied by eight to guarantee a larger eps if the density
is very small around one point. Furthermore, the 0.1 is added to the density term
to guarantee an addable value to the eps if the density is very high. If the density
is high, the term goes against zero. Otherwise, the term goes against positive

Automated Data Labeling Pipeline 47

infinity.

Additionally, the two terms are weighted differently. The first term is multiplied
by 0.6 and the second one by 0.7. Both values are determined by experiments
on different example data. The weighting makes the impact of the two terms dif-
ferently on the final eps estimation.

minPts is estimated by multiplying a start value by eps and the distance di-
vided by the density, following the observation of [3]. The start value is selected
based on an eps of 1, corresponding to a search radius of 1 meter. The formula
is expressed in Equation 3.4.

minPts = 75 · eps · d

density
(3.4)

After performing the DBSCAN algorithm, several clusters are obtained. These
clusters are analyzed regarding their density in combination with their convex hull
and the number of points building the cluster. If the cluster contains less than 15
points, it is considered to be a false cluster and is removed from the list. The
underlying structure of such a cluster could be a bump in the road, a passing
bird, or similar. Furthermore, if the cluster has a small density, calculated by the
area covered by the convex hull divided by the number of cluster points, it is also
considered a false cluster and removed. For instance, not filtered ground points
could form such a cluster. This cluster is useless in the automated data labeling
pipeline and is removed from the cluster object list. The thresholds that a cluster
has to exceed to be considered a false cluster are experimentally determined.

3.4.3 Object Tracking
The clustering produces several object proposals. The object proposals are iden-
tifiable by the corresponding cluster ID, provided by theDBSCAN algorithm. How-
ever, the same object across different scans can have different IDs. The ID of an
object depends mostly on the time when the first point of the cluster is proceeded
by the DBSCAN algorithm.

To track the same object across consecutive frames, an object ID is assigned.
This object ID is propagated through successive LiDAR scans to track an object.

The tracking algorithm consists of a tracking logic and theHungarian Algorithm
[23] to match the object IDs across consecutive LiDAR scans.

Hungarian Algorithm The Hungarian Algorithm is a matching method to find
the best possible assignment across different objects. The algorithm works as
follows:
Assume a matrix is given where the rows are toys and the columns correspond to
children. Each entry indicates the popularity value of each child regarding each

Automated Data Labeling Pipeline 48

toy.
First, the row minimum of each row is determined and subtracted from each el-
ement in each row. The column’s minimum of each column is determined and
subtracted from each element in each column as well. Next, an algorithm de-
termines the number of lines needed to cover all zeros inside the matrix. If the
number of lines needed is smaller than the number of the smaller dimension of
the matrix, further zeros should be created as follows. Find the smallest uncov-
ered number and subtract it from all uncovered numbers. Furthermore, add the
smallest uncovered number to all elements that are covered by two lines.
If the number of lines needed to cover all zeros is equal to the smaller dimension
of the matrix, the optimal assignment is found. In the assumed scenario, the op-
timal assignment corresponds to which children which toy gets.
The Hungarian Algorithm’s pseudocode is displayed in Figure 2 and an example
of its application is given in Appendix Table 16.

Algorithm 2 Pseudocode of the Hungarian Algorithm [23].
1: Input List of objects of the Image Processing stage Oimage, n size of Oimage,

List of object proposals of the LiDAR Processing stage Olidar, m size of Olidar

2: Output Mapping of the object proposals of LiDAR with the vision objects
3: Create matrix of size n×m
4: Insert distance between each object and object proposal according to their

matrix position
5: for i <= n
6: Find row minimum rmini

7: Subtract rmini from each entry in row i
8: end for
9: for j <= m

10: Find column minimum cminj

11: Subtract cminj from each entry in column j
12: end for
13: Calculate minlines: number of minimum lines needed to cover all zeros inside

the matrix
14: while minlines < n do
15: Determine smallest entry s not covered by any line
16: Subtract s from all uncovered entries
17: Add s to all entries that are covered by two lines
18: end while
19: Determine the best mapping based on the afore-created matrix
20: Return mapping

Implementation Details I’ve implemented the Hungarian Algorithm based on
two different data representations. Once with NumPy array and once with pan-
das DataFrame. The NumPy and pandas packages are both implemented in C, a
hardware nearer programming language than Python. This offers a performance

Automated Data Labeling Pipeline 49

boost regarding their processing speed compared to Python’s standard lists. The
implementation details are the same for both data structures and the final imple-
mentation of both approaches is available in the code base.
Following an analysis of their processing speed, I’ve chosen the NumPy imple-
mentation of the Hungarian Algorithm because it is faster by a factor of ten com-
pared to the pandas’ implementation. The corresponding analysis is carried out
in chapter Evaluation, section 4.2.
The implementation can be split into several steps. Step 1 consists of finding and
subtracting the internal minimum of every row and then of every column.
Step 2 targets the minimum number of rows needed to cover all zeros inside the
matrix. To realize this, the matrix is converted into a boolean matrix, where each
zero is mapped to True and False otherwise. Next, the row with the minimum
number of True values is determined (Step 2-1). In Step 2-1, the entries of the
row and column, in which the minimum number of True values was determined,
are all set to False and the found zeros are stored in the marked_zero list.
Next, the matrix from steps 2-1 is checked and we mark the matrix according
to certain rules. First, we mark rows that do not contain marked zero elements
and store the corresponding row indexes in the non_marked_rows list. Next, we
search the non-marked rows’ element to find unmarked zero elements in the cor-
responding column. The column indexes are stored if an unmarked zero is found
and the column index is not stored elsewhere. Step 2-2-4 compares the col-
umn indexes of the marked_zero list and the before-gathered column indexes.
If a matching column index exists, the corresponding row index is saved to the
non_marked_rows list. At the end, we determine the indexes that are not in
non_marked_rows, store them in a marked_rows list, and return the result of the
matrix marking process.
Checking if an optimal assignment is achieved is performed in Step 3. The smaller
dimension of the input matrix is checked against the number of lines needed to
cover all zeros. If the number of lines needed is smaller than the smaller dimen-
sion, Step 4 is performed. Otherwise, the optimal assignment is found and the
corresponding matrix is returned.
Step 4 is called the adjustment step. The matrix gathered from Step 2 is adjusted
to create additional zeros. The function can be separated into three steps. Step
4-1 finds the minimum element that is covered by no line. In Step 4-2, the min-
imum value is subtracted from each uncovered entry, whereas in Step 4-3, the
minimum value is added to each entry which is covered by a row and a column
line. The output of the whole of Step 4 is again checked by Step 2.
An example of the algorithm is given in Appendix Table 16 with a 4x4 matrix for
the assignment problem.

For illustration purposes, the number of different LiDAR object IDs produced
by the object tracking is tracked. At the end of the LiDAR processing, a color is
assigned to each object ID such that the coloring of one object is consistent across
several scans if they are visualized.

Automated Data Labeling Pipeline 50

3.5 Sensor Fusion
The sensor fusion is performed to match the objects found by the vision object
detection with the objects found in the LiDAR data. The fusion consists of several
steps, illustrated in Figure 29.

Figure 29: Overview of the Sensor Fusion Stage.

The field of view of the cameras can be split into four directions: front, left,
right, and rear. Based on this field of view discrimination, the LiDAR 3D space is
split into four fields. The camera front view can be described in a LiDAR sense,
as all 3D points with x > 0.98. Similarly, the rear view can be described as all 3D
points with x < −3.739. The Left is describable as all 3D points with y > 1.04453
and the right view as all 3D points with y < −1.04453.

First, depending on the selected camera’s point of view, the corresponding
LiDAR data are projected onto the corresponding 2D plane. Furthermore, only
points that lie inside the image plane are considered for the next steps.

Second, an occlusion check for all remaining, projectable clusters is performed
to exclude such clusters, that can not be mapped to a corresponding object due
to occlusion by another object in the 2D plane.

Last, a matching algorithm is used to match the remaining LiDAR objects to
the corresponding objects found in the images. Furthermore, if an occluded object
cannot be classified in several frames, but is classified in one image, it is classified
in the prior scans too. This is done at the end as some kind of post-processing
stage.

3.5.1 Occlusion Check
The LiDAR sensor is mounted on top of the vehicle. Consequently, the LiDAR
sensor can detect objects behind other ones where the second object can not be

Automated Data Labeling Pipeline 51

seen in the camera images. Especially, this is obvious if the LiDAR point cloud
data are projected onto a 2D plane. Clusters, which lay behind each other in 3D,
may lay directly on top of each other in the 2D space.

In the object matching stage, clusters that lay on top of each other may be
wrongly matched to an object. For instance, a child behind a car may be detected
by the LiDAR sensor but is not visible in the camera image. The child’s and car’s
clusters lay on top of each other when the point cloud is projected onto a 2D
plane. The matching algorithm uses the distance of the cluster’s centroid and the
bounding boxes’ centroid to match the objects. In the worst case, the matching
stage could classify the child as a car because its cluster centroid is closer to the
bounding box centroid of the image object.

To mitigate this problem, an occlusion check is carried out. This check com-
putes the occlusion of different objects in the 2D plane. If an object is occluded in
the 2D plane, it is not visible in the corresponding camera image.

Implementation Details The inputs of the occlusion check are the clusters de-
termined by the LiDAR clustering step, the projection matrix of the corresponding
camera’s point of view, and the image’s size.
Each LiDAR point cloud data is projected onto the 2D plane, defined by the pro-
vided camera’s projection matrix. Only projections that lay inside the image plane,
defined by the width and height of the corresponding image, are considered for
the next steps.
For each cluster inside the projected points, an object consisting of an ID, the
centroid, the distance to the LiDAR sensor, and the vertices of the corresponding
convex hull of the object, is created. The centroid is calculated by the projected
pixel values of the processed cluster. Additionally, the occlusion state is added
beforehand and initialized with -1 (neither occluded nor not occluded). The ob-
jects are stored in a list to use in the next steps.
Next, the gathered object list is sorted ascending by the distance to the LiDAR
sensor. This is done based on the assumption that a near cluster c1 is likely to
occlude a cluster c2 that is further away if c2’s centroid lays inside the convex hull
of c1.
The final occlusion check works as follows: Initialize an occlusion state list to track
already checked clusters. Take a cluster c1 of the sorted object list. If the picked
cluster has already an entry in the occlusion state list, continue with the next one.
Otherwise, check for all remaining clusters, whether their cluster’s centroid lays
inside the convex hull of c1. If the centroid of cluster c2 does not lay inside the
convex hull of c1, c2 is considered as not occluded by c1. Otherwise, the intersec-
tion area of the convex hulls of c1 and c2 are calculated. If the intersection area of
both convex hulls exceeds a given threshold thinter, the cluster c2 is considered
as occluded by c1, and the occluded state of c2 is set to 1.
At the end, all remaining clusters, that are not saved to the occlusion state list are
marked as not occluded and their occluded state is appropriate.
The output consists of all clusters, where the occluded state is set to zero. All

Automated Data Labeling Pipeline 52

other clusters are not visible in the camera image and would lead to false results.

3.5.2 Segmentation Map Filtering
In Segmentation Map Filtering, the corresponding segmentation map to the un-
derlying camera image is used to gather only the most relevant clusters from the
non-occluded clusters. For instance, clusters lying on the categories Road, Side-
walk, Building,Wall, Fence, Vegetation, Terrain, and Sky, are of no interest at the
moment. These clusters are filtered and only clusters that lay on the remaining
categories are used for the next steps.

Implementation Details First, the relevant categories of the segmentation map
are extracted. The result of this extraction is a list of indices, representing certain
categories of the segmentation map.
After extracting the relevant pixels of the segmentation map, the not-occluded 2D
objects are projected onto the 2D plane of the segmentation map. Each point
that does not lay on a relevant category is ignored for further processing steps.
Furthermore, if the centroid of a LiDAR object does not lay on the extracted pixel
coordinates, the cluster is also ignored for further processing.

3.5.3 Object Matching
The outputs of the image processing stage and the LiDAR processing stage differ
in their number of objects and information, as well as their classification quality.
Image processing produces several objects with corresponding, beforehand de-
fined, labels and bounding boxes, while LiDAR processing produces clusters cor-
responding to possible objects without labels. These objects need to be matched
to create a sensor fusion dataset.

The matching of the object proposals by the LiDAR processing with the ob-
ject produced by the image processing is realized by the use of the Hungarian
Algorithm. The previous occlusion check assigns the attribute occluded to each
LiDAR cluster and returns only LiDAR objects, that are not occluded in the camera
image. The Hungarian Algorithm finds the best possible assignment of the object
proposals and the image objects.

Unfortunately, the occlusion check leads to a kind of security problem because
occluded clusters can not be matched to camera objects on the fly. For instance,
a child behind a car can be scanned by a top-mounted LiDAR sensor but may be
occluded from a camera’s point of view. The child may run onto the street and the
vehicle may recognize the child too late.

To mitigate this issue, the LiDAR processing stage performs object tracking
across consecutive frames. This object tracking is relevant here because it gives
the possibility to mitigate the aforementioned security problem of occluded ob-
jects.

Automated Data Labeling Pipeline 53

If an occluded object is once detected in a camera image due to the object
tracking, it can be classified across all scans in which the object appeared. This
gives the possibility to classify objects in hindsight at a later time and increases
safety because algorithms learning on LiDAR data can recognize and classify an
object, although it is occluded in the corresponding camera image.

Hungarian Algorithm The implementation of theHungarian Algorithm is almost
the same as in the LiDAR processing. It differs in the calculation of the assignment
problem. In the LiDAR processing stage, the assignment problem lies inside the
3D space because the objects in consecutive LiDAR scans should be tracked. In
the Sensor Fusion, the assignment problem is a 2D-related problem because the
centroids of the not-occluded LiDAR object proposals are projected onto the 2D
plane of the corresponding camera image. These centroids should be assigned
to the bounding boxes of the image objects.
The assignment is done by calculating the cluster centroids’ position regarding
the 2D projection. At the same time, the centroids of the bounding boxes are
calculated too. The distances between each cluster centroid and each bounding
box centroid are calculated and stored as a matrix. This matrix functions as input
to the Hungarian Algorithm to find the best possible assignment.

Implementation Details The input to the final object matching stage are the
LiDAR object proposals that are not occluded and the objects found in the corre-
sponding camera image. As mentioned before, the Hungarian Algorithm is per-
formed on the object proposals and the visual objects. The result is a matrix,
where the best possible assignment of a visual object (row) to a LiDAR object
proposal (column) is marked with the distance between the corresponding cen-
troids.
After performing the algorithm, a matching list is retrieved.
A dictionary is implemented to save the matching results for later use. The dic-
tionary keys are the IDs of the LiDAR objects, while the corresponding values are
the labels of the visual objects.

3.5.4 Post Processing
The output of the Sensor Fusion or the object matching step is an object list, with
objects found in the LiDAR data and a corresponding label, based on the results
of the Hungarian Algorithm. This mapping of LiDAR objects to labels is used to
mitigate the possible safety problem created by occluded objects.

The aforementioned mapping contains all detected and classified objects by
the sensor fusion. To label objects that are occluded in one but are classified in an-
other LiDAR scan, all LiDAR data, included by the ROS bag, are post-processed.

Automated Data Labeling Pipeline 54

In the post-processing, each object in the different scans is given the corre-
sponding label, regardless of whether the object is occluded in a certain scan or
not. This is done by iterating over all LiDAR scans available and checking if the
different objects of the scan have a label assigned. If not, the mapping from the
sensor fusion is checked if such an object ID to label mapping exists. If yes, the
label is assigned to the corresponding object. Otherwise, the object is classified
as not classifiable.

3.6 User Interface
The automated data labeling pipeline can work without a graphical user interface.
However, due to the data it produces and the need to be precise and allow to
mitigate wrong classifications, a user interface is needed.

A user interface allows the easy visualization of all results of the data labeling
pipeline and a human labeler can go through a labeled ROS bag file and take a
look at the results it produced.

Following, I describe the requirements of the user interface that should be im-
plemented at the end. Furthermore, I give insights into the implementation details
of the user interface and which packages I used. The available functionalities are
described as well.

Requirements I’ve defined several requirements that the user interface should
fulfill. Some regarding the training and execution of the data labeling pipeline, and
some regarding the visualization of the pipeline results.
Further requirements are defined based on the possible need for a human labeler.
For instance, functionalities to correct misclassifications.
Additional requirements to work withROS bag files and differentVelodyne sensors
are defined.
Following, a list of all defined requirements is presented.

R-1 The user interface allows the selection of a recording saved as a ROS bag
file from the host system.

R-2 The user interface mitigates the change of the Velodyne sensor and allows
a selection between the older and the current model.

R-3 The function to extract all relevant data from the ROS bag file is available
as a separate button.

R-4 The segmentation stage can be started on its own.

R-5 The object detection stage can be started on its own.

R-6 The LiDAR processing stage can be started on its own.

Automated Data Labeling Pipeline 55

R-7 The Sensor Fusion stage can be started on its own, but only if the segmen-
tation, object detection, and LiDAR processing results are available.

R-8 The automated data labeling pipeline can be started by a single button push.

R-9 The output of each pipeline stage can be visualized.

R-10 A human labeler can go through the generated and processed data and can
take a look at the results of the different pipeline stages.

R-11 A human labeler can mitigate false object classification in the image pro-
cessing stage.

R-12 A human labeler can approve the results of the automated data labeling
pipeline.

R-13 If the pipeline results are approved, a sensor fusion dataset consisting of
images and LiDAR scans are generated.

R-14 A training interface is available, where the different object detection models
can be trained on further data.

Implementation Details I’ve used the Python package tkinter4 for the imple-
mentation of the user interface. Many useful tools and widgets are available. For
instance, the notebook widget enables a simple visualization tool for the different
pipeline outputs.
The UI functions as a visualizer and accesses the different pipeline stages through
predefined functions only.
From the home UI, one can access the execution or training UI.

3.7 Overview
Figure 30 shows the structure of the different pipeline stages and the connection
between them.

Each pipeline stage can be executed on its own if the needed data are given.
Furthermore, the different pipeline stages can be executed simultaneously.

After the Data Extractor, the Image Processing and LiDAR Processing stages
are executed. The sub-stages of Image Processing can be executed at the same
time because they do not rely on each other. Contrary, the LiDAR stage has to
be executed consecutively because the Object Tracking can only be performed if
the LiDAR point cloud data is clustered.

The output of both pipeline stages is fused in the Sensor Fusion stage, from
which the final sensor fusion dataset is generated.

4 tkinter — Python interface to Tcl/Tk: https://docs.python.org/3/library/tkinter.html (Online, Ac-
cessed February 21, 2024)

Automated Data Labeling Pipeline 56

Figure 30: Overview of the automated data labeling pipeline and its stages. The
stages are completely separate from each other and can be executed simultane-
ously.

The requirements are implemented in the user interface, illustrated in the Fig-
ures 46, 47, 48, 49, 50, and 51 in the Appendix.

Table 2 shows all requirements of the user interface and their corresponding
status.

Automated Data Labeling Pipeline 57

Req.-ID Short Description Fulfillment Status
R-1 The user can select a

ROS bag file from the sys-
tem

Yes, implemented in the default execu-
tion user interface

Done

R-2 Several Velodyne models
are supported

Yes, implemented in the control func-
tions of the execution user interface.
VLS-128 and HDL-64E are selectable

Done

R-3 The relevant data of a
ROS bag file can be ex-
tracted

Yes, implemented in the execution user
interface and can be executed by a but-
ton click

Done

R-4 The segmentation stage
can be started

Yes, implemented in the function frame
of the execution user interface and can
be executed by a button click

Done

R-5 The object detection
stage can be started

Yes, implemented in the function frame
of the execution user interface and can
be executed by a button click

Done

R-6 The LiDAR processing
stage can be started

Yes, implemented in the function frame
of the execution user interface and can
be executed by a button click

Done

R-7 The Sensor Fusion can be
started, only if segmenta-
tion, object detection, and
LiDAR processing results
are available

Yes and No. The sensor fusion can
be started by a button click but it does
not check if the corresponding data are
available

Unfinished

R-8 The automated data la-
beling pipeline can be
started

Yes, implemented in the function frame
of the execution user interface and can
be executed by a button click

Done

R-9 The output of each
pipeline stage can be
visualized

Yes, implemented in the different note-
books on the right side of the execution
interface.

Done

R-10 The user can go through
all data and all results

Yes, implemented in the notebooks on
the right side of the execution interface.

Done

R-11 The user can mitigate
false object classifications

Yes, implemented in the Image Pro-
cessing notebook in the subcategory
Object Detection Results

Done

R-12 The results of the Pipeline
can be approved

No Unfinished

R-13 From the approved re-
sults, a sensor fusion
dataset consisting of
images and LiDAR scans
is generated

No Unfinished

R-14 A training interface is
available to retrain or
newly train the object
detection models

Yes, implemented in an extra training
user interface, accessible from the start
user interface

Done

Table 2: Status of the requirements of the User Interface. A short description of
the requirements and how and where they are fulfilled is given.

Automated Data Labeling Pipeline 58

4 Evaluation
In this chapter, Evaluation, the evaluation regarding the accuracy, performance,
and run-time of each pipeline stage is carried out. Besides testing each stage sep-
arately, and evaluating methods on different implementations, the whole pipeline
as one is evaluated.

4.1 Image Processing
Following, each image processing stage, consisting of semantic segmentation
and object detection, is evaluated individually. Different metrics are used and
explained in advance.

4.1.1 Semantic Segmentation
The model used for the semantic segmentation is evaluated regarding the mean
intersection over union (mIoU) on the validation set of the CityScapes dataset.
Furthermore, different segmentation heads on top of the DINOv2 feature extrac-
tor are tested to find the best-performing one.

The tested segmentation heads differ in the use of an activation function, ei-
ther ReLU or GeLU and in the number of linear layers before the final conv layer.
At the end of each model, an upsampling is performed to match the segmentation
map’s size with the input image.

The following configurations were tested: i) Based on the original DINOv2 pa-
per, a lonely convolutional layer is used on top of the feature extractor. ii) One
linear layer is placed between the feature extractor and the convolutional layer,
but no activation function is between them. iii) Based on the second configuration,
a GeLU activation function is applied between the linear layer and the convolu-
tional layer. iv) The feature extractor is followed by two linear layers and a final
convolutional layer. Between each additional layer, a GeLU activation function is
applied. v) Four linear layers are applied before the final convolutional classifica-
tion layer. In between the layers, a GeLU activation function is applied. vi) The
best-performing GeLU architecture is modified. Instead of using GeLU activation,
ReLU is used.

The mIoU of the different segmentation head configurations can be found in
Table 3. The bold row is the model used for the automated data labeling pipeline.

Regarding the segmentation maps, the interpolation achieves a finer segmen-
tation map compared to no interpolation. Furthermore, most traffic signs and the

Evaluation 59

Configuration mIoU
i) 88.12
ii) 88.31
iii) 88.82
iv) 88.62
v) 88.44
vi) 88.80

Table 3: mIoU of the different segmentation head configurations, evaluated on the
validation split of the CityScapes dataset. The mIoU is calculated pixel-wise. All
models are trained on the same amount of epochs (100), the same learning rate
of 0.003, and the same optimizer with momentum of 0.9.

person on the left-hand side are missing in the segmentation map without interpo-
lation in Figure 21. Both are better illustrated in the segmentation maps presented
in Figure 22 and 23, where interpolation was applied. The segmentation map with
interpolation by a factor of two detects the person better but struggles with the traf-
fic signs on the right-hand side of the image compared to the segmentation map
with an interpolation factor of three.

Interestingly, the human in the segmentation map in Figure 23 is worse seg-
mented than in Figure 22. This can happen if the image splits split a small object
into several pieces. To mitigate this, one could combine the segmentation maps of
different interpolation factors. Another idea is the analysis of the segmented patch
around the patch in question. A remapping could be carried out to re-segment cer-
tain patches. Furthermore, the confidence of the model would be interesting for
such patches. Maybe several categories have equal confidence as the selected
category.

In the current state, this problem is not huge. If the relevant categories are
extracted from the segmentation map, a buffer zone with a radius of five pixels is
introduced to cope with these segmentation errors.

Another issue with the creation of the segmentation map is that the image
has to be rescaled to an aspect ratio of two-to-one due to the training routine.
The random crop used is a square, benefiting images of an aspect ratio where
squares perfectly fit. The model could perform better on the data of the Dahlem
Center for Machine Learning and Robotics if a model is trained with a crop of the
same aspect ratio as the ROS bag images.

4.1.2 Object Detection
Different specializedmodels are trained to detect objects within images. Themod-
els are split into traffic signs, vehicles, pedestrians, and traffic lights. The final re-
sult consists of the concatenation of all prior results of the aforementioned models.

Evaluation 60

The main advantage of using Ultralytics’ YOLO models is that they come with
an automated evaluation sheet. The provided evaluation is split into training, vali-
dation, and general evaluation metrics. The different metrics are explained in the
subsection Metrics.

During the training, the mAP50, mAP50-95, F1, precision, recall, box loss,
class loss, and distribution focal loss (dfl) are tracked for each epoch.

Following, I show and explain the results of the object detection models for
pedestrians, vehicles, traffic signs, and traffic lights. I describe the used valida-
tion datasets briefly and give insights into the dataset composition.

4.1.3 Datasets
To train the different object detection models, I’ve used several publicly available
and own-created datasets.

Following, the used datasets are presented in great detail. The modifications
I’ve done are explained and justified.

Traffic Light Dataset

The traffic light dataset I’ve used is publicly accessible at Kaggle1. The dataset
consists of 3.000 images, where I created a training split of 2.400 and a validation
split of 600 images.

The following nine traffic light categories are included: Motor vehicle signal
light, Non-motor vehicle signal light, Left turn non-motor vehicle signal light, Cross-
walk signal light, Lane light, Direction indicator light, Flashing warning light, Cross-
ing signal light, and U-turn signal light. Unfortunately, neither of these categories
is annotated. The only annotations are for the traffic light phase, including green,
yellow, and red.

class green yellow red
#annotations val split 720 39 939
#annotations train split 2809 125 3894
#annotations dataset 3529 164 4833

Table 4: Number of annotations per traffic light phase in the validation and training
split, as well as the overall sum in the whole dataset.

1 Kaggle: https://www.kaggle.com/ (Online; Accessed: February 21, 2024)

Evaluation 61

Table 4 shows the number of annotations per class. Yellow has the fewest an-
notations. This is obvious because compared to the traffic phases red and green,
yellow appears only a fraction of the time. In Germany for instance, yellow ap-
pears for three seconds while a speed restriction of 50km/h2.

The dataset is okay for learning the traffic light phases but struggles with the
different pictograms in German traffic lights.

nuImages

The nuImages dataset consists of 93.000 images with 2D bounding boxes for
800.000 foreground objects. The objects are categorized into 24 distinct cate-
gories. The main categories are pedestrians, movable objects, and vehicles. The
main categories are further defined into several subcategories. For instance, the
pedestrian category is split into adult, child, construction worker, personal mobil-
ity, police officer, stroller, and wheelchair. The same applies to the other main
categories.

Themost relevant classes to this thesis are presented in Table 5. Furthermore,
the number of annotations in the training and validation split is shown.

class number of instances (training) number of instances (validation)
human.pedestrian.adult 121200 28721
human.pedestrian.child 1683 251

human.pedestrian.construction_worker 10465 3117
human.pedestrian.personal_mobility 1828 453
human.pedestrian.police_officer 368 96

human.pedestrian.stroller 293 70
human.pedestrian.wheelchair 33 2

vehicle.bicycle 13708 3352
vehicle.bus.bendy 203 62
vehicle.bus.rigid 6538 1823

vehicle.car 202809 47279
vehicle.construction 4768 1301

vehicle.emergency.ambulance 34 8
vehicle.emergency.police 104 35

vehicle.motorcycle 13682 3097
vehicle.trailer 3286 486
vehicle.truck 29456 6857

Table 5: Number of annotations for each relevant class of the nuImages dataset
for the training (center column) and the validation (right column) split.

I’m using the full 93.000 images in nuImages v1.0. The nuImages include the
files train, val, test, and mini splits. The images are loaded from the train and val
split. Subsequently, the training split consists of 60.668 and the validation split of

2 ADAC: Ampelphasen: Diese Ampelfarben gibt es, URL: https://www.adac.de/verkehr/recht
/verkehrsvorschriften-deutschland/ampel/ (Online, Accessed: February 21, 2024)

Evaluation 62

14.884 images, all extracted from the val and train split of the nuImages data.

The dataset is highly unbalanced. This is obvious because of the class vehi-
cle.car appears approximately 250.000 times compared to the class vehicle.emer-
gency.ambulance appearing only 42 times.

All in all, the dataset is good because of its pure size and the number of anno-
tations.

German Traffic Sign Dataset (GTSD)

The used traffic sign dataset is based on theGTSDB of theRuhr-University Bochum.
The dataset is heavily modified with more distinct object classes. Furthermore,
more images are added.

Instead of 42, the used dataset has 93 different traffic sign classes. The labels
are taken from the traffic sign catalog from last year (2023). The annotated traffic
signs are illustrated with their official IDs in Appendix Figure 45.

The newly created dataset has a strong unbalance of the number of appear-
ances of different traffic signs. Figure 31 shows the unbalance and the number of
annotations per class for the training and validation dataset. For instance, the traf-
fic sign 1002-23 appears only once, while the traffic sign 205 appears 161 times in
the training split. The same applies to the validation split. The traffic sign 1002-23
appears also only once, while the traffic sign 274-70 appears 70 times.

The dataset is neither large enough nor has all traffic signs in it. Germany has
over 200 distinct traffic signs. For instance, for speed restrictions exist 14 different
traffic signs plus 14 for the cancellation of a speed restriction. All in all, the used
dataset is way better than the originalGTSDB, because of its composition and the
definition of the traffic sign classes, which were poor in the GTSDB. The authors
of the original dataset used the same label definition for two distinct traffic signs.
For instance, a speed of 30 km/h-zone was defined as a 30km/h speed restriction
sign, which is wrong.

To overcome the weaknesses of the GTSDB and extend the vocabulary, I’ve
added several hundreds of images. These images are taken by a camera from
different perspectives but with a focus on a car’s point of view. The newly created
images are cropped to a three-to-two format. Furthermore, the images are added
once in their original resolution and once added as near as at the same resolution
as the original GTSDB images, while keeping the aspect ratio to three-to-two.

The final dataset consists of 1126 images in total. 916 images are preserved
for the training split and 210 for the validation split. A test split could not be gath-
ered due to the time-consuming task of manually labeling each image on its own.

Evaluation 63

10
1

10
1-
11

10
1-
51

10
3-
10

10
3-
20

10
5-
10 11
2

11
4

11
7-
10

11
7-
20 12
0

12
1-
10

12
1-
20 12
3

12
5

13
1

13
3-
10

13
6-
10

13
6-
20

13
8-
10

14
2-
10

14
2-
20

0

20

40
#a

nn
ot
at
io
ns

20
5

20
6

20
8

20
9

20
9-
10

20
9-
30 21
1

21
1-
10 21
4

21
4-
10

21
4-
30 21
5

22
0-
10

22
0-
20 22
2

22
2-
10 25
0

25
3

25
9

26
0

26
1

0

50

100

150

#a
nn

ot
at
io
ns

27
4.
1

27
4.
1-
20

27
4.
2

27
4.
2-
20

27
4-
10

27
4-
20

27
4-
30

27
4-
50

27
4-
60

27
4-
70

27
4-
80

27
4-
10
0

27
4-
12
0

27
6

27
7.
1

27
7

27
8-
60

27
8-
80 28
0

28
1.
1

28
1

0

50

100

#a
nn

ot
at
io
ns

30
1

30
6

30
8

32
5.
1

32
5.
2

33
0.
1

33
0.
2

33
1.
1

33
1.
2

35
0-
10

35
0-
20 35
7

35
7-
50

0

50

100

150

#a
nn

ot
at
io
ns

10
00
-1
1

10
00
-2
1

10
02
-1
0

10
02
-1
1

10
02
-1
2

10
02
-1
4

10
02
-2
0

10
02
-2
1

10
02
-2
2

10
02
-2
3

10
02
-2
4

0

10

20

30

#a
nn

ot
at
io
ns

Figure 31: Number of annotations for each traffic sign across the training dataset
(blue bars) and the validation dataset (red bars). The y-axis represents the num-
ber of annotations for each traffic sign. The x-axis shows the IDs of the corre-
sponding traffic signs determined by the traffic sign catalog.

Evaluation 64

4.1.4 Metrics
Ultralytics’ YOLO model computes different validation metrics on its own. Fur-
thermore, an automated evaluation sheet is provided, illustrating some metrics,
such as box, class, and distribution focal loss for training, as well as for valida-
tion. Furthermore, the precision, recall,mAP50, andmAP50-95 are illustrated too.

The box loss shows how well a model predicts the bounding boxes of the ob-
jects. If the loss is low, the model predicts the boxes of the validation and training
set are good. Otherwise, the predicted boxes are bad.

The class loss illustrates how good the predictions are made for the objects
inside the bounding boxes. If the model finds all objects and classifies them cor-
rectly, the loss is low. Otherwise, the loss is high.

Distribution focal loss (dfl) is a loss function and is used to improve the model’s
performance. YOLOv8 has the dfl implemented and directly optimizes distribution
of bounding box boundaries. DFL is used in bounding box regression, and since
the detection task of YOLO is formulated as a regression problem, it is used. The
general idea is to predict distributions of the box offsets instead of predicting the
values directly. It has nothing to do with the object class classification.

mAP50 and mAP50-95 are both metrics that measure the mean average pre-
cision across a certain Intersection over Union (IoU) threshold. The first one
takes all results into account, where the predicted bounding box has an IoU with a
ground truth of at least 0.5. ThemAP50-95 is calculated at varying IoU thresholds
from 0.5 to 0.95, in steps of 0.05.

The F1-Score is the mean of precision and recall and varies between one and
zero. If the score is near one, it corresponds to good recall and good precision,
while a score near zero corresponds to the opposite case.

4.1.5 Traffic Sign Model
The detection model is trained for 200 epochs on the aforementioned newly cre-
ated traffic sign dataset, based on the publicly available GTSDB dataset of the
Ruhr-University Bochum.

Results

I’ve experimented with the YOLOv8 default settings of the parameter imgsz to
find the best possible model. This parameter describes how the input images are
reshaped. The default value is 640, resulting in the resizing of each input image
to the shape 640x640 pixels.

The YOLOv8 model achieves the best performance if trained on rectangular
images. However, the model can predict objects in images of different shapes.

Evaluation 65

I also considered training and validation images of arbitrary size and tested
whether the performance is better with images of arbitrary size or with a common
size across the whole dataset. Arbitrary size refers to the case that the images
of the dataset can have different sizes. Common size refers to the case that the
images have all the same width size and nearly the same height. The common
width is 1360 pixels, while the height varies between 800 pixels and 906 pixels.

Following, the tested models are presented in Table 6. Several other YOLOv8
models are publicly available. These are YOLOv8n (nano), YOLOv8s (small),
YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extreme). As the base
model, I’ve chosen a pre-trained YOLOv8m. This is based on a compromise be-
tween training time and memory consumption. The larger the model, the more
time it needs to be trained and perform object detection.

I’ve chosen 1280 as imgsz because the images of the ROS bag driving record-
ings have the shape 1280x800 pixels if rectified.

ID YOLOv8 model pre-trained image size imgsz
M1 yolov8m.pt yes arbitrary 640
M2 yolov8m.pt yes arbitrary 1280
M3 yolov8m.pt yes common 832
M4 yolov8m.pt yes common 1280

Table 6: YOLOv8 models that are tested. The image size refers to whether the
validation and training images have arbitrary or common sizes. The imgsz is the
YOLOv8 parameter that determines the reshaping of the input imagewhile training
and validation.

Evaluation 66

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

Epoch

bo
x
lo
ss

train - 640
val - 640

train - 1280
val - 1280

0 50 100 150 200
0

1.5

3

4.5

6

7.5

Epoch

cl
s
lo
ss

train - 640
val - 640

train - 1280
val - 1280

0 50 100 150 200
0.7

0.8

0.9

1

1.1

Epoch

df
ll
os
s

train - 640
val - 640

train - 1280
val - 1280

Figure 32: Box, cls, and dfl loss for different trained traffic sign models with dif-
ferent YOLOv8 parameters and arbitrary training and validation image size. The
greenish lines correspond to the train and validation loss of the YOLOv8 model
by setting the imgsz-parameter to 640. The blueish lines correspond to the model
by setting the imgsz-parameter to 1280.

0 50 100 150 200

0.2

0.4

0.6

0.8

1

Epoch

pr
ec
is
io
n

precision 640
precision 1280

0 50 100 150 200

0.2

0.4

0.6

0.8

1

Epoch

re
ca
ll

recall 640
recall 1280

Figure 33: Recall and Precision of different trained traffic signmodels with different
YOLOv8 parameters and arbitrary training and validation image size. The green
line corresponds to the YOLOv8 model by setting the imgsz-parameter to 640.
The blue line corresponds to the model by setting the imgsz-parameter to 1280.

Evaluation 67

0 50 100 150 200
0.2

0.4

0.6

0.8

1

Epoch

bo
x
lo
ss

train - 832
val - 832

train - 1280
val - 1280

0 50 100 150 200
0

1.5

3

4.5

6

7.5

Epoch

cl
s
lo
ss

train - 832
val - 832

train - 1280
val - 1280

0 50 100 150 200
0.7

0.75

0.8

0.85

0.9

0.95

1

Epoch

df
ll
os
s

train - 832
val - 832

train - 1280
val - 1280

Figure 34: Box, cls, and dfl loss for different trained traffic sign models with differ-
ent YOLOv8 parameters and a common training and validation image size. The
reddish lines correspond to the train and validation loss of the YOLOv8 model by
setting the imgsz-parameter to 832. The reddish lines correspond to the model
by setting the imgsz-parameter to 1280.

0 50 100 150 200

0.2

0.4

0.6

0.8

1

Epoch

pr
ec
is
io
n

precision 832
precision 1280

0 50 100 150 200

0.2

0.4

0.6

0.8

1

Epoch

re
ca
ll

recall 832
recall 1280

Figure 35: Recall and Precision of different trained traffic signmodels with different
YOLOv8 parameters and a common training and validation image size. The red
line corresponds to the YOLOv8 model by setting the imgsz-parameter to 832.
The blue line corresponds to the model by setting the imgsz-parameter to 1280.

Evaluation 68

One may notice that the blue and cyan lines in Figure 32 as well as the blue
lines in Figure 33 do not extend to the 200th epoch. This happens if the model
does not achieve a better performance after 50 consecutive epochs. The thresh-
old of 50 epochs is a default setting of YOLOv8 and can be changed if needed.

In Figure 32, the box and cls loss plots indicate that setting the imgsz-parameter
to 1280 is beneficial for a training and validation dataset consisting of images with
arbitrary sizes. The dfl loss plot shows the opposite for the prediction performance
of bounding boxes. The validation’s dfl loss is lower using imgsz of 640 (cyan line)
instead of 1280 (lime line). It is approximately 0.8 points lower (0.84486 compared
to 0.92576 at the 200th epoch).

The precision and recall plots in Figure 33 indicate that a higher imgsz-parameter
benefits training and validation images with arbitrary size. The precision is almost
the same, while the recall differs a lot. This is mainly because the validation im-
ages are at least twice as big as the training images.

In the cls loss plot in Figure 34, the validation loss for the first epoch of the
model with the larger imgsz-parameter was removed. This is because the cls
loss of the first validation epoch is at 579.76 and would eliminate any visualiza-
tion of the remaining progress. I do not indicate why this happened. I guess the
model predicted every class wrong. The box loss of the first epoch substantiates
this guess because it is comparable to the box loss of the smaller imgsz.

The cls and box loss do not show a significant difference while using different
imgsz-parameters. The loss of the model with the larger imgsz is mainly a bit
lower than the loss of the other model. Only the dfl loss is different by a visible
margin. The validation loss of the model with the smaller imgsz (orange line) is
approximately 0.5 points worse than the model with the larger imgsz (lime lines).
This correlates to the model’s ability to predict the bounding boxes better if the
training images are larger. This is attributed to some bounding boxes being only
a few pixels big. If the image size decreases, the bounding box might be only one
pixel big in the end, leading to difficulties in the prediction.

Interestingly, Figure 35 does not show a difference between both imgsz set-
tings regarding the precision. For both evaluated YOLOv8 parameters, the preci-
sion is almost the same. The recall differs from this observation. The model with
an imgsz setting of 1280 (red line) achieves a higher recall (0.61897) than the
model with an imgsz setting of 832 (green line) (0.47088), indicating that fewer
mistakes (false negatives) are made if the image size increases. This coincides
with the assumption that small objects are better detectable if the image size is
bigger.

Comparing the best model of Figure 32 and Figure 34 leads to the observation
that a common image size for all training and validation images is beneficial to train
an object detection model. Table 7 compares the models M2 and M4 directly. One

Evaluation 69

can see that the cls and box loss of the models M2 and M4 are comparable for
the training. One can say that the margin between both models is so insignificant
that they perform equally. The same observation can be made in the validation
columns of both models. They perform equally, but M2 struggles with the dfl loss.

The precision and recall tell a different story. The precision of both models
is quite close together, but the recall differs a lot. M4 outperforms M2 regarding
recall and precision. The main cause of this is that the images, especially of the
validation dataset, do not have to be resized that much when using a common im-
age size across validation and training datasets. After the resizing, I went through
all the images and reassigned the bounding boxes if any of them did not match
anymore. Another issue is that by using and annotating images with higher reso-
lution, more objects can be found because they are clearer to see for a human. If
an already small bounding box of a small object is resized, the bounding box may
shrink to only one pixel, making it almost impossible for the model to detect the
underlying object.

The aforementioned explanation is the reason for the selection of model M4
as a traffic sign detection model because it makes fewer mistakes (fewer false
negatives).

Model Image size imgsz training validation precision recall
cls loss box loss dfl loss cls loss box loss dfl loss

M2 arbitrary 1280 0.17295 0.26515 0.77499 1.0339 0.57914 0.92576 0.57957 0.52375
M4 common 1280 0.18011 0.26979 0.65548 1.0435 0.55356 0.85766 0.60849 0.61897

Table 7: Comparison of the best models for arbitrary and common training and
validation image size.

4.1.6 Traffic Light Model
I’ve experimented with the traffic light model if training the model iterative, every
time only for 50 epochs is beneficial compared to a model that is trained for 150
epochs directly.

All models are trained on the same training and validation split of the traffic
light dataset, described in the section 4.1.3. They predict the traffic light phases
and the position of the traffic light.

Results

I’ve experimentedwith the number of training epochs and fixed the imgsz-parameter
of the YOLOv8 model at 832 for all test runs.

Interestingly, the model trained straight up for 150 epochs achieves much bet-
ter results compared to the iterative trained model. The iterative trained model

Evaluation 70

seems to struggle with the restart of the training procedure at most.

For the evaluation, I concatenated the results from the iterativemodels. Hence,
the results of the different metrics can be displayed in one plot and the difference
to the ad-hoc model can be better seen.

0 50 100 150 200
0.6

1

1.4

1.8

Epoch

bo
x
lo
ss

ad-hoc train
ad-hoc val
iter train
iter val

0 50 100 150 200
0

1.5

3

4.5

6

7.5

9

Epoch

cl
s
lo
ss

ad-hoc train
ad-hoc val
iter train
iter val

0 50 100 150 200
0.7

0.8

0.9

11

Epoch

df
ll
os
s

ad-hoc train
ad-hoc val
iter train
iter val

Figure 36: Box, cls, and dfl loss for the ad-hoc traffic light model (blueish lines)
and the iterative trained model (greenish lines). All models are trained with a fixed
imgsz-parameter of 832.

All plots in Figure 36 show the trend that the ad-hoc trained model tends to be
a bit better. The validation results for both models seem to prove this because the
results are very close together.

The most interesting aspect is the epoch when a new model is trained based
on a previous iteration. For the first iteration, the ad-hoc model and the iterative
model perform equally. Only the cls loss has one outlier. But coming close to the
50th epoch, the iterative model seems to outperform the ad-hoc model by some
margin. This is mainly due to YOLOv8’s dataloader. The mosaic dataloader is
configured to shut itself off if the last ten epochs start. The mosaic dataloader
applies the mosaic augmentation to the input images. Several images are put

Evaluation 71

together to form a mosaic. The bounding boxes of each image are adjusted to
match the newly created image. Next, a random crop of the mosaic is taken. The
bounding boxes lying in the crop are also reshaped. The crop is then given as
training input to the model. Without the mosaic dataloader, the model learns for
the last ten epochs on the full images of the training dataset.

The mosaic augmentation was introduced in YOLOv4 and achieved a perfor-
mance boost regarding generalizability and accuracy.

With the 51st epoch, the ad-hoc model performs much better because the it-
erative model does not generalize well to the mosaic-augmented images.

Like in the first iteration, the iterative model performs at the end better than the
ad-hoc model but the margin is not as big as it was in the first iteration.

The difference can be seen at the end of the third iteration. The iterative model
does not come close to the performance of the ad-hoc model regarding the box
loss and the dfl loss.

Model Precision Recall mAP50 mAP50-95
ad-hoc 0.76567 0.60209 0.67059 0.4252
ad-hoc (after 150 epochs) 0.72618 0.60225 0.68004 0.42084
iterative 0.78987 0.59341 0.65961 0.39427

Table 8: Precision, Recall, mAP50, and mAP50-95 at the end of the training for
the iterative and ad-hoc trained model.

Table 8 shows the results for the iterative and ad-hoc trained model after each
training. The results indicate that training a model iterative benefits the precision.
This can be because, at the end of the training, the precision is calculated on in-
put images without the mosaic dataloader. Since the iterative model was trained
already twice before the training ended, the model seems to perform better. The
recall is also comparable between both models. The difference is not large at all.

The main differences are regarding the mAP50 and the mAP50-95 where the
ad-hoc trained model seems to outperform the iterative trained model. This is also
the case for the ad-hoc model after the 150th epoch.

The reason behind this could be that the ad-hoc model learns better to gener-
alize and predict the bounding boxes better. This is substantiated by the box loss
plot in Figure 36. The box predictions of the iterative model are not as precise as
those of the ad-hoc trained model.

For the pipeline, I’m using the ad-hoc trained model as the object detection
model for traffic lights.

Evaluation 72

4.1.7 Vehicle Model
The vehiclemodel is trained for ten epochs on the nuImages dataset using only the
categories of vehicles.bicycle, vehicles.bus.bendy, vehicle.bus.rigid, vehicle.car,
vehicle.construction, vehicle.emergency.ambulance, vehicle.emergency.police, ve-
hicle.motorcycle, vehicle.trailer, and vehicle.truck.

For the training, I’ve used a fixed imgsz-parameter of 640. With a larger imgsz-
parameter, the model would need much more time to be trained for the same
amount of epochs.

The labels are taken from the original nuImages data annotation definitions.
Furthermore, the dataset’s structure is described in section 4.1.3. For the valida-
tion, the validation split is used.

Results

The different metrics were tracked during the training and validation. The pro-
gression of the box and class loss, as well as the dfl for training and validation,
can be seen in Figure 37. After each epoch, the validation is carried out on the
afore-created data split.

All plots show that the loss for training as well as for validation continually went
down. The validation loss is generally below the training loss. The validation loss
comes below 0.9, while the training loss is above 0.9. The cls loss decreases also
for training and validation, reaching less than 0.7. The dfl loss went down below
1.0. I have to note that all loss curves show a falling trend, indicating that the
model is not trained well or long enough. The results can be improved by running
the method for a longer period of time. And for more epochs.

The same applies to the validation metrics.

0 2 4 6 8 10
0.8

0.9

1

1.1

1

Epoch

bo
x
lo
ss

0 5 10
0.5

0.7

0.9

1.1

1.3

Epoch

cl
s
lo
ss

0 5 10
0.9

0.95

1

1.05

1.1

1.15

1.2

Epoch

df
ll
os
s

Figure 37: Training (blue) and validation (red) evaluation of the vehicle model for
each epoch. From top to bottom: performance of predicting the bounding boxes
(box loss), performance of predicting the class of the object correctly (cls loss),
performance of distribution of bounding box boundaries (dfl loss).

Evaluation 73

precision recall mAP50 mAP50-95
0.7893 0.42561 0.47024 0.32332

Table 9: Precision, Recall, mAP50, and mAP50-95 values after ten epochs at the
end of the training

Table 9 shows the final results regarding the precision, recall, mAP50, and
mAP50-95 after the training. The values seem not to be good but looking at the
tracked data, one can see that the recall, mAP50, and the mAP50-95 have a rising
trend. The recall rose from 0.275 in the first epoch to 0.425 after the 10th epoch,
indicating that the model can perform significantly better if trained for longer.

Table 10 shows the individual results for each class divided into precision, re-
call, mAP50, and mAP50-95. The results are okay, mostly above 0.6 regarding
the precision and above 0.4 regarding the recall. To note is the fact, that the per-
formance of these metrics is taken as the average across all classes. This means
that the precision value for each class is summoned and divided by the number of
classes. This adds a pinch of salt to the credibility of the evaluation. For instance
the vehicle.emergency.ambulance class has eight annotations across the whole
validation split. The recall is zero and pushes the overall recall down. If we re-
move the vehicle.emergency.ambulance and vehicle.emergency.police class from
the performance summary, we would get a recall of 0.53, which would be 0.11
points higher than the overall recall. This indicates, that the results can be easily
improved if more samples of emergency vehicles are added, which subsequently
would increase the recall if the annotations are given.

Class Precision Recall mAP50 mAP50-95
all 0.79 0.426 0.47 0.323
vehicle.bicycle 0.698 0.681 0.714 0.488
vehicle.bus.bendy 1 0.069 0.137 0.0799
vehicle.bus.rigid 0.739 0.58 0.647 0.5
vehicle.car 0.798 0.794 0.85 0.619
vehicle.construction 0.663 0.483 0.551 0.305
vehicle.emergency.ambulance 1 0 0.00168 0.00151
vehicle.emergency.police 1 0 0.00582 0.00506
vehicle.motorcycle 0.754 0.758 0.796 0.536
vehicle.trailer 0.552 0.284 0.333 0.207
vehicle.truck 0.694 0.608 0.668 0.492

Table 10: Summary of the model’s performance.

The raw data are available in the GitLab repository of the Automated Data La-
beling Pipeline.

Evaluation 74

4.1.8 Pedestrian Model
The model for pedestrian detection is also trained on the nuImages dataset and
for 20 epochs. The used categories are human.pedestrian.adult, human.pedes-
trian.child, human.pedestrian.construction_worker, human.pedestrian.personal
_mobility, human.pedestrian.police_officer, human.pedestrian.stroller, and
human.pedestrian.wheelchair.

While training the model, I experimented with the number of epochs and the
imgsz-parameter. Once I used an imgsz of 640 and one of 1280. With a larger
imgsz-parameter, the training took 24 hours for ten epochs. The model with
the smaller imgsz-parameter was trained for 20 epochs, taking approximately 14
hours.

Like the vehicle dataset, the labels are taken from the original nuImages data
annotation definitions. Furthermore, the dataset split is the same as well, de-
scribed in section 4.1.3.

Results

The different metrics were tracked during the training and validation. The progres-
sion of the box and class loss, as well as the dfl for training and validation, can be
seen in Figure 38. After each epoch, the validation is carried out on the validation
data split.

The cls and box loss for the model trained for only ten epochs but with larger
imgsz is better compared to the model trained for 20 epochs with an imgsz-
parameter of 640. Themain reason behind this is mostly themissing of themosaic
dataloader. The mosaic dataloader is not applied for the last ten epochs of the
training routine.

Another finding is that all curves went down and had a falling trend at the end of
the training. This indicates that the models can be improved by training for longer.

The dfl loss is much worse for the model with the larger imgsz-parameter than
the smaller imgsz-parameter.

In Table 11, the precision, recall, mAP50, and mAP50-95 are illustrated for
both tested models. The results confirm that training a model with a larger imgsz-
parameter is beneficial. Especially the recall benefits from this change.

Another interesting observation is that all metrics went down for the model
trained with an imgsz-parameter of 640. The reason behind this could be irrel-
evant measurement errors or the fact that the mosaic dataloader is removed for
the last ten epochs. It seems that the model can not generalize well enough. An
idea to mitigate this could be to train the model for more epochs.

Evaluation 75

0 5 10 15 20
1.1

1.3

1.5

1.7

1.9

Epoch

bo
x
lo
ss

train - 640
val - 640

train - 1280
val - 1280

0 5 10 15 20
0.8

1.3

1.8

2.3

2.8

3.3

Epoch

cl
s
lo
ss

train - 640
val - 640

train - 1280
val - 1280

0 5 10 15 20
0.9

1

1.1

1.2

1.3

Epoch

df
ll
os
s

train - 640
val - 640

train - 1280
val - 1280

Figure 38: Training and validation evaluation of the tested pedestrian models.
The blueish lines show the model trained with an imgsz of 1280. The reddish
lines show the model trained with an imgsz of 640. From top to bottom: perfor-
mance of predicting the bounding boxes (box loss), performance of predicting the
class of the object correctly (cls loss), performance of distribution of bounding box
boundaries (dfl loss).

Model Precision Recall mAP50 mAP50-95
imgsz 640 0.60588 0.31044 0.32011 0.17556
imgsz 640 (after 10 epochs) 0.65661 0.27471 0.28991 0.15438
imgsz 1280 0.5851 0.36569 0.3566 0.21505

Table 11: Precision, Recall, mAP50, and mAP50-95 at the end of the training for
the iterative and ad-hoc trained model. The results after ten epochs of the smaller
imgsz model are shown too.

For the final pipeline, I use the model with the larger imgsz-parameter.

Evaluation 76

4.1.9 Run Time
I’ve tested each model individually regarding its run time. They need approxi-
mately three milliseconds per image, depending on how many objects are in there
and how difficult are they to find. The cause of this is that I’m using YOLOv8 as an
object detector for all models. Its detection performance enables real-time image
processing and its speed is in the milliseconds.

Furthermore, I’ve tested how long all models together need to process 100
images. They take approximately 14 seconds. This is because I measure the
time how long the models need to detect the objects and then save the results
in the corresponding label file. Breaking down the number to the time to process
one image, the models take 0.14 seconds or 7.14 Hertz (Hz).

4.2 Hungarian Algorithm
I’ve tested two different Python packages for the implementation of the Hungarian
Algorithm regarding their run-time. One with NumPy and one with pandas. Fur-
thermore, I’ve experimentedwith several implementation approacheswithNumPy.

FollowingNumPy implementation variants are tested: (1) All computation steps
are implemented with for loops and without the use of NumPy built-in functions.
(2) The Step 1 implementation is changed from a for loop to NumPy’s built-in
function. To calculate the row minimum, the NumPy min function is used. To
subtract it from each row, a for loop is used to iterate through the rows of the
matrix. The minimum of each column is also determined by the NumPy min func-
tion, but the subtraction is performed with the NumPy subtract function instead of
an iteration through the columns. (3) The implementation of Step 2-1 is replaced
with a NumPy based one, instead of using a for loop. (4) The nested for loops of
Steps 4-1, and 4-2 are replaced with NumPy functions to calculate the minimum
non-marked number and subtract it from each non-marked matrix entry. (5) The
implementation of Steps 4-3 is changed, in such a way, that the minimum non-
covered number is added to each entry that is covered twice. Instead of using a
nested for loop list comprehension is used. (6) The final variation uses an alter-
native implementation of steps 4-1, 4-2, and 4-3. Instead of using multiple nested
for loops, NumPy functions are used.

The run-time of the different variants is determined with the timeit python pack-
age. timeit takes the function, which one wants to be tested, and the number of
how many runs tested. I’ve used 100000 runs and performed the evaluation five
times to get an average time and have a more meaningful result.

The run-time results of the NumPy implementation variants are shown in Table
12. All methods are tested on the same benchmark and with the same amount of
runs. Additionally, all variants are tested on a computer with the following config-
uration: Intel i7-9700KF CPU @ 3.60GHz and 32GB RAM.

Evaluation 77

The different variants are all run on the CPU without GPU support.

Variants (1) (2) (3) (4) (5) (6) (7)

Run 1 [ms] 2.906 2.819 3.432 3.135 2.994 2.991 6.181
Run 2 [ms] 2.900 2.799 3.444 3.079 2.963 3.029 6.091
Run 3 [ms] 2.923 2.811 3.433 3.081 2.962 3.025 6.032
Run 4 [ms] 2.934 2.808 3.461 3.086 2.964 3.025 5.925
Run 5 [ms] 2.935 2.814 3.488 3.086 2.966 3.016 5.860

Average [ms] 2.920 2.810 3.452 3.094 2.970 3.017 6.018

Table 12: Results of evaluating different implementation variants, using the
NumPy and pandas package. The variants (1), (2), (3), (4), (5), and (6) are all
using the NumPy package. The variant (7) is implemented with the pandas pack-
age. All shown times are in milliseconds per .1000 runs.

Compared to the standard variant with multiple loops, variant (2) is faster by
approximately 0.1 ms over 1.000 runs. This is mainly due to the more efficient im-
plementation of NumPy’s built-in functions. The min function of NumPy is faster
than a for loop because it is implemented in c. The 0.1 ms improvement is worth
the expense because the algorithm is just tested on a matrix of shape 10x15, re-
sulting in 150 matrix entries. This is mainly due to the application in the sensor
fusion stage, where the LiDAR data are projected onto the corresponding image
plane and not all found LiDAR objects are considered. Many LiDAR scans may
produce many more object proposals that have to be tracked in the 3D space.
This would lead to an increased gap between the different variants due to the big-
ger matrix size.

The other variants are mostly slower compared to (1), while the variant (5) is
only 0.05ms slower.

All in all, the most alternative implementations make the Hungarian Algorithm
slower. This is mostly due to the amount of data. If the NumPy matrix gets bigger,
a for loop is more costly, compared to a NumPy function because of its implemen-
tation details. Hence, the variant (2) is used as implementation.

The used NumPy implementation can be found in Source Code 6.2. The al-
ternative implementations that are not used are added as comments.

4.3 LiDAR Processing
The LiDAR processing stage consists of several algorithms that compute different
things on the input data. The following components are evaluated: Point cloud
filtering by a ground grid approach, based on [2], point cloud filtering by an ini-
tial and final classification with a Markov-Random Field, based on [32], and point

Evaluation 78

cloud clustering with a variant of the DBSCAN algorithm.

The performance of theHungarian Algorithm is not evaluated again. The over-
all performance does not change. The distance between the centroids is now
calculated based on 3D data and not on 2D data. The run-time does not change
either because the implementation is not changed.

4.3.1 Evaluation Procedure
The evaluation of both approaches is oriented on the evaluation metrics of the
GroundGrid paper. A classification is considered as True Positive (TP) if the point
is predicted as ground and is by ground truth also classified as ground. A classifi-
cation is False Positive (FP) if the point is predicted as ground, but in ground truth,
the point is classified as non-ground. True Negative (TN) occurs when a point is
predicted to be non-ground, while the ground truth is classified as non-ground as
well. A point classified as non-ground, while the ground truth is ground is referred
to as False Negative (FN).

4.3.2 Point Cloud Filtering with Markov Random Fields
I’ve evaluated the channel-based initial classification only because the run-time
of the LBP is so bad, that a single iteration takes almost 1 hour. The iteration is
performed five times. Furthermore, the evaluation should be carried out on the
same data as theGroundGrid. Some of the evaluated sequences have over 4.000
LiDAR scans. This would result in a high time consumption.

Sequences Precision Recall F1 IoU Accuracy
00 44.23 55.81 49.35 32.75 49.65
01 76.94 88.34 82.25 69.85 70.97
02 72.61 81.10 76.62 62.10 65.19
03 38.28 50.47 43.54 27.83 53.73
04 64.43 67.00 65.69 48.91 55.33
05 55.67 58.18 56.90 39.76 49.81
06 63.39 64.30 63.84 46.89 54.91
07 48.30 56.50 52.08 35.20 54.21
08 68.26 75.27 71.60 55.76 60.78
09 50.46 63.64 56.29 39.17 49.47
10 70.66 70.35 70.51 54.45 57.27

Table 13: Performance of the channel-based initial classification regarding the
first 40 LiDAR scans of the SemanticKITTI dataset.

Table 13 shows the precision, recall, F1, IoU, and Accuracy of the channel-
based initial classification of the first point cloud filtering approach. Compared to
the GroundGrid, the results are very bad. The channel-based initial classification

Evaluation 79

is not meant to work on its own in point cloud filtering. It is the input to the re-
classification based on the solution of the LBP algorithm.

If the LBP algorithm were implemented more efficiently, one could carry out
the same evaluation but for this approach.

4.3.3 Point Cloud Filtering with GroundGrid
The evaluation of the ground segmentation with GroundGrid is carried out follow-
ing the procedure of the original paper. Hence, I have used the SemanticKITTI
dataset [33].

TheSemanticKITTI dataset is based on theKITTI Vision Benchmark, providing
additional semantic annotations for all sequences of the Odometry Benchmark.
The authors ”labeled each scan resulting in a sequence of labeled point clouds,
which were recorded at a rate of 10Hz”. Furthermore, they annotated moving and
non-moving traffic participants. The classes of cars, trucks, motorcycles, pedes-
trians, and bicyclists are introduced to distinct the participants.

Table 14 shows the qualitative results of the evaluation. From top to bottom,
I compare my GroundGrid implementation with the original one. Furthermore,
the performance of further ground segmentation methods, such as Patchwork++,
JPC, and GndNet is shown as well. The data are taken from the evaluation car-
ried out in the GroundGrid paper.

The evaluation is carried out on the same sequences as the paper does.

For the evaluation, I’ve used multiprocessing and created four processes that
run the evaluation of four different sequences in parallel. In the end, they write
the results in the same text file for further inspection and evaluation.

The overall results are comparable to the original paper and the other listed
methods butmainly worse. Especially sequence 03 is worse. The originalGround-
Grid achieved a precision of 97.96 (green), while my implementation achieved
only 79.28 (red). This means it classifies many non-ground points as ground. In-
terestingly, the recall of sequence 03 is almost the same as the original Ground-
Grid ones (95.68 (red) to 97.95 (green)). This indicates that mine implementation
makes also a few mistakes while classifying ground points as non-ground points.

Furthermore, mine implementation outperforms the original GroundGrid re-
garding the recall. For instance, the sequence 04 achieves a recall of 98.04 com-
pared to 97.85. But this is no overall trend it’s an outlier. Only sequence 02
achieves the same result in the context of recall.

Interestingly, the recall is for all sequences quite high, indicating that theGround-
Grid, without odometry data, classifies most of the ground points as ground points.

Evaluation 80

Nevertheless, the precision is over all sequences worse.

I assume, that the bad performance of the precision lies in the classification of
the ground points. Mine implementation classifies many points as ground, gen-
erating more false positive results than the original one. This is based on the
analysis of the precision values. For instance, the sequence has a precision of
79.28, while the recall is 95.68. This indicates that the implementation gets the
most ground points right, but struggles with false positives.

To improve these results, one could use the odometry data for the different
scans or carry out a fundamental error analysis.

sequences 00 01 02 03 04 05 06 07 08 09 10 average

Precision
Patchwork++ 94.99 98.27 95.96 96.81 98.18 92.65 97.86 93.29 96.97 96.06 92.81 95.80
GndNet 92.40 96.54 93.74 95.60 97.30 89.58 96.15 90.09 95.09 93.81 88.34 93.51
JPC 96.78 97.97 97.50 98.09 99.01 94.03 97.96 95.65 97.97 97.64 95.27 97.08
GroundGrid 96.05 98.01 97.36 97.96 99.08 95.19 97.82 95.31 97.50 97.25 95.38 96.99
GroundGrid (mine) 92.85 86.28 93.38 79.28 91.08 92.12 95.75 93.76 93.47 90.96 90.03 90.81

Recall
Patchwork++ 98.67 96.52 97.20 98.17 97.21 98.13 97.39 98.42 97.41 96.45 95.93 97.41
GndNet 99.50 96.91 96.94 96.68 99.06 98.69 99.00 99.44 98.74 96.14 93.60 97.70
JPC 97.20 95.46 93.72 94.86 96.91 95.64 96.23 96.53 95.13 92.66 88.47 94.97
GroundGrid 98.70 96.17 97.71 97.95 97.85 98.13 98.38 98.72 97.79 96.91 95.90 97.96
GroundGrid (mine) 97.39 96.63 95.71 95.68 98.04 96.73 96.95 97.10 94.84 95.11 92.12 96.02

F1
Patchwork++ 96.80 97.39 96.58 97.49 97.69 95.31 97.63 95.79 97.19 96.25 94.35 96.59
GndNet 95.82 96.72 95.31 96.14 98.17 93.91 97.55 94.53 96.88 94.96 90.89 95.53
JPC 96.99 96.70 95.57 96.45 97.95 94.83 97.09 96.09 96.53 95.09 91.74 95.91
GroundGrid 97.35 97.08 97.54 97.96 98.46 96.64 98.10 96.99 97.64 97.08 95.64 97.32
GroundGrid (mine) 95.06 91.16 94.53 86.71 94.43 94.37 96.35 95.40 94.15 92.99 91.21 93.31

Accuracy
Patchwork++ 96.64 95.96 95.08 96.08 96.39 94.79 96.63 95.88 96.37 94.90 93.75 95.68
GndNet 95.53 94.88 93.20 93.99 97.10 93.10 96.46 94.52 95.91 93.08 89.81 94.33
JPC 96.89 94.93 93.80 94.59 96.81 94.37 95.89 96.26 95.60 93.50 91.35 94.91
GroundGrid 97.24 95.50 96.48 96.84 97.60 96.32 97.29 97.08 96.97 96.05 95.25 96.60
GroundGrid (mine) 96.11 89.32 94.91 86.68 94.07 95.33 95.46 96.32 94.83 93.29 93.54 93.62

IoU
Patchwork++ 93.79 94.90 93.38 95.09 95.49 91.04 95.36 91.91 94.53 92.78 89.30 93.41
GndNet 91.97 93.65 91.04 92.55 96.41 88.52 95.22 89.63 93.94 90.41 83.30 91.51
JPC 94.15 93.61 91.52 93.14 95.98 90.16 94.34 92.47 93.29 90.64 84.75 92.19
GroundGrid 94.84 94.33 95.19 96.00 96.97 93.49 96.27 94.15 95.40 94.33 91.64 94.78
GroundGrid (mine) 90.59 83.76 89.63 76.54 89.45 89.34 92.95 91.20 88.95 86.90 83.84 87.56

Table 14: Accuracy evaluation of my implementation of the GroundGrid, com-
pared to the original paper and further works [2].

Evaluation 81

Run-Time

The run-time of my implementation is much slower than the original implemen-
tation. This is mainly due to the use of Python as the programming language.
Unfortunately, multithreading or multiprocessing is in Python not as easy as it is
in C++.

I’ve tried several methods to speed up the ground detection, but neither worked
well. In multiprocessing, allowing all processes to work on a common memory,
one has to create a shared memory. Unfortunately, the access time to the shared
memory is much higher than computing on a local, process-bound memory. This
is the reason why the run-time for one LiDAR scan is approximately 38.36 sec-
onds, corresponding to 0.026Hz, compared to 171Hz of the original implemen-
tation. The most time-consuming task is the detection of ground patches. This
takes approximately 37 seconds, while the rasterization and classification take
only around 1 second.

Multiprocessing in Python is only preferable if the computation runs on large
data and a common memory is not needed. Otherwise, the access time to the
shared memory makes the overall run-time worse.

4.4 Sensor Fusion
The Sensor Fusion evaluation is a bit tricky because several steps have to be
considered that may have an impact on the results. For instance, fusing LiDAR
data with camera images requires first ground filtering to remove ground points
and second clustering to determine the possible object proposals. In the end, the
LiDAR data are projected onto the corresponding image plane to match the dif-
ferent objects in the 2D plane.

4.4.1 LiDAR to Camera Projection
I’ve tested the already-performed LiDAR/camera calibration for the autonomous
vehicle, stored in the fub_mig repository. Unfortunately, the calibration is poor
and impacts the object matching a lot. The LiDAR points are projected with a
rotation to the left and a pitch to the top compared to the underlying image. This
is no issue regarding one camera. It relates to all of them. Figure 39 shows the
calibration regarding only LiDAR objects found by the DBSCAN algorithm.

To mitigate this, I’ve re-calibrated the extrinsic parameters x, y, z, roll, pitch,
and yaw such that the LiDAR objects are as close as possible to the correspond-
ing visual objects.

My re-calibration indicates that the main issue is either the pitch and roll are
not perfectly calibrated or the Velodyne sensor as a unit is installed with a small

Evaluation 82

rotation to the left. Furthermore, the cameras might be orientated downwards.
This may reason why the LiDAR projections are higher than the visual objects.

The problems of the LiDAR projection of the left camera are shown in two fig-
ures. Figure 39 shows the projection before and Figure 40 after the re-calibration.
The new parameters are listed in the Appendix Table 17.

I’ve experimented with the Velodyne’s extrinsic parameters and achieved also
changes. But changes regarding one camera made the other camera projection
worse. Hence, I assume that the poor calibration comes not only from the calibra-
tion of the Velodyne model.

The projection onto the four cameras is different. For instance, the projec-
tion onto the rear camera is almost perfect compared to the other ones. A small
rotation to the side was only needed.

Figure 39: Poor calibration of the LiDAR to the left camera..

Evaluation 83

Figure 40: Better calibration of the LiDAR to the left camera.

4.4.2 Object Matching
For the evaluation I use the KITTI dataset for Object Tracking Evaluation [6]. More
precisely, I use the Velodyne point clouds and the left color images of the tracking
data set. From the 21 training sequences, I use one because the evaluation takes
some time.

The evaluation works as follows: First, the LiDAR scan is loaded as pandas
DataFrame. Then, ground segmentation is applied to the point cloud data to
gather only non-ground points. Next, the remaining point cloud is clustered by
the adaptive DBSCAN to find objects. Simultaneously, the different object detec-
tion models are applied to the corresponding images.

Before applying the Hungarian Algorithm to match visual objects with LiDAR
objects, the occlusion check is carried out. This ensures that only visible LiDAR
clusters are matched to the corresponding visual objects.

Next, the Hungarian Algorithm is executed. For this, the distances between
the bounding box centroids of the visual objects and the centroid of the LiDAR
objects are computed and given as input to the matching algorithm.

The output of the Hungarian Algorithm is checked for sanity. The re-checked
output is then used to evaluate the performance of the sensor fusion.

Evaluation 84

The performance of the sensor fusion is measured by a subjective evaluation
of the results of the implemented sensor fusion routine.

The Figures 41, 42, 43, 44 show the tested images with corresponding LiDAR
projections and sensor fusion results.

The first thing to notice is that the clustering of the LiDAR data is not perfect,
especially if the objects are further away. For instance, in Figure 41 the red cluster
stretches from the left to the right side of the image and is mapped to the first car
of the same driving lane. This is obviously not right. The same can be also seen
in Figure 43.

Another point to notice is that the traffic sign in Figure 42 was detected and a
LiDAR point cloud is mapped to it. The point cloud is not 100 percent right but it
shows that the sensor fusion also takes these objects into account.

An example of a bad performance is the Figure 44. The DBSCAN did not
achieve a good enough clustering of the objects such that a big cluster is mapped
to the detected car.

All in all, the performance of the sensor fusion stage depends strongly on the
performance of the DBSCAN. If the DBSCAN clusters the objects successfully,
a cluster can be mapped to each found object. For instance, in Figure 41, the
closest cars have a cluster assigned that represents the cars in the LiDAR data.
This indicates that theDBSCAN algorithm struggles with objects that are far away.

Figure 41: Sensor Fusion evaluation on the image 000000.png of sequence 20
of the KITTI dataset. Only objects that could be mapped to a LiDAR object are
shown. The colors are the same for a bounding box and the corresponding LiDAR
object.

Evaluation 85

Figure 42: Sensor Fusion evaluation on the image 000111.png of sequence 20
of the KITTI dataset. Only objects that could be mapped to a LiDAR object are
shown. The colors are the same for a bounding box and the corresponding LiDAR
object.

Figure 43: Sensor Fusion evaluation on the image 000129.png of sequence 20
of the KITTI dataset. Only objects that could be mapped to a LiDAR object are
shown. The colors are the same for a bounding box and the corresponding LiDAR
object.

Figure 44: Sensor Fusion evaluation on the image 000753.png of sequence 20
of the KITTI dataset. Only objects that could be mapped to a LiDAR object are
shown. The colors are the same for a bounding box and the corresponding LiDAR
object.

Evaluation 86

5 Conclusion
In this chapter, the results from this thesis are described and discussed in detail.
Decision processes are justified and presented. Furthermore, Limitations and
possible Future Work are pointed out.

5.1 Discussion of Results
A tool for automatic data labeling of highly complex driving recordings to sup-
port a human labeler by his task, was necessary to increase the amount of well-
annotated, available, and distinct data. The unlabeled data were gathered, while
the autonomous vehicle was in motion. They consist of LiDAR, camera, and radar
data.

The image processing stage is implemented in Python and consists of the ob-
ject detection and localization in images of the front, left, right, and rear camera,
and the semantic segmentation of these images. The object detection is dis-
tributed over several YOLOv8 models to guarantee a fast and accurate detection
and enable the possibility of executing all models simultaneously. The segmenta-
tion is implemented based on the visual features of a DINOv2 ViT feature extrac-
tor. The segmentation map is quite good, although it works on a patch-wise level
and not a pixel-wise level. Both results are used to enhance the performance of
the pipeline. Especially the segmentation map provides an additional filter stage
for the Sensor Fusion.

The LiDAR processing stage is implemented in Python and consists of LiDAR
filtering, clustering, and object tracking. The filtering achieves an accuracy of
93.62 %, evaluated on the SemanticKITTI dataset. The implementation of the
clustering is based on a variant of DBSCAN. It estimates the eps and minPts pa-
rameters dynamically, based on the points’ distance to the LiDAR sensor and the
density within the corresponding grid cell. Unfortunately, some objects are split
across two clusters due to a possible connection loss between both clusters. The
object tracking works as expected. Objects in consecutive frames are tracked
successfully and can be illustrated with the same color for the same object.

At last, the sensor fusion stage is implemented in Python and consists of an
occlusion check, segmentation map filtering, object matching between visual and
LiDAR objects, and the post-processing of the results. The assumption that only
near objects can occlude other objects is used for the implementation of the oc-
clusion check. The algorithm detects occluded objects successfully and returns
only the non-occluded ones. The object matching implementation uses almost the
same underlying algorithm as the object tracking of the LiDAR object tracking. It

Conclusion 87

matches the different LiDAR projections to the corresponding visual objects. The
labels are stored for all matched LiDAR objects to execute the post-processing.
In the post-processing, all LiDAR scans are processed again. While accessing
each scan, the gathered object/label matching is used to classify the most LiDAR
objects possible. If a label can not be assigned to a cluster, it is considered un-
classifiable but remains in the dataset as an object.

A user interface is implemented to visualize the results of the different pipeline
stages. Furthermore, additional functionalities such as the correction of miss-
classifications in the object detection stage are implemented. These changes
can be stored directly on the system.

Unfortunately, the last step to create a final dataset from the processed data
could not be achieved. However, the data are available because each stage saves
the data on the host system. The only missing part is a function that takes the pro-
cessed data with the results, strips off the unnecessary information, and stores
them in one dataset folder. All other information are persistent on the system.

All in all, I’ve successfully implemented the first Automated Data Labeling
Pipeline for driving recordings, saved as a ROS bag file of the Dahlem Center
for Machine Learning and Robotics. The pipeline is usable either with a Python
console or with the provided user interface. Furthermore, a German traffic sign
dataset is created using the original GTSDB and extended with several additional
traffic signs. Additionally, the labels of the traffic signs are taken from the official
traffic sign catalog.

5.2 Limitations
The main goal to conceptualize, develop, and evaluate an automated data label-
ing pipeline for driving recordings is achieved. LiDAR point cloud data and camera
images are fused at the end, such that objects are labeled across different scans,
and occluded objects can be handled too.

The training of the different object detectionmodels consumed different amounts
of time due to the size of the training dataset. For instance, training a traffic sign
model took three hours on 20 epochs, while training a vehicle model on the nuIm-
ages dataset took two days, also on 20 epochs. The models can be enhanced
by allowing a higher training duration. I limited the number of epochs due to time
restrictions of the work. Furthermore, with another training computer, the training
may be way faster due to more computational resources.

The projection of the LiDAR data onto the corresponding camera images is
not very good. This is due to the quite bad calibration between the LiDAR sensor
and the camera sensors. The LiDAR point cloud does not match the objects in the
camera image quite well. This affects the performance of the pipeline, especially,
the sensor fusion step. To mitigate this in the first instance, I’ve re-calibrated the

Conclusion 88

camera’s extrinsic parameters and achieved better results. To achieve better sen-
sor fusion and object-matching performance, a new LiDAR camera calibration is
needed. Because of the amount of work and the time restriction, I couldn’t do the
calibration by myself and had to rely on manual re-calibration.

Another limitation is that the integration of radar data into the pipeline is not
implemented. Due to the high workload regarding the LiDAR data and the final
sensor fusion, an integration could not be fulfilled.

5.3 Future Work
The proposed data labeling pipeline is restricted by the data I’ve used to train the
different object detection models. Furthermore, the algorithms used are not 100
percent accurate, leading to possible misclassifications and wrong filtering results.

The pipeline is designed to fuse LiDAR data with camera images. An au-
tonomous vehicle may use several additional sensors, such as radar. To fuse
radar data, an additional pipeline stage has to be added. Radar data are quite
similar to LiDAR data. An advantage of Radar is that it provides several more in-
formation, such as the Doppler velocity. The proposed LiDAR stage may function
as inspiration for how the radar processing stage may work. For object detection
for automotive radar clouds, the paper [34] may be a good starting point.

The algorithms used are a bit optimized regarding their run times, allowing
fast, precise, and reliable processing of the different kinds of data. Unfortunately,
not all algorithms achieve a fast processing speed. For instance, the adaptive
DBSCAN algorithm for LiDAR point cloud data clustering is computationally ex-
pensive. Its run time varies between one and two hours, depending on the number
of non-ground points. One may optimize the implemented DBSCAN algorithm or
use another algorithm to achieve better run-time performance while being as ac-
curate or even better than the used implementation. Furthermore, the eps and
minPts estimation seems not to be as accurate as expected. Objects that are
further away are fused with other objects, resulting in one big cluster for several
smaller ones. This can be seen in the Evaluation Figure 44. This prevents a better
performance of the sensor fusion stage.

The first approach of the ground segmentation could be implemented effi-
ciently and evaluated on the sequences of the SemanticKITTI dataset. Because
of the long execution of the LBP algorithm, the approach did not apply to testable.
However, the channel-based initial classification is tested. One could create an
efficient implementation of the LBP algorithm to test this approach as well.

I’ve created my own German traffic sign object detection dataset. This dataset
is far from being complete and achieving an appropriate dataset size for training
an object detection model. Future researchers may work on creating good traffic
signs and traffic light datasets to increase the performance of the corresponding

Conclusion 89

models. The datasets I created can be used as a foundation and inspiration.

Regarding datasets, one could train a traffic light model on the DriveU Traffic
Light Dataset (DTLD) of Ulm University [35]. This dataset is superior compared
to the one I’ve used because it distinguishes different kinds of traffic lights. For
instance, a traffic light is not only defined by the traffic phase. The attributes rel-
evance, direction, aspects, orientation, state, occlusion, pictogram, and reflection
are added to the annotations. The code to read the images of the dataset is given
in Appendix Code 6.3.

Another interesting starting point is to replace the LiDAR clustering with an
object detection model on LiDAR data. With this, the computationally expensive
DBSCAN may be replaced by a faster object detection model. This needs valida-
tion and one may experiment on this topic.

An important task is the inter-sensor calibration. The LiDAR to camera cali-
bration is not very good, leading to a necessary manual re-calibration. Several
calibration methods are proposed and may be implemented to enhance the pro-
jection of the LiDAR data onto a corresponding camera image [36], [37], [38]. This
can further increase the reliability and fusion performance of the pipeline.

A GUI reformatting and improving can be an interesting task as well. The pro-
vided GUI is only functional and is not designed to be as fast as possible. The
GUI can be improved regarding visualization of the results of the individual pipeline
stages. Furthermore, such as the correction tool for objects, found in the camera
images, a tool to do the same in LiDAR data could be implemented to remove
the last wrong classified LiDAR point cloud data. For instance, the LiDAR tool
could fuse two clusters that represent the same object but are separated by the
DBSCAN algorithm.

The functionality of the object detection GUI can be further enlarged. For in-
stance, a tool to add further detection results should be added. If an object de-
tection model detects an object, but a corresponding label cannot be added, the
GUI should provide a function to add a new label. Furthermore, the human labeler
should be allowed to add further object detections to an already processed image.
The labelimg tool could be used as an inspiration for this.

Conclusion 90

References
[1] M. Oquab, T.Darcet, T. Moutakanni, H. Vo, M. Szafraniec, P. Fernandez,

D. Haziza, F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba, R.
Howes, P. Huang, S. Li, I. Misra, M. Rabbat, V. Sharma, G. Synnaeve,
H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin, P. Bojanowski, DINOv2:
Learning Robust Visual Features without Supervision, arXiv, 2023.

[2] N. Steinke, D. Göhring, and R. Rojas, GroundGrid: LiDAR Point Cloud
Ground Segmentation and Terrain Estimation, IEEE 2024, IEEE Robotics and
Automation Letters, vol.9, n. 1, pp. 420-426, 2024.

[3] M. E. Yabroudi, K. Awedat, R. C. Chabaan, O. Abudayyeh, and I. Abdel-
Qadar, Adaptive DBSCAN LiDAR Point Cloud Clustering For Autonomous
Driving Applications, IEEE eIT 2022, IEEE International Conference on Electro
Information Technology, 2022.

[4] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krish-
nan, Y. Pan, G. Baldan and O. Beijbom, nuScenes: A multimodal dataset
for autonomous driving, 2020 IEEE, IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[5] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel, Detection
of Traffic Signs in Real-World Images: The German Traffic Sign Detection
Benchmark, IJCNN 2013, International Joint Conference on Neural Networks,
2013.

[6] A. Geiger, P. Lenz, and R. Urtasun, Are we ready for Autonomous Driving?
The KITTI Vision Benchmark Suite, Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2012.

[7] A. J. Hawkins, Mercedes-Benz is the first to bring
Level 3 automated driving to the US, The Verge, URL:
https://www.theverge.com/2023/1/27/23572942/mercedes-drive-pilot-level-3-
approved-nevada (Online; Accessed: 20.12.2023).

[8] A. Krizhevsky, N. Sutskever, andG. E. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, Curran Associates, Inc., Advances in
Neural Information Processing Systems, vol. 25, 2012.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla,M. Bernstein, A. C. Berg, and L. Fei-Fei, ImageNet
Large Scale Visual Recognition Challange (LSVRC), International Journal of
Computer Vision (IJCV), vol. 115, n. 3, pp. 211-252, 2015.

References 91

[10] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for
Large-Scale Image Recognition, International Conference on Learning Rep-
resentations ICLR, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, Corr, vol. abs/1512.03385, December 10th 2015.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies
for accurate object detection and semantic segmentation, IEEE 2014, IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580-587, 2014.

[13] M. Everingham, L. VanGool, C. K. I. Williams, J.Winn, andA. Zisserman,
The PASCAL Visual Object Classes (VOC) Challenge, International Journal of
Computer Vision, vol. 88, n. 2, pp. 303-338, 2010.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once:
Unified, Real-Time Object Detection, arXiv, May 9th 2016.

[15] J. Redmon and A. Farhadi, YOLO9000: Better, Faster, Stronger, arXiv,
December 25th 2016.

[16] J. Redmon and A. Farhadi, YOLOv3: An Incremental Improvement, arXiv,
April 8th 2018.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T.
Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkor-
eit, and N. Houlsby, An Image is Worth 16x16 word: Transformers for Image
Recognition at Scale, ICLR 2021, International Conference on Learning Rep-
resentations, January 3rd 2021.

[18] M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, and
A. Joulin, Emerging Properties in Self-Supervised Vision Transformers, IEEE
2021, IEEE/CVF International Conference on Computer Vision (ICCV), pp.
9630-9640, 2021.

[19] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, Masked-
attention Mask Transformer for Universal Image Segmentation, IEEE 20222,
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1280-
1289, January 15th 2022.

[20] M. Desmond, E. Duesterwald, K. Brimijoin, M. Brachman, and Q. Pan,
Semi-Automated Data Labeling, NeurIPS 2020, Journal of Machine Learning
Research, 133, pp. 156-169, 2021.

[21] A. Sengupta, A. Yoshizawa, and S. Cao, Automatic Radar-Camera Dataset
Generation for Sensor Fusion Applications, IEEE 2022, IEEE Robotics and
Automation Letters, vol. 7, no. 2, April 2nd 2022.

[22] M. Ester, H. Kriegel, J. Sander, and X. Xu, A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with noise, Knowledge Dis-
covery and Data Mining, 1996.

References 92

[23] H. Kuhn, The Hungarian method for the assignment problem, Naval Re-
search Logistics (NRL), vol. 52, 1955.

[24] Mercedes Benz, Mercedes-Benz Drive Pilot, URL:https://www.mercedes-
benz.de/passengercars/technology/drive-pilot.html (Online; German; Ac-
cessed February 21, 2024).

[25] N. Mokey, A self-driving car in every driveway? Solid-state lidar is the
key, digitaltrends, URL: https://www.digitaltrends.com/cars/solid-state-lidar-
for-self-driving-cars/, March 15, 2018 (Online; Accessed: February 21, 2024).

[26] Fierce Electronics, LiDAR vs. RADAR | Fierce Electronics, URL:
https://www.fierceelectronics.com/components/lidar-vs-radar, (Online, ;Ac-
cessed: February 21, 2024).

[27] Z. Wei, F. Zhang, S. Chang, Y. Liu, H. Wu, and Z. Feng, MmWave Radar
and Vision Fusion for Object Detection in Autonomous Driving: A Review,
Sensors 2022, vol. 22(7), March 25th 2022.

[28] A. Vaswani,N. Shazeer,N. Parmar,K. Uszokereit, L. Jones,A. N. Gomez,
L. Kaiser, and I. Polosukhin, Attention Is All You Need, Curran Associates,
Inc., Advances in Neural Information Processing Systems, vol.30, 2017.

[29] M. Cordts,M. Omran, S. Ramos, R. Rehfeld,M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, The Cityscapes Dataset for Semantic Ur-
ban Scene Understanding, IEEE 2016, IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[30] D. Hendrycks and K. Gimpel, Gaussian Error Linear Units (GELUs), arXiv,
2023.

[31] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, RandAugment: Practical
automated data augmentation with a reduced search space, arXiv, November
14th, 2019.

[32] V. Jiménez, J. Godoy, A. Artunedo, and J. Villagra, Ground Segmentation
Algorithm for Sloped Terrain and Sparse LiDAR Point Cloud, IEEE Access,
vol. 9, pp. 132914-132927, 2021.

[33] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall, SemanticKITTI: A Dataset for Semantic Scene Understanding of
LiDAR Sequences, arXiv, 2019.

[34] N. Scheiner, F. Kraus, N. Appenrodt, J. Dickmann, and B. Sick, Object
detection for automotive radar point clouds – a comparison, AI Perspect 3,
Article number 6 (2021).

[35] A. Fregin, J. Muller, U. Krebel, and K. Dietmayer, The DriveU Traffic Light
Dataset: Introduction and Comparison with Existing Datasets, IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 3376-3383, 2018.

References 93

[36] Z. Chai, Y. Sun, and Z. Xiong, A Novel Method for LiDAR Camera Calibra-
tion by Plane Fitting, IEEE 2018, IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), pp. 286-291, 2018.

[37] Y. Lyu, L. Bai,M. Elhousni, and X. Huang, An Interactive LiDAR to Camera
Calibration, IEEE 2019, IEEE High Performance Extreme Computing Confer-
ence (HPEC), pp. 1-6, 2019.

[38] H. Cai,W. Pang, X. Chen, Y.Wang, andH. Liang, ANovel Calibration Board
and Experiments for LiDAR and Camera Calibration, Sensors, vol. 20, n. 4,
2020.

[39] Eason, Hungarian Algorithm Introduction & Python Implementation,
https://python.plainenglish.io/, URL: https://python.plainenglish.io/hungarian-
algorithm-introduction-python-implementation-93e7c0890e15, 2021 (Online;
Accessed: February 21, 2024).

References 94

6 Appendix
The Appendix contains figures, tables, and code related to the automated data
labeling pipeline.

Analysis of the Velodyne Rings I’ve taken two approaches to calculate the
growth factor of the distance between each ring, produced by the Velodyne sen-
sor. The first approach is to analyze a ROS bag driving recording LiDAR scan that
was captured without obstacles in the way. The second approach is to calculate
the theoretical distances covered by a laser where the angle increases for every
ring.

Table 15 shows how I computed the growth factor based on a LiDAR scan.
The first 19 rings are removed because they are not representative for the eval-
uation and and would add some sort of noise. The growth factor between each
ring increases exponentially. The final parameter is calculated by averaging over
all growth factors.

Source Code 6.1: Calculate the average growth factor for the Velodyne model
HDL-64E, in Python.
1 from math import tan, radians

3 z = 1.56 # mounting height of the sensor
4 a_inc = 0.4 # angular increase value per channel
5 channels = 64 # number of channels

7 d = [z/tan(radians(a_inc*x)) for x in range(1,channels)]

9 d.sort()

11 gf = [] # result list for the growth values
12 for i in range(1,len(d)):
13 gf.append((d[i]-d[i-1])/d[i-1])

15 a_gf = sum(gf)/len(gf) # average growth factor

The second approach to calculate the growth factor is to take a look at the
datasheet of the corresponding Velodyne sensors. The datasheet for the Velo-
dyne HDL-64E gives us an angular resolution of 0.4 degrees and a vertical field
of view of 26.9 degrees. Each channel’s angle increases by 0.4 degrees com-
pared to the prior channel.

Appendix 95

The distance dto the sensor is calculated by

z

tan (ainc ∗ c)
= d (6.1)

where ainc describes the angular increase per channel, c is the channel number,
and z is the mounting height of the Velodyne sensor. From the fub_mig repository,
the mounting height is 1.56 meters for the HDL-64E.

The data are generated and processed by the Python script in Code 6.1. The
average growth factor is 0.07713135500720329 almost identical with the experimen-
tal determined one (0.77938182482261).

Appendix 96

Ring Distance Growth
20.0 6.876576535748794 0.10403096145448196
21.0 7.591953404278072 0.018896291163408845
22.0 7.735413166304343 0.05918292144779239
23.0 8.193217516091952 0.005819914258260863
24.0 8.240901339534888 0.0794994071079342
25.0 8.896048110062893 0.03203775969950384
26.0 9.181057561688313 0.08626801953682255
27.0 9.973089214788732 0.011105617091013913
28.0 10.083846524822697 0.09684694857968854
29.0 11.060436290697671 0.04271585014583911
30.0 11.532892229838714 0.07640958101245256
31.0 12.41411569298246 0.0749468227722087
32.0 13.34451422169811 0.038633766165058196
33.0 13.86006306372549 0.0533255393527552
34.0 14.599158402061851 0.05464753663318328
35.0 15.396966445652172 0.062305194631396645
36.0 16.356277436781614 0.05395677477736545
37.0 17.238809414634144 0.05567084980745513
38.0 18.198508584415585 0.07459643752882321
39.0 19.556052493150695 0.0692693067018623
40.0 20.91068669117647 0.07559659920465682
41.0 22.491463492063488 0.07664007609206948
42.0 24.215210965517237 0.08654935330863064
43.0 26.311021814814815 0.10123753071281007
44.0 28.974684693877546 0.10922130578698758
45.0 32.13933759090909 0.1048128852141212
46.0 35.50795429268294 0.15088156150899437
47.0 40.86544988235294 0.17963294347217082
48.0 48.206230931034476 0.1763175661072812
49.0 56.70583624000001 0.20432910487310346
50.0 68.292489 0.17062298266309575
51.0 79.94475716666666 -

average - 0.77938182482261

Table 15: The growth factor development regarding the different rings (corre-
sponding to channels) based on a LiDAR scan with almost no obstacles in the
way.

Appendix 97

Application of the Hungarian Algorithm Following an example of the applica-
tion of the Hungarian Algorithm is given.

J1 J2 J3 J4 1
W1 82 83 69 92 69
W2 77 37 49 92 37
W3 11 69 5 86 5
W4 8 9 98 23 8

(a) Calculate the minimum of each row
and subtract it from each row entry. The
minimum is in the column with 1 .

J1 J2 J3 J4
W1 13 14 0 23
W2 40 0 12 55
W3 6 64 0 81
W4 0 1 90 15

2 0 0 0 15

(b) Calculate the minimum of each col-
umn and subtract it from each column
entry. The minimum is in the row with
2 .

J1 J2 J3 J4
W1 13 14 0 8
W2 40 0 12 40
W3 6 64 0 66
W4 0 1 90 0

(c) Determine the minimum number of
lines to cover all zeros of the grid. Three
lines are needed.

J1 J2 J3 J4
W1 13 14 0 8
W2 40 0 12 40
W3 6 64 0 66
W4 0 1 90 0

(d) Only three lines needed for four lines
means a non-optimal assignment. Find
the smallest uncovered number. In this
example, it is the 6.

J1 J2 J3 J4
W1 7 8 0 2
W2 40 0 18 40
W3 0 58 0 60
W4 0 1 96 0

(e) Subtract the smallest number (6)
from each uncovered entry (teal) and
add it to each entry that is covered by
two lines (purple).

J1 J2 J3 J4
W1 7 8 0 2
W2 40 0 18 40
W3 0 58 0 60
W4 0 1 90 0

(f) Four lines are needed to cover all
zeros means an optimal assignment is
found (orange).

Table 16: Example for applying the Hungarian Algorithm. An optimal assignment
is (J1, W3), (J2, W2), (J3, W1), and (J4, W4).

Traffic Sign Dataset Following, the traffic signs of the own created traffic sign
dataset are illustrated. Images taken from wikipedia1

1 wikipedia: https://de.wikipedia.org/wiki/Wikipedia:Hauptseite (Online; Accessed: February 21,
2024)

Appendix 98

Figure 45: All Traffic Signs that are included in the dataset.

Appendix 99

HungarianAlgorithm Implementation of theHungarian Algorithmwith the numpy
package. The variant (2) is implemented and every not used alternative imple-
mentation is added as code to comprehend the implementation. The implemen-
tation is taken from [39] and modified by myself.

Source Code 6.2: Implementation of the testedHungarian Algorithmwith different,
tested variants, in Python.
1 import numpy as np
2 import math
3 import random
4 import timeit

6 def create_objects(n):
7 objects = [(round(random.randint(0,20)),round(random.

randint(0,20))) for i in range(n)]
8 return objects

10 def min_zero_row(zero_mat , mark_zero):
11 '''The function can be splitted into two steps:
12 #1 The function is used to find the row which containing

the fewest 0.
13 #2 Select the zero number on the row, and then marked the

element corresponding row and column as False
14 '''

16 #Find the row
17 min_row = [99999, -1]

19 for row_num in range(zero_mat.shape[0]):
20 if np.sum(zero_mat[row_num] == True) > 0 and min_row

[0] > np.sum(zero_mat[row_num] == True):
21 min_row = [np.sum(zero_mat[row_num] == True),

row_num]
22 #bool_sum = np.sum(zero_mat, axis=1)
23 #masked_bool_sum = np.ma.masked_equal(bool_sum , 0., copy=

False)
24 #min_row = [np.min(masked_bool_sum), np.argmin(

masked_bool_sum)]

26 # Marked the specific row and column as False
27 zero_index = np.where(zero_mat[min_row[1]] == True)[0][0]
28 mark_zero.append((min_row[1], zero_index))
29 zero_mat[min_row[1], :] = False
30 zero_mat[:, zero_index] = False

32 def mark_matrix(mat):
33 '''
34 Finding the returning possible solutions for LAP problem.
35 '''

Appendix 100

36 #Transform the matrix to boolean matrix(0 = True, others
= False)

37 cur_mat = mat
38 zero_bool_mat = (cur_mat == 0)
39 zero_bool_mat_copy = zero_bool_mat.copy()

41 #Recording possible answer positions by marked_zero
42 marked_zero = []
43 while (True in zero_bool_mat_copy):
44 min_zero_row(zero_bool_mat_copy , marked_zero)

46 #Recording the row and column positions seperately.
47 marked_zero_row = []
48 marked_zero_col = []
49 for i in range(len(marked_zero)):
50 marked_zero_row.append(marked_zero[i][0])
51 marked_zero_col.append(marked_zero[i][1])

53 #Step 2-2-1
54 non_marked_row = list(set(range(cur_mat.shape[0])) - set(

marked_zero_row))

56 marked_cols = []
57 check_switch = True
58 while check_switch:
59 check_switch = False
60 for i in range(len(non_marked_row)):
61 row_array = zero_bool_mat[non_marked_row[i], :]
62 for j in range(row_array.shape[0]):
63 #Step 2-2-2
64 if row_array[j] == True and j not in

marked_cols:
65 #Step 2-2-3
66 marked_cols.append(j)
67 check_switch = True
68 for row_num, col_num in marked_zero:
69 #Step 2-2-4
70 if row_num not in non_marked_row and col_num in

marked_cols:
71 #Step 2-2-5
72 non_marked_row.append(row_num)
73 check_switch = True
74 #Step 2-2-6
75 marked_rows = list(set(range(mat.shape[0])) - set(

non_marked_row))

77 return(marked_zero , marked_rows , marked_cols)

79 def adjust_matrix(mat, cover_rows , cover_cols):

Appendix 101

80 cur_mat = mat
81 non_zero_element = []

83 #Step 4-1
84 for row in range(len(cur_mat)):
85 if row not in cover_rows:
86 for i in range(len(cur_mat[row])):
87 if i not in cover_cols:
88 non_zero_element.append(cur_mat[row][i])
89 min_num = min(non_zero_element)
90 #idx = tuple(np.array([[row, col] for row in range(

cur_mat.shape[0]) if row not in cover_rows for col in
range(cur_mat.shape[1]) if col not in cover_cols]).T)

91 #min_num = min(cur_mat[idx])

93 #Step 4-2
94 #cur_mat[idx] -= min_num
95 for row in range(len(cur_mat)):
96 if row not in cover_rows:
97 for i in range(len(cur_mat[row])):
98 if i not in cover_cols:
99 cur_mat[row, i] -= min_num

100 #Step 4-3
101 #idx_gen = np.array([[row, col] for row in cover_rows for

col in cover_cols])
102 #cur_mat[tuple(idx_gen.T)] += min_num
103 for row in range(len(cover_rows)):
104 for col in range(len(cover_cols)):
105 cur_mat[cover_rows[row], cover_cols[col]] +=

min_num
106 return cur_mat

108 def hungarian_algorithm(mat):
109 # select the smaller dimension to get an assignment

result and don't run into an error
110 dim = min(mat.shape[0], mat.shape[1])
111 cur_mat = mat

113 #Step 1 - Every column and every row subtract its
internal minimum

114 #for row_num in range(mat.shape[0]):
115 # cur_mat[row_num] = cur_mat[row_num] - np.min(cur_mat

[row_num])

117 #for col_num in range(mat.shape[1]):
118 # cur_mat[:,col_num] = cur_mat[:,col_num] - np.min(

cur_mat[:,col_num])
119 r_min = mat.min(axis=1)
120 #cur_mat = np.subtract(cur_mat, r_min.T)

Appendix 102

121 for i in range(len(r_min)):
122 cur_mat[i] -= r_min[i]

124 c_min = cur_mat.min(axis=0)
125 cur_mat = np.subtract(cur_mat, c_min)

127 #print('Matrix row and column minimum subtracted:\n',
cur_mat)

129 zero_count = 0
130 while zero_count < dim:
131 #Step 2 & 3
132 ans_pos, marked_rows , marked_cols = mark_matrix(

cur_mat)
133 zero_count = len(marked_rows) + len(marked_cols)

135 if zero_count < dim:
136 cur_mat = adjust_matrix(cur_mat, marked_rows ,

marked_cols)

138 return ans_pos

140 def ans_calculation(mat, pos):
141 total = 0
142 ans_mat = np.zeros((mat.shape[0], mat.shape[1]))
143 for i in range(len(pos)):
144 total += mat[pos[i][0], pos[i][1]]
145 ans_mat[pos[i][0], pos[i][1]] = mat[pos[i][0], pos[i

][1]]
146 return total, ans_mat

148 def main():
149 '''Hungarian Algorithm:
150 Finding the minimum value in linear assignment problem.
151 Therefore , we can find the minimum value set in net

matrix
152 by using Hungarian Algorithm. In other words, the maximum

value
153 and elements set in cost matrix are available.'''
154 objects = create_objects(10)
155 object_proposal = create_objects(15)

157 # change objects to row and object_proposal to columns
because objects are fixed and the object proposals should

158 # be mapped to the corresponding objects
159 cost_matrix = np.zeros(shape=(len(objects), len(

object_proposal)))

161 # insert the distance between object and object_proposal

Appendix 103

into the matrix
162 for i in range(len(objects)):
163 for j in range(len(object_proposal)):
164 ob = objects[i]
165 ob_p = object_proposal[j]
166 distance = math.sqrt((ob[0]-ob_p[0])**2+(ob[1]-

ob_p[1])**2)
167 cost_matrix[i,j] = distance
168 ans_pos = hungarian_algorithm(cost_matrix.copy())#Get the

element position.
169 ans, ans_mat = ans_calculation(cost_matrix , ans_pos)#Get

the minimum or maximum value and corresponding matrix.

171 return ans, ans_mat

173 if __name__ == '__main__':
174 times = []
175 for j in range(5):
176 total_time = timeit.timeit(main, number=100000)
177 print(f'Average time for 1000 runs {total_time/100}')

Appendix 104

Calibration of LiDAR and camera In Table 17 are the manually re-calibrated
parameters of the LiDAR to camera calibration.

Camera front left right rear
x 0.98 -0.68915 -0.7776 -0.37635
y 0.594 0.97608 -0.88889 0.7368
z 0.52 0.91405 0.89035 0.82795
roll -1.52 -2.15 -2.4 -1.57
pitch 0.0125 0.0 0.215 0.09
yaw -1.61 0.15 2.735 1.55

Table 17: Re-calibrated parameters of the camera’s extrinsic parameters.

User Interface Following, figures of the implemented user interface are pre-
sented.

Figure 46: Start User Interface of the Automated Data Labeling Pipeline.

Read images from DTLD Code to read the images of the DTLD dataset. The
images are stored with bayering and shift to save memory storage.

Source Code 6.3: Load an image of the DTLD, in Python.
1 file_path = path_to_dir+'/Bochum/Bochum/Bochum1/2015-04-21_17

-28-49/DE_BBBR667_2015 -04-21_17-28-50-748255_k0.tiff'
2 img = cv2.imread(file_path , cv2.IMREAD_UNCHANGED)
3 img = cv2.cvtColor(img, cv2.COLOR_BAYER_GB2BGR)
4 img = np.right_shift(img, 4)
5 img = img.astype(np.uint8)
6 Image.fromarray(img).show()

Appendix 105

Figure 47: Default Execution User Interface. The requirements R-1, R-2, R-3,
R-4, R-5,R-6, R-7, R-8 are all implemented as buttons on the left side.

Figure 48: Execution User Interface of the Object Detection Stage. The require-
ment R-11 is implemented with functionality to change or remove an object detec-
tion result.

Appendix 106

Figure 49: Execution User Interface of the LiDAR Tracking of LiDAR objects. The
requirement R-10 is implemented here.

Figure 50: Execution User Interface of the Sensor Fusion visualization. The re-
quirement R-10 is implemented here.

Appendix 107

Figure 51: Training User Interface. The requirement R-14 is implemented. Sev-
eral pieces of information are shown.

Appendix 108

