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Abstract

Despite their small brain size, honeybees are able to orientate themselves
exceptionally well in the environment. In order to study their naviga-
tional capabilities, correlations between brain activity of a bee and its vi-
sual perception are analysed. Neural activity of the animal was recorded
while flying with a quadcopter. First, it is shown that similar brain activ-
ity was measured in repeated flight routes. Next, the flight of the copter
is simulated in a virtual 3D environment of the experiment’s fields and its
surroundings. Images were rendered from the perspective of a bee and
processed by an autoencoder. Activations of the encoder were correlated
with the bee’s neural activity. Additionally, the brain activity was pro-
jected onto a field in the range of a bee’s field of view. Both approaches
revealed high correlations during flight turns.
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1. Introduction

1 Introduction

Honeybees, Apis mellifera, are well-known for their navigational capabilities.
After visiting different food sources, they fly back to their hive and later find
these locations again. Distances between such locations can be up to ten kilo-
metres [1]. That is, the animals travel to desired destinations which are not in
their viewing range. How bees are able to achieve this is still under research.

With a volume of about 1 mm? and fewer than a million neurons bees have a
small brain compared to other animals which are known for orientating them-
selves in the environment like mice. Larger brains contain more replicated
neuronal circuits whereby they, amongst others, have a greater sensory preci-
sion. But that does not necessarily lead to a higher intelligence [8]. Hence, the
simpler brain of a bee is studied in which it might be easier to find structures
related to navigation.

Young bees explore the environment in short-range flights around the hive and
in long-range flights. Multiple successive orientation flights are performed to
investigate different parts of the terrain surrounding the hive [11]. Learned
characteristics of the hive or terrain during the first orientation flight are suf-
ficient for bees to reach their home successfully after being displaced [12].
Similarly, re-orientation flights help bees to receive hive and landscape fea-
tures when the hive is moved. Even in a new area one re-orientation flight is
enough to find the way home from a random location [10].

There are multiple publications which indicate that bees use a cognitive map
[5, 24, 25]. The idea is that bees are able to remember spatial relations between
landmarks such that they locate themselves and head towards a destination.
This theory was disputed [7] but there is further evidence which supports
a cognitive map [4]. Landmarks are objects which are salient, permanent,
and relevant such that navigational agents remember and recognize them, for
example by their colour, size, edge orientation, and symmetry [16]. When bees
fly home, they travel along elongated ground structures [26]. Moreover, it was
shown that honeybees are able to fly novel shortcuts between known locations
they visited separately by using path integration [25].

Honeybees inform foragers about their findings by performing a waggle-
dance which encodes a direction vector and distance to flowers. Bees use the
position of the sun during dances to describe the direction of food sources.
This works even without direct visual contact between bee and sky [22]. The
animals do not communicate the distance to a food source in absolute values
during their dances but via the measured optical flow, which is the image
motion during a flight, from hive to destination [14].
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1. Introduction

The workgroup Artificial and Collective Intelligence as well as the Institute of
Neurobiology at Freie Universitdt Berlin research together on the project Neu-
roCopter. They examine the navigation skills of honeybees. The aim of this
project is to understand how different parts of a bee’s brain process and rep-
resent the animal’s navigational capabilities. Likewise, their research could
reveal basic computational structures which can be used for general naviga-
tion tasks [20].

Initially, the idea of the project was to imitate a bee with a custom built quad-
copter, named NeuroCopter. In order to be able to fly autonomously, the logic
of the copter consisted of multiple modules with artificial neural networks
which represented the bee’s brain. These modules were tested in computer
simulations and trained with virtual sensory data. Afterwards, they were de-
ployed to the copter. In a following approach, a purchased quadcopter was
modified in such a way that a living honeybee is attached to it. An on-board
computer on the copter records the brain activity of the bee during flights.

Experiments with NeuroCopter are analysed in this thesis. The goal was to
find locations which the animal uses to navigate. It is shown that neural
signals of the same bee are similar during iterations of the same experiment.
Specific locations of the environment which trigger brain activity could not be
found.

In the following section an overview is given of related work to navigation of
honeybees and previous works of the NeuroCopter project. Next, Section 3
describes the experiment with NeuroCopter, how the bee’s brain activity is
processed for analyses in this thesis, as well as the environment of the exper-
iment. The brain activity of the bee is examined in Section 4. Section 5 and
Section 6 describe two approaches to correlate neural activity with visual fea-
tures of the environment. Finally, the results are evaluated in Section 7 and a
conclusion is drawn in Section 8.



2. Related Work

2 Related Work

The visual perception and navigational capabilities of honeybees have been
studied for several decades with different approaches. Menzel et al. used a
harmonic radar system to track the flight paths of bees on a field with a hive,
coloured tents used as landmarks, and a feeding station [24]. By varying the
position of the hive, feeder, tents, and radar station as well as grouping bees
with different knowledge of the environment, similarities between flights in
multiple situations were compared. Straight flights of a learned direction from
another bee, search flights, and goal-driven flights could be distinguished.
Moreover, a radar system was used to show that bees use elongated ground
structures for navigation [26].

The visual perception of honeybees can be investigated with tunnels. Chen
et al. used a maze shaped like a Y to test the pattern recognition of bees
[6]. Bees were shown two different patterns at both ends of the Y-maze while
only one ending rewarded them with sugar water. After a training period
different patterns were displayed. The bees were able to differentiate between
topologically different patterns during training and abstract them to novel
patterns. In another experiment, Si et al. showed that the bee’s visually driven
measurement which they need for their waggle dance is robust [38]. Although
flying through a tunnel with varying and sparse texture, bees could use optic
flow for distance measurement. Buatois et al. conducted two experiments:
bees walking in a Y-maze and on a treadmill while in both scenarios visual
stimuli where presented [3]. In the maze experiment the bees’ visual learning
performance was better. They propose that the mobility is necessary to learn
the stimuli from different viewing angles.

Multiple studies focus on the change of brain activity while bees navigate.
Paulk et al. measured neurons in different regions of a bumblebee’s brain
while the animal was presented an array of light emitting diodes (LED) to
trigger colour stimuli as well as a cathode ray tube (CRT) monitor for motion
stimuli [28]. Along the visual pathway from eye to higher order brain centres
colour sensitivity is processed by neurons before motion stimuli. Similarly,
in two experiments by Ibbotson et al. CRT displays were placed in front and
on both sides of a honeybee [19]. High contrast sine-wave gratings or spiral
patterns on the screens were shown for visual stimulation. Measured neurons
during recordings with both screens on side suited to the optic flow. Mertes
et al. recorded learning flights of bumblebees with two cameras in a labora-
tory arena with a custom-made texture on walls, a feeder and three cylinders
which served as landmarks [27]. These recordings were used to obtain a three-
dimensional flight trajectory. Together with a virtual model of the arena, the
flight could be reconstructed in ego-perspective of the bumblebee.

3



2. Related Work

This video was shown on a LED screen to a tethered bumblebee while record-
ing neural activity in its brain. The virtual environment was modified by re-
moving landmarks and changing texture of objects or the background. These
modifications were presented to bumblebees, too. It turned out that the recorded
neurons process landmarks. On the other hand, changes of textures did not
have a great impact.

In the beginning, the goal of the NeuroCopter project was to develop a quad-
copter which behaves like a honeybee. Autonomous flights were developed
by connecting the onboard computer of the copter to a virtual flight simula-
tion [9]. The simulation prevented hardware damage during flight tests. The
multicopter was constructed individually [23]. It consisted of the on-board
computer ODROID-U3 as well as multiple sensors such as a camera and a
gyroscope. While flying the ODROID-U3 sent recorded data to a computer on
the ground.

Various works focused on the implementation of algorithms which improved
the behaviour of the copter. Using a neural network, the copter’s ego motion
could be extracted successfully from sparse optical flow fields [20, 40]. That
means, the input only consists of camera images and no further sensors of
the copter. The authors were able to recreate the flight curve with the help
of the ego motion calculated by the network. This approach provides basis
for navigation models of the copter since they need a way to determine the
copter’s ego motion. Another work focused on the determination of the rel-
ative position of the copter [2]. This was achieved by evaluating the copter’s
sensors and detection of landmarks on camera images. Furthermore, collision
detection was developed [41]. The system recognizes dangerous situations by
analysing the optical flow. It compares the situation to previously supervised
learned data.

Lastly, the goal of the project was adjusted. A quadcopter was customized in
such a way that a living honeybee can be attached to it [29]. During flights the
copter measures neural activity of the bee’s brain. With this system the naviga-
tion capabilities of flying bees can be examined in their natural environment.
This was not possible with previously published experiments such as a simu-
lation of the environment with screens and airflow machines to stimulate the
bee.
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3 Data Collection

Recording brain activity of a flying honeybee over long distances is difficult
due to its small size. Julian Petrasch modified a multicopter during his master
thesis at Biorobotics lab to solve this task [29]. Moreover, he flew the copter
with a bee in field experiments. The captured brain activity is used in this
thesis. This section summarizes aspects of the master thesis of Julian Petrasch
which form the basis for the analysis in the next sections.

3.1 Multicopter with honeybee

A multicopter is well suited for measuring neuronal activity of a bee during
a flight. It can fly as fast as bees and counterbalance wind. In addition, the
copter is able to fly a programmed route autonomously such that experiments
can be planned accurately and are repeatable. In this project a DJI Matrice
100" was selected which is a ready to fly copter for developers. This drone
was modified as shown in Figure 1. The bee is attached to a gimbal on a
cantilever. Because of that the animal is not distracted by the propellers of the
copter. The gimbal keeps the bee in its natural position while flying since the
copter tilts differently than bees do.

Figure 1: CAD model of the modified multicopter. A gimbal at the end of a
cantilever holds a honeybee and aligns it in its natural position while flying.
(Image from [29])

IDji matrice 100. SZ DJI Technology Co., Ltd., 2018 (https://www.dji.com/de/
matricel00)
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3. Data Collection

Figure 2: The symmetric brain of a bee consists of different parts: Red, Antennal
lobes, AL; Blue, Mushroom bodies, MB (comprising medial and lateral calyx and
the pedunculus); Green, central complex, CB (comprising upper and lower central
complex and protocerebral bridge); Yellow, Lobula; Orange, Medulla. The Lobula
and Medulla regions of the brain transfer visual signals to the mushroom
body [30]. The electrode is placed at an exit of the mushroom body, marked
with a red cross. (Description and image from [39], electrode position from

[29])

In order to fix a honeybee to the copter, first a bee is cooled down for ten
minutes to prevent it from moving. Then, the animal is put in a holder on
the copter, the head is opened and an electrode is moved into the brain. The
electrode is glued at an exit of a mushroom body, see Figure 2. This region of
the brain receives direct visual input and is responsible for learning of visual
information [30]. The bee is able to see the environment but it cannot move as
depicted in Figure 3.

The analogue signal of the electrode in the brain of the honeybee is ampli-
tied by two amplifier boards. Next, the signal is digitized by analogue to
digital converters and saved to log files on a SD-Card by a microcontroller.
Grounding and shielding, for example with copper foil, is used to eliminate
noise generated by the motors of the copter in the signal as much as possi-
ble. Besides capturing the neural activity of the honeybee, the drone records
telemetry data such as its GPS position, orientation and speed. This is written
to its internal memory:.



3.2 Data processing

Figure 3: Honeybee is fixed at the gimbal on the multicopter. The bee’s head
is visible and connected to an amplifier board via a cable. (Image from [29])

3.2 Data processing

Sensor data of the drone as well as brain activity of the bee are stored as binary
files on the internal memory and SD-Card. These information need to be con-
verted into a readable format and combined in a time-synchronized manner.
The telemetry data is converted to a CSV-file with DatCon* and synchronised
with the brain activity with NeuroCopter Binary Converter [29] which was writ-
ten for this project by Julian Petrasch. The software Spike2® is used to sort
and classify the neural spikes of the combined CSV-file. Lastly, the detected
spikes and their corresponding timestamps are again merged with the CSV-
file containing the drone and brain data with NeuroCopter Binary Converter.
The resulting CSV-file is the basis for the analysis in this thesis.

3.3 Field experiment

In 2018, experiments with the NeuroCopter were performed at Julius Kiithn-
Institut in Berlin by Julian Petrasch [29]. A food source was placed on a field
at the institute. Bees that found the feeder were marked and later used for the
NeuroCopter. After taking off and quickly flying to the start point, the flight
route started from the same direction to the feeder as the bees flew previously
from the hive, see Figure 4a. During the flight the copter takes three half
circles and flies three times over the feeder from different directions.

Zhttps://datfile.net/DatCon/intro.html
3http://ced.co.uk/products/spkovin
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e B

(a) 2nd August, 2018

Figure 4: Flight routes of NeuroCopter at Julius Kiithn-Institut. The bee on the
copter knows the yellow-marked feeder on the field. The first part of the route
is the same direction the bee flew from its hive towards the feeder during
training phase. Flight height of the copter is 19 metres and speed is 20 km/h.
Background texture of the field was created with the copter, see [29], and is
overlaid on Google Earth. Images (a) and (b) show the fields and flight route
of experiments of two days. The flight trajectory of the copter is depicted in
red. In the lower left corner, manual start and landing are plotted, too.
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4 Spike Rate

Recorded neural activity during flights with NeuroCopter is analysed. At each
iteration of the experiment the copter takes nearly the same path because the
route is programmed and flown autonomously. That is why the visual percep-
tion of the honeybee on the copter is nearly the same at each repetition. Thus,
if this perception is correlated with the measured neuron, the neural signal
of repeated routes must be similar as well. In the following, this similarity is
shown.

4.1 Description

This thesis evaluates experiments from 2nd August, 2018 and 3rd September,
2018 at Julius Kithn-Institut as described in Subsection 3.3. More data was not
available at the time of writing.
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Figure 5: Mean spike rate in two second intervals of all flown rounds on 2nd
August, 2018 in (a) and on 3rd September, 2018 in (b). The mean spike rate is
shown in black. Standard deviation is highlighted in blue. Spike rates during
turns are marked in orange.



4. Spike Rate

Experiments of both days must be examined separately because the programmed
route was slightly adjusted: curves flown in August, see Figure 4a, were much
sharper than in September as depicted in Figure 4b. Besides, the fields were
planted differently such that the bees did not see the same environment.

Each day, one honeybee was used during the field experiments. In the follow-
ing, a flown path from starting to landing of the copter is considered as a flight
and the route shown in Figure 4 as one round. Multiple flights were executed
per day to change the battery of the copter between flights. One flight consists
of three to five rounds. The waiting times varied between each round in which
the copter rests at the start position of the route in the air.

The neural signal of measured neurons in the bee’s brain was processed by
Spike2, see Subsection 3.2. This software identifies and sorts spikes in the
signal based on a threshold and shapes used for template matching [21]. The
spike rate describes the amount of spikes per time window. In this thesis,
the spike rate of the measured neurons is used in intervals of 0.1 seconds.
However, this section examines the spike rate in intervals of two seconds to
compare its general structures. The following sections focus on inspecting
finer details. Figure 5 shows the mean spike rate of all flown rounds together
with the standard deviation separated for both days. All graphs in this section
are smoothed by B-splines with a smoothing condition of one.

4.2 Sliding window correlation

If there are locations on the field which the honeybee uses to navigate, the
measured brain activity in consecutive rounds should be similar. The similar-
ity of two spike rate series X and Y is measured with the Pearson correlation
coefficient r. It is calculated by dividing the covariance cov of both series by
their standard deviation ¢ [35, pp. 92 - 97]:

cov(X,Y) 321 (X0 — ) (Yo — §)

rxy =
ox - Oy _ 2
V/n v=1 x” x \/n v= 1 )

A correlation result of 0 means no linear correlation while 1 reflects a positive
and -1 a negative linear correlation between X and Y. Z-normalizing is not
necessary before calculating r since the Pearson coefficient is invariant to linear
transformation. The Pearson correlation is computed with an implementation
of the SciPy* ecosystem as well as a modified version by the author for parallel
computation on the graphics processing unit with PyTorch.

4https://www.scipy.org/
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4.2 Sliding window correlation

If brain activities of consecutive flight rounds are similar, the Pearson coeffi-
cient of the corresponding spike rates must be greater than zero. However,
the results must be compared with correlations of other parts of the flight.
Otherwise, it cannot be ensured that not all parts of a flight’s spike rate show
these similarities. That is why a sliding window correlation (SWC) is applied
[37]. First, spike rates corresponding to a flight round are selected. Next, this
window is correlated with the first spike rate values of the same flight such
that both series are equally long. Then, the window is shifted by one value to
the following spike rate of the flight and they are correlated. This is repeated
for the whole flight. Hence, the resulting correlation is one at the index which
refers to the beginning of the windowed round. Moreover, results of correla-
tions with other rounds are at their corresponding position in the correlation
time series as well.

Figure 6 depicts SWCs of each round for all flights in both days in August
and September. Waiting times between rounds as well as starting and landing
times are differently long in each flight. They are removed before calculating
SWCs to make them visually comparable between flights. Furthermore, the
sum of the spike rates of each flight is used in intervals of two seconds to
reduce noise. In flights a, b, and 4 all correlations of one round with another
round are higher than with series which contain parts of the end of a round
and the start of the following round. In flight e only the fourth round and
in flight f the third round correlate strongly with the second round of their
flights. Lastly, in flight c no round correlates strongly with another round.

The shapes of the SWCs in flights 4, b and d are striking. All SWC graphs show
high correlations when two rounds are correlated which is depicted at posi-
tions of green bars in Figure 6. In addition, also correlations of a round with
series which start in a round and end in the next one are similar regarding
all SWC graphs of a flight. These correlations are shown between the green
bars. Besides, all SWCs of all flights oscillate, see Figure 6. Smooth transitions
between neighbouring correlations are expected because the sliding window
is shifted by one index of the flight’s spike rate. Hence, consecutive corre-
lated series with the window differ only in moved values to their predecessor
index and one new successor value at the end of the series such that their
correlations are similar. This results in an oscillation around highly corre-
lated positions instead of only one peak. However, the number of oscillations
between consecutive correlations of whole rounds is the same for all SWCs
and all transitions between rounds in one flight. Though, this number varies
between different flights.

11
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Figure 6: Sliding window correlations of all rounds of each flight. Waiting
times between rounds as well as starting and landing are removed. Rows (a)
and (b) show flights on 2nd August, 2018 and rows (c) to (f) show flights on
3rd September, 2018. Green bars mark starts of a flight round. All graphs
oscillate between starts of rounds. One oscillation is highlighted in red in the
sliding window correlation of the first round of flight (a).
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4.3 Correction of different lengths of rounds

In order to examine the position of the NeuroCopter at peaks of the oscillations
in the SWCs a synchronised overview with a map and autocorrelation graph
was developed. A slider is used to select a time of the flight which shows the
location of the drone at that time on the map and highlights the corresponding
position in the graph, see Figure 33.

The peaks of oscillations between rounds occur when the windowed round
spike rate series is correlated with a series which starts near a turn. In August,
this is often before the copter reaches the feeder the first time during a round
and right after all three right turns. Peaks in September occur mostly after the
first and before the third right turn. Generally, sharper turns in August lead
to four oscillations in the correlations between rounds while smoother turns
in September result in two oscillations in flights ¢ and d. Flight e shows three
oscillations between rounds that are not synchronous over all autocorrelations
of that flight. The last flight f has only one oscillation between rounds and
their peaks vary in regard to all SWCs of this flight.

4.3 Correction of different lengths of rounds

Although NeuroCopter flew the route autonomously, the total time to finish
a round differs. This is observable in Figure 6 because green markings are
positioned at different times between flights of the same day. They highlight
start times of rounds. Hence, for example markings of the second round in
flights d and e would be at the exact same time if rounds were equally long in
time. These different round lengths could be caused by heavier winds which
the copter cannot compensate and let it drift slightly away such that it takes
longer to complete the route. The SWC graphs are calculated by correlating
one fixed round with all possible time series of the same length in the flight. If
the fixed round is shorter than another round, not all spike rates of the round
are used for correlation. On the other hand, a longer fixed round correlates
with spike rate values which include parts of the previous or next round. Even
small differences in round lengths can influence the correlation results since
the spike rate is used in summed parts of two seconds. Shifted oscillation of
different SWCs at the same time as visible in flights c and e might be an effect
of these different round lengths.

13
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Figure 7: Intermediate results of compensation of different round time lengths.
Image (a) shows one point every ten metres along the flight route of one round.
In image (b) spike rate values of a different round are assigned to the nearest
located mean points. Spike rate values are drawn at the position where they
were recorded. Positions are coloured alternating between green and blue for
every other mean point they are assigned to. The image serves as a sanity
check to show that values are assigned properly to their nearest mean point
along the route, especially in the feeder’s region. The last straight return flight
is not drawn to remove overlaps with the start line.

In order to improve this flaw, the spike rate was calculated dependent on flown
distance of the copter rather than time. It is not possible to correlate spike rates
of two rounds with different lengths because both time series must have the
same amount of values to compute the Pearson coefficient. First, a distance x
in which the mean spike rate will be calculated is set in metres. Next, all flight
positions of the copter and corresponding spike rate values are separated after
x metres. In each section a mean position is calculated at exactly half of the
section length between both surrounding copter positions. An example of
these mean points is shown in Figure 7a. Indices of start and end positions
of a round are determined by comparing the flight position of the drone to a
fixed set location. This improves the accuracy of matching rounds compared
to the previous approach where start and end were determined manually.
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4.3 Correction of different lengths of rounds

SWCs are calculated by selecting all parts of x metres which represent the
fixed round. First entries of the first part are removed if they do not belong to
the round. The same is done for the last entries of the last part. Afterwards,
the distance of all copter positions of another round is compared to the mean
positions of the fixed round in the order of the flight. Starting with the first
two mean positions, spike rate values are assigned to the first part as long
as the corresponding distance to the first mean point is smaller than to the
following one. Otherwise, the value is assigned to the next part and distance
comparisons are continued with the second and third mean points and so
forth. Figure 7b depicts the assignment of spike rate values of one round to
another one.

Subsequently, the mean of spike rates in each section is calculated. This ap-
proach ensures that exactly all the spike rate values of a round are used. More-
over, the spike rates of two rounds are grouped in such a way that they are
synchronised in regard to the location that triggered them.

SWCs with distance correction of all rounds for each flight are depicted in
Figure 8. To compare the results with the previous approach, the distance
was set to 11.5 metres which corresponds to a two second window as used in
Subsection 4.2. A SWC is computed by selecting a fixed round and matching
all other rounds to the fixed round with the described approach. Then, all
matched rounds are joined to a time series and correlated with the sliding
window of the fixed round.

Correlations of different rounds are more synchronised in flight f. Flights a to
d are slightly more synchronised. However, no changes are noticeable in flight
e.

15
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Figure 8: Sliding window correlations of all rounds of each flight with length
correction. Analogous to Figure 6.

16



4.4 Dynamic Time Warping

4.4 Dynamic Time Warping

The spike rates were synchronised in regards to the locations at which they
were triggered between rounds in Subsection 4.3. The assumption was that
as soon as specific parts of the environment are in the viewing area of the
honeybee, it recognises them which results in higher brain activity. However,
this might not happen at the exact same location of the bee in different rounds.
For example, the bee could focus its attention a bit earlier or later at that
location due to its large viewing area, see Figure 21. Hence, it is possible
that the spike rate recorded in one round is a distorted variant of a spike rate
of another round. This can be checked with Dynamic Time Warping which
was originally used for speech recognition [34]. The algorithm stretches and
compresses parts of a time series to fit another time series as best as possible.
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Figure 9: Calculation of shortest warping path. Indices of each axis represent
indices of the corresponding time series. Dynamic Time Warping calculates
euclidean distances between each point in one series and all points of the
other one. Starting from the first index, cumulative distances are registered
in a matrix till the end index of both series. Backtracking from the last entry
provides the shortest path to the start. The depicted time series are the bee’s
spike rates of the first and second round in flight two on 3rd September, 2018.
Not all entries of the matrix are filled because the maximum warping distance
is constrained with a Sakoe-Chiba band of size ten.
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4. Spike Rate

Dynamic Time Warping is computed with the library dtaidistance’ which was
developed by the Declarative Languages and Artificial Intelligence Research Group®.
The algorithm computes the euclidean distance of possible ways to warp a
time series. The cumulative distances between points of both series are writ-
ten in a matrix along all paths in which at least one time series is continued
at each next entry. Furthermore, paths must start at the beginning and end at
the last entry of the time series. In order to prevent too much warping, the
maximal stretching or compressing is constrained with the Sakoe-Chiba band
[33]. An example of such a matrix of two rounds with a constraint is shown
in Figure 9. Lastly, the warping path with the shortest distance is obtained by
backtracking. When both series are the same, the shortest path is a diagonal
in the matrix. Divergences of the path from the diagonal compress or stretch
a series.

In Figure 10, spike rates of the same rounds as in Figure 9 are shown with
their optimal warping connections given the same constraint. Some points
are matched to multiple points of the other series which stretches the signal.
Compressing happens when parts are matched to the same point in the second
series.
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Figure 10: Visualisation of matched entries of two time series according to
the shortest warping path calculated with Dynamic Time warping and con-
strained by a Sakoe-Chiba band. The same series and size of the Sakoe-Chiba
band are used as in Figure 9.

Shttps://github.com/wannesm/dtaidistance
bhttps://dtai.cs.kuleuven.be/
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4.4 Dynamic Time Warping

Applying Dynamic Time Warping to fit spike rates of one round to another one
extends or shortens the series when both rounds do not have the same length.
The sliding window correlations as in Subsection 4.2 and Subsection 4.3 are
modified such that spike rates of each round are warped to the round used
for SWC. That is why the length of the resulting SWC graph depends on the
used round whereby correlations of the same round start at different indices.
Hence, these graphs are not comparable any more. In order to prevent dif-
ferences, first the spike rate of each round of the flight is synchronised with
the spike rate of the round used for SWC via the locations of the copter as de-
scribed in Subsection 4.3. The synchronisation distance is half a metre which
corresponds to mostly one spike rate value per part since the copter flies with
a speed of about 5.5 metres per second and the spike rate is used in an interval
of 0.1 seconds. The small distance is chosen to prevent too much adjustment
before warping.

After location synchronisation all spike rates of rounds of a flight are warped
to the spike rate of the round used for SWC. A Sakoe-Chiba band is used
to constraint the maximal stretching or compressing to one second. Again,
the sum is calculated in parts of two seconds to have comparable results with
SWCs of Subsection 4.2 and Subsection 4.3. The mean values of the Dynamic
Time Warping are attached in the order of the corresponding rounds. Lastly,
the sliding window correlation is computed.

Figure 11 depicts SWCs with time warped spike rates. Compared to Figure 6
and Figure 8 correlations of different rounds are higher. Especially flights
c and e show peaks at round starts at all SWCs. Besides, these peaks are
narrower which shows that the Dynamic Time Warping does not cause higher
correlations when the spike rate of one round is correlated with the warped
time series of another round and parts of its previous or following round. In
addition, oscillations between rounds are not as clearly visible as in previous
SWCs and they are still not synchronous in flight e.
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Figure 11: Sliding window correlations of all rounds of each flight with length
correction and Dynamic Time Warping. Analogous to Figure 6 and Figure 8.
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5. Autoencoder

5 Autoencoder

In Section 4 it was shown that the spike rate recorded during flights with
NeuroCopter is similar when the same path is flown successively with the
same honeybee. Next, the brain activity is analysed in regard to the visual
environment. The flight is simulated in a virtual three dimensional (3D) model
of the experiment’s area. Images are rendered from the perspective of a bee
and encoded with an autoencoder. The intermediate outputs unite parts of
the image. Correlating these outputs with brain activity should indicate which
part of the bee’s view area triggers neural spikes. In addition, high correlations
could suggest that the neural spike rate can be determined by the autoencoder.

5.1 Description

In order to check which visual structures lead to high brain activity in a hon-
eybee while flying, every part of the animal’s visual perception needs to be
examined. For this task, a convolutional neural network is suitable since it
learns features of images, from low- to high-level patterns, and is based on
the structure of an animal’s visual nervous system [15]. However, supervised
learning by training a neural network to determine the spike rate according
to an image was not feasible because there was not enough flight data with
NeuroCopter available. That is why unsupervised training is needed. Hence,
a B-variational autoencoder [17] with convolutional layers is used to encode
the image. Subsequently, the encoded parts can be correlated with the spike
rate.

The autoencoder is implemented with the deep learning platform PyTorch’.
The architecture of the used autoencoder is depicted in Figure 12. First, the
dimension of the input image is reduced by convolutional layers to a latent
representation. This part is called encoder. Then the input is recreated by
upsampling and convolution which is referred to as decoder.

5.2 Generating bee images

Training the autoencoder requires a lot of images. On top of that, the train-
ing data should not be included in the images which will be used for actual
analysis to avoid that the model only memorises known data instead of gen-
eralizing during training. That is why it is not sufficient to take images of
videos from flights which are recorded by the camera on NeuroCopter during
experiments.

"https://pytorch.org/
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5. Autoencoder
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Figure 12: Architecture of the autoencoder model which is used to gather vi-
sual information and correlate it later with brain activity. The autoencoder
consists of an encoder, a latent space and a decoder. This graphic shows the
size of each resulting layer after a weight-normed convolution followed by a
Scaled Exponential Linear Unit (SELU) activation function. In addition, the
decoder uses upsampling to reach the input size. Each layer has multiple acti-
vation maps with activations as shown in the highlighted layer. From encoder
to latent space as well as from latent space to decoder fully connected layers
are used. The latent space represents a distribution of the input images from
which the decoder reconstructs the input images. The notions activation map
and activation are marked in an enlarged layer. (Created with PlotNeuralNet®)

On the other hand, additional flights with the copter could be done to capture
images for training. But this approach has many drawbacks for later anal-
ysis: the recording of the camera on the copter was not synchronised with
the recordings of the brain activity. Hence, manual selection of start points in
both recordings is error-prone. Moreover, the frame rate of the camera would
restrict the possible intervals of spike rate and flight images. On top of that,
high temperatures during experiments led to artefacts on the recorded videos
which affect the analysis.

That is why a virtual 3D environment was used instead of camera footage
of NeuroCopter. This makes it possible to create a lot of random images for
training. The flight of the copter can be simulated by recorded GPS data. This
approach provides the opportunity to adjust the frame rate of flight images
such that different spike rates can be used.

8nttps://github.com/HarisIgbal88/PlotNeurallet
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5.2 Generating bee images

In addition, the 3D model enables generating images in perspective of bees
with the library bee view from Johannes Polster [31]. These bee view images
could not be created by transforming video frames of the copter because a
much wider field of view is required as will be shown in Figure 22.

The copter is able to take multiple overlapping photos of the field automati-
cally and save their GPS position and camera orientation such that a 3D model
of it can be constructed with Agisoft PhotoScan as described in [29]. This aerial
mapping ensures that the 3D model reflects the actual field at the time of
the experiment as close as possible. However, the 3D model of the field is
not sufficient because honeybees also see the surrounding area during flights
with NeuroCopter. Hence, another 3D model was created of the environment.
Since aerial mapping is too complex for this task, Julian Petrasch generated an
environmental model with ERDAS IMAGINE’ by using NASA Shuttle Radar
Topographic Mission'? (SRTM) which provides elevation data and satellite im-
ages from the Landsat program'’. In order to keep the size of the whole model
as small as possible Julian Petrasch generated a 3D model of the near environ-
ment surrounding the field with high resolution and a model which covers
large parts of Berlin with lower resolution.

Figure 13: Virtual 3D model which consists of the fields at Julius Kithn-Institut
(1) where experiments with NeuroCopter took place as well as the near (2) and

far (3) surrounding environment. The fields have a size of about 50.000 m? and
the whole model of about 220 km?.

https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine
Ohttp://srtm.csi.cgiar.org/
Unttps://landsat.gsfc.nasa.gov/
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5. Autoencoder

The author of this thesis combined the models of the field and environments
with Blender 12 such that the transitions between these models look natural.
A part of the combined model is shown in Figure 13 with the field of the
experiments in the centre. The 3D model does not contain a texture for the
sky because no panoramic photos were taken on the same day as experiments
were conducted. Photos of another day were not used since different weather
conditions as well as other positions of the sun and clouds might influence the
analysis. Overall, the aim was to find locations on the field. That is why the
sky of bee view images is grey-coloured as shown in the input image of the
autoencoder’s architecture in Figure 12.

5.3 Training

The autoencoder was trained with renderings of the 3D model shown in Fig-
ure 13. Using the bee view library [31] these images represent views from a
perspective of bees. The training set consists of 100.000 bee images which
were taken at random locations on the field. The height was set randomly of a
normal distribution with at least three metres. Moreover, the direction vector
of the virtual camera was chosen such that the yaw angle is taken randomly
from a uniform distribution and the pitch angle is drawn from a normal dis-
tribution with mean zero and standard deviation 0.05. This assures that all
directions are covered and that the training images are taken from angles in
which the bee could been tilted while flying with NeuroCopter.

The autoencoder was trained for 100 epochs. Figure 32 in the appendix shows
the loss during training and validation. An example of input and output
image is depicted in Figure 12.

5.4 Correlation with brain activity

The trained encoder of the autoencoder extracts features of bee images which
are used as the visual perception of the bee. That is, the decoder of the autoen-
coder is not needed any more. In order to check if the brain activity represents
these visual features during flights, bee view images are generated in the 3D
model along the flown path and with the copter’s orientation during experi-
ments. The flights can be simulated accurately with the help of recorded GPS
coordinates and tilt angles of the copter. Next, these images are processed by
the encoder in the correct order of the flight. Each activation of every acti-
vation map is tracked, see Figure 12, such that there is one time series with
the measured values of all bee images during the flight for each activation.

P2https://www.blender.org/
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5.4 Correlation with brain activity

Finally, the time series are correlated with the spike rate of recorded brain
activity. High correlation values indicate a relation between visual perception
and neural activity in the brain of the bee. The Pearson correlation coeffi-
cient is used as described in Subsection 4.2 to measure the linear correlation
between activation and spike rate time series. The spike rates in intervals of
0.1 seconds of the first and second flights of 3rd September, 2018 are analysed
with the autoencoder in this section.

Figure 14: Example of the encoding of a bee view image with an autoencoder.
Image (a) shows the field from the position of a bee during the simulated
flight of NeuroCopter in the virtual 3D environment rendered with a pinhole
camera. A panorama rendering from the same position is depicted in image
(b) which shows the large field of view of a bee. The animal perceives the en-
vironment at the same position as shown in image (c). This image is encoded
with the autoencoder. One activation map per layer is depicted in (b). Every
other activation map shows the output of weight-normalised convolution and
a SELU activation function.
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5. Autoencoder

5.4.1 Round analysis

First, it is examined if there is one activation in the encoder part of the autoen-
coder which changes its value similar to the bee’s spike rate during a flight
round. Image a of Figure 14 shows the field from the position of a bee during
the flight. Images b and ¢ show the field of view of the bee and its perspective
at the same position as in image a. The encoder processes the bee’s perspec-
tive which produces multiple activation maps. One of them is depicted in d
of Figure 14 for each layer. Activation maps of first layers contain the contour
of the field as visible in the bee image while following maps are increasingly
blurry. Outputs of last layers do not show shapes of the input image.

Each pixel of these activation maps corresponds to one activation. Bee views
were rendered with a frame rate of ten images per second such that there is
one spike rate value for each image. Each image is encoded by the autoencoder
in the order of the flight. For all frames all activations are tracked. That
is, there are as many recorded activation values per entry of all activation
maps as bee view images are processed. Figure 15 shows the correlations of
activations with the spike rate in one round. The sky is not correlated with the
brain activity since its colour is always grey. It does not have any texture, for
example clouds, as visible in image a of Figure 14. Maximum and minimum
Pearson correlations of positive and negative 0.4 are located at the horizon.
The contours of the fields show negative correlation values.

=
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Figure 15: Correlation of activations with spike rate during one flight round.
Changes of all activation values are tracked individually while the encoder
processes bee view images along the flight route. The resulting activation
series are correlated with the corresponding spike rates of the round. One
activation map of each layer of the encoder is shown with the correlation
values of each activation with the spike rate.
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5.4  Correlation with brain activity

Figure 15 shows correlations of only one flight round. Likewise, correlations
of activations with the spike rate are calculated in the remaining rounds of
the first and second flights on 3rd September, 2018. The distribution of all
resulting correlations separated by layers of used activations for all rounds of
the first flight on 3rd September, 2018 is depicted in Figure 16. The histogram
of the second flight in Figure 34 in the appendix shows similar results.

- 40

relative amount of activations [%]

Figure 16: Distribution of all correlations of activations with spike rate during
all rounds of the first flight on 3rd September, 2018. Correlations are sepa-
rated by layers of the corresponding activation. Histograms of each layer are
normalised to show the relative distribution of correlation values per layer.
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5. Autoencoder

The correlation values are normally distributed with a mean of zero. In layers
one to eight between 28% and 41% of all activations do not correlate with the
spike rate because their Pearson value is zero. These are activations which
represent the static sky as well as the corners of the image which are always
black due to the distorted bee view projection. As visible in Figure 14 the
transitions between image corners, sky and field become fuzzier in each layer.
This affects the correlations in Figure 15. In the first layer the corners and the
sky areas have assigned correlations with zeros while the areas decrease till
layer nine. The subsequent layers do not contain these areas which have the
same value during all frames.

Across all layers, the maximum Pearson correlation is reached at about 0.4
in the first flight and 0.3 in the second flight. Hence, it is not visible that
activations with high correlations are located in a specific layer.

Figure 15 and Figure 16 show that there are activations which partly correlate
with the spike rate. Next, areas of the bee view images are visualised which
are used by activations that have high correlations. The goal is to find parts of
the bee’s vision that trigger similar activation values to the spike rate. While
Figure 15 gives an overview of locations of activations with high correlation
values in activation maps, it does not show which areas of the input images
are mostly used for these activations.

For a given activation a the area of the input image of the autoencoder can
be computed in the following way. The indices of row r and column ¢ of a
in its activation map are stored. The variable size describes the amount of
surrounding area around the entry at (r, ¢) and is initialized with zero. Then,
for each layer [ starting from the previous layer of a to the first one:

Increment size if I is convolutional layer with stride 1

The encoder has nine convolutional layers as visible in Figure 12. All of
them use a kernel size of three and padding of one. Every other convo-
lutional layer starting from the first one moves the kernel with a stride
of one. The resulting activation maps have the same size. That means,
each entry of the produced activation map is computed by convolving
the entry at the same row and column as well as the eight surrounding
pixels with the kernel. That is why r and c are not changed and size is
increased by one.

Double r, ¢, size and increment size if I is convolutional layer with stride 2
The remaining convolutional layers use the same kernel and padding
sizes but the kernel is moved with a stride of two. These convolutions
halve the size of the resulting activation maps. Hence, after convolution
each entry is computed with entries around the activation at row 2 -r
and column 2 -c. If size is already greater or equal to one the entries
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5.4  Correlation with brain activity

surrounding the activation at row r and column ¢ must be considered
as well. Their row and column indices are also doubled. That is why
the area of the input image used for convolution, which is described by
size, is multiplied by two. In addition, convolution with kernel size three
again increases size by one.

Do nothing if I is a SELU activation function
All convolutional layers are followed by a SELU activation function.
These layers are not depicted in Figure 12 but are shown in image b
of Figure 14. Since activation functions do not use surrounding entries
of activation maps for calculation, none of the variables r, ¢ and size is
changed.

Lastly, all pixels of the input image which are used during convolutions to
compute a can be marked. One pixel is located at row 7 and column ¢ while
the surrounding pixels are within the range of size in positive and negative
direction row- and column-wise.

Results of this approach are shown in Figure 17 for each round in both flights.
All rounds are shown with the areas used by activations with the 20 and
5000 highest correlation values to the spike rate. Regarding the 20 highest
correlations, the corresponding activations are mostly calculated with pixels
on the left and right part of the horizon as visible in round one and two of the
first flight and three and four of the second flight. The first two rounds of the
second flight use pixels in the sky and upper-field area. Round three of the
first flight is the only round in which the left area of the field and the right-
bottom part are used. Drawing areas used for the 5000 highest correlations
reveals an intersection at the horizon in all rounds except the third round of
flight one.
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Figure 17: Used regions of input images by activations with highest correla-
tions per flight round to the spike rate. Each image has the same size as the
input bee view images of the encoder. The colour of each pixel denotes the
amount of activations which are calculated, among others, with this pixel. The
amount is relative to the overall number of depicted activation regions. Row
(a) shows used input regions of activations with the 20 highest correlations
in the first flight on 3rd September, 2018. Activations with the 5000 highest
correlations are used in row (b). Rows (c) and (d) show results with analogous
settings for the second flight on 3rd September, 2018.
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5.4  Correlation with brain activity

5.4.2 Local analysis

Instead of correlating activations with the spike rate of a whole round, corre-
lations are computed in two second sections. Hence, for every activation there
are multiple correlation values. This enables finding activations which might
conform to the spike rate only in several parts of the flight route. Neverthe-
less, activation with more sections with high correlations are preferred. That
is why the sum of all correlations per section for each activation is calculated
to compare them. Figure 18 depicts the pixels used by activations with the 100
highest correlation sums. Again, the horizon in the bee’s vision is important
area in most rounds. In addition, parts of the field are marked in all rounds.
The sky is used in the first two rounds of the first flight and the second and
fourth round of the second flight.

Round 1 Round 2 Round 3 Round 4
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75 %
’ . . . .i

Figure 18: Used regions of input images from activations with the highest
sums of correlations in two second sequences per flight round. For each round
the activations with the 100 highest correlations sums are used. Row (a) shows
results of the first flight and row (b) for the second flight on 3rd September,
2018.
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5. Autoencoder

5.4.3 Detection of best activations

Previous sections focus on locating activations which match the spike rate best
in one round. However, the goal is to detect activations which are changed
similar to the spike rate in all rounds. Analogously to Subsection 4.2, a modi-
tied sliding window correlation (SWC) is used to measure similarity of rounds
for an activation and the spike rate. The whole flight is used for SWCs includ-
ing waiting times between each round as well as the start and end. For a given
activation sequence a of a flight the SWC with a sliding window of the first
round is computed as follows:

Correlate the first round of a and the spike rate in sequences of two seconds
As in subsubsection 5.4.2 correlations of an activation and the spike rate
are split in sequences of two seconds. Correlations which belong to the
tirst round form the base series used for SWC.

Calculate sliding window correlations of the base series with all correlations

of two second sequences
For each index i a correlation series, named indexed series, is computed

in the same way as base series such that the indexed series has the same
amount of correlations as the base series. The index i starts from zero
and ends at the last possible index of a which has sufficient successors
to create a correlation series that has the same length as base series. The
base series is correlated with each indexed series.

This approach compares correlations of one round in two second sequences
with correlation sequences of other rounds. Moreover, correlations of with
overlapping parts of waiting times and flight rounds are computed. In the fol-
lowing, correlations of the first round are always used as the sliding window.
The result of this modified SWC is shown in Figure 19 for the activation which
has the highest sum of correlation values in two second sequences in the first
round. That is, it has the highest correlation value with the local analysis ap-
proach described in subsubsection 5.4.2. The SWC equals one at the index
of the beginning of the first round because the first round is correlated with
itself. However, correlation sequences of the first round do not reach a higher
correlation with correlation sequences of another round than with overlapping
rounds and waiting times.

Ideally, the correlations of different rounds should correlate with a high Pear-
son value while the correlation of a round with overlapping parts of rounds
should yield a low correlation result. As described before, this does not ap-
ply to the SWC shown in Figure 19 although the activation with the highest
sum of all correlations in two second sequences with the spike rate in the first
round is used.
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Figure 19: Sliding window correlation of correlates of the first round in two
second sequences of one activation with the spike rate. One activation of
the autoencoder is correlated with the spike rate in two second sequences
over the whole flight. Then, the correlation series which represents the first
round is used for SWC over all correlations. Blue dots represent the SWC time
series and the orange graph smooths this signal. Distributions of sections
highlighted in blue and green are compared with the Kolmogorov-Smirnov
and Mann-Whitney rank tests. The section in red is not considered because it
correlates the first round with itself.

In order to find activations which fulfil this condition best, SWCs of all acti-
vations have to be compared. While the same task could be done by visually
inspecting graphs of SWCs of the spike rate for different rounds and flights
in Subsection 4.2, it is not possible in this case with activations. Overall, the
encoder part of the autoencoder contains about 138.000 different activations
which all result in distinct SWC graphs. Hence, this task must be automated.

SWCs of all activations were computed by correlating the correlations of the
first round with all other possible correlation sequences as described above.
All SWCs are divided into two sets. One set contains correlations at the index
of beginnings of rounds after the first round and correlations up to ten seconds
before and after these rounds start. Correlations which belong to this set are
highlighted with a green background in Figure 19. The correlation of the
first round with itself which is highlighted in red is left out. All remaining
correlations belong to the second set, they are highlighted in blue.
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5. Autoencoder

Next, the distributions of the sets containing blue and green correlations are
compared. The Kolmogorov-Smirnov test [35, pp. 401 - 405] and the Mann-
Whitney rank test [35, pp. 361 - 363] are used with the corresponding imple-
mentations of SciPy. They check whether both sample sets are drawn from the
same distribution which results in a high p-value up to one. Since the goal
is to find activations whose blue and green highlighted sets are different, the
p-values should be near zero. Figure 20 shows pixels of the input image that
are used for activations with the 20 and 5000 lowest p-values in both tests and
for both flights. Results of both tests are similar. Activations with the lowest
p-values use pixels at the horizon on the right in both flights. Besides, the
right part of the horizon is visible when pixels of activations with the 5000
lowest p-values are marked in the first flight while the left part of the sky is
highlighted in the second flight.

Flight 1 Flight 2 Flight 1 Flight 2

100 %
75 %
(a) 50 %
25 %
0 %
45 %
30 %
(b)
15 %
0 %

KS test Mann—-Whitney U test

Figure 20: Used regions of input images from activations with highest differ-
ences between round correlations and correlations with shifted signals. Cor-
relations of all activations with the spike rate are calculated in two second
sequences. Correlates which represent the first round are used for sliding
window correlation with all correlations of the flight. The distribution of
correlations of the first round with the following ones is compared to the
distribution of all other correlations while leaving out the correlation of the
tirst round with itself. Row (a) shows input regions of activations with the
20 greatest differences and row (b) with the 5000 greatest differences of both
distributions measured separately with the Kolmogorov-Smirnov and Mann-
Whitney rank tests. Results for the first and second flight on 3rd September,
2018 are depicted.
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6 Field Mapping

In Section 4 it was shown that the neural brain activity of repeated flight
rounds is similar and Section 5 describes an approach for correlation with the
visual perception of the honeybee. However, it is still not identified which
visual structures trigger brain activity. That is why in the following the brain
activity is plotted on the field.

6.1 Description

The 3D model as described in Subsection 5.2 is used to determine which parts
a honeybee sees during flights with NeuroCopter. The library bee view [31]
was modified to return coordinates on the field which are in viewing range of
a bee at a particular point.

Figure 21: Close up photograph of a honeybee. The eyes are composed of
about 5500 ommatidia which bees use to perceive an image of the environ-
ment. The enlarged extract of the bee’s eye makes a part of the ommatidia
noticeable. The bee’s field of view is over 313° large, only the region behind
their thorax is not visible. [36] (Photograph from USGS Bee Inventory and
Monitoring Lab'®)

Bhttps://www.flickr.com/photos/usgsbiml/34717512800/in/
album-721576643056903459/
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6. Field Mapping

To generate bee views, the library uses ray casting for each ommatidium which
is a part of the bee’s eyes, see Figure 21. That is, a line is positioned in the
virtual simulation at the locations of all ommatidia and aligned in the viewing
direction. Then, the first intersection with another 3D model is calculated
[32]. This way, coordinates on the field are determined which the bee sees.
The colours of hit locations on the 3D model are then used to generate the
bee image. These hit locations are used to create the mapping images in this
section.

Figure 22 shows the mapping process of a bee view on the map. First, the
virtual bee is positioned at a location of the flight route and aligned like the
NeuroCopter at that position. The bee view is created as shown in image
a of Figure 22. Each pixel in the bee view corresponds to the view of one
ommatidium. Hence, each pixel in the bee view relates to one location in the
3D model.

Figure 22: Mapping of a bee’s vision at one position. Image (a) shows the
view of the field in a perspective of a bee. In order to draw this perspective
onto a map, the location of each pixel in the 3D model is calculated. Only
pixels which show a part of the field are used for mapping which are marked
as green in image (b). Red pixels show parts of the environment outside
the field. They are not used for mapping as well as blue pixels which lead
to artefacts after mapping. The locations of hit ray casts of green pixels are
shown in figure (c) from a top view. Each mapped pixel is assigned the same
colour as in the bee image.
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6.1 Description

Only pixels which show a location on the field are used for mapping. These
pixels are highlighted in green as depicted in image b of Figure 22. The x
and y coordinates of each location are marked on a new image relative to
the coordinates of the upper-left corner of the field. The z coordinate which
describes the height is not used as visible in image ¢ of Figure 22. Thus, the
new image shows the viewing area of a honeybee at one location from the top.
In order to visualize the relation between the bee view image and the map,
pixels on the map are assigned the same colours as their corresponding pixels
in the bee view image.

When the copter with the bee moves the viewing area moves as well. Figure 23
depicts the viewed area during a flight of one line as well as one round. In
these maps the shape of the field as well as different parts of it can be distin-
guished. Moreover, it shows that the composed viewing area of the honeybee
after the first line is about as detailed as after the whole round.

(a) Viewing area of a straight flight (b) Viewing area of a flight round

Figure 23: Viewing area of a honeybee from top in the simulated 3D envi-
ronment. All pixels in (a) are viewed during the first line on the route while
(b) shows all viewed pixels after flying one round. The used flight trajectory
is shown in red. The viewing area of the bee is projected on the map in 0.1
second intervals. The mean is calculated of pixels on the map with multiple
assigned colours.
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6. Field Mapping

Compared to the field recorded by the copter in Figure 4 the mapped bee
views show clear separations between field parts over which the bee flies.
Other field parts are blurry such as the top of the field and the lower-right
corner.

In the following subsections, different time series are plotted on the map at the
hit locations of ray casts to visualise where the values arose. In Subsection 6.2
one ray cast per ommatidium is used while Subsection 6.3 shows maps with
multiple ray casts per ommatidium as it is used in the bee view library to
generate bee views.

6.2 Mappings

Multiple time series are plotted on the field. The flights are simulated as
described in Subsection 5.2. During a flight some coordinates on the field
are hit multiple times by ray casts. To visualise the map either the mean,
median, standard deviation or variance of the values of these coordinates are
calculated. Moreover, separate plots without values during flight curves are
shown because the spike rate is already known to be higher than during lines
[29] which might distort the result of the map.

6.2.1 Activations of autoencoder

First, the bee images processed by the autoencoder in Section 5 were mapped.
Correlating single activations with the spike rate of the bee’s brain activity
lead to high matches with activations which use pixels of the bee image in the
region of the horizon instead of the field. Pixels in this area alternate between
showing the field and the background due to the different distortions of the
bee image when the alignment of the bee is changed. These changes result in
higher activity at pixels on the horizon than on the field. The mapping process
described in this section is not influenced by rotations of the bee because for
each bee image only coordinates on the field are used. This is shown by green
pixels in image b of Figure 22. Therefore, mapping the values of activation
maps of the autoencoder on the field could give new insights.

Figure 24 shows mapping of one activation map of the autoencoder’s first
layer after the first line and after one round. As in Figure 23, parts of the
tield are separated. Edges and paths between have lower activation values
than pixels belonging to field parts. Again, areas over which the bee flies are
sharper than parts of the field which are further away. Since paths and edges
are the only information which are encoded in these maps, activation maps
are not further examined.
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6.2 Mappings

(a) Activations on map after a straight (b) Activations on map after a flight round
flight

Figure 24: Mapping of activation maps of an autoencoder. The viewing area
of a bee is mapped in a 0.1 second interval. Each bee image is encoded by
the autoencoder described in Section 5. A resulting activation map of the first
layer is projected on a map in the viewing area of the bee. The mean is taken
of pixels with multiple mapped activation values. Image (a) shows mapped
activations after a line flight and (b) after one round as marked by the red
flight trajectory.

6.2.2 Spike Rate

Another approach is to map the brain activity of the honeybee. The position
of the bee in the simulation is updated ten times per second. The spike rate of
the measured neurons is used in the same interval. At each position, all pixels
in the viewing area of the bee on the map are assigned the corresponding
spike rate value at that time. In comparison to drawing the spike rate on the
flight trajectory, the mapping technique highlights which locations on the field
trigger high spike rates instead of showing the positions of the bee with high
brain activity. In addition, the maps show if the locations lead to high spike
rates from different or only one direction.
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6. Field Mapping

Round 1 Round 2 Round 3 Round 4 Round 5
'&, . T - ’ L

Low Medium High

Figure 25: Mapping of the spike rate of a bee during flights on 2nd August,
2018. Each pixel on the map which is in the viewing area of the bee is assigned
the spike rate at that time. The position of the virtual bee is updated ten times
per second along the flight path of the recorded NeuroCopter. Accordingly,
the used spike rate interval is 0.1 seconds. At the end, the mean is calculated of
spike rate values assigned to each pixel. The values of all maps are normalised
to compare locations which trigger high brain activity. Each row represents
one flight. The flight trajectory is marked in red.

Spike rates of all rounds flown in August are mapped in Figure 25. The mean
is calculated of pixels with multiple assigned spike rate values during map-
ping. The spike rates generally decline from the first to last round during a
flight. Moreover, the spike rate altitudes vary across flights. That is why the
values of each map are normalised between zero and one such that locations

with high and low spike rates relative to each round can be compared between
all flights.

Each round has two to three locations with high spike rates. All of them are
at turns. The route has three large turns. The first and second turns have a
location with high brain activity in all rounds while the third turn does not
have such a location in round three of flight a as well as round three and five of
flight b. Start and end sections of the route have low spike rates in all rounds.

The sharp turns always trigger high spike rates in comparison to the rest of
the round. The flight route in September was improved by flying smooth
turns. Figure 26 depicts mapped spike rates of all flights flown in September.
The route adjustment can be compared by the flight trajectory drawn in red.
Again, the mean is taken of multiple assigned spike rate values to one pixel
on the map and all resulting values are normalised.
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6.2 Mappings

Round 1 Round 2 Round 3 Round 4

Low Medium High

Figure 26: Mapping of the spike rate of a bee during flights on 3rd September,
2018. Continuation of the same mapping technique as in Figure 25 with flights
flown in September.
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6. Field Mapping

In September, a location with a high spike rate appears frequently in the sec-
ond turn as well. Most notably, this is the case in the first two rounds of flight
a, all rounds of flight b, and the first round of flight d. Except of the second
round of flight 2 and the second and forth rounds of flight c, the other two
turns do not have high spike rate locations. The last both rounds of flight d
have high spike rates in the start and end sections of the route.

Round 2 Round 1

Round 3

Low Medium High

Figure 27: Application of statistics on mapped spike rates of the first flight
on 3rd September, 2018. Each row shows mappings of a round where pixels
on the map with multiple assigned spike rate values are calculated differently.
The first column shows mean values as depicted in Figure 26. The following
columns show maps with min and max values as well as standard deviation
and variance.
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6.2 Mappings

Most maps with projected spike rates are influenced by turns such that other
parts of the field have relatively small values. However, it is already known
that turns trigger high spike rates. Therefore, the following approaches are
executed to reveal further parts of the map which also have a high spike rate
assigned in comparison to the rest of the field.

First, overlapping assignments of spike rates are depicted in other ways next
to the mean in Figure 27. The first flight in September is analysed to use
the route with smoother turns. Each map of the three rounds is shown with
minimum and maximum values of assigned spike rates to pixels as well as
with standard deviation and variance. In all three rounds, the minimum spike
rate assigned to nearly each pixel is zero. Only pixels in the right corner of
the field have a minimum spike rate of one. This shows that the majority of
pixels on the field are assigned multiple spike rate values during the flight
route since most pixels have a higher value than zero on the mean maps. The
maps with maximum, standard deviation and variance have similar locations
with high spike rates in the same round. In all three rounds, that location is
on the first line between the start and the first turn: in the first round before
reaching the feeder, in the second round at the feeder and in the third round
after flying over it.

Another approach to suppress known locations with high spike rates in turns
in order to reveal other location which trigger brain activity is to remove turns.
Mappings of the spike rate of all flight rounds flown in September without
turns are shown in Figure 28. Per round 4 lines are mapped: from start to the
first turn, between the three turns and from the last turn to the end as shown
by the red trajectory. Although locations with high spike rates during turns
are not mapped, the remaining maps stay nearly the same in comparison to
mappings with turns in Figure 26. Exceptions are round two of flight 2 which
has a high spike rate area around the feeder without turns. In addition, round
one of flight d shows such a location on the first line before reaching the feeder.

Overall, no consistent locations which trigger high spike rates besides turns
could be revealed. There are rounds with high activity marked near the feeder.
For example, round two in Figure 27 shows the maximum spike rate around
the feeder and the first two rounds of flight d in Figure 28 show high brain
activity before reaching the feeder. But these locations do not trigger a high
spike rate in all rounds.
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Round 1 Round 2 Round 3 Round 4
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Low Medium High

Figure 28: Mapping of the spike rate of a bee during flights without turns
on 3rd September, 2018. The same approach is used as shown in Figure 26
without turns.
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6.3 Multiple samples per ommatidium

The bee view library casts multiple rays per ommatidium and calculates one
colour which is displayed at one pixel of the bee view image. In Subsection 6.2
the hit location of only one ray cast per ommatidium is used for mapping.
Using the same amount of ray casts as the bee view library results in more
detailed mappings. The viewing area with multiple ray casts in Figure 29a is
sharper compared to image c in Figure 22. Figure 29b shows the mapping of
an activation map of the autoencoder with multiple ray casts.

Calculating mappings with the higher amount of ray casts requires a higher
memory consumption and is more time consuming. Moreover, there are no
advantages besides sharper mappings. That is why only one ray cast was used
for the mappings in Subsection 6.2.

(a) Viewing area at one position (b) Activations on map after a
straight flight

Figure 29: Example images which make use of multiple ray casts per omma-
tidium. Picture (a) shows the viewing area of a honeybee at the first position
of the route and (b) shows the mapping of activations after flying the first line
of the route which is marked in red.

45



7. Evaluation

7 Evaluation

Previous sections analysed the spike rate of brain activity of two honeybees
flying with a quadcopter. These bees knew a feeder that was placed on the
tield over which the copter flew as described in Subsection 3.3. The measured
neuron is located in an area of the bee’s brain which is responsible for pro-
cessing of visual information, see Figure 2. That is why it was examined if
the spike rate reflects changes in the visual field of the animal. In particular
it was assumed that flying to and over the known feeder triggers high brain
activity. Besides, field structures and landmarks might have an influence on
the spike rate because honeybees use them for orientation, see Section 1. In
the following, previous results of this thesis are evaluated in regard to these
assumptions.

First it was shown in Section 4 that spike rates of successive flight rounds
with the same animal are similar. That is the basis for further analysis because
the copter flew autonomously along a programmed route such that the bee
had roughly the same visual perception in consecutive rounds. Therefore,
spike rates must be similar as well if the measured brain activity of the bee
is related to its vision. Sliding window correlations (SWC) in Figure 6 of
all rounds of each flight show that most spike rates of different rounds are
correlated. However, some rounds do not correlate with another and some
SWCs of different rounds in the same round are shifted. As a potential issue it
was identified that some rounds differ in flight lengths which could be caused
by compensating wind. But synchronizing spike rates of every round to the
locations where they were triggered in Figure 8 resolved only shifting of the
SWCs. Additionally applying Dynamic Time Warping with a Sakoe-Chiba
band constraint of two seconds which allows warping up to one second in
future and one in past in Figure 11 improved correlations between previously
uncorrelated rounds. Hence, spike rates of different rounds of the same flight
are not equal but similar.

Some SWCs of the same flight have similar correlations even between round
starts in form of oscillations. Peaks of these oscillations mark correlations of a
round with a time series starting at a turn of a round and ending in the follow-
ing round. Since there are no peaks when the copter flies straight, turns are
prominent in the spike rate. High spike rates in turns were already discovered
in [29]. These findings suggest that the spike rate reflects the motor speed and
acceleration of NeuroCopter instead of actual brain activity. Motor speed as
well as acceleration always change when turns are flown compared to straight
lines. In fact, neural signals in the honeybee’s brain are very small and inter-
fered by noise of the copter’s motors. That is why shielding and grounding is
used on the copter [29]. Figure 35 shows that in some rounds the spike rate
and motor speed is correlated. Though, this is not the case for all rounds.
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There are also rounds in which the spike rate is not correlated with motor
speed at all. The same applies to the results of correlations of acceleration
with spike rate in Figure 36. On the other hand, changes in motor speed and
acceleration impact the visual perception of the connected honeybee. Since
the measured neuron processes visual signals, partly correlations are not de-
niable. Consequently, measured spike rates do not only reflect motor speed or
acceleration.

After it is known that the bee’s visual perception and its neural activity are
each similar across multiple flight rounds, two approaches for correlating vi-
sion and brain activity were conducted. The idea of the first approach is to
process the visual perception of the honeybee with an autoencoder in a virtual
3D model of the environment where experiments with NeuroCopter were ex-
ecuted. The encoder part of the autoencoder received bee view images along
the flown route of the copter. Activations of the encoder were correlated with
the spike rate. Correlations were computed for whole rounds in Figure 17 and
sequences of rounds in Figure 18. Moreover, SWCs of these correlations were
calculated to find activations with similar correlations in consecutive rounds
which are different from remaining correlations in Figure 20.

Pixels of the input image are visualized which are used for convolutions to cal-
culate best fitting activations in each scenario. Highlighted areas of the input
images are in all cases around the horizon. Often, the right part of the horizon
is marked. Input areas of activations with the 5000 highest correlations are
shaped as the field in a bee’s perspective during a straight flight as shown in
Figure 30a. In many rounds activations with the 20 highest correlations use
pixels at the right part of the horizon. This can be explained by the distorted
bee view image during turns as shown in Figure 30b. The flight route con-
tains three big right turns and one small left turn at the end. While the whole
horizon jitters due to small tilts of the copter, the right part of the horizon is
affected the most. Pixels of the input image in this area change often between
showing a part of the field and background. This results in high activity in
activation that use these pixels. That is why the autoencoder approach detects
flight turns instead of locations on the field which trigger spike rates such as
the known feeder or other landmarks such as paths on the field.

A drawback of the simulated 3D environment is its RGB colour space. All
pixels are represented of red, green and blue ratios. However, bees have
ultraviolet-sensitive, blue-sensitive and green-sensitive photoreceptors [13]. To
capture the field in the appropriate colour space for bees, the copter would
need a camera which is able to take images with ultraviolet light. That is why
bee view images of the 3D simulated environment do not completely imitate
the visual perception of a bee in the real world.
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(a) Bee perspective during straight flight  (b) Bee perspective during right turn

Figure 30: Comparison of the field’s shape during straight flights and right
turns in the perspective of a honeybee. Colours of pixels near the horizon
often change due to rotations and alternations between showing a part of the
tield and the grey background.

Nevertheless, the results of the autoencoder approach would certainly be the
same with appropriate textures with ultraviolet light because they are deter-
mined by different shapes of the field in bee view images instead of the field’s
texture.

The second approach for correlating a bee’s vision with its brain activity was
to project spike rates onto the environment in the range of the bee’s viewing
area. Figure 25 and Figure 26 show regions with high spike rates in turns in
most rounds with exception of the last two flights on 3rd September, 2018.
These are results when the average spike rate assigned to each pixel on the
map is calculated. However, the maximum spike rate values per pixel reveals
partly other regions with high spike rates as shown for the first flight of 3rd
September, 2018 in Figure 27. Maps of rounds with maximum spike rates
per pixel have such regions on the route before, over and after flying over the
feeder on the first flight line. This is not visible as clearly or at all when the
average spike rate per pixel is used.

The reason is the difference in the number of assigned spike rate values per
pixel while flying the route as depicted in Figure 31a. Pixels in the region
of the feeder count up to about 200 spike rate values because the copter flies
three times over this part while pixels in rounds have only about 130 assigned.
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Since the first part of the first line is flown at the start and end of a round,
pixels in this location count more than 175 spike rate values. Regions further
away from the flight route are assigned less than 50 spike rate values. Hence,
high spike rate values near the feeder vanish when the average is taken. Re-
gions further away from the route can show high spike rates despite being in
the bee’s viewing area only for a short time.

Since the SWCs of the spike rate as well as the autoencoder approach have
already shown that turns are detectable in the spike rate, turns were excluded
before projecting the spike rate onto the map in Figure 28. Nevertheless, re-
gions with high spike rates on the field are not at the same locations across
all rounds. That is why no unique location on the field could be found which
always triggers higher spike rates. In particular, the feeder’s location is not
identifiable on the projected spike rate maps. Besides, the distribution of the
amount of assigned spike rate values to pixels on the map is still not uniformly
distributed as shown in Figure 31b.
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(a) One round (b) Lines of one round

Figure 31: Distribution of viewing areas after one flight round. Maps show
how many spike rate values are assigned to each pixel after the first round
of the first flight in September during mapping. Map (a) depicts a complete
round while in map (b) only straight lines are used as shown by the red flight
trajectory.
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Concluding, all results of the executed approaches show high brain activity of
the honeybee when NeuroCopter flies turns. In fact, these animals respond to
unintended rotations of their body in order to keep their field of vision stable
[18]. That might be the reason for higher spike rate in turns. Moreover, none
of the approaches showed evidence that training bees influenced their brain
activity although the training let them know a feeder on the field before they
flew over it with NeuroCopter. Results indicate that the feeder did not change
the outcome of the experiment.
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8 Conclusion

8.1 Results

The project NeuroCopter investigates navigational capabilities of honeybees.
A quadcopter was modified in such a way that neural signals of an attached
living bee can be measured while flying. The goal of this thesis was to find
correlations between the visual perception of a bee with its brain activity in
conducted experiments with NeuroCopter. Honeybees were trained to recog-
nize a feeder on the experiment’s field. Besides the feeder, the bee could use
further landmarks such as paths for navigation. Since neurons in a region of
the bee’s brain were measured which capture visual information, correlations
between brain activity and landmarks while flying were expected.

The copter flies a programmed route autonomously multiple times in exper-
iments. That is why the visual perception of the bee is similar at each repe-
tition. If vision and brain activity are correlated, the brain activity must also
be similar across multiple iterations of the route. In fact, correlations between
brain activities recorded in different rounds proved that this is the case.

Furthermore, vision and brain activity were correlated in two ways. First, a
virtual 3D model of the experiment’s field and its surrounding was created.
Recorded telemetry data of the copter enabled accurate transfer of its location
and tilt during flight to the simulation. In addition, images were rendered
such that the field of view of a bee is represented. Next, an autoencoder
processed the bee view images of the simulation. Thereby, encoded parts of
these images were correlated with neural activity of the bee.

Another approach was to project the spike rates in the bee’s visual range onto
the field. Projecting changes of the bee’s brain activity during the route cre-
ates a map that shows regions which triggered high neural activity. Both
approaches, correlating processed images of a simulated flight as well as pro-
jecting brain activity to a map, revealed correlations between vision and neural
activity in turns. However, no correlations with the feeder or other landmarks
could be identified. Nevertheless, developed approaches in this thesis can be
extended and applied to further experiments with NeuroCopter.
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8. Conclusion

8.2 QOutlook

This thesis analysed the first experiments of NeuroCopter which recorded
brain activity of a living honeybee during flights. Naturally, there are several
ways to improve further experiments.

On the one hand, hardware improvements are possible. A camera which can
capture ultraviolet light is needed for textures on a virtual 3D model of the
experiment’s environment as described in Section 7. The current model does
not reflect the colour range of honeybees. While this might not change the
result of the approach which used the autoencoder described in Section 5, it
could improve other methods which use the 3D model in the future. Another
hardware improvement would be to reconstruct the holding of the bee such
that the animal can move freely and navigate the copter. Thereby it would
be clear that the bee does not counterbalance rotations of the copter which
influences measured brain activity as described in Section 7.

On the other hand, the experiments can be improved. Flying with Neuro-
Copter in environments with more landmarks such as trees could result in
notable correlations between vision and brain activity. The fields of the Julius
Kiihn-Institut contain only paths which could be used as landmarks for orien-
tation. Moreover, different flight routes are needed to improve results of the
projection of brain activity onto a map. As shown in Figure 31 the amount of
assigned values to each pixel varies which influences the result. A flight route
in form of a grid would be more suitable to prevent this problem. In addition,
the grid route could be aligned such that parts are flown right over a path,
other parallel to a path and some not aligned or crossing paths. This could
enable analysation of correlations of brain activity with paths.

Generally, more experiment data are needed to compare results. Furthermore,
instead of analysing brain activity in form of spike rates, interspike-intervals
could be used.

Finally, the workgroup of the project NeuroCopter wants to improve the deriva-
tion of bees” neurons. This process is very laborious. The electrode needs to
be prepared and inserted manually into the brain. It is important that the elec-
trode is not moved too far in order to avoid damaging cells. As a result, the
derivation is error-prone which leads to a high number of dead bees. There-
fore, preparing a bee for using with NeuroCopter is time-consuming. Neural
activity is displayed on an oscilloscope. The activity is triggered by moving
hands or a torch in front of the bee’s eyes. This movement is similar to the
flown turns which correlate strongly as described in this thesis. However,
there might be other neurons which are more important for the navigational
processing of the bee and are not covered by this selection.

52



Bibliography

Bibliography

[1] M. Beekman and E. L. W. Ratnieks. Long-range foraging by the honey-
bee, apis mellifera 1. Functional Ecology, 14(4):490-496, 2000.

[2] Philipp Breinlinger. Neurocopter: Optimierte verfahren zur positions-
und lagebestimmung eines biomimetischen quadrocopters. BioRobotics-
Lab, 2013.

[3] Alexis Buatois, Pichot Cécile, Patrick Schultheiss, Jean-Christophe San-
doz, Claudio Lazzari, Lars Chittka, Aurore Avargues-Weber, and Martin
Giurfa. Associative visual learning by tethered bees in a controlled visual
environment. Scientific Reports, 7, 12 2017.

[4] James F. Cheeseman, Craig D. Millar, Uwe Greggers, Konstantin
Lehmann, Matthew D. M. Pawley, Charles R. Gallistel, Guy R. Warman,
and Randolf Menzel. Reply to cheung et al.: The cognitive map hypoth-
esis remains the best interpretation of the data in honeybee navigation.
Proceedings of the National Academy of Sciences, 111(42):E4398-E4398, 2014.

[5] James F. Cheeseman, Craig D. Millar, Uwe Greggers, Konstantin
Lehmann, Matthew D. M. Pawley, Charles R. Gallistel, Guy R. Warman,
and Randolf Menzel. Way-finding in displaced clock-shifted bees proves
bees use a cognitive map. Proceedings of the National Academy of Sciences,
111(24):8949-8954, 2014.

[6] Lin Chen, Shaowu Zhang, and Mandyam V. Srinivasan. Global percep-
tion in small brains: Topological pattern recognition in honey bees. Pro-
ceedings of the National Academy of Sciences, 100(11):6884-6889, 2003.

[7] Allen Cheung, Matthew Collett, Thomas S. Collett, Alex Dewar, Fred
Dyer, Paul Graham, Michael Mangan, Ajay Narendra, Andrew Philippi-
des, Wolfgang Sttirzl, Barbara Webb, Antoine Wystrach, and Jochen Zeil.
Still no convincing evidence for cognitive map use by honeybees. Proceed-
ings of the National Academy of Sciences, 111(42):E4396-E4397, 2014.

[8] Lars Chittka and Jeremy Niven. Are bigger brains better? Current Biology,
19(21):R995 - R1008, 2009.

[9] Benjamin Daumenlang. Anbindung einer flugsteuerungsplatine an einen
flugsimulator. BioRobotics-Lab, 2013.

[10] Jacqueline Degen, Thomas Hovestadt, Mona Storms, and Randolf Men-
zel. Exploratory behavior of re-orienting foragers differs from other flight
patterns of honeybees. PLOS ONE, 13:e0202171, 08 2018.

[11] Jacqueline Degen, Andreas Kirbach, Lutz Reiter, Konstantin Lehmann,
Philipp Norton, Mona Storms, Miriam Koblofsky, Sarah Winter, Petya B.

53



Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Georgieva, Hai Nguyen, Hayfe Chamkhi, Uwe Greggers, and Randolf
Menzel. Exploratory behaviour of honeybees during orientation flights.
Animal Behaviour, 102:45 — 57, 2015.

Jacqueline Degen, Andreas Kirbach, Lutz Reiter, Konstantin Lehmann,
Philipp Norton, Mona Storms, Miriam Koblofsky, Sarah Winter, Petya B.
Georgieva, Hai Nguyen, Hayfe Chamkhi, Hanno Meyer, Pawan K. Singh,
Gisela Manz, Uwe Greggers, and Randolf Menzel. Honeybees learn land-
scape features during exploratory orientation flights. Current Biology,
26(20):2800 — 2804, 2016.

Adrian G. Dyer, Angelique C. Paulk, and David H. Reser. Colour process-
ing in complex environments: insights from the visual system of bees.
Proceedings of the Royal Society B: Biological Sciences, 278, 2010.

Harald E. Esch, Shaowu Zhang, Mandyan V. Srinivasan, and Juergen
Tautz. Honeybee dances communicate distances measured by optic flow.
Nature, 411(6837):581, May 2001.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in po-
sition. Biological Cybernetics, 36(4):193-202, Apr 1980.

Sabine Gillner, Anja M. Weifs, and Hanspeter A. Mallot. Visual homing in
the absence of feature-based landmark information. Cognition, 109(1):105
- 122, 2008.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glo-
rot, Matthew M Botvinick, Shakir Mohamed, and Alexander Lerchner.
beta-vae: Learning basic visual concepts with a constrained variational
framework. In ICLR, 2017.

M. R. IBBOTSON. A motion-sensitive visual descending neurone in apis
mellifera monitoring translatory flow-fields in the horizontal plane. Jour-
nal of Experimental Biology, 157(1):573-577, 1991.

Michael Ibbotson, Yu-Shan Hung, H Meffin, Norbert Boeddeker, and
M V. Srinivasan. Neural basis of forward flight control and landing in
honeybees. Scientific Reports, 7, 12 2017.

Tim Landgraf, Benjamin Wild, Tobias Ludwig, Philipp Nowak, Lovisa
Helgadottir, Benjamin Daumenlang, Philipp Breinlinger, Martin Nawrot,
and Ratl Rojas. Neurocopter: Neuromorphic computation of 6d ego-
motion of a quadcopter. In Proceedings of the Second International Conference
on Biomimetic and Biohybrid Systems, Living Machines’13, pages 143-153,
Berlin, Heidelberg, 2013. Springer-Verlag.

Cambridge Electronic Design Limited. Spike2 software - Advanced fea-

54



Bibliography

tures. http://ced.co.uk/products/spkovaf, last accessed on 15th Au-
gust, 2019.

[22] Martin Lindauer. Dauertdnze im bienenstock und ihre beziehung zur
sonnenbahn. Naturwissenschaften, 41(21):506-507, Jan 1954.

[23] Tobias Ludwig. Neurocopter - eine fliegende experimentierplattform zur
erforschung der hirnaktivitdat von honigbienen. BioRobotics-Lab, 2016.

[24] Randolf Menzel, Uwe Greggers, Alan Smith, Sandra Berger, Robert
Brandt, Sascha Brunke, Gesine Bundrock, Sandra Hiilse, Tobias Pliimpe,
Frank Schaupp, Elke Schiittler, Silke Stach, Jan Stindt, Nicola Stollhoff,
and Sebastian Watzl. Honey bees navigate according to a map-like spatial
memory. Proceedings of the National Academy of Sciences, 102(8):3040-3045,
2005.

[25] Randolf Menzel, Andreas Kirbach, Wolf-Dieter Haass, Bernd Fischer,
Jacqueline Fuchs, Miriam Koblofsky, Konstantin Lehmann, Lutz Reiter,
Hanno Meyer, Hai Nguyen, Sarah Jones, Philipp Norton, and Uwe Greg-
gers. A common frame of reference for learned and communicated vec-
tors in honeybee navigation. Current Biology, 21(8):645 — 650, 2011.

[26] Randolf Menzel, Lea Tison, Johannes Fischer-Nakai, James Cheeseman,
Maria Sol Balbuena, Xiuxian Chen, Tim Landgraf, Julian Petrasch, Jo-
hannes Polster, and Uwe Greggers. Guidance of navigating honeybees by
learned elongated ground structures. Frontiers in Behavioral Neuroscience,
12:322, 2019.

[27] Marcel Mertes, Laura Dittmar, Martin Egelhaaf, and Norbert Boeddeker.
Visual motion-sensitive neurons in the bumblebee brain convey informa-
tion about landmarks during a navigational task. Frontiers in Behavioral
Neuroscience, 8:335, 2014.

[28] Angelique C. Paulk, Andrew M. Dacks, James Phillips-Portillo, Jean-Marc
Fellous, and Waulfila Gronenberg. Visual processing in the central bee
brain. Journal of Neuroscience, 29(32):9987-9999, 2009.

[29] Julian N. G. Petrasch. A flying platform for behavioral and electrophysi-
ological studies in honeybee navigation. BioRobotics-Lab, 2018.

[30] Jenny A. Plath, Brian V. Entler, Nicholas H. Kirkerud, Ulrike Schlegel,
C. Giovanni Galizia, and Andrew B. Barron. Different roles for honey
bee mushroom bodies and central complex in visual learning of colored

lights in an aversive conditioning assay. Frontiers in Behavioral Neuro-
science, 11:98, 2017.

[31] Johannes Polster. Simulating bee vision: Conceptualization, implemen-

55


http://ced.co.uk/products/spkovaf

Bibliography

tation, evaluation and application of a raycasting rendering engine for
generating bee views. BioRobotics-Lab, 2017.

[32] Scott D Roth. Ray casting for modeling solids. Computer Graphics and
Image Processing, 18(2):109 — 144, 1982.

[33] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1):43—49, February 1978.

[34] Hiroaki Sakoe and Seibi Chiba. A dynamic programming approach to
continuous speech recognition. In Proceedings of the Seventh International
Congress on Acoustics, Budapest, volume 3, pages 65-69, Budapest, 1971.
Akadémiai Kiadé.

[35] Rainer Schlittgen. Einfiihrung in die Statistik, Analyse und Modellierung von
Daten. De Gruyter, 12 edition, 2012.

[36] Reinhard Seidl and Walter Kaiser. Visual field size, binocular domain and
the ommatidial array of the compound eyes in worker honey bees. Journal
of comparative physiology, 143(1):17-26, Mar 1981.

[37] Sadia Shakil, Chin-Hui Lee, and Shella Dawn Keilholz. Evaluation of
sliding window correlation performance for characterizing dynamic func-
tional connectivity and brain states. Neurolmage, 133:111 — 128, 2016.

[38] Aung Si, Mandyam V. Srinivasan, and Shaowu Zhang. Honeybee naviga-
tion: properties of the visually driven ‘odometer’. Journal of Experimental
Biology, 206(8):1265-1273, 2003.

[39] Karin Steijven, Johannes Spaethe, Ingolf Steffan-Dewenter, and Stephan
Hartel. Learning performance and brain structure of artificially-reared
honey bees fed with different quantities of food. Peer], 5:e3858, October
2017.

[40] Benjamin Wild. Bestimmung der 6d-eigenbewegung eines fliegenden
roboters anhand von monokularen messungen des optischen flusses.
BioRobotics-Lab, 2014.

[41] Eric Zetzsche. Kollisionserkennung fiir single-/multicopter mit hilfe des
optischen flusses. BioRobotics-Lab, 2014.

56



A. Appendix

A Appendix

A1 Code

The bee’s spike rates were analysed and correlated with Python. The code was
developed in Jupyter notebooks. The following repository contains notebooks to
recreate all figures of this thesis and additional code used during the analysis:

https://github.com/tobiasschuelke/NeuroCopter-Analysis

A.2 Additional Figures
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Figure 32: Training and validation loss of the autoencoder which was trained
for 100 epochs. The autoencoder is used in Section 5. The training loss is
smoothed by a rolling mean window of size 100 and the validation loss is
depicted as the mean per epoch.
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Figure 33: Overview to compare positions in the sliding window correlation
graph with the corresponding position of the copter. The map displays the
flight route of one round. Here, the first round is used for SWC. Colours
along the route show correlation values and the arrow shows the location of
the copter. The graph shows the SWC of the whole flight. Round starts are
highlighted in green. The slider at the bottom is used to select positions in the
graph. The current selected index of the SWC in the graph is marked in red.
The slider is used to change the position in the graph and updates the location
of the copter (arrow) in the map accordingly. The correlation values along the
flight route are updated when the position in the graph is moved to another
round.
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A.2 Additional Figures

relative amount of activations [%]

Figure 34: Distribution of all correlations of activations with spike rate during
all rounds of the second flight on 3rd September, 2018. Correlations are sepa-
rated by layers of the corresponding activation. Histograms of each layer are
normalised to show the relative distribution of correlation values per layer.
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Figure 35: Scatter plot of spike rate and mean motor speed in August. Mean
speed of the copter’s four motors is used. The average of the spike rate and
mean motor speed are calculated in two second sections per flight round. Av-
eraged values are shown in scatter plots together with their linear regressions.
Correlation values of the mean spike rate and motor speed in two second sec-
tions are annotated in the legends. The motor speed is measured in rotations

per minute.
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Figure 35: Scatter plot of spike rate and mean motor speed in September
(continued).
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Figure 36: Scatter plot of spike rate and mean acceleration in August. Mean
of the acceleration along the X, y and z axes is used. The average of the spike
rate and mean acceleration are calculated in two second sections per flight
round. Averaged values are shown in scatter plots together with their linear
regressions. Correlation values of the mean spike rate and acceleration in two
second sections are annotated in the legends. The acceleration is measured in

metres per
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A.2  Additional Figures
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Figure 36: Scatter plot of spike rate and mean acceleration in September (con-
tinued).
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