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Abstract

Das System zur einfachen und sicheren Steuerung von Industrierobotern wurde entwickelt
um eine flexible Kommunikation zwischen verschiedenen Diensten zu ermdéglichen. Dabei
ist besonderer Wert auf Einfachheit, Performance und Erweiterbarkeit gelegt worden. Die
Bedienung der Roboter erfolgt {iber das Netzwerk mittels einer HoloLens. Diese zeigt zur
Visualisierung Hologramme an mit deren Hilfe der Benutzer iiber definierte Gesten den
Roboter ausrichten kann. Die Augmented Reality ermdglicht es intuitiv mit dem Roboter
zu interagieren und ihn Aufgaben erledigen zu lassen. Letztlich wurde das Konzept mittels

eines Versuches und Software-Tests validiert.
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1. Einfiihrung

In den letzten Jahren hat sich die Art der Produktion von Giitern gewandelt. Viele Un-
ternehmen haben ihre Produktionsstéitten ins Ausland verlagert um ihre Produkte giins-
tiger anfertigen zu kénnen. Der Trend der eigenen Fertigung im Ausland entwickelte sich
durch kostengiinstigere Alternativen weiter. Immer mehr Unternehmen geben ihre Produk-
tion vollstdndig an Drittunternehmen bzw. Auftragsfertiger ab. Diese produzieren fiir eine
Vielzahl von Firmen die erwiinschten Giiter. Der aktuelle Markt fordert mehr qualitativ
hochwertige und individuelle Produkte zu niedrigen Preisen. (AP, 2003; Creutzburg, 2015)

Weiterhin werden nahezu jdhrlich neue Versionen von Konsumgegensténden auf den
Markt gebracht. Daraus resultieren kiirzere Lebenszyklen der jeweiligen Waren. Dieser
Wandel sorgt dafiir, dass Auftragsfertiger ihre Produktionsstétte immer wieder iiberarbei-
ten und flexibel gestalten miissen ohne an Qualitit zu verlieren. Die erwiinschte Anpas-
sungsfiahigkeit soll sowohl in der Produktion als auch im Umgang mit wechselnden Kunden
mit Hilfe von modernen Industrierobotern erfolgen. In immer mehr Bereichen kommen diese
zum Einsatz, was sich in einer steigenden Gesamtzahl der weltweit verkauften Industriero-
boter bemerkbar macht (Abb. 1). Der in der Grafik ersichtliche Einbruch im Jahr 2009 ist

der weltweiten Wirtschaftskrise zuzuschreiben. (Gemma et al.)
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Abbildung 1: Anzahl verkaufter Industrieroboter zwischen den Jahren 2004 und 2016

Die Unternehmen sollen selbst in der Lage sein, bei Auftragsfertigern verteilte Indus-
trieroboter flexibel einzusetzen. Diese miissen zum einen einfach und gezielt gesteuert und
zum anderen unkompliziert programmiert werden kénnen.

Im Rahmen dieser Arbeit wird der Prototyp eines solchen Systems mittels Augmented
Reality umgesetzt. Durch den indirekten Kontakt soll Mitarbeitern ein sicherer Umgang
mit Industrierobotern ermdglicht werden. Um den unterschiedlichsten Gegebenheiten ge-
recht zu werden, miissen die Industrieroboter und zahlreiche Dienste miteinander kom-

munizieren. Diese Mehrwertdienste vereinfachen die Steuerung der Roboter und fiihren



Aufgaben wie bspw. eine Bahnplanung aus. Eine flexible Netzwerkarchitektur, die es er-
moglicht verschiedene Dienste fiir die Roboter und Endgerite zur Steuerung und Uberwa-
chung bereitzustellen, ist gefordert. Dabei werden im Prototyp unter anderem die Aspekte
Zugangsschutz sowie Verschliisselung vernachléssigt. Diese Themen sind fiir den produkti-
ven Einsatz unablissig und miissen vor Verwendung des Systems implementiert werden.
Zu Beginn der Ausarbeitung werden grundlegende Informationen zum weiteren Ver-
stdndnis aufgefithrt. Anschliefend werden bereits bestehende Systeme der Technischen
Universitét Berlin analysiert. Komponenten wie Steuerungssysteme werden im entwickel-
ten Netzwerk integriert und betrieben. Ein Konzept, das die Kommunikation zwischen den
Teilnehmern sowie die Visualisierung und Steuerung der Industrieroboter erméglicht, wird
erarbeitet. Im darauf folgenden Kapitel wird das Konzept umgesetzt und implementiert.
Zur Validierung des Systems wird zum einen der Industrieroboter mittels einer HoloLens
programmiert einen Gegenstand von einer Position auf eine andere zu platzieren. Zum
anderen werden Softwaretests durchgefiihrt. Im Fazit wird auf weitere und zukiinftige Ent-

wicklungsmoglichkeiten eingegangen.



2. Grundlagen

2.1. Industrielle Roboter

yndustrieroboter sind universell einsetzbare Bewegungsautomaten mit mehreren Achsen,
deren Bewegungen hinsichtlich Bewegungsfolge und Wegen bzw. Winkeln frei program-
mierbar (d.h. ohne mechanischen Eingriff vorzugeben bzw. dnderbar) und gegebenenfalls
sensorgefiihrt sind. Sie sind mit Greifern, Werkzeugen oder anderen Fertigungsmitteln aus-
riistbar und kénnen Handhabe- oder andere Fertigungsaufgaben ausfiihren.* (Weber, 2002)

Diese Definition eines Industrieroboters nach VDI-Richtlinie 2860 ist eine der am haufigs-
ten verwendeten. Weitere sind durch die Japan Industrial Robot Association (JIRA) und
europdischen Norm EN775 bestimmt. Wahrend die JIRA den Industrieroboter umfangrei-
cher definiert, decken sich die Definitionen der VDI-Richtlinie und der EN775 inhaltlich.

Im Rahmen der Arbeit wurden steuerbare und zugleich einarmige Industrieroboter ver-
wendet. Diese kdnnen in diversen Aufgabenbereichen eingesetzt werden. Durch entspre-
chende Zubehorteile sind die Roboter in der Lage Gegensténde zu greifen und an einen
anderen Platz zu legen. Ein Beispiel dafiir wére das Legen von Produkten von einem Fliefs-
band in einen Karton. Eine weitere Mdoglichkeit wire, die Roboter innerhalb der Produkti-
onskette einzusetzen um bspw. Oberflichen zu polieren, lackieren oder schweiften. Fiir die
Implementierung der Steuerung wird ein grundlegendes Wissen iiber die Funktionsweise
der Gelenke und die mathematischen Berechnungen dieser benotigt.

Der verwendete Industrieroboter wird von Universal Robots gebaut und trigt die Be-
zeichnung UR-5. Insgesamt verfiigt dieser iiber sechs Gelenke, die sich jeweils um die eigene
Achse drehen konnen (Abb. 2). Alle sechs Gelenke sind iiber statische Elemente miteinander
verbunden, man spricht von einer Gelenkskette oder Joint Chain. Am Ende der Kette be-
findet sich ein Endeffektor. Dieser ist eine unspezifische Beschreibung fiir das Werkzeug des
Roboters. Das Werkzeug kann je nach Arbeitsaufgabe des Industrieroboters und Einsatz-
gebiet bspw. ein Greifer, Schweif- oder Poliergerit sein. Genau wie bei einem menschlichen
Arm ist die Position des Endeffektors von der Stellung der Gelenke im Arm des Roboters
abhéngig. Der verwendete Roboter besitzt Gelenke mit jeweils einem Freiheitsgrad. Das
bedeutet, dass sich die Gelenke jeweils um eine feste Achse drehen konnen. Folglich hat
der gesamte Roboter sechs Gelenke mit insgesamt sechs Freiheitsgerade. Mit der erreichten

Beweglichkeit kann der Roboter flexibel innerhalb seines Arbeitsraums eingesetzt werden.



Fig. 27

Abbildung 2: Die sechs Gelenke des URS

Die Grofke des Arbeitsraumes ist durch Mafse wie die Lange des Roboterarmes begrenzt.
Der gesamte Arbeitsraum des Roboters setzt sich aus allen durch seinen Endeffektor er-
reichbaren Positionen zusammen. Die Position wird in Kartesischen Koordinaten angege-
ben, man spricht auch vom Kartesischen Raum oder Cartesian space. Sowohl Translation
im Raum entlang der Achsen z, y und z, als auch die Rotationen yaw, pitch und roll (Abb.
3) werden entweder als zwei 3-dimensionale Vektoren oder ein 6-dimensionaler Vektor dar-

gestellt.

H
-
v

Abbildung 3: Die drei Achsen der Rotation

Die Position des Endeffektors bei Ag (Abb. 2) ist von der Stellung aller Gelenke abhéngig.
Die aktuelle Position des Endeffektors wird mit Hilfe der einzelnen Gelenke A; bis Ag
und einer Vorwirtskinematik Matrix berechnet. Der Winkel eines Gelenkes A; betrégt 6;.
Uber alle Winkel und den jeweils dazugehorigen Transpositionsmatrizen wird das Produkt

gebildet. Allgemein gilt: handelt es sich um einen Roboter mit n Gelenken, die sich jeweils



um 6; drehen, ergibt sich fiir die Matrix 07"
n .
o=
i=1

Die Transpositionsmatrix 2_1T vom ¢ — 1-ten zum i-ten Gelenk enthilt sowohl einen

Translations- als auch Rotationsanteil:
I = R(2-1,0;) - T(zi-1,di) - T(2i-1,a;) - R(zi, o)

Die Matrizen T'(x;_1,a;) und R(z;, ;) beschreiben die Translation und Rotation um die
lokale z-Achse, die Matrizen T'(z;—1,d;) sowie R(z_1,0;) hingegen die Translation und
Rotation um die z-Achse. Der Parameter 6; ist bei dem UR-5 von der aktuellen Position des
Gelenkes abhingig, die Parameter fiir d;, a; sowie «; kbnnen aus der Tabelle lentnommen
werden. Mit der Matrix 7" fiir den UR-5 kann mit Hilfe von gegebenen Gelenkswerten
01, ...,0s die Position des Endeffektor berechnet und visualisiert werden. (Paul, 1981)

Gelenk a ‘ « ‘ d ‘ 0 ‘ Offset ‘
1 0 5 | 0.089159 | q1 0
2 —0.425 | 0 0 o| ¢
3 —0.39225 | 0 0 qs 0
4 0 5 0.10915 | qs | —7%
5 0 —5 | 0.09465 | g5 0
6 0 0 0.0823 | ¢s 0

Tabelle 1: Denavit-Hartenberg-Parameter des UR-5

Umgekehrt wird die Position der Gelenkswinkel fiir eine gegebene Position des End-
effektors mit Hilfe der inversen Kinematik berechnet. (Abb. 4) (Cubero, 2007) Dies wird
bendtigt, wenn die Endeffektorposition gegeben ist und eine mégliche Gelenkskonfiguration

dazu gesucht wird.
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Abbildung 4: Umrechnung vom Joint Space in das Kartesische Koordinatensystem

Die Berechnung der inversen Kinematik ist analytisch komplex. Daher verwendet man
einen algorithmischen Ansatz. Der verwendete Algorithmus fiir den UR-5 wird von Univer-
sal Robots zur Verfiigung gestellt und ist unter ,ur kinematics at indigo universal robots*
(2018) nachvollziehbar.

Mit Hilfe der Vorwartskinematik und der inversen Kinematik lassen sich alle Grofen wie



Gelenkswinkel berechnen um Steuerbefehle umzusetzen.

Eine weitere wichtige Art der Steuerung von Industrierobotern ist die Bahnplanung. Ein
Roboter kann unterschiedliche Formen von Bahnen abfahren. Die einfachste Form ist die
lineare Trajektorie ohne Kollisionserkennung. Der Roboter fihrt eine Strecke zwischen zwei
definierten Punkten A und B entlang. (Abb. 5)

Abbildung 5: Lineare Trajektorie zwischen den Punkten A und B

Der aktuelle Punkt zum Zeitpunkt ¢ auf der Bahn p(t) wird berechnet durch:

p(t)=p - (pB — pA)

AT 5
Ipaps]
pa und pp sind die Vektoren zu den Punkten A und B. ||papp|| ist der Abstand zwischen
A und B. Die Funktion s(t) gibt an, wie viel Strecke zum Zeitpunkt ¢ bereits zuriickgelegt
wurde. s(t) ist von der maximalen Geschwindigkeit und Beschleunigung des verwendeten
Roboters abhingig. Die zuriickgelegte Strecke, die Geschwindigkeit und Beschleunigung
in Abhéngigkeit von der Zeit (Abb. 6) werden mit Hilfe der Bibliothek KDL berechnet.
(,Kinematic and Dynamic Solvers | The Orocos Project, 2018)



Abbildung 6: Strecke, Geschwindigkeit und Beschleunigung in Abhéngigkeit von der Zeit

2.2. Visualisierung

Zur Visualisierung der Industrieroboter bieten sich unterschiedliche Geréte an. Ein Roboter
kann als 3D Modell auf einem Computer oder Tablet angezeigt werden. Seit dem Jahr 2016
gibt es eine noch anschaulichere Moglichkeit diese darzustellen.

Sogenannte Head-Mounted-Displays, die dhnlich wie Brillen getragen werden, werden
immer praxistauglicher. Man unterscheidet zwischen zwei Kategorien: Virtual Reality und
Augmented Reality. Die Virtual Reality simuliert dem Nutzer sdmtliche visuelle Eindriicke.
Er sieht nicht mehr eine reelle Umgebung, sondern ausschlieklich eine Virtuelle. Winde,
Objekte und Personen werden vollstindig als 3D Modelle dargestellt. Beispiele fiir Virtual
Reality Brillen sind Oculus Rift oder die HT'C Vive. (,Oculus Rift | Oculus®, 2018; ,VIVE
| Discover Virtual Reality Beyond Imagination“, 2018)

Im Gegensatz dazu wird in der Augmented Reality, zu Deutsch erweiterte Realitét, die
Umgebung wie gewohnt dargestellt. Zusdtzlich kénnen mit Hilfe der Brille Hologramme
im Blickfeld platziert werden. Bspw. kann auf einem Tisch im Raum das 3D Modell eines
Industrieroboters angezeigt und von allen Seiten betrachtet werden. Die HoloLens von
Microsoft ist auf dem Markt seit Oktober 2016 erhéltlich. Sie erkennt Gesten, die mit den
Hénden ausgefiihrt werden. Auf diese Weise kann der Benutzer an Hologrammen ziehen,
diese antippen und manipulieren.

Weiterhin ist die HoloLens mit zahlreichen Sensoren ausgestattet. Sie verfiigt {iber eine
Sensorleiste, die sich vorne oben an der Brille befindet. (Abb. 7) Darin enthalten sind vier
Umgebungskameras, die sich paarweise seitlich an der Sensorleiste befinden. Sie dienen dazu
die Kopfbewegung in Relation zum Raum zu ermitteln. Des Weiteren enthilt die Leiste eine

Inertial Measurement Unit (IMU), welche einen Beschleunigungsmesser, Rotationsmesser



und Magnetometer beinhaltet. Hinzu kommt eine Tiefenkamera, die sich vorne zentral
befindet. Diese wird zur Hand- und Oberflichenerkennung, auch Spatial Mapping genannt,
genutzt. Ein Umgebungslicht-Sensor, eine Kamera fiir Foto- und Videoaufnahmen sowie

vier Mikrofone komplettieren die Sensorik der HoloLens.

Abbildung 7: Sensorleiste der HoloLens

Die HoloLens wird zur Visualisierung und Steuerung des verwendeten Industrieroboters
genutzt. Bspw. wird der Endeffektor mit Hilfe von Gesten in eine bestimmte Position
gezogen und gedreht. Der holografische Roboterarm stellt die Gelenkswinkel automatisch
ein, sodass die gewiinschte Position erreicht wird. Die Winkel des Armes miissen ebenfalls
manuell eingestellt werden. Das Resultat, die Position des Endeffektors, muss berechnet
werden. Hierfiir werden die Vorwértskinematik und die inverse Kinematik (Kapitel 2.1)
des Roboters benotigt.

Wird der holografische Roboter in die korrekte Position gebracht, nimmt der reelle Ro-
boter nach einer Bestitigung durch den Benutzer diese Position ein. Um dies ausfiihren zu
kénnen, muss die HoloLens iiber ein Netzwerk mit dem Roboter verbunden sein. Handelt
es sich um einen einzigen Roboter, ist es moglich die HoloLens dermafen zu programmie-
ren, dass dieser direkt angezeigt und gesteuert werden kann. Handelt es sich um einen
Industriepark aus mehreren Robotern, die méglicherweise unterschiedlicher Art sind, ist
eine feste und direkte Verbindung zwischen Roboter und HoloLens eine unbefriedigende

Lésung.

2.3. Netzwerke

Ein Netzwerk mit vielen unterschiedlichen Teilnehmern ist ein verteiltes Netzwerk. Die
Teilnehmer konnen auf gleichen oder verschiedenen Hardware-Gerdten laufen. Zusdtzlich
konnen die Teilnehmer unterschiedlicher Natur sein. Beispiele fiir Teilnehmer eines ver-
teilten Netzwerkes sind Roboter, eine HoloLens oder Gerdte wie Smartphone, Tablet oder
Computer. Verschiedene Anzeigegerite sollen mit diversen Industrierobotern kommunizie-
ren und diese darstellen und steuern.

Die vollstindige Netzwerkarchitektur kann vereinfacht {iber das Open Systems Inter-
connection Model (OSI-Modell) dargestellt werden. (ITU-T, 1994) Das Modell beschreibt



dabei sieben Schichten: Physical, Data Link, Network, Transport, Session, Presentation und
Application. Die physikalische Topologie wird von den ersten beiden Layern beschrieben.
Dabei sind bspw. Leitungen und Stecker Teil der physikalischen Schicht und der Switch in
Kombination mit dem MAC-Protokoll Teil der Sicherungsschicht (Data Link Layer). Die
Kommunikation auf diesen beiden Schichten wird vernachlissigt und als gegeben betrach-
tet.

Auf Schicht drei, der Netzwerkschicht, wird in dem Anwendungsszenario das Internet-
Protokoll IP verwendet, auf Schicht vier, der Transportschicht, das Transmission Control
Protocol T'CP. Die Schichten fiinf bis sieben werden als Anwendungsschicht zusammenge-
fasst, in der zwei Protokolle eingesetzt werden. Der Grofiteil der Kommunikation erfolgt
iiber das von Google entwickelte Protokoll Protocol Buffers. In wenigen Ausnahmen wird
das bekannte Hypertext Transfer Protocol HTTP genutzt.

Auf Schicht drei und vier beruht die logische Topologie, das Overlay-Netzwerk. Hierbei
gibt es zahlreiche verschiedene Formen bzw. Architekturen. Gangige Formen sind Peer-to-
Peer oder Client-Server Architekturen. In der Peer-to-Peer Architektur sind alle Teilneh-
mer gleichberechtigt. Die Kenntnisse der einzelnen Teilnehmer {ibereinander muss dabei
nicht vollstdndig sein. (Abb. 8) Sie konnen innerhalb des Netzwerkes Dienste bereitstellen
und nutzen. Peer-to-Peer Netzwerke zeichnen sich durch ihre beachtliche Robustheit und

Performance gegentiber anderen Architekturen aus. (Bawa et al., 2003; Schollmeier, 2001)

N

Abbildung 8: Peer-to-Peer Netzwerk

Da es keine feste Anlaufstelle innerhalb einer Peer-to-Peer Architektur gibt, miissen
Funktionen fiir die Suche innerhalb eines Netzwerkes zur Verfligung gestellt werden. In
diesem Bereich liegen die Schwéchen der Peer-to-Peer Architektur. (Cooper and Garcia-
Molina, 2004) Die Suche von Diensten im Netzwerk muss aufwendig implementiert werden,
da nicht jedem Teilnehmer alle weiteren Teilnehmer des Netzwerkes bekannt sind. Bendotigt
bspw. eine HoloLens eine Liste von allen Teilnehmern mit bestimmten Eigenschaften, muss
diese zunéichst alle Teilnehmer des Netzes finden. Anschliefend iiberpriift die HoloLens, ob
die ermittelten Teilnehmer jeweils die Eigenschaften erfiillen.

Demgegeniiber steht die Client/Server-Architektur. In dieser gibt es den Server als zen-

trale Anlaufstelle. Er vermittelt sdmtliche Anfragen und Antworten zwischen den Teilneh-
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mern. Bendtigt ein Gerét eine Liste von bestimmten Teilnehmern, wird diese beim Server
angefragt. Die Kommunikation innerhalb des Netzwerkes 1duft ausnahmslos iiber den Ser-
ver. (Abb. 9) Dies stellt einen erheblichen Nachteil des Netzwerkes dar.

Wihrend in Peer-to-Peer Netzwerken die Kommunikation direkt erfolgt, ist in der Cli-
ent/Server Architektur stets der Server dazwischen geschaltet. Sowohl Bandbreite als auch
Ausfallsicherheit sind in der Client/Server-Architektur deutlich geringer. Bei einem Ser-
verausfall bricht das gesamte Netzwerk zusammen. Verfiigt der Server iiber eine geringe
Bandbreite, ist das gesamte Netzwerk iiberlastet. Im Gegensatz dazu ist die einfache Durch-

suchbarkeit des Netzwerkes von Vorteil, da der Server sdmtliche Teilnehmer kennt.

Roboter

Server

Mehrwertdienste Engeriite/ Anzeigen

Abbildung 9: Client/Server-Architektur

Auf der Anwendungsebene wird Googles Protocol Buffers verwendet. Dies ist ein Format
zur serialisierten Ubertragung von Daten. Geldufige Formate wie XML oder JSON sind
textbasiert. In Protocol Buffers werden die Daten im Bindrformat {ibertragen. Protocol
Buffers ist ein weit verbreitetes, robustes und performantes Protokoll. Die Daten werden
in Textdateien durch eine eigene Syntax beschrieben und daraufhin mittels eines Compilers

fiir die jeweilige Programmiersprache compiliert. (Alg. 1)

Algorithmus 1 Beispiel fiir eine uncompilierte Protocol Buffers Nachricht

message Person {
required string name = 1;
required int32 size = 2;

optional string email 3;

Insgesamt erfolgt die Netzwerkkommunikation mit IP, TCP, Protocol Buffers sowie
HTTP. Die entwickelte und verwendete Netzwerkarchitektur wird in Kapitel 4.1 vorge-
stellt.

11



3. Stand der Technik

In Zeiten von Cloud basierten Systemen gibt es mehrere Ansétze der Dienst basierten Kom-
munikation zwischen Robotern. Ein Ansatz ist in ,Robot control as a service — Towards
cloud-based motion planning and control for industrial robots* beschrieben. Hier geht es
um die Entwicklung eines offenen und Service basiertem Framework zur flexiblen Bahnpla-
nung und Steuerung von Industrierobotern. Im Rahmen der Arbeit wird ein Testsystem
erfolgreich mit Hilfe des Frameworks implementiert. (Vick et al., 2015a) Die Abhandlung
,Cloud robotics: Formation control of a multi robot system utilizing cloud Infrastruktur*
befasst sich mit dem Steuern von mehreren Robotern iiber das Internet. Das Konzept wurde
erfolgreich umgesetzt. Der mogliche Einsatz von neuronalen Netzen wird in diesem System
ebenfalls analysiert. (Turnbull and Samanta, 2013) Eine Umgebung von verteilten Robo-
tern wird als Platform-as-a-Service in ;A Cloud Computing Environment for Supporting
Networked Robotics Applications” vorgestellt. Diese Roboter teilen sich Rechnerresourcen
und verbinden sich mit virtualisierten Diensten im Netzwerk. (Agostinho et al., 2011)

Die open-source Plattform Rapyuta befasst sich ebenfalls mit der Cloud basierten Robo-
tersteuerung und kann gleichzeitig auf die Datenbank von RoboEarth zugreifen. Rapyuta
ermoglicht es Robotern Aufgaben, wie bspw. komplizierte Berechnungen, an andere Netz-
werkteilnehmer abzugeben. (Mohanarajah et al., 2015; van de Molengraft et al.)

In der Arbeit ,Feasibility of connecting machinery and robots to industrial control Ser-
vices in the cloud* geht es um die Moglichkeiten Roboter ohne Netzwerkanbindung in
Cloud-Systeme zu integrieren. Dazu wird eine einheitliche Netzwerkschnittstelle entwickelt,
welche in drei unterschiedlichen Szenarien zur Anwendung kommt. (Horn and Kriiger, 2016)
Die Schnittstellen werden in ,,Control of robots and machine tools with an extended factory
cloud” weiter genutzt um eine private Cloud fiir Roboterkontroller sowie programmierbare
Logikkontroller umzusetzen. Vor- sowie Nachteile des Ansatzes werden weiterhin diskutiert.
(Vick et al., 2015b)

Vorteile, Herausforderungen und Probleme mit der Verwendung von Robotern in der
Cloud werden in ,Cloud robotics: architecture, challenges and Applications®, ,Cloud robo-
tics: Current trends and possible use as a service” und ,,Robotic Services in Cloud Compu-
ting Paradigm® erarbeitet und ausgewertet. (Hu et al., 2012; Lorencik and Sincak, 2013;
Doriya et al., 2012) In ,Cloud robotics: architecture, challenges and Applications* wird die
Sicherheit dieser Systeme genauer betrachtet. Die Arbeit ,Cloud robotics: Current trends
and possible use as a service analysiert die Vorteile der erhéhten Rechenleistung in der
Cloud und der Moglichkeit eine zentrale Steuerungseinheit zu entwickeln. Die Moglichkei-
ten grofe Datenmengen in der Cloud zu verarbeiten um so Prozesse zu optimieren, wird
in ,Robotic Services in Cloud Computing Paradigm® beurteilt.

Der Ansatz, die Cloud basierte Steuerung mit der Augmented Reality zu kombinieren, ist
kein Bestandteil bereits bestehender Arbeiten. Es kommen lediglich geschlossene Systeme
zur Anwendung. Zur Laufzeit konnen unbekannte Robotertypen nicht eingepflegt und in

Betrieb genommen werden. Auferdem wird oftmals auf eine Vielzahl von Protokollen zu-
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riickgegriffen, die alle miteinander kommunizieren. In dieser Ausarbeitung wird ein global
verwendetes Protokoll verwendet um alle Dienste zu nutzen.

Die Idee zur Visualisierung und Steuerung mittels Augmented Reality existierte bereits
zu Beginn dieser Arbeit. Innerhalb des Fachgebiets ,Industrielle Automatisierungstechnik®
der Technischen Universitdt Berlin wurde vorher an einzelnen Komponenten gearbeitet.
Diese waren ohne eine Netzwerkarchitektur direkt miteinander verbunden.

Zur Steuerung eines Industrieroboters kam die ur-bridge zum Einsatz. Diese Software
ermoglicht es Steuerbefehle eines UR-5 Roboters mittels TCP/IP entgegenzunehmen und
an den Roboter weiterzugeben. Sie wurde im Rahmen der Arbeit verwendet und an die
neuen Bedingungen angepasst.

Um Roboter auf mobilen Endgerédten wie Tablets visualisieren zu kénnen ist die Anwen-
dung RoboViz entwickelt worden. Der Name der Software sowie das verwendete 3D Mo-
dell wurden beibehalten. Bestimmte Komponenten wie die Manipulation des Hologramms
wurden weitestgehend umgeschrieben. Fiir die Kommunikation zwischen der Applikation

RoboViz und der ur-bridge wurde ein neues Netzwerkkonzept entwickelt.
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4. Konzept

Die Entwicklung des Konzepts ist in unterschiedliche Bereiche aufgeteilt. Zuerst wird ein
Netzwerk erarbeitet, welches die Grundlage des Systems zur Steuerung von Industriero-
botern bildet. Anschliefend wird eine mogliche Form der Visualisierung entworfen. Zum

Schluss wird auf die Steuerung der Roboter mittels augmented Reality eingegangen.

4.1. Netzwerk

Im Rahmen dieser Arbeit wurde eine Netzwerk- und Softwarearchitektur gesucht, die un-
abhéngig von ihren Teilnehmern ist.

Des Weiteren gab es die Anforderung, dass das Netzwerk erweiterbar ist. Die Teilnehmer
sollen dabei innerhalb des Netzwerkes nicht angepasst werden miissen. Als Beispiel soll ein
neuer Roboter entwickelt und in die Umgebung und das Netzwerk integriert werden. Um
mit dem Roboter interagieren zu kénnen, sollen alle Endgerate, wie HoloLens oder Tablets,
nicht neu konfiguriert werden miissen. Der neue Roboter muss dazu in der Lage sein alle
Geriite iiber seine Eigenschaften zu informieren. Weiterhin sendet er eine Anleitung wie er
gesteuert wird.

Dies geschieht auf Basis von unterschiedlichen Diensten. Diese Dienste sind ebenfalls
Mitglieder des Netzwerkes. Dienste kénnen Teil eines Roboters oder komplett unabhéngiger
Komponenten sein. (Abb. 10)

Zusatzlich wurden einige Voraussetzungen gestellt um bereits bestehende Systeme in das
neue Netzwerk integrieren zu kénnen. Diese existierenden Systeme nutzen bspw. zur Kom-
munikation TCP und Google Protocol Buffers. Beide Technologien bilden die Grundlage
fiir die neue Netzwerkarchitektur.

Im Folgenden wird fast ausschlieflich {iber Dienste gesprochen. Dabei ist dieser Begriff
generisch aufzufassen. Dienste kénnen in Bezug auf ihre Aufgaben unterschiedlich sein. Die
einzige Gemeinsamkeit aller Dienste ist, dass sie auf einem Teilnehmer im Netzwerk lau-
fen und spezifische Aufgaben fiir einen oder mehrere Roboter im Netzwerk iibernehmen.
Vor der Konzepterarbeitung bringt folgende beispielhafte Anwendung von unterschiedli-
chen Diensten und Gerdten das gewiinschte Resultat ndher. Innerhalb eines Netzwerkes
befinden sich ein Roboter, eine HoloLens und ein Rechner mit dem Betriebssystem Linux.
Der Roboter stellt zwei Dienste bereit. Ein Dienst ermoglicht die Achswinkel des Robo-
ters auszulesen, der zweite diese zu dndern. Der Dienst, welcher inverse Kinematiken fiir
Robotermodelle berechnet, wird auf dem Linux Computer ausgefiihrt. Die HoloLens stellt

wiederum die Dienste ,, Anzeigen” und ,Steuern® bereit.
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Abbildung 10: Teilnehmer und Dienste (Inverse Kinematik und Trajektorie) innerhalb ei-
nes Netzwerkes

Alle diese Dienste interagieren miteinander. Um den Roboter korrekt anzeigen zu kénnen,
bendtigt die HoloLens die aktuelle Ausrichtung der Achsen des Roboters. Die HoloLens
erfragt den entsprechenden Dienst auf dem Roboter. Anschliefend kann sie den Roboter
korrekt als Hologramm im Raum darstellen. Mochte der Benutzer der HoloLens die Position
des Endeffektors verindern, kommt der Dienst ,Steuern® zur Anwendung. Mit Hilfe des
Dienstes positioniert er einen virtuellen Platzhalter fiir den Endeffektor des Roboters an
der gewlinschten Position im Raum. Um den Endeffektor des Roboters an die Position
des Platzhalters zu steuern, benétigt die HoloLens die entsprechenden Achswinkel des
Roboters. Zur Berechnung der Achswinkel wird die inverse Kinematik aus Kapitel 2.1
benotigt. Es wird der Dienst ,Inverse Kinematik® vom Linux Rechner angefragt und die
neuen Achswinkel werden berechnet. Die HoloLens erhilt die neuen Achswinkel und kann
das Hologramm des Roboters entsprechend anpassen. Das Hologramm ist damit in der
neuen Position, der reelle Roboter hingegen nicht. Die HoloLens kontaktiert den Dienst
LAchswinkel setzten* auf dem Roboter und setzt die Winkel. Der reelle Roboter bewegt
seinen Endeffektor auf die entsprechende Position.

Um diese Funktionalitit im Netzwerk umzusetzen, wurde eine hybride Netzwerkarchi-
tektur und -struktur entwickelt. Das Netzwerk ist einerseits ein Client-Server Netzwerk bei
dem sich sdmtliche Teilnehmer mit dem Server, genannt Broker, verbinden. Andererseits ist
es ein Peer-to-Peer Netzwerk in dem die Teilnehmer direkt untereinander kommunizieren.
(Abb. 11) Der Broker (Kreis) hat eine Verbindung zu allen Teilnehmern (Rechtecke). Diese
bauen untereinander bei Bedarf untereinander eine Verbindung auf. Innerhalb des Client-
Server Netzwerkes kénnen Teilnehmer nach anderen Teilnehmern und Diensten suchen.
Der Broker speichert Listen iiber alle verfiigbaren Teilnehmer sowie ihre jeweiligen Diens-

te ab. Fragt ein Teilnehmer nach einem speziellem Dienst im Netzwerk, kann der Broker
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direkt eine Auskunft erteilen, ob der Dienst verfiighar ist, oder nicht. Die Komplexitéit der
Suche ist minimiert. Ist ein Dienst verfiigbar, kontaktiert der Teilnehmer diesen direkt und
ohne Umwege iiber den Broker. Der am Broker entstehende Traffic wird minimiert. Die
im Kapitel 2.3 angesprochenen Probleme der beiden vorgestellten Netzwerkarchitekturen

werden damit deutlich reduziert.

Abbildung 11: Hybrid-Netzwerk aus Client-Server und Peer-to-Peer

Sollte der Broker durch einen Ausfall nicht mehr verfiigbar sein, kann ein Teilnehmer
nicht nach Diensten suchen. Bereits laufende Dienste sind weiterhin verfiigbar und nicht
von dem Ausfall betroffen. Nimmt der Broker die Arbeit erneut auf, miissen sich sdmtliche
Teilnehmer erneut bei diesem melden. Der Broker aktualisiert schliefslich seine internen
Listen iiber vorhandene Gerdte und Dienste.

Meldet sich ein neues Gerdt im Netzwerk an, schickt es zunédchst eine Benachrichtigung
an den Broker. Dies geschieht im Format ,Ich stelle fiir folgende(n) Roboter folgende Diens-
te zur Verfiigung“. Im Anschluss kann das Gerédt den Broker nach Informationen fragen.
Diese werden im Format ,Ich bendtige eine Liste iiber alle Geréte folgenden Typs“ fiir die
Anfrage einer Geriteliste oder ,Ich bendtige folgenden Dienst fiir folgenden Roboter(typ)*

fiir die Anfrage eines Dienstes geschickt.

4.2. Visualisierung

Die Visualisierung der Roboter mit Hilfe von mobilen Endgerédten wie der HoloLens oder
einem Tablet wird mittels Hologrammen umgesetzt. Fiir jeden Roboter innerhalb des In-
dustrieparks wird ein entsprechendes Hologramm erzeugt und im Raum dargestellt. Zu
Beginn ist kein Roboter sichtbar. Vor sich im Raum sieht der Nutzer eine Liste mit verfiig-
baren Robotern. Wéhlt der Benutzer einen Roboter aus, schliefst sich das Fenster der Liste.
Der Roboter erscheint vor dem Nutzer im Raum und folgt seinem Blick. Die gewiinschte
Position des Roboters, bspw. ein Tisch im Raum, kann anvisiert werden. Wird der Roboter
durch den Benutzer verankert, folgt er nicht weiterhin dem Blick, sondern verbleibt an ent-

sprechender Stelle. Der Benutzer kann ab diesem Zeitpunkt den Roboter von allen Seiten
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betrachten. An Stellen, an denen der Benutzer mit dem Roboter in Interaktion treten kann,
werden Markierungen dargestellt. Ein Beispiel sind die einzelnen Gelenke des Roboters, die
beim Betrachten aufleuchten und dem Benutzer anzeigen, dass sie verdnderbar sind. (Abb.
12)

Abbildung 12: Hologramm eines UR-5 mit Steuerelementen fiir die Manipulation der Ach-
sen

Abschliefsend gibt es die Moglichkeit Bewegungen zu simulieren. Das Hologramm fiihrt,
unabhingig vom reellen Roboter, eine geplante Bewegung aus. Nach einer Uberpriifung
der Simulation gibt es die Moglichkeit die Simulation an den Roboter zu iibertragen. Er

fiihrt die Bewegung der Simulation entsprechend aus.

4.3. Steuerung

Die Roboter werden mit Hilfe der geladenen Dienste visualisiert. Zusédtzlich ist es mog-
lich Steuerungsbefehle an den Roboter zu senden. Im Rahmen dieser Arbeit werden drei
verschiedene Steuerungsmoglichkeiten exemplarisch fiir die HoloLens implementiert. Diese
stellen jeweils einen Dienst im Netzwerk dar.

Industrieroboter sollen haufig Gegenstidnde greifen und in einer bestimmten Position hal-
ten. Dazu muss es moéglich sein diese Position mit Hilfe der Gelenkswinkel anzusteuern. Der
Benutzer bendtigt eine Eingabeoberfliche mit deren Hilfe er direkt jede einzelne Achse in-
dividuell einstellen kann. Um dies umzusetzen muss an jedem Gelenk ein hervorgehobenes
Steuerelement sichtbar sein, welches der Benutzer auswahlen und durch Handgesten ma-
nipulieren kann. Diese Gestenausfithrung hat eine Veréinderung der Achswinkel zur Folge.
Der Dienst zur direkten Steuerung der Winkel heifst ,SET AXIS ANGLES"

Der folgende Dienst ,GET INVERSE KINEMATIC* ist eine weitere Steuerungsopti-
on. Er ermoglicht dem Benutzer, den Endeffektor direkt und nicht, wie bei
SET  AXIS ANGLESY, indirekt zu steuern. Um den Endeffektor im Raum zu positionie-

ren, miissen Punkte verschoben und rotiert werden konnen. Letztendlich schwebt ein klar
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erkennbares Element im Raum, welches durch Gesten bewegt wird. (Abb. 13)

Abbildung 13: GUI zur Steuerung des Endeffektors - Translation (links) und Rotation
(rechts)

Der Benutzer wiahlt eine Achse aus. Anschliekend kann entlang dieser das Objekt ver-
setzt werden. Um eine Rotation durchzufiihren, wahlt der Nutzer eine der Scheiben aus.
Durch eine Drehung dieser rotiert das zentrale Objekt. Mit Hilfe der drei Achsen der
Translation und Rotation kénnen sdmtliche Positionen im Raum erreicht werden. Die in-
verse Kinematik (s. Kapitel 2.1) bzw. der dazugehorige Dienst kann {iber das Netzwerk die
Stellung des Roboters berechnen. Aufgrund dessen sind die Achswinkel bekannt und kén-
nen gesetzt werden. Diese Funktion ist bereits durch den Dienst ,SET AXIS ANGLES®
implementiert. Der Dienst ,GET INVERSE KINEMATIC* baut somit auf dem Dienst
SET AXIS ANGLES® auf.

Die dritte Moglichkeit der Steuerung ist die Bahnplanung. Der Benutzer definiert im
Umfeld des Roboters Punkte im Raum. Der Industrieroboter fihrt diese, bspw. linear oder
in Form eines Bezier-Splines, nacheinander ab. Der Dienst ,INTERPOLATE SERVICE*
errechnet die einzelnen Schritte der Bahnkurve. Nachfolgend wird fiir jeden Schritt die
Achsstellung durch den Dienst ,GET INVERSE KINEMATIC* berechnet.

SET AXIS ANGLE“ bewegt den Roboter in die Stellung. Durch berechnete Schritte
zwischen den einzelnen Punkten resultiert eine gleichméafige Bewegung des Roboters ent-
lang der geplanten Strecke.

Diese drei Beispiele zeigen, dass der Benutzer den Roboter auf unterschiedliche Weise
steuern kann. Die Umsetzung ist dienstweise aufeinander aufgebaut. Der Benutzer muss in
der Lage sein mogliche Interaktionen zu erkennen. Jeder verfiigbare Dienst, der {iber das
Netzwerk geladen wird, muss iiber eine sinnvolle und einfache Bedienung verfiigen und mit

anderen Steuerungsdiensten kommunizieren kénnen.
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5. Umsetzung / Implementierung

Dieses Kapitel befasst sich mit dem Prozess vom Konzept zur fertigen Software. Hierfiir
mussten unter anderem sdmtliche Rahmenbedingungen beriicksichtigt und bereits vorhan-
dene Bibliotheken analysiert werden. Damit einhergehend wurde festgelegt, dass sdmtli-
che Kommunikation mittels Google Protocol Buffers erfolgt. Nur in wenigen Ausnahmen
wurden andere Protokolle, wie HTTP, verwendet. Zur Kommunikation kommt auf der
Transportschicht (ITU-T, 1994) TCP zum Einsatz.

Bevor die einzelnen Teilnehmer, wie Broker, Roboter oder HoloLens, programmiert wer-
den, muss folgendes Problem der Netzwerkiibertragung gelést werden: Einzelne TCP /IP
Pakete haben eine begrenzte Grofe. Innerhalb eines Paketes konnen maximal 1.500 Bytes
iibertragen werden. Davon sind 20 Bytes fiir den IP Header reserviert und 20 Bytes fiir
die Headerdaten von TCP. Fiir die Anwendung verbleiben maximal 1460 Bytes pro iiber-
tragenem Paket. Da in der Anwendung zum Teil grofere Pakete, von mehreren hundert
Interpolationsschritten innerhalb einer Nachricht, ibertragen werden, muss die maximale
Grofe angehoben werden. Um innerhalb der Anwendung grofere Datensétze als 1460 Bytes
zu libertragen, wurde ein weiterer Bereich reserviert. 8 Bytes sind zusitzlich fiir die Angabe
der Grofe des Datensatzes reserviert (Abb. 14). Dieser Zusatz von 8 Byte stellt ein eigenes

Protokoll dar und wurde aufgrund der geringen Komplexitidt Microprotokol genannt.

IP TCP | SIZE
20B | 20B 8B

Abbildung 14: Griéke der Paket-Headerdaten durch die Protokolle IP, TCP und Micropro-
tokol

Es ist zu beachten, dass der Header von 8 Bytes immer zu Beginn eines Datensatzes
geschickt wird und nicht zwangsweise innerhalb jedes TCP/IP Paketes steht. Als Beispiel
wird die lineare Trajektorie des Endeffektors fiir einen Roboter berechnet. Dazu werden
auf einer Gerade zwischen dem Start und dem Zielpunkt 1000 Schritte berechnet. Pro
Schritt werden fiir den UR-5 Roboter sechs Achswinkel benétigt. Die Zahlen werden als
float iibertragen, nehmen somit jeweils 4 Bytes ein. Die Grofse der Zahlendaten in Bytes z
ist z =6-4-1000 = 24000. Google Protocol Buffers benétigt fiir die Encodierung weitere
p = 4000 Bytes. Fiir die Bahnkurve werden insgesamt z + p = 28000 Bytes iibertragen.
Fiir alle 1.000 Achsstellungen bzw. 28.000 Bytes werden [%1 = 20 Pakete verschickt.

Um dieses Problem der Paketgrofe zu losen, wird fiir alle verwendeten Programmier-
sprachen zu Beginn jeweils die Klasse Microprotokol geschrieben. Die Klasse hat zwei
Methoden. read lielt von einem TCP Socket und write schreibt beliebig grofse Datensédtze
in einen TCP Socket. (Alg. 2; Alg. 3) Insgesamt wurde die Klasse in drei Programmier-
sprachen, Python, C++ und C#, implementiert.
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Algorithmus 2 Implementierung der read-Methode in Python (Microprotokol)

buf = []
data = reader (self.MAX_HEADER_BYTE_SIZE) # read header from stream, also
blocks until data is recezved

# rCount is the total length of all data read from tcp stream
rCount = len(data)

# size i1s the total size of the data set; position <s begining of the data
set

(size, position) = decoder._DecodeVarint (data, 0)

# add first data package to buffer
buf . append (data)

# read packages as long rCount (current size) is smaller then total size +

1
while rCount < size + 1:
data = reader (size + 1 - rCount)

rCount += len(data)
buf . append (data)

# combine all packages
binary_message = b''.join(buf)

# received message as byte stream without length prefiz
return binary_message[position:(position + size)]

Algorithmus 3 Implementierung der write-Methode in Python (Microprotokol)

# calculate message length
bytes = encoder._VarintBytes (message.ByteSize ())

# write message length and message itself to stream writer
writer (bytes + message.SerializeToString())

Mit Hilfe der Klassen ist es moglich Protocol Buffers Nachrichten in jeder der oben
genannten Programmiersprachen iiber TCP/IP zu schicken.
Somit konnten im Anschluss die Teilnehmer des verteilten Netzen umgesetzt werden. Im
ersten Schritt wurden der Broker entwickelt. Ein Kriterium fiir diesen war die Portabilitét,
die Einsatzmoglichkeit auf unterschiedlichen Betriebssystemen. Als Plattform-unabhéngige

und geeignete Programmiersprache wurde Python in der Version 3 festgelegt.

5.1. Broker

Nachdem die Grundlagen fiir das Versenden von Nachrichten innerhalb des verteilten Netz-

werkes durch TCP /IP und dem entwickelten Microprotokol gegeben sind, kann der Broker
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unabhéngig von den anderen Teilnehmern entwickelt werden. Der Broker ist vollstéindig in
Python programmiert, wodurch er auf siémtlichen von Python unterstiitzten Plattformen
ausgefiihrt werden kann. Der Broker wartet in einem Thread auf eingehende Verbindungen.
Verbindet sich ein Client mit dem Broker, wird ein neuer Thread erstellt. Aufgrund dessen
kann der Broker mit mehreren Clients asynchron kommunizieren. Innerhalb des erstellten
Threads wartet der Broker mit Hilfe der Microprotokol-Klasse (Alg. 2) auf eingehende
Protocol Buffers Nachrichten.

Im ersten Schritt wurde die Routine zum Registrieren von Gerdten auf dem Broker im-
plementiert. Jeder neue Teilnehmer im Netzwerk kann sich beim Broker melden und ihm
eine greeting Nachricht schicken. Inhalt der Nachricht greeting sind zwei Felder. Das Gerét

selbst sowie eine Liste von Diensten, die das Gerdt anbietet:

message greeting {
device device = 1;

repeated service services = 2;

Die Angabe eines Feldes erfolgt durch die Typisierung gefolgt von einem Feldnamen.
Die Zahlen sind Tag-Nummern und werden von Googles Protocol Buffers intern genutzt.
Einziges Kriterium fiir diese ist die Einzigartigkeit innerhalb einer Nachricht. Das erste
Feld der Nachricht greeting hat den Namen ,device und ist vom Typ device. Das zweite
Feld ist vom Typ service und heifst ,services“. Durch den Zusatz repeated wird aus dem
Feld eine Liste.

Eine device Nachricht enthilt ebenfalls zwei Felder und sieht wie folgt aus:

message device {
repeated string identifiers = 1;

string ip = 2;

Der Inhalt des Feldes ,ip“ ist die IP-Adresse des Geriites selbst. Das Feld jidentifiers” ist
eine Liste von Zeichenketten bzw. Strings. Die einzelnen Werte der Liste sind Bezeichner
um den Roboter zu identifizieren. Die Reihenfolge ist relevant und wird von genau nach
ungenau sortiert. Kin Beispiel fiir die identifiers eines UR-5 Roboters mit der Seriennum-
mer ,,.54X8D9K8G" ist: ["UR-5-34X8D986", "UR-5", "industrial-robot", "robot"]. Ein
Rechner, der den Dienst zum Berechnen einer inversen Kinematik fiir den UR-5 anbietet,
hat als identifiers bspw. die Liste: ["inverse-kinematic", "UR-5", "service"].

Somit handelt es sich bei letzterem um einen Dienst fiir den UR-5 und nicht um einen
Roboter.

Jedes Gerit, welches Dienste anbietet, schickt diese Dienste als Liste innerhalb der gree-

ting-Nachricht. Eine Dienstnachricht service beinhaltet zwei Felder: den Namen des Diens-
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tes und die Portnummer unter der der Dienst 1lauft. Durch die IP-Adresse des Gerates in

der device-Nachricht ist jeder Dienst eindeutig lokalisierbar.

message service {
enum names {
GET_AXIS_ANGLES = O0;
SET_AXIS_ANGLES = 1;
GET_FORWARD_KINEMATIC 2;
GET_INVERSE_KINEMATIC = 3;

names name 1;

int32 port

1]
N

Das Feld ,name* vom Typ names hat einen Wert aus der Liste enum names.

Mochte sich ein Teilnehmer des Netzwerkes beim Broker registrieren, schickt er eine
vollstindige Nachricht mit IP-Adresse, Identifiers und einer Liste seiner Dienste an den
Broker.

Es ist nicht festgelegt, dass das Gerit nach dem Verbinden mit dem Broker eine Begrii-
Bung schickt. Einige Geréte stellen keine Dienste bereit und nutzten andere Dienste im
Netzwerk. Diese werden keine greeting Nachricht schicken. Es gibt Rechner, die ggf. zur
Laufzeit lokale Dienste starten oder beenden. Diese schicken eine neue Begriifung an den
Broker um diesen iiber die Anderung zu informieren.

Welcher Nachrichtentyp vom Rechner bzw. Client geschickt wird, ist nicht definiert.
Daher wird eine logische Weiche benotigt. Der Client konnte bspw. eine greeting-Nachricht
oder alternativ die Suchanfrage fiir einen Dienst schicken. Der Broker muss vorausschauen
koénnen, welche Nachricht als néchstes eintrifft. Dies kann durch einen endlichen Automaten
umgesetzt werden. Der Automat entscheidet je nach seinem aktuellen Zustand, welcher
Nachrichtentyp als nichstes eintrifft. (Wuttke/Henke, 2003) Fiir jeden Client, der mit dem
Broker verbunden ist, miisste folglich ein Automat im Hintergrund laufen.

Es gibt eine weitere Moglichkeit dieses Problem mit Hilfe von Protocol Buffers zu 16-
sen. Der Broker erwartet nur einen Nachrichtentyp. Teil der Sprache sind oneof-Felder.
Innerhalb dieser kénnen Unterfelder definiert werden. Eine Nachricht enthilt genau einen
der Unterfelder als Wert. Uber eine API-Methode lisst sich ermitteln, welches Unterfeld
einen Wert hat. Im Fall des Brokers erwartet dieser den Nachrichtentyp to_ broker. Diese
Nachricht ist wie folgt definiert:

message to_broker {
oneof request_or_greeting {
request request = 1;

greeting greeting = 2;
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Erhélt der Broker von einem Client eine Nachricht, ist in dieser entweder ein request oder
eine greeting enthalten. Je nachdem welches Feld gesetzt ist, kann der Broker entscheiden
wie die Nachricht beantwortet wird.

In der Implementierung wurde ein Handler Interface umgesetzt. Fiir jeden Typ in dem
oneof-Feld request or greeting gibt es eine Klasse, die das Interface implementiert. Es
wird beim Eintreffen einer to_ broker Nachricht der entsprechende Handler im Broker ge-
laden. (Alg. 4)

Algorithmus 4 Feld im oneof-Block - Entscheidung welcher Handler geladen wird

if _to_broker.WhichOneof("request_or_greeting”) == "request":
print ("request detected")
return self.request_handler

else _to_broker.WhichOneof ("request_or_greeting") == "greeting":
print ("greeting, detected")
return self.greetings_handler

Der Handler fithrt die im Anschluss folgende Aktion aus. Empfingt der Broker ein gree-
ting, wird der Teilnehmer, bzw. das Gerit in einer Liste gespeichert. Die Liste der Dienste
wird ebenfalls mit einem Eintrag versehen. Dabei verweist innerhalb der Liste jeder Dienst
auf das entsprechende Gerit, welches den Dienst anbietet. Empfingt der Broker eine re-
quest Nachricht, wird ermittelt welche Information der Teilnehmer angefragt hat.

Teilnehmer kénnen den Broker nach unterschiedlichen Informationen fragen. Die Nach-
richt ist wie die to_ broker Nachricht aufgebaut und enthilt ein oneof Feld. Die vollsténdige
Nachricht request beinhaltet folgende Felder:

message request {
bool use_or_for_query = 1;

device receiver = 2;

oneof requested_data {
bool bag = 3;

service service = 4;

Erneut kann nur ein Feld innerhalb des Blocks ,request data“ einen Wert haben. Es
wird entweder eine bag oder ein service angefragt. Ist das Feld ,bag* auf den Wert true
gesetzt, durchsucht der Broker seine Liste an Gerdten. Welche Geréte zuriickgegeben wer-

den, hangt wiederum vom Feld ,receiver” ab. Dieses Gerét muss kein bestimmtes Gerdt im
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Netz sein. Es kdnnen ein oder mehrere Identifier angegeben werden um in der Liste eine
Auswahl an Geraten zu treffen. Wird nach dem Gerét ,,UR-5“ gesucht, werden alle Gerite,
die in ihren Identifiers ,UR-5¢ enthalten, zuriickgegeben. Somit sind in der Liste alle Ro-
boter vom angegebenen Typ und Teilnehmer, die Dienste fiir diesen Robotertyp anbieten,
enthalten. Zur Prézisierung der Suche, kdnnen weitere Begriffe, wie ,robot®, angegeben
werden. Umgekehrt ist es moglich durch das Setzten des Feldes use or for query eine
Oder-Suche, anstatt einer Und-Suche, durchzufiihren. In diesem Fall miissen die Geréte
mindestens einen der angegebenen Identifiers haben.

Erfragt der Client einen Service, wird der zweite Wert von ,request data* gesetzt. Die
service Nachricht ist identisch mit der obigen in der greeting Nachricht. Lediglich der Wert
des Feldes ,,port” wird nicht gesetzt. Als Antwort erhélt der Client vom Broker eine Nach-
richt vom Typ response. Sie ist erneut mit mehreren Feldern ausgestattet, die je nach Fall

einen Wert haben.

message response {

oneof response_data {

string error = 1;

device_bag devices = 2;
service_adress location = 3;
string message = 4;

Sind Fehler aufgetreten, weil bspw. ein angefragter Service nicht zur Verfiigung steht, ist
das Feld error mit einer entsprechenden Nachricht gesetzt. Andernfalls ist jeweils das Feld

gesetzt, nach dem gefragt wurde.

Zur Verdeutlichung folgt ein beispielhafter Ablauf mit drei Teilnehmern und dem Broker.

Die drei Teilnehmer sind eine HoloLens, ein Roboter und ein Rechner mit Diensten.

Schritt 1 Der Rechner verbindet sich mit dem Broker und griift ihn. Er schickt eine
to_ broker Nachricht mit einer greeting als Inhalt. Die Begriifung beinhaltet sei-
ne Bezeichner ,UR-5“ sowie ,service” und seine IP Adresse. Als Dienste schickt
der Rechner eine Liste mit einem Eintrag, dem
GET INVERSE KINEMATIC und der entsprechenden Portnummer.

Schritt 2 Die HoloLens verbindet sich mit dem Broker und fragt nach einer Liste mit
Robotern. Sie schickt eine Nachricht o broker. Diese enthilt einen request als
Inhalt. Fiir das Feld receiver wird eine device Nachricht mit dem Bezeichner

srobot geschickt. Als request data wird das Feld bag auf true gesetzt.

Schritt 3 Der Broker antwortet der HoloLens mit einer response. Es traten keine Fehler
auf. Somit wird als ,response data“ das Feld devices gesetzt. Die device_ bag

enthélt eine leere Liste, da noch kein Roboter den Broker gegriifst hat.
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Schritt 4  Der Roboter meldet sich beim Broker und begriift ihn. Der Inhalt der to_ broker
Nachricht ist wieder ein greeting, mit den Bezeichnern ,UR-5-Seriennummer*,
L2UR-5“ robot“ und seiner IP Adresse. Die Dienste sind eine Liste mit zwei
Eintragen, GET AXIS ANGLES und SET AXIS ANGLES, und den je-

weiligen Portnummern.

Schritt 5 Alle 5 Sekunden erfragt die HoloLens, wie in Schritt 2 beschrieben, erneut eine
Liste.

Schritt 6 Der Broker antwortet wie in Schritt 3. Die dewvice bag beinhaltet nun einen
Eintrag, den Roboter aus Schritt 4.

Schritt 7 Die HoloLens 14dt den Roboter in die Szene und erfragt beim Broker, ob Dienste
fiir den Roboter vorhanden sind. Pro Dienst wird eine request Nachricht, die

den jeweiligen Namen des Dienstes im Feld service beinhaltet, geschickt.

Schritt 8  Der Broker antwortet fiir jeden Dienst mit einer service_ adress. Fiir die Dienste
GET AXIS ANGLE und SET AXIS ANGLE liefert er die IP des Roboters
mit den jeweiligen Portnummern. Fiir den Dienst

GET INVERSE KINEMATIC wird die service_ adress zum Rechner aus Schritt

1 zuriickgegeben.

Schritt 9  Die HoloLens kennt die verfiigbaren Dienste fiir den Roboter, kann eine GUI

laden und sich mit Diensten verbinden.

Da die HoloLens beim Platzieren Dienste fiir einen Roboter erfragt (Schritt 7), ist es
notig, dass sich Mehrwertdienste, wie die zur Berechnung der inversen Kinematik, vorher
beim Broker anmelden. Nur dann erhilt die HoloLens vom Broker einen entsprechenden
Eintrag. Diese Voraussetzung verringert die Komplexitdt. Weiterhin bringt sie kaum bis
keine Nachteile mit sich, da davon auszugehen ist, dass sich Mehrwertdienste einmalig beim
Starten des Programm mit dem Broker verbinden. Lediglich Roboter werden in manchen
Situationen ab- und wieder angeschaltet.

Nach der Beschreibung der Protocol Buffers Nachrichten, die mit dem Broker ausge-
tauscht werden, wird die Verarbeitung dieser Nachrichten implementiert. Innerhalb des
Broker gibt es zwei Verzeichnisse, eines fiir Gerédte bzw. Teilnehmer und eines fiir Dienste.
Wird eine Nachricht aus Schritt 1 empfangen, verarbeitet der ,greetings handler (Alg.
4) die Nachricht. Dabei werden sowohl die Dienste des griifenden Gerites, als auch das
Gerit selber registriert. (Alg. 5)
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Algorithmus 5 Hinzufiigen eines neuen Geréts in die Bestandsliste und Registrierung
seiner Dienste

def registerDevice(self, client, greeting):
self .known_devices.append(client)
self.device_resolver.addDevice (greeting, client)
self.service_resolver.addServices (greeting, client)

Jeder Dienst innerhalb der greeting wird im Dienstverzeichnis service resolver mit der
Methode addServices hinzugefiigt. Innerhalb der Methode wird ein Kanal fiir jeden Dienst
erzeugt, welcher sédmtliche Informationen iiber den Dienst enthélt.

Erhélt der Broker eine request Nachricht, wird der  request handler® fiir die Verar-
beitung der empfangenen Nachricht verwendet. Der Handler entscheidet, wie die Anfrage
beantwortet wird. Es konnen zwei verschiedene Daten angefragt werden. Entweder wird
eine device_ bag, eine Liste von Geridten eines bestimmten Typs, oder ein service fiir einen
speziellen Roboter angefordert. Wird der Broker nach einer Geriteliste gefragt, sucht er

innerhalb des Geréteverzeichnisses device resolver nach entsprechenden Gerdten.

requested_identifiers = _to_broker.request.receiver.identifiers

devices = self.broker.device_resolver.findDevices(requested_identifiers)

Die gefundenen Gerdte werden anschliefsend mit Hilfe einer response Nachricht an das
anfragende Gerdt zuriickgesendet. Im Falle einer Anfrage eines Dienstes an den Broker

wird nicht der device resolver, sondern der service resolver angefragt.

service_channel = self.broker.service_resolver.resolveFirstService/(
_to_broker.request.receiver,
_to_broker.request.service,

_to_broker.request.use_or_for_query

Fiir jeden auf dem Broker registrierten Dienst wird ein Kanal erzeugt. Die Klasse fiir
den Kanal heiftt Service Channel und enthilt unter anderem die Methode isResponsableFor.
Diese iiberpriift, ob der Kanal fiir einen Dienst zustindig ist.

Wird ein Dienst, wie in Schritt 7, angefragt, iiberpriift der Broker jeden Service Channel,
ob er fiir den angefragten Dienst zustindig ist. Dafiir werden drei Parameter bendtigt: der
angefragte Name des Dienstes, das Gerét, fiir welches der Dienst zustédndig sein muss, und
in welchem Modus gesucht werden soll. (s. use_or_for query in request) Ist der Kanal fiir
einen anderen Dienst zustidndig, kann direkt mittels False verneint werden. Sind der Na-
me vom angefragten Dienst und vom vorliegenden Kanal identisch, wird die Zustdndigkeit
iiberpriift. Ein Dienst, wie GET INVERSE KINEMATIC, ist nicht fiir jeden Roboter
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zustindig. Somit muss tberpriift werden, ob die Identifiers des Kanals mit denen des
angefragten Roboters iibereinstimmen. Hierbei ist der Wert der Flag use or for query

relevant. Ist der Wert False, miissen die Listen identisch sein. (Alg. 6)

Algorithmus 6 Algorithmus zum Uberpriifen der Zustindigkeit eines Dienstes fiir ein
Gerét

for identifier in device.identifiers:
if identifier not in self.device.identifiers:
return False

return True

Nur wenn beide Listen dieselben Identifiers beinhalten, liefert die Methode True. Fiir
denn Fall, dassuse or for query den Wert True hat, muss ein Identifier des Gerétes in der
Liste der Identifiers des Kanals enthalten sein. Dazu muss die Methode isResponsableFor
bei der ersten Ubereinstimmung eines Identifiers True zuriickgeben. Der Kanal enthélt
sowohl die IP-Adresse, als auch den Port des Dienstes. Die Werte werden anschliefsend als
service_adress an das anfragende Gerdt zuriickgeliefert.

Die HoloLens erfragt eine Liste aller Teilnehmer. Im Anschlufs dazu 14dt die HoloLens
alle verfiigbaren Dienste. Sie erfragt beim Broker die Adresse und verbindet sich mit dem
jeweiligen Dienst. (Abb. 15)

Broker HoloLens Roboter Dienst

¢ greet broker

< greet broker
< get devices

P

register devices
and services

v T T

send device list

display robot
v
find service GAA

A

send service adress

P connect to GAA y‘i accept client
v
< find service GIK
send service adress
» y‘i accept client

P connectto GIK
find service SAA

GAA - get axis angles SAA - get axis angles GIK - get inverse kinematic

Abbildung 15: Beispielhafte Kommunikation zwischen Broker, HoloLens, Roboter und
Dienst

Durch die Implementierung der Funktionen greeting und requesting, ist der Broker in

der Lage Geréte zu listen und Dienste zwischen den Teilnehmern zu vermitteln.

27



5.2. HoloLens

Die HoloLens wird mit der Entwicklungsumgebung Unity programmiert. (,,Unity“, 2018)
Unity ist eine Plattform, mit der Spiele und Anwendungen fiir Augmented Reality, erweiter-
te Realitét, entwickelt werden. Fiir die Programmierung wird von Microsoft eine Paket fiir
Unity bereitgestellt, in dem bereits Funktionen implementiert sind. (,MixedRealityToolkit-
Unity uses code from the base MixedRealityToolkit [...], 2018) In Unity werden einzelne
Bereiche der Anwendung in Szenen unterteilt. Fine Szene, dhnlich wie im Theater, ist eine
Zusammenstellung von Objekten (Requisiten) und dem Spieler (Schauspieler). Der Spie-
ler kann mit den Objekten innerhalb der Szene interagieren. Objekte kénnen zur Laufzeit
der Szene hinzugefiigt und wieder entfernt werden. Im Bereich der Augmented Reality
unterscheidet sich die Szene mafgeblich von Spielen. Wahrend in Spielen die Umgebung
hinzugefiigt werden muss, ist diese bei der HoloLens von Beginn an sichtbar. Die Objekte
in der Szene sind Hologramme, die in die Umgebung eingeblendet werden.

Wie bereits erwéhnt, handelt es sich bei Hologrammen um Objekte. Unity bezeichnet
diese als GameObject. Ein GameObject wird mit Komponenten versehen. Eine wichtige
Komponente ist das Mesh. Dieses ist die Form des Objektes. Ohne Mesh ist ein GameObject
nicht sichtbar. Solche unsichtbaren Objekte werden auch leere, bzw. empty GameObjects
genannt. Weitere Komponenten sind Kollisionsboxen fiir die Physik, Texturen fiir die Ober-
fliche und Skripte. Ein Skript ist eine C#-Klasse, welche die Unity-Klasse MonoBehaviour
erweitert. Wird ein solches Skript an ein GameObject als Komponente gebunden, kann mit
Hilfe des Skriptes das Objekt programmiert werden. Dabei gibt es vordefinierte Methoden
innerhalb der Klasse, welche von Unity selbst ausgefiihrt werden. Beim Platzieren des Ob-
jektes in der Szene wird die Methode start aufgerufen. Soll sich ein in der Szene platzierter
Roboter mit einem Dienst iiber das Netzwerk verbinden, geschieht dies in dieser Methode.
Eine weitere wichtige Methode ist update. Diese wird innerhalb jedes einzelnen Frames von
Unity aufgerufen. Schickt ein Roboter in regelméfkigen Abstédnden seine Achswinkel an die
HoloLens, muss das Hologramm in der Szene entsprechend verdndert werden. Innerhalb

der update Methode konnen die regelmiifigen Anderungen stattfinden.

5.2.1. Sensorik

Um die Kommunikation mit der Sensorik zu vereinfachen, wurden im ersten Schritt Hilfs-
klassen programmiert. Die HoloLens ist in der Lage Gesten, wie ein Fingertippen oder eine
Handbewegung, zu erkennen. Zur vereinfachten Handhabung dieser Gesten wurden Ma-
nager, welche jeweils eine Geste managen, implementiert. Der einfachste Manager ist der
TapFEventManager. Er bietet eine Schnittstelle zur Kommunikation zwischen der HoloLens
Sensorik und dem eigentlichen Programm. Erkennt die HoloLens ein Tap (tippen) mit dem
Finger, wird dieses Event vom Manager registriert und an Objekte in der Szene geleitet.
Aus Sicht des Managers gibt es zwei unterschiedliche Formen von Objekten, globale und lo-
kale. Globale Objekte erhalten Kenntnisse iiber simtliche vom Benutzer ausgefiihrte Taps.

Lokale Objekte erfahren hingegen nur von solchen, die direkt auf Sie gezielt wurden. Dazu

28



wird vom TapFventManager ein Raycast, ein Strahl von der Position der Kamera in Blick-
richtung, durchgefiihrt. Das erste getroffene Objekt ist das lokale Objekt. Dieses empfangt
zusammen mit den globalen Objekten die Benachrichtigung tiber einen Tap. (Alg. 7)
Nicht jedes Objekt soll iiber einen lokalen Tap informiert werden. Um Objekte anspre-
chen zu koénnen, miissen diese bestimmte Schnittstellen, genannt Interfaces, implemen-
tieren. Derzeit existieren Interfaces fiir die Gesten Tippen (ITapable), Navigieren (INa-
vigatable) und Manipulieren (IMovable). Um ein Interface zu implementieren, muss eine
MonoBehaviour-Komponente die entsprechende Schnittstelle erweitern. Somit wird das
lokale Objekt lediglich iiber den Tap informiert, wenn es iiber die Komponente ITapable

verfiigt.

Algorithmus 7 Benachrichtigung globaler und lokaler Objekte mittels OnTapped()

private void NavigationRecognizer_Tapped (TappedEventArgs e)
{
// trigger all global tapables
foreach (var globalTapable in _globalTapables)
{
globalTapable.0OnTapped () ;
}

// perform raycast
RaycastHit hit;

if (Physics.Raycast(e.headPose.position, e.headPose.forward, out hit))

{
// store tapped object
CurrentTappedObject = hit.transform.gameObject;
// fetch ITapable component from GamelObject
var iTapable = CurrentTappedObject.GetComponent<ITapable>();
// trigger method if iTabable <s mnot null
iTapable?.0nTapped () ;
/7 ...
}

Fiir die Interfaces INavigatable und IMovable wurden ebenfalls entsprechende Manager,
Navigate EventManager und Manipulate EventManager, implementiert. Diese erkennen die
jeweiligen Gesten, verarbeiten sie und rufen anschliefsend die dazugehdrigen Methoden der
Komponenten auf.

Um die Umgebung realistisch in der Anwendung abbilden zu kdénnen, erfolgt ein rdum-
liches Kartografieren, genannt Spatial Mapping. Die HoloLens ermittelt durch den Tiefen-
sensor (s. Kapitel 2.2) den Abstand zu Elementen im Raum und berechnet daraus ein Mesh,
welches {iber den Raum gelegt wird. Wird ein Hologramm im Raum platziert, platziert die

HoloLens es auf dem Mesh. Der Benutzer erhdlt den Eindruck, dass das Hologramm auf
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einem Gegenstand, bspw. Tisch, steht.

Die Umgebungserkennung wird von vier seitlich angebrachten Kameras und einem Tie-
fensensor vorgenommen. Das HoloToolKit beinhaltet das GameObject SpatialMapping. Ist
das Objekt in der Szene enthalten, wird ein Mesh zur Laufzeit berechnet und iiber die
Raumoberfliche gelegt. (Abb. 16)

Abbildung 16: Visualisierung der Oberflichenerkennung durch ein Mesh

In dieser Hardwareversion der HoloLens erfolgt die Erkennung der Oberflichen unpré-
zise. Der linke Tischrand ist bspw. um 3cm nach links verschoben. Die diinnen Tischbeine
werden kaum erkannt. Glatte Oberflichen, wie die Tischplatte oder Winde, werden hin-
gegen dufserst genau wahrgenommen. Aufgrund dessen kann das Mesh zur Positionierung

der Hologramme im Raum genutzt werden.

5.2.2. Netzwerkkommunikation

Zum Verschicken der Protocol Buffers Nachrichten mit Hilfe des TCP /1P wird die Mircopro-
tokol Klasse in C# verwendet. (s.Kapitel 5) Beim Starten der Unity Applikation RoboViz
auf der HoloLens wird in der Startszene ein empty GameQObject namens BrokerCommunica-
tor erzeugt. Dieses unsichtbare Objekt enthilt ein Skript, welches die Verbindung mit dem
Broker steuert. Da GameObjects bzw. deren Komponenten miteinander kommunizieren
konnen, greifen alle GameObjects in der Szene auf das Objekt BrokerCommunicator mit
dem Verbindungsskript zu und kontaktieren dariiber den Broker. Bspw. kann die Kompo-
nente zur Synchronisation der Roboterliste auf der HoloLens {iber diese Abstraktionsebene
leicht Anfragen an den Broker senden. Die Methode RequestDevices abstrahiert das Sen-
den einer request Nachricht mit einer device bag und das Empfangen einer response. (s.
Kapitel 5.1; Alg. 8)
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Algorithmus 8 Synchronisation der Gerételisten zwischen Broker und HoloLens

private async void LoadDevicesPeriodicaly ()

{
while (Client.IsConnected)
{
var devices = Broker.RequestDevices ("robot");
SyncDevicelLists (_devices, devices.Devices.ToList());
await Task.Delay(TimeSpan.FromSeconds (UpdateRate));
}
}

Waihrend der Client mit dem Broker verbunden ist, wird die lokale Gerételiste mit der
Liste des Brokers in vorgegebenen Abstéinden synchronisiert.

Diese Synchronisation lduft in einer Endlosschleife. Dadurch entsteht ein entscheidendes
Problem. Die Methode LoadDevicesPeriodicaly kann nicht im Hauptthread des Program-
mes gestartet werden, da die Schleife nie zur Laufzeit verlagsen wird. Dies fiihrt wiederum
zum Einfrieren der gesamten Applikation. Die Methode LoadDevicesPeriodicaly muss auf
einem anderen Thread des Programmes laufen. Um dies zu erreichen wird die Methode

durch einen Tusk parallelisiert. 9

Algorithmus 9 Ausfithrung der Methode LoadDevicesPeriodicaly innerhalb eines neues
Tasks

new Task(LoadDevicesPeriodicaly).Start();

Durch dieses Parallelisierung wird der Hauptthread der Applikation wihrend der Anfra-
gen an dem Broker nicht blockiert. Es werden weiterhin Gesten den Benutzers verarbeitet
und die Szene immer wieder neu aktualisiert und gezeichnet. Ist die Anfrage an den Bro-
ker erfolgreich beantwortet worden, miissen die empfangenen Daten in der Anwendung
verarbeitet werden. Dazu muss die neue Gerételiste vom Broker mit der bestehenden Ge-
rateliste auf der HoloLens verglichen werden. Neue Gerdte im Netzwerk werden zur Szene
hinzugefiigt und entfernte Geréte aus der Szene geldscht.

Ein durch die Methode SyncDeviceList ermitteltes Gerdt wird in der Szene dem Inventar
hinzugefiigt. Zusatzlich erscheint ein kleiner Hinweis, dass ein neues Gerat im Inventar zu

finden ist. (Abb. 17)
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Abbildung 17: Ansicht des Inventars und einer Benachrichtigung in der HoloLens

Um ein Objekt der Szene hinzuzufiigen, muss dieses instanziiert werden. Dies geschickt
mittels GameObject. Instanciate. Frfolgt dieser Aufruf innerhalb der Methode SyncDevice-
List, um bspw. ein Item im Inventar anzuzeigen oder den Hinweis in der Szene zu platzieren,
wird dies mit der Fehlermeldung ,Instanciate can only be called from the main thread.”
quittiert. Problematisch ist, dass der Aufruf von GameObject.Instanciate im Nebenthread
und nicht im Hauptthread der Anwendung erfolgt. Unity ist eine Non-Thread-Safe Platt-
form. Samtliche Methoden von Unity miissen im Hauptthread ausgefiihrt werden.

Das Anzeigen im Inventar inklusive Hinweismeldung muss im Hauptthread erfolgen. Um
dieses Problem der Thread-Kommunikation zu lésen, wird das interne Parallelisierungs-
system, Coroutines, von Unity genutzt. Die Coroutines ermoglichen es Aufgaben in den
Hauptthread einzufiigen. Unity verwendet dafiir einen Slicing-Ansatz. Die Aufgaben wer-
den im Hauptthread vorrangig und nicht parallel ausgefiihrt. Dennoch eignet sich diese
Form der Umsetzung fiir kleine Aufgaben, wie das Anzeigen einer Nachricht am Bild-
schirmrand, da diese wenig Rechenzeit bendtigen.

Um die Kommunikation zwischen Hauptthread und Nebenthread zu vereinfachen, wurde
eine weitere Hilfsklasse implementiert. Innerhalb des Hauptthreads lduft eine FifoQueue,

die Coroutines sammelt und bei Bedarf ausfiihrt. (Alg. 10)

Algorithmus 10 First-In-First-Out Queue des Dispatchers zur Thread-Synchronisation

public class Dispatcher : Singleton<Dispatcher> {
private static readonly Queue<Action> ExecutionQueue = new Queue<Action
>0
/7 ..
}

In jedem Frame werden vom Dispatcher alle in der ExecutionQueue enthaltenen Ak-
tionen im Hauptthread eingebunden. Um eine Aktion innerhalb jedes einzelnen Frames
auszufiihren, stellt Unity die bereits beschriebene Methode Update bereit. Wihrend der
Verarbeitung der Queue darf kein weiterer Thread diese verdndern. Aus diesem Grund

wird die Queue fiir alle anderen Threads mittels lock gesperrt. (Alg. 11)
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Algorithmus 11 Frameweise Abarbeitung der Queue mittels Update-Methode

public class Dispatcher : Singleton<Dispatcher> {

// ..
public void Update ()
{
lock (ExecutionQueue)
{
while (ExecutionQueue.Count > 0)
{
ExecutionQueue.Dequeue (). Invoke ();
}
}
}
// .

Méchte ein Nebenthread eine Aufgabe in die Warteschlange einfiigen, geniigt ein Aufruf
der Methode Enqueue auf dem Dispatcher. Diese sperrt die Queue fiir den Hauptthread,
sodass dieser nicht vorzeitig mit der Abarbeitung beginnen kann. Weiterhin fiigt er eine
anonyme Aktion inklusive Coroutine der Queue hinzu. (Alg. 12) Die Verwendung einer Co-
routine innerhalb des Hauptthreads sorgt dafiir, dass Unity die Aktion nicht sofort, sondern
zum bestmoglichen Zeitpunkt ausfiithrt. Idealerweise ist dies, wenn sich der Hauptthread

nicht mit rechenintensiven Aufgaben, wie Spatial Mapping, beschiftigt.

Algorithmus 12 Hinzufiigen einer neuen Aufgabe zum Dispatcher mittels Enqueue-
Methode

public class Dispatcher : Singleton<Dispatcher> {
/7.
public void Enqueue (IEnumerator action)
{
lock (ExecutionQueue)
{
ExecutionQueue.Enqueue (() => {
StartCoroutine (action);
B
}
}
/7.

Innerhalb der Methode SyncDeviceList erfolgt fiir jeden neuen Roboter ein Aufruf der
Methode Enqueue des Dispatchers. (Alg. 13) Es wird eine anonyme Funktion, genannt
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Closure, verwendet um die Aktion in einer Coroutine starten zu kénnen. Der Inhalt der

Closure, EventBus.Fire, wird zu einem spéterem Zeitpunkt ausgefiihrt.

Algorithmus 13 Auslosung des Events auf dem Main-Thread

Dispatcher.Instance.Enqueue (() => { EventBus.Fire(new RobotAdded(device));
1

Durch den EventBus werden die nétigen Aufgaben, wie das Anzeigen der Hinweisnach-
richt oder das Einfiigen des Roboters in das Inventar, ausgefiihrt. Es ist moglich auf dem
EventBus Listener zu registrieren. Ein Listener wartet auf einen definierten Eventtyp um
infolgedessen eine Funktion auszufithren. Auf das Event RobotAdded warten zwei Liste-
ner, InventoryListener und DisplayNotificationListener. Sie sorgen fiir das Anzeigen des
Roboters im Inventar sowie Benachrichtigen am Bildschirmrand.

Sind Roboter im Inventar vorhanden, kann dieses getffnet werden. Der Benutzer erhilt
eine Ubersicht iiber alle im System registrierten Industrieroboter. (Abb. 17) Wihlt der Be-
nutzer einen Roboter aus, wird dieser vor ihm platziert, jedoch nicht verankert. Bewegt der
Benutzer seinen Kopf, bewegt sich der Roboter mit ihm. Befindet sich das Hologramm des
Roboters in einer vom Benutzer erwiinschten Position, kann dieser den Roboter durch einen
Tap verankern. Der Roboter wird an dieser Stelle im Raum, bspw. auf einer Tischplatte,
fixiert. (Abb. 18)

Abbildung 18: Positionierung des Hologramms auf dem Mesh, bspw. auf einer Tischplatte

Nach dem Fixieren wird vom Roboter ein Ladevorgang gestartet. Der Roboter ermit-
telt sdmtliche fiir ihn verfiigharen Dienste im Netzwerk. Dazu wird erneut der Broker
kontaktiert. Jeder Roboter besitzt eine Skript-Komponente, Identitit bzw. Identity. Diese
ermoglicht es dem Roboter den Broker nach Diensten zu fragen. (Alg. 14)
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Algorithmus 14 Laden aller verfiighbaren Dienste mit ihren Abhéngigkeiten

public class Identity

MonoBehaviour

public void LoadAvailableServices ()

{
//
{
}
//
}

var loader =

loader.LoadService (service
loader.LoadService (service

loader.LoadService (service
false) ;

loader.LoadService (service
false,

ServiceLoader.

GetInstance () ;

.Types.
.Types.

.Types.

.Types.

names
names

names

names.

service.Types.names.SetAxisAngles,
GetForwardKinematic) ;
loader.LoadService (service.Types.names

false,

service.Types.names.SetAxisAngles,
GetForwardKinematic) ;

//

.GetAxisAngles, this);
.SetAxisAngles, this);
.GetForwardKinematic, this,
InterpolateService, this,
service.Types.names.
.GetInverseKinematic, this,

service.Types.names.

Die Methode LoadService der Klasse ServiceLoader fiihrt eine Anfrage beim Broker aus.
Dazu wird eine entsprechende Protocol Buffers Nachricht an den Broker geschickt. (s. Ka-
pitel 5.1 - Abb. 15; Alg. 15) Enthéalt die Antwort eine giiltige service adress, wird der

Dienst gebaut. Das bedeutet, es werden Steuerelemente in der Szene platziert und die

Dienste nehmen die Kommunikation mit den Endpunkten auf.
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Algorithmus 15 Laden der Adresse des Endpunktes

public service_adress RequestService(service.Types.names serviceName,
string[] identifiers, bool useOrForQuery)

{
var message = new to_broker ()
{
Request = new request ()
{
UseOrForQuery = useOrForQuery,
Receiver = new device ()
{
Identifiers = { identifiers }
1,
Bag = false,
Service = new service()
{
Name = serviceName
}
}
1
Protocol.SendMessageWithHeader (message) ;
var response = Protocol.ReadMessage<response >();
if (response.ResponseDataCase != response.ResponseDatalOneofCase.
Location)
{
throw new ServiceNotFoundException(
"Invalid,response, for,service,...");
}
return response.Location;
}

Konnte die Adresse nicht ermittelt werden, wird der Dienst nicht gestartet. Weitere
Dienste, die diesen bendtigen, werden ebenfalls nicht gestartet.

Der vollstéindige Ablauf der Netzwerkkommunikation zwischen HoloLens und dem Broker
wurde in Abbildung 15 in Kapitel 5.1 bereits veranschaulicht.

Ist die Verbindung zu den einzelnen Diensten aufgebaut, wird der Broker fiir die weitere
Kommunikation nicht mehr bendétigt. Die HoloLens schickt infolgedessen alle Anfragen

direkt an die Dienste.

5.2.3. Interaktion

Um eine Interaktion mit einem reellen Roboter zu ermdglichen, benétigt die HoloLens fiir
ihr Hologramm die aktuellen Achswinkel des Roboters. Der entsprechende Dienst heifst
LGET AXIS ANGLES“ Wird der Dienst gestartet, verbindet er sich mit dem reellen Ro-
boter. Um die Anwendung nicht zu blockieren, wird Multi-Threading benétigt. Zu Beginn
wird ein neuer Thread gestartet um darin die Methode SyncAxisAngles auszufiihren. Die

HoloLens wartet in diesem Thread auf eine Nachricht mit neuen Achswinkeln des Robo-
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ters. Beim Empfangen einer Nachricht werden die Winkel in einen gemeinsamen Speicher
CurrentState von Haupt- und Nebenthread abgelegt. Zuséatzlich wird mittels der Flag Cur-
rentStateChanged der Hauptthread iiber eine Aktualisierung des Speichers informiert. Im

néchsten Frame wird das Hologramm mit den neuen Winkeln aktualisiert. (Alg. 16)

Algorithmus 16 Multi-Threading zur Synchronisation im Dienst GET AXIS ANGLES

public class GetAxisAngleService : Service
{
/e
protected get_axis_angles CurrentState = new get_axis_angles();

protected bool CurrentStateChanged;

public override void Start ()
{
new Task(SyncAxisAngles).Start();

// Update %s running %in main thread each frame
public override void Update ()

{
lock (CurrentState)
{
// check for changes in main thread
if (!CurrentStateChanged) return;
// update hologram
_identity.Interaction.SetAxisAngles (CurrentState.States);
CurrentStateChanged = false;
}
}

// Syncdzisdngles is running in sub thread
private void SyncAxisAngles ()

{
while (SyncClient.IsConnected)
{
var angleMessage = proto.ReadMessage<get_axis_angles>();
lock (CurrentState)
{
CurrentState = anglelessage;
CurrentStateChanged = true;
}
}
1

Die Interaktion zwischen dem Benutzer, dem Hologramm und somit dem Roboter erfolgt
iiber Gesten. Mittels Tap kann der Benutzer Steuerelemente an den einzelnen Achsen aus-
wihlen. Fiihrt er anschlieffend eine Navigationsgeste aus, wird nach Beendigung dieser eine

Nachricht an die Steuerzentrale des Roboters geschickt. Der Roboter fiihrt die Bewegung
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aus und schickt nach dem Erreichen der Endposition eine Bestétigung. (Alg. 17)

Algorithmus 17 Setzen von Winkeln am reellen Roboter durch SET AXIS ANGLES

public class SetAxisAngleService : Service
{
// send joints asynchron to real robot, use new thread for sending
public void SendJointStatesAsync ()
{
// access gameobject in main thread
var joints = _identity.Interaction.GetAxisAnglesRad();

// send joints in mon blocking thread
new Task (() =>
{
SendJointStates (joints);
}).Start () ;
}

// send given joints to ur-bridge and wait till completion
public void SendJointStates(List<float> joints)

{
var message = new set_axis_angles
{
States = new joint_states { Axis = {joints} }
3
Proto.SendMessageWithHeader (message) ;
Proto.ReadMessage<joint_states>();
}

In Kapitel 4.3 wurden neben dem Dienst SET AXIS ANGLES zwei weitere Diens-
te, GET INVERSE KINEMATIC und INTERPOLATE SERVICE, vorgestellt. Beide
besitzen eine Abhéngigkeit zu dem Dienst GET FORWARD KINEMATIC. (Alg. 14)
GET FORWARD KINEMATIC berechnet die aktuelle Position des Endeffektors. (s. Ka-
pitel 2.1) Nachdem die Netzwerkadresse des Dienstes fiir die Vorwértskinematik ermittelt
wurde, verschickt die HoloLens eine Nachricht calculate forward an diesen. Sie beinhal-
tet die aktuellen Achswinkel. Als Antwort versendet der Dienst die Nachricht calcula-
te_ forward_result, welche eine Position beinhaltet. Diese Position besteht aus der Trans-
lation und der Rotation des Endeffektors.

Um die inverse Kinematik fiir den Dienst GET INVERSE KINEMATIC zu berechnen,
wird an der aktuellen Position des Endeffektors mit dem Dienst
GET FORWARD KINEMATIC ein Dragger-Objekt platziert. (Abb. 19)
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Abbildung 19: Roboter mit Dragger - Steuerung des Endeffektors durch Dragger

Der Benutzer wihlt eine der Achsen den Draggers aus und verschiebt bzw. rotiert diese.
Dazu wird die ausgewihlte Achse beim NavigateEventManager registriert und kann {iber
die Gestensteuerung bewegt werden. Im Hintergrund wird beim Bewegen des Draggers ei-
ne Protocol Buffers Nachricht calculate inverse an den Dienst geschickt. Der Inhalt der
Nachricht sind die aktuellen Gelenkswinkel und die Position des Draggers, welche der ge-
wiinschten Position des Endeffektors entspricht. Der Dienst berechnet fiir die neue Position,
mit Hilfe der inversen Kinematik (s. Kapitel 2.1) und den aktuellen Gelenkswinkel, neue
Werte fiir die Achsen. Die aktuellen Winkel werden fiir die Berechnung der Abweichung
bendtigt. Die Stellung mit der geringsten Abweichung gegeniiber der gegenwartigen wird
verwendet, um die erforderliche Bewegung moglichst gering zu halten.

Der Dienst antwortet nach Berechnung mit der Nachricht calculate inverse result. Der
Inhalt der Nachricht ist die neue Gelenkskonfiguration sowie ein bool’scher Wert. Der
Boolean ist bei einem giiltigem Ergebnis true, sonst false. Ungiiltige Ergebnisse werden vom
Dienst geliefert, falls sich der Dragger aufserhalb des Arbeitsraumes des Industrieroboters
befinden. Ist das Ergebnis giiltig, werden die Gelenkswinkel innerhalb der Nachricht an das
Hologramm iibertragen und die Winkel angepasst. Insgesamt wird die Berechnung maximal
acht mal pro Sekunde ausgefiihrt. Daraus resultiert eine angemessen fliissige Bewegung des
Hologramms und reduziert zugleich die Anzahl der versendeten Nachrichten.

Als dritte Methode zur Steuerung des Roboters wurde die Interpolation entlang einer
linearen Trajektorie gewdhlt. Der Benutzer setzt freie Punkte im Raum, welche sich mit-
einander linear verbinden. (Abb. 20) Die Dragger-Komponente des
GET INVERSE KINEMATIC Dienstes wurde erneut verwendet. Durch einen doppel-
ten Tap platziert der Benutzer vor sich einen neuen Punkt im Raum. An der Stelle wird
ein Dragger-Objekt instanziiert. Das Objekt wird automatisch mit dem vorherigem ver-
bunden. Den Start bildet die Position des Endeffektors. An dieser Position wird mittels
GET FORWARD KINEMATIC ein Dragger platziert. Der Benutzer kann jeden einzel-
nen Punkt mit Hilfe der Achsen anpassen. Die Verbindungslinien aktualisieren sich dement-

sprechend.
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Abbildung 20: Drei definierte Punkte im Raum, die durch den Roboter abgefahren werden

Stellt der Benutzer einen linearer Pfad ein, wird anschlieffend eine Nachricht an den
INTERPOLATE SERVICE Dienst gesendet. Die Nachricht interpolate beinhaltet fiinf
Felder. Zwei Felder definieren die maximale Geschwindigkeit und Beschleunigung, welche
der Roboter ausfithren kann. Des Weiteren kénnen viele Industrieroboter eine maximale
Anzahl an Steuerbefehlen pro Sekunde entgegennehmen. Der UR-5 verarbeitet in jeder
Sekunde maximal acht Befehle zum Setzen seiner Achsen. Diese update rate wird ebenfalls
in der Nachricht {ibergeben. Schlieflich enthilt die Nachricht die aktuellen Achswinkel im
Feld initial state sowie die Positionen aller definierten Punkte.

Die Nachricht wird an den Dienst im Netzwerk gesendet und verarbeitet. Das Ergebnis
empfingt die HoloLens in Form einer interpolate result Nachricht. Sie beinhaltet fiir jeden
Schritt, den der Roboter ausfithren muss, die jeweilige Position der Achsen. Die HoloLens
sendet fiir jeden Schritt eine Nachricht an den SET AXIS ANGLES Dienst. Der reelle
Roboter aktualisiert darauthin seine Gelenkswinkel. Da der Dienst GET AXIS ANGLES
die Position des echten Roboters mit dem des Hologramms synchronisiert, sieht der Be-

nutzer das Resultat unmittelbar vor sich.

5.2.4. Probleml6sung

Wihrend der Implementierung der Software RoboViz traten Probleme mit dem Frame-
work der HoloLens auf. Die HoloLens verwendet eine angepasste Windows Distribution,
auf welcher .Net Core ausgefiihrt wird. Dieses Framework muss im Zusammenhang mit
der Software verwendet werden. Dazu zdhlen Klassen zur Netzwerkkommunikation oder
fiir das Multi-Threading. Die Programmierumgebung Unity basiert auf dem .Net Frame-
work, welches ebenfalls auf Windows 10 installiert ist. Durch diese zwei unterschiedlichen
Frameworks ist der Quellcode hiufig nicht miteinander kompatibel. Fiir die Ubertragung
von Daten wird Googles Protocol Buffers verwendet. Google stellt eine Bibliothek zur
Verfiigung, die unter .Net Framework funktioniert. Auf der HoloLens funktioniert diese
Bibliothek hingegen nicht. Der Code musste an mehreren Stellen angepasst werden, sodass
abhéngig von der Umgebung der richtige Code ausgefiithrt wird. Bspw. wurde die Methode
,GetBuffer” der Klasse System.1O.MemoryStream in . Net Core umbenannt in ,,TryGetBuf-
fer“. Die Compiler-Flag NETFX CORE erlaubt es, Code an den entsprechenden Stellen
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auszutauschen. (Alg. 18)

Algorithmus 18 Verwendung der Compiler-Flag NETFX CORE um .Net Core zu un-
terstiitzen

byte[] bytes;

#if NETFX_CORE
// Code in .Net Core
ArraySegment <byte> buffer;

memoryStream.TryGetBuffer (out buffer);

bytes = buffer.Array;

#else

// orginaler Code in .Net Framework

bytes = memoryStream.Length == memoryStream.Capacity ? memoryStream.
GetBuffer () : memoryStream.ToArray();

#endif

Des Weiteren war das verwendete 3D Modell des UR-5 Roboters fehlerhaft. Die Achsen
fiinf und sechs wiesen falsche Drehrichtungen auf. Dies wurde korrigiert, indem zusédtzliche
empty GameObjects in das Robotermodell eingefiigt wurden. Diese GameObjects wurden
entlang einer orthogonalen Achse der Drehachse um 180° gedreht. Anschliefend wurde die
betroffene Achse in die korrekte Position rotiert. Aufgrund dieser Vorgehensweise wechselt

die Drehrichtung der Drehachse das Vorzeichen.
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5.3. Roboter

Die Software zur Robotersteuerung ist in C-+-+ geschrieben. Es wurde die bereits vorhan-
dene Software ,ur-bridge® (s. Kapitel 3) als Grundlage verwendet. Die Steuerungssoftware
stellt drei Dienste bereit. Der Dienst GET AXIS ANGLES startet auf dem Port 9050
einen TCP/IP Server, welcher auf Netzwerkteilnehmer wartet. Verbindet sich ein Teilneh-
mer, bspw. eine HoloLens, schickt der Server in regelméfigen Abstinden von 50ms die
aktuelle Konfiguration der Gelenkswinkel. (Alg. 19)

Algorithmus 19 Bereitstellen des Dienstes GET _AXIS ANGLES durch den Server

robo_sim::TcpipProtobufServer <RoboSimulation::get_axis_angles,
RoboSimulation::get_axis_angles> serv_axes_provider (
port_serv_axes_provider /* 9050 #*/);

serv_axes_provider.setCallbackFunctionForMessageToBeSent ( cbSendAxesVals );

serv_axes_provider.setSleepForMilliSecondsDuringSpin (50) ;

Die aktuellen Gelenkswinkel werden lediglich dann geschickt, wenn sich diese verglichen
zur letzten Nachricht gedindert haben. Die Methode chbSendAxesVals akzeptiert als Para-
meter eine Referenz auf die ausgehende Nachricht. Diese enthélt keinen Inhalt und kann
innerhalb der Funktion, durch die Referenz, verindert werden. Als Riickgabewert liefert
die Funktion einen Boolean. Ist der Wert true wird die Nachricht verschickt, andernfalls
nicht. (Alg. 20)

Algorithmus 20 Callback fiir das Senden der Achswinkel

bool cbSendAxesVals (RoboSimulation::get_axis_angles& msg)
{

axisAnglesAct = get_actual_robot_angles();

bool axisAreEqual = std::equal(

axisAnglesAct.begin(),

axisAnglesAct.end (),

axisAngles0ld.begin (),

[1(double valuel, double value2)

{

return std::fabs(valuel - value2) < epsilon;

s

axisAngles0ld = axisAnglesAct;

if( 'axisAreEqual ) {

msg = build_protobuf_robot_message( axisAnglesAct ); //

store inside reference

return true;

}

return false;
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Als weiteren Dienst stellt die ur-bridge SET AXIS ANGLES zur Verfiigung. Der Dienst
erméglicht bspw. der HoloLens die Gelenkswinkel des Roboters zu manipulieren. Uber den
Port 9051 schickt die HoloLens set axis angles Nachrichten an die ur-bridge. Die Nach-
richten enthalten das Feld states mit joint states. Wird eine solche Nachricht empfangen,
sendet die Software einen Steuerungsbefehl an den Industrieroboter. Der UR-5 wird mit-
tels der Skriptsprache URScript programmiert. ("The URScript Programming Language",
2015)

Algorithmus 21 Funktion zum Setzten der Gelenkswinkel mittels URScript

def moving () :
movej ([0.000000, -1.570000, 0.000000, -1.570000, 0.000000,
0.000000]1,1.400000, 1.050000, 0.000000, 0.000000)
movej ([0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000]1,10.000000, 10.000000, 0.000000, 0.000000)
end

Die Hauptfunktion mowving wird automatisch beim Laden des Programms ausgefiihrt.
Die Funktion movej ist Teil der Sprache und erwartet, unter anderem, sechs Gelenkswin-
kel. Der Roboter bewegt sich erst in die Achspositionen 0°, —90°, 0°, —90°, 0° und 0°. Im
zweiten Schritt stellt der Roboter alle Achsen auf 0°. Innerhalb der ur-bridge werden diese
Befehle als Zeichenkette erstellt und an die Roboterschnittstelle gesendet. (Alg. 22) Die

Werte werden der Protocol Buffers Nachricht entnommen.

Algorithmus 22 FErstellen der Steuerzeichenkette in URScript und Senden an die Schnitt-
stelle

std::string cmd = "";

cmd = "def moving () :\n";

cmd += "\t";

cmd += urCreateMoveString( q_start_arr, "j", false);

cmd += "\n";

cmd += "\t";

cmd += urCreateMoveString( conf_arr, "j", false, MAX_ACC, MAX_VEL);
cmd += "\n";

cmd += "end\n";

driver_->rt_interface_->addCommandToQueue (cmd) ;

Nach dem Versenden des Befehls wird solange gewartet, bis der Roboter das Programm
vollstindig ausgefiihrt hat. Im Anschluss dazu wird eine Protocol Buffers Nachricht an die
HoloLens zuriickgeschickt. Diese wird informiert, sobald der Roboter mit seiner Bewegung

fertig ist.
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Der dritte Server auf der ur-bridge nimmt Befehle fiir einen Greifer an und lduft auf
dem Port 9060. Der Greifer wird ebenfalls mittels URScript angesteuert. Empfangt der
Server eine gripper Nachricht, enthilt diese einen Positionswert zwischen 0 und 255. Der
Wert 0 steht fiir komplett offen, der Wert 255 fiir komplett geschlossen. Der Server erstellt
nach dem Empfangen der gripper Nachricht das Steuerungsskript und iibermittelt es, wie
beim SET AXIS ANGLES Dienst. Anschliefend wartet der Server bis das Programm

durchlaufen ist und antwortet mit einer gripper complete Protocol Buffers Nachricht.
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5.4. Mehrwertdienste

Die Steuerung des Industrieroboters mittels direkter Eingabe der Gelenkswinkel ist mit
Hilfe der HoloLens (Kapitel 5.2.3) und der ur-bridge (Kapitel 5.3) moglich. Es werden
weitere Dienste fiir die Steuerung mit inverser Kinematik oder das Abfahren einer de-
finierten Strecke bendétigt. Zwei der Dienste laufen auf einem Server. Die beiden Diens-
te GET FORWARD KINEMATIC und GET INVERSE KINEMATIC basieren auf
ROS. ("ROS.org | Powering the world’s robots", 2018) FEs wurde bereits vorhandene
Software, wie die ur-bridge, erweitert und an das Netzwerk angepasst. Der urspriing-
liche GET FORWARD KINEMATIC Dienst lieferte falsche Rotationswerte und wur-
de korrigiert. Benotigt ein Netzwerkteilnehmer die Vorwértskinematik, schickt er eine
calculate  forward Nachricht an den Dienst. Die Nachricht beinhaltet die Gelenkswinkel
des Industrieroboters. Als Antwort schickt der Server eine Nachricht vom Typ calcula-
te_ forward_result mit der Position als Inhalt. (Alg. 23)
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Algorithmus 23 Berechnen der Vorwirtskinematik mit Hilfe von ROS

void callBackForIncomingForwardMessage (const RoboSimulation::
calculate_forward &msg)

{

// read joints from message

std::vector<double> joints;

for(signed int axis = 0; axis < msg.joint_states().axis_size();

axis++)
{
joints.push_back(msg.joint_states () .axis (axis));

}

// calculate forward kinematic with ROS and store in storage

found_pose_ = kinematics_handler_->forwardKinematics ( joints )
}

bool callBackForwardResult (RoboSimulation::calculate_forward_result &msg)

{
tfScalar x, y, z, roll, pitch, yaw;

// eztract rotation
found_pose_.getBasis () .getRPY(roll, pitch, yaw);

// extract translation

x = found_pose_.getOrigin().getX();
y found_pose_.getOrigin().getY();
z found_pose_.getOrigin() .getZ ();

// write result into msg (by reference)
RoboSimulation::point* point = new RoboSimulation::point;

msg.set_allocated_position(point);

point->set_x(x);
point->set_y (y);
point->set_z(z);
point->set_ar (roll);
point->set_ap (pitch);
point->set_ay(yaw);

return true;

Der inverse Kinematik Dienst GET INVERSE KINEMATIC lauft identisch wie der
GET FORWARD KINEMATIC Dienst. Er erwartet als Eingabe einen Punkt mit x, y
und z, sowie yaw, pitch und roll. Optional kann die aktuelle Position des Industrieroboters
ebenfalls angegeben werden. Anschliefend werden durch ROS die Gelenkswinkel errechnet.
Findet der Algorithmus keine giiltige Losung, wird als Gelenkswinkel oo zuriickgegeben,
in jedem anderen Fall die errechneten Winkel.

Um eine lineare Bahn zu berechnen, wird der Dienst INTERPOLATE SERVICE im-
plementiert. Der Dienst nutzt die Bibliothek KDL von Orocos. ("Kinematic and Dynamic
Solvers | The Orocos Project", 2018) Er erwartet eine Protocol Buffers Nachricht vom Typ

interpolate und sendet als Antwort die Nachricht interpolate result. Als Parameter werden
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innerhalb der Nachricht die maximale Geschwindigkeit des Roboters und seine maximale
Beschleunigung iibergeben. Zusatzlich enthélt die Nachricht das Feld update rate. Dieses
enthélt die Anzahl der Schritte pro Sekunde, die interpoliert werden sollen. Im letzten
Feld werden die Punkte als Liste iibergeben. Es wird von Punkt zu Punkt jeweils linear
interpoliert.

Im ersten Schritt wird zwischen zwei Punkten eine Bahn, eine Trajektorie, erstellt. (Alg.
24)

Algorithmus 24 Erstellen einer Trajektorie zwischen den Punkten start und target

std::shared_ptr<KDL::Trajectory> traj;

KDL ::Frame pO(KDL::Rotation::RPY(start[3], start[4], start[5]), KDL::Vector
(start [0], start[1], start[2]));

KDL::Frame pl(KDL::Rotation::RPY(target[3], target[4], target[5]), KDL::
Vector(target [0], target[1], target[2]));

KDL::RotationalInterpolation_SingleAxis* ri = new KDL::
RotationalInterpolation_SingleAxis ();

ri->SetStartEnd (p0.M, pl.M);

KDL::Path_Line* path = new KDL::Path_Line(pO, pl, ri, eqrad); // ri <s
deleted by destructor (path_line take ownership)

KDL::VelocityProfile_Trap* vp = new KDL::VelocityProfile_Trap (this->
max_vel_, this->max_acc_);
vp->SetProfile (0, path->PathLength());

traj.reset<KDL::Trajectory_Segment >( new KDL::Trajectory_Segment (path, vp)
); // p 8 vp are deleted by destructor of Traj_Seg (takes ownership)

Im zweiten Schritt wird die Trajektorie schrittweise interpoliert. Die Anzahl der Schritte
ist von der Dauer (in s) und der update rate, der Anzahl der Schritte pro Sekunde, ab-
hingig. Jeder Punkt pro Schritt wird in der Protocol Buffers Nachricht gespeichert (Alg. 25)
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Algorithmus 25 Einfiigen der Punkte in die Protocol Buffers Nachricht

double time_rate = 1 / update_rate;
double time = O0;
while (time < traj->Duration()) {
KDL ::Frame current_frame = traj->Pos(time);

double roll, pitch, yaw;

RoboSimulation::point* points = return_msg.add_points ();
points->set_x(current_frame.p.x());
points->set_y(current_frame.p.y());

points->set_z (current_frame.p.z());
current_frame.M.GetRPY(roll, pitch, yaw);

points->set_ar (roll);

points->set_ap(pitch);

points->set_ay (yaw);

time += time_rate;

Im Letzten Schritt wird time = traj->Duration(); gesetzt. Aufgrund dessen ist der
letzte Eintrag identisch dem Endpunkt der Trajektorie. Die return_msg ist vom Typ inter-
polate result und wird im Anschluss zuriickgeschickt. Der anfragende Teilnehmer erhélt
eine Liste aller Punkte auf der Bahn.

Durch die Kombination der Dienste GET FORWARD KINEMATIC,

GET INVERSE KINEMATIC, INTERPOLATE SERVICE und SET AXIS ANGLES
lasst sich auf der HoloLens eine vollstdndige Bewegung des Hologramms und reellen Robo-
ters durchfiihren. Der folgende Algorithmus ldsst den Roboter von der aktuellen Position

auf einen vorher definierten Punkt (s. Kapitel 5.2) fahren.
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Algorithmus 26 Endeffektor des Roboters fihrt von der aktuellen Position an einen
definierten Punkt

var points = new List<point>();

// start position wvia forward kinematic
points.Add(Identity.Helper.EndeffectorPositionRos ());
points.Add(Target) ;

var response = InterpolateService.CalculateTrajectory(points);

foreach (var point in response.Points)

{
var joints = InverseKinematicService.CalculateInverse (Identity.
Interaction.GetAxisAnglesProto (), point);
if (joints == null)
{
Debug.Log("invalid,step...yaborting");
return;
}
// send joints to ur-bridge
SetAxisAngleService.SendJointStates (joints);
awvait Task.Delay(TimeSpan.FromMilliseconds (update_rate)); // update
rate in ms
}

Debug.Log("finished,trajectory");

Eine vollsténdige Liste der implementierten Dienste kann aus der Tabelle 2 entnommen

werden.
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6. Validierung

6.1. System

Das System dient der Visualisierung und Steuerung von Industrierobotern mit Hilfe von
mobilen Endgerédten. Es wurde eine Software, die es ermdglicht mit Hilfe einer HoloLens
und Augmented Reality einen Industrieroboter vom Typ UR-5 zu kontrollieren, entwickelt.
Um die Funktionalitit und Exaktheit der Software zu iiberpriifen, wurde ein Experiment
durchgefiihrt. Mittels der HoloLens soll ein UR-5 Roboter programmiert werden, ein Ele-
ment von einem Punkt auf einen anderen zu legen. Im Folgenden wird dokumentiert, wie
zuverldssig der Roboter die geplante Bewegung ausfiihrt. Zusétzlich wird gemessen, wie

stark das holografische Bild von dem reellen Bild abweicht.

6.1.1. Versuchsaufbau

Der Roboter ist an einer festen Position auf einer Arbeitsplatte fixiert. Ausgeriistet ist er
mit einem Greifer. Zum Greifen liegt ein 3, lcm breiter, 6,2cm langer und 9, 6¢cm hoher
Gegenstand bereit. Zu Beginn des Experiments bzw. bei Start der Anwendung schaut der

Benutzer frontal auf den Roboter.

Abbildung 21: Abweichungen (griin) an den Achsen zwischen Hologramm und Roboter

Der Roboter sowie die HoloLens sind in einem gemeinsamen Netzwerk. Zusédtzlich stehen

alle Dienste aus Tabelle 2 im Netzwerk zur Verfiigung.

6.1.2. Versuchsdurchfiithrung

Nachdem der Roboter iiber das Netzwerk geladen wurde, wird das Hologramm vom Be-
nutzer iiber den reellen Roboter gelegt. Das Mesh vom Spatial Mapping wird zur Positio-
nierung verwendet. Nach Start der Anwendung und dem Platzieren des Roboters werden

die Abweichungen zwischen den Achsen des Hologramms und des Roboters mit einem
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Mafband gemessen. Anschliefsend wird das Programm zum Aufheben des Gegenstandes
fiinf mal in Folge ausgefiihrt. Die Anwendung RoboViz wird zwischen den Abliufen nicht
neu gestartet, um die Zuverlassigkeit der Anwendung zu validieren. Nach dem fiinfmaligem
Ausfithren wird die Abweichung zwischen dem reellen Roboter und dem Hologramm erneut
gemessen. Danach wird die Anwendung RoboViz neu gestartet und der Roboter erneut auf
der Arbeitsplatte positioniert. Die Anwendung wird insgesamt fiinf mal gestartet, mit je-
weils flinf Programmabléufen. Der Gegenstand wird 25 mal aufgehoben und versetzt. Es

wird an allen sechs Achsen jeweils zehn mal gemessen.

6.1.3. Messprotokoll

Die verwendeten Variablen:
e ¢ - Nummer des Anwendungsstarts von RoboViz
e j - Nummer der Achse

e s;; - Abweichung (in mm) an Achse j nach dem i-ten Start von RoboViz und vor

dem Start des Programms zum Aufheben des Gegenstandes

e t;j - Abweichung (in mm) an Achse j nach dem i-ten von RoboViz und fiinf Pro-

grammdurchliufen

e M; - Median der Abweichung im j-ten Start von RoboViz

1 2 3 4 5) 6
Si1 | tin | Sig | tio | Si3 | ti3 | Sia | Lia | Sis | tis | Sie ‘ tic | D ‘ % ‘ M;
3 5) 4 |15 10 |10 ] 25 2230 |27 | 37|33 |221]| 18,4 | 15
19 (3731 | 35|33 [28(29 (29|14 |19 21 |21 | 316 26,3 | 28
8 |11 ] 9 [ 13| 9 [ 1412 |21 19 |23 |20 |24 | 183 | 15,3 | 13
18 | 16 | 18 | 15 | 25 | 25 | 25 | 26 | 20 | 23 | 29 | 28 | 268 | 22,3 | 23
21 121 | 19 | 21 | 25 |24 |29 | 30 | 29 | 25 | 27 | 25 | 296 | 24,7 | 25

Y | W N =] = .

Tabelle 4: Messergebnisse der Abweichungen (in mm) zwischen Hologramm und reellem
Roboter

6.1.4. Versuchsauswertung

Von den 25 durchgefiihrten Versuchen wurden alle erfolgreich abgeschlossen. Der Greifer
hob den Gegenstand in jedem Durchlauf von derselben Stelle auf und platzierte ihn immer
an der vorher definierten Position. Fiir die Abweichung A zwischen dem Hologramm und
dem reellen Roboter wird der Durchschnitt berechnet. Die Messung s;; bezeichnet die Mes-

sung nach dem Start der Anwendung im é-ten Durchlauf an der j-ten Achse. Die Messung
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ti; bezeichnet analog dazu die Messung nach dem Durchlaufen der fiinf Wiederholungen.

(s + tij)
2

1

A=y

6
=1 j=

Die gesamte Abweichung betrdgt im Durchschnitt A = 21, 4mm. Zusétzlich werden die
Summen aller Messungen pro Anwendungsstart, der Durchschnitt der Messungen und der

Median ermittelt.

(816 +tig)
a= Z :
=1
An Position j = 6 weist der Endeffektor eine Abweichung a von durchschnittlich 26, 5mm
auf. Aufgrund der perspektivischen Verzerrung zwischen Hologramm und Roboter betrégt

der Messfehler 2mm.

6.2. Software

Der Broker ist das Zentrum des Netzwerkes. Fillt dieser aus, konnen keine neuen Verbin-
dungen aufgenommen werden. Dennoch laufen bestehende Verbindungen zwischen Diens-
ten, Robotern und Anzeigegeridten weiter. Daher ist eine fehlerfreie Funktionsweise des
Brokers entscheidend, um die Funktionsfahigkeit des gesamten Netzwerkes zu gewdhrleis-
ten. Der Broker basiert auf Komponenten. Diese verwalteten grofere Bereiche der Softwa-
re, wie bspw. das Geréteverzeichnis device repository. (Abb. 22) Eine Komponente besteht
aus vielen kleineren Softwareteilen, sogenannten Units. Eine Software-Unit fithrt genau ei-
ne Aufgabe innerhalb einer Komponente aus. Sie sind die kleinste logische Einheit in der

Software.

Broker

device repository H service repository

add device find device remove device register service find service remove service

Abbildung 22: Broker Software-Architektur

Die gesamte Software funktioniert nur dann fehlerfrei, wenn sdmtliche Komponenten
der Software dies ebenfalls sind. Eine Komponente ist wiederum fehlerfrei, wenn auch
sdmtliche Units ohne Fehler sind. Da Units kleine Softwarebereiche sind und definierte
Aufgaben iibernehmen, lassen sich diese gut testen. Diese Tests heifsen Unit-Tests.

Die Funktionsweise und das Testen sollen anhand des Beispiels ,,add device” beschrieben
werden. Die Anfangs- und Ausgangsbedingungen einer Unit sind definiert. Der Zustand
ist die aktuelle Liste des Geréteverzeichnisses. Zu Beginn ist die Liste leer. Bei Eingabe

eines Gerétes, wird eine Liste mit einen Gerét ausgegeben. Dieser Ablauf lisst sich testen.
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(Alg. 27) Der Test endet mit dem Aufruf eines assert Befehls. Dieser iiberpriift, ob die
erforderliche Ausgangssituation eintrifft. Andernfalls wird eine Fehlermeldung ausgegeben

und das Testergebnis ist negativ.

Algorithmus 27 Unit-Test zum Hinzufiigen eines Gerétes in ein leeres Repository

def test_a_device_can_be_added_to_the_repository(self):
# creating of state is not required, repository is empty by default

# create input
greeting = self.buildGreeting("some-unique-id",
["identifier-1", "..."]1)

self.resolver.addDevice (greeting, "channel")

self.assertEqual (len(self.resolver.list_of_devices), 1,
"oneydevice,should be,in, repository")

Andere Units, wie ,find service, werden ebenfalls getestet. Dazu muss zunéchst fiir
jeden Testdurchlauf derselbe Ausgangszustand hergestellt und eine Eingabe erzeugt wer-

den. (Alg. 28) Am Ende wird die Ausgabe der Unit erneut mit einem assert Befehl getestet.

Algorithmus 28 Unit-Test zum Finden eines Services im Repository

def test_a_service_can_be_resolved(self):
# register services (state)
greeting = self.buildGreeting(
"some -unique -id", ["robot", "arm"],
[[service_msg.GET_AXIS_ANGLES, 1234],
[service_msg.GET_INVERSE_KINEMATIC, 1234],1]

self .resolver.addServices (greeting, "channel")

# build service request (input)
device = device_msg()
device.identifiers.extend (["some-unique-id"])

service = service_msg()
service.name = service_msg.GET_AXIS_ANGLES

# resolve channel service (result)
channel = self.resolver.resolveFirstService(device, service)

# test result
self.assertEqual (channel.channel, "channel",
"resolved_ channel did_ not_ match")

Jede Unit wird mit unterschiedlichen Zustdnden und Eingaben getestet. Je nach Ergeb-

nis wird eine Fehlermeldung oder ein ,OK®“ nach Ende des Testdurchlaufes ausgegeben.
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(Abb. 23) Dabei sollten nicht nur gingige Eingaben getestet werden. Diese fiithrt die Soft-
ware meist korrekt aus. Wichtiger ist es, falsche Eingaben und die Reaktionen der Software
darauf, zu testen. Wird bspw. die korrekte Fehlermeldung erzeugt, wenn ein Dienst nicht
vorhanden ist? Was passiert, wenn ein Gerat versucht sich mehrmals anzumelden? Wie
reagiert der Broker, wenn ein Gerit entfernt werden soll, welches nicht in der Liste auf-
taucht?

Wie Abbildung 23 zu entnehmen ist, wurden 15 Units getestet. Alle Tests wurden er-

folgreich absolviert.

Abbildung 23: Ergebnisse eines Unit-Tests vor und nach Behebung eines Softwarefehlers

Durch die unterschiedlichen Tests der einzelnen Units, ist die korrekte Funktionsweise
jeder grofseren Komponente gewéhrleistet. Dies wiederum sorgt fiir eine zuverlissige Soft-
ware. Der vollstdndige Code des Brokers kann nicht durch Unit-Tests {iberpriift werden,
da nicht jeder Code zu einer Unit gehort. Bspw. der Code, der einzelne Units miteinander
verbindet, muss separat gepriift werden. Insgesamt konnte der Broker umfangreich getestet

werden. Folglich ist fehlerfreie Funktionsweise garantiert.

6.3. Diskussion

Die Durchfiihrung eines Versuches und das Testen mittels Unit-Tests haben gezeigt, dass
das Netzwerk mit allen Teilnehmern funktioniert. Der UR-5 Roboter ldsst sich mit der Ho-
loLens programmieren und kann wiederholt eine Aufgabe ausfithren. Auch dufere Einwir-
kungen, wie das manuelle Bewegen des Roboters zwischen Programmabldufen, irritierten
das System nicht. Die Anderungen werden automatisch iiber das Netzwerk synchronisiert.
Der Roboter ldsst sich durch drei Eingabemethoden steuern. Die erste Variante ist die
Verdnderung der Achsen des Hologramms durch Gesten. Der reelle Roboter bewegt sich je
nach Gestensteuerung in die neue Position. In der zweiten Form der Steuerung ldsst sich die
Position des Endeffektors mit Hilfe der GUI verdndern. Hierzu zeigt das Hologramm eine
Vorschau der neuen Roboterposition. Nach Bestdtigung bewegt sich der Industrieroboter in
die Position. Die dritte Eingabemethode ist die lineare Punkt-zu-Punkt Bewegung durch
Interpolation. Sie verwendet intern die beiden anderen Eingabemethoden und erweitert
diese.

Um den Roboter interaktiv zu steuern, wurde das Hologramm {iber den Industrieroboter
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gelegt. Die Sensoren der HoloLens sind in der vorliegenden Version nicht prézise genug,
um das Hologramm exakt an der Umgebung auszurichten. Dies ldsst sich ebenfalls den
Messwerten entnehmen. Das Hologramm weicht im Durchschnitt um 21, 4mm vom reel-
len Roboter ab. Diese Abweichung resultiert aus der Positionierung des Hologramms auf
dem Mesh. Der Benutzer muss die Abweichung durch Einberechnung dieser kompensieren.
Fiir prizise Aufgaben, wie Schweiffarbeiten, kann die HoloLens nicht verwendet werden.
Hingegen fiir andere Aufgaben, wie das Greifen und Platzieren von Gegensténden, ist die

HoloLens problemlos einsetzbar.
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7. Zusammenfassung und Ausblick

Ziel der Arbeit war es ein Netzwerk zu schaffen, welches einen dynamischen Aufbau er-
moglicht. Mobile Endgerite miissen keine genauen Funktionen iiber Netzwerkteilnehmer
besitzen, um diese zu steuern. Der Fokus lag auf der Visualisierung und Steuerung eines
beliebigen Industrieroboters. Ein Netzwerk, welches als Topologie eine Hybridstruktur zwi-
schen Peer-to-Peer und Client/Server-Netzwerk aufweist, wurde erfolgreich implementiert.
Im Zentrum des Netzwerks steht der Broker, welcher die einzelnen Teilnehmer untereinan-
der vermittelt. Nach der Vermittlung 1duft die Kommunikation direkt zwischen den Teil-
nehmern. Das Endgerét, bzw. die HoloLens ermittelt zur Laufzeit die Roboter, sowie die
bendétigten Dienste und ladt diese iiber das Netzwerk. Anschliefsend wird der Roboter iiber

ein Hologramm visualisiert und durch Gesten gesteuert. 24

Abbildung 24: Steuerung des Industrieroboters mittels Gesten

Durch einen Versuch (s. Kapitel 6.1) hat sich herausgestellt, dass die Sensorik der Ho-
loLens ungenau ist. Durch das verwendete Spatial Mapping zur Positionierung des Ho-
logramms weicht dieses um durchschnittlich 21, 4mm vom reellen Roboter ab. Zusétzlich
bereitete die Plattform der HoloLens wihrend der Implementierung zahlreiche Probleme.
Die HoloLens verwendet das proprietire Framework .Net Core. Dieses ist mit zahlreichen
bestehenden Bibliotheken, wie Googles Protocol Buffers, inkompatibel. Die Bibliotheken
wurden an das Framework angepasst und funktionieren sowohl unter .Net Framework als
auch .Net Core.

Es ist moglich den Roboter mit Hilfe der HoloLens zu programmieren. Einige Funktio-
nen wurden nicht implementiert. Bspw. existiert fiir den Greifer kein 3D Modell, welches
durch Gesten manipuliert werden kann. Der Greifer kann jedoch iiber einen Dienst in
Programmen eingebunden werden.

Eine Moglichkeit um die ermittelte Abweichung zwischen Hologramm und Industriero-
boter zu verringern, ist die Implementierung eines Marker-Trackings. Das Hologramm
wird folglich anhand eines exakt positionierten Markers ausgerichtet. Bestehende Tracking-

Systeme sind allerdings nicht mit der HoloLens kompatibel. Des Weiteren kénnen durch
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die HoloLens zusédtzliche Sensoren visualisiert werden. Es ist moglich die Punktwolke einer
Kinect mit Diensten aufzuarbeiten und anschliefend in der HoloLens anzuzeigen. ("Kinect
— Entwicklung von Windows-Apps", 2018) Die Gestenerkennung kann mittel externer
Hardware, wie Leap Motion, optimiert werden. ("Leap Motion", 2018)

Nicht nur die Visualisierung und Steuerung, auch das Netzwerk lisst sich um zahlreiche
Funktionen, wie bspw. das Zusammenstellen von Robotergruppen, erweitern. Zusétzlich ist
ein Authentifizierungssystem fiir den produktiven Einsatz notwendig. Auf diese Weise ist
gewdhrleistet, dass lediglich Nutzer mit einer Berechtigung Roboter steuern und Dienste
nutzen konnen. Die Steuerung weiterer Werkzeuge kann ebenfalls implementiert werden.

Das Vorhaben, Industrieroboter mittels Augmented Reality zu steuern, wurde erfolg-
reich umgesetzt. Dennoch weist das Thema ,Entwurf und Entwicklung eines Systems zur
Visualisierung und Steuerung von Industrierobotern auf mobilen Endgerdten® ein grofses

Potenzial zur Weiterentwicklung auf.
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A. Installationsanleitung

A.1. Voraussetzungen

Fiir die Installation des Systems werden folgende Komponenten vorausgesetzt. Python wird
fiir die Ausfithrung des Brokers bendtigt. Visual Studio, Unity, .Net Framework und das
Windows Universal SDK werden fiir die Anwendung RoboViz der HoloLens verwendet.
Fiir die Mehrwertdienste werden ROS, Catkin und Cmake benutzt.

A.2. Broker

Der Broker verwendet Python, eine Skriptsprache. Diese miissen nicht compiliert werden.

Der Broker wird mit dem Befehl python broker.py gestartet.

A.3. HoloLens

Die Anwendung der HoloLens muss erstellt werden. Im ersten Schritt wird die Anwen-
dung RoboViz mit Unity gedffnet. Anschliefend wird unter ,File —Build Serttings... die
Anwendung fiir die Universal Windows Plattform gebaut. Nach erfolgreichem Bauen &ff-
net sich automatisch der Windows Explorer mit dem Build-Verzeichnis. Nach dem Offnen
der .sln-Datei mit Visual Studio kann die Anwendung auf der HoloLens installiert wer-
den. Dazu muss als Systemtyp ,x86“ ausgewidhlt werden. Im Anschluss daran wird in der
Liste der verfiigharen Gerédte die HoloLens ausgewdhlt. Diese muss per USB-Kabel mit
dem Computer verbunden sein. Nach der Installation wird die Anwendung automatisch

gestartet.

A.4. Roboter und Mehrwertdienste

Sowohl die Software der Robotersteuerung ur-bridge, als auch die Mehrwertdienste werden
unter Linux compiliert. Im Falle des ,interpolator® und der ,ur-bridge* muss im Terminal
mittels cd path-to-project/build in das Unterverzeichnis ,build* gewechselt werden. Je
nach System muss ggf. Cmake konfiguriert werden. Dazu wird im build-Order ccmake ..
ausgefiihrt. Der Pfad zur Protocol Buffers Bibliothek muss entsprechend eingetragen wer-
den. Anschliefsend wird mit dem Befehl make die Software compiliert. Abhéngig vom Pro-
jekt wird die Anwendung mittels . /ur-bridge oder ./interpolator gestartet.

Der Mehrwertdienst fiir die Vorwértskinematik und die inverse Kinematik muss im
Catkin Workspace liegen. Nach dem Ausfiihren von catkin_make wird der Dienst mit

roslaunch inverse_kinematic_service launch_without_robot.launch gestartet.
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