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Abstract

Das System zur einfachen und sicheren Steuerung von Industrierobotern wurde entwickelt

um eine �exible Kommunikation zwischen verschiedenen Diensten zu ermöglichen. Dabei

ist besonderer Wert auf Einfachheit, Performance und Erweiterbarkeit gelegt worden. Die

Bedienung der Roboter erfolgt über das Netzwerk mittels einer HoloLens. Diese zeigt zur

Visualisierung Hologramme an mit deren Hilfe der Benutzer über de�nierte Gesten den

Roboter ausrichten kann. Die Augmented Reality ermöglicht es intuitiv mit dem Roboter

zu interagieren und ihn Aufgaben erledigen zu lassen. Letztlich wurde das Konzept mittels

eines Versuches und Software-Tests validiert.
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1. Einführung

In den letzten Jahren hat sich die Art der Produktion von Gütern gewandelt. Viele Un-

ternehmen haben ihre Produktionsstätten ins Ausland verlagert um ihre Produkte güns-

tiger anfertigen zu können. Der Trend der eigenen Fertigung im Ausland entwickelte sich

durch kostengünstigere Alternativen weiter. Immer mehr Unternehmen geben ihre Produk-

tion vollständig an Drittunternehmen bzw. Auftragsfertiger ab. Diese produzieren für eine

Vielzahl von Firmen die erwünschten Güter. Der aktuelle Markt fordert mehr qualitativ

hochwertige und individuelle Produkte zu niedrigen Preisen. (AP, 2003; Creutzburg, 2015)

Weiterhin werden nahezu jährlich neue Versionen von Konsumgegenständen auf den

Markt gebracht. Daraus resultieren kürzere Lebenszyklen der jeweiligen Waren. Dieser

Wandel sorgt dafür, dass Auftragsfertiger ihre Produktionsstätte immer wieder überarbei-

ten und �exibel gestalten müssen ohne an Qualität zu verlieren. Die erwünschte Anpas-

sungsfähigkeit soll sowohl in der Produktion als auch im Umgang mit wechselnden Kunden

mit Hilfe von modernen Industrierobotern erfolgen. In immer mehr Bereichen kommen diese

zum Einsatz, was sich in einer steigenden Gesamtzahl der weltweit verkauften Industriero-

boter bemerkbar macht (Abb. 1). Der in der Gra�k ersichtliche Einbruch im Jahr 2009 ist

der weltweiten Wirtschaftskrise zuzuschreiben. (Gemma et al.)
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Abbildung 1: Anzahl verkaufter Industrieroboter zwischen den Jahren 2004 und 2016

Die Unternehmen sollen selbst in der Lage sein, bei Auftragsfertigern verteilte Indus-

trieroboter �exibel einzusetzen. Diese müssen zum einen einfach und gezielt gesteuert und

zum anderen unkompliziert programmiert werden können.

Im Rahmen dieser Arbeit wird der Prototyp eines solchen Systems mittels Augmented

Reality umgesetzt. Durch den indirekten Kontakt soll Mitarbeitern ein sicherer Umgang

mit Industrierobotern ermöglicht werden. Um den unterschiedlichsten Gegebenheiten ge-

recht zu werden, müssen die Industrieroboter und zahlreiche Dienste miteinander kom-

munizieren. Diese Mehrwertdienste vereinfachen die Steuerung der Roboter und führen
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Aufgaben wie bspw. eine Bahnplanung aus. Eine �exible Netzwerkarchitektur, die es er-

möglicht verschiedene Dienste für die Roboter und Endgeräte zur Steuerung und Überwa-

chung bereitzustellen, ist gefordert. Dabei werden im Prototyp unter anderem die Aspekte

Zugangsschutz sowie Verschlüsselung vernachlässigt. Diese Themen sind für den produkti-

ven Einsatz unablässig und müssen vor Verwendung des Systems implementiert werden.

Zu Beginn der Ausarbeitung werden grundlegende Informationen zum weiteren Ver-

ständnis aufgeführt. Anschlieÿend werden bereits bestehende Systeme der Technischen

Universität Berlin analysiert. Komponenten wie Steuerungssysteme werden im entwickel-

ten Netzwerk integriert und betrieben. Ein Konzept, das die Kommunikation zwischen den

Teilnehmern sowie die Visualisierung und Steuerung der Industrieroboter ermöglicht, wird

erarbeitet. Im darauf folgenden Kapitel wird das Konzept umgesetzt und implementiert.

Zur Validierung des Systems wird zum einen der Industrieroboter mittels einer HoloLens

programmiert einen Gegenstand von einer Position auf eine andere zu platzieren. Zum

anderen werden Softwaretests durchgeführt. Im Fazit wird auf weitere und zukünftige Ent-

wicklungsmöglichkeiten eingegangen.
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2. Grundlagen

2.1. Industrielle Roboter

�Industrieroboter sind universell einsetzbare Bewegungsautomaten mit mehreren Achsen,

deren Bewegungen hinsichtlich Bewegungsfolge und Wegen bzw. Winkeln frei program-

mierbar (d.h. ohne mechanischen Eingri� vorzugeben bzw. änderbar) und gegebenenfalls

sensorgeführt sind. Sie sind mit Greifern, Werkzeugen oder anderen Fertigungsmitteln aus-

rüstbar und können Handhabe- oder andere Fertigungsaufgaben ausführen.� (Weber, 2002)

Diese De�nition eines Industrieroboters nach VDI-Richtlinie 2860 ist eine der am häu�gs-

ten verwendeten. Weitere sind durch die Japan Industrial Robot Association (JIRA) und

europäischen Norm EN775 bestimmt. Während die JIRA den Industrieroboter umfangrei-

cher de�niert, decken sich die De�nitionen der VDI-Richtlinie und der EN775 inhaltlich.

Im Rahmen der Arbeit wurden steuerbare und zugleich einarmige Industrieroboter ver-

wendet. Diese können in diversen Aufgabenbereichen eingesetzt werden. Durch entspre-

chende Zubehörteile sind die Roboter in der Lage Gegenstände zu greifen und an einen

anderen Platz zu legen. Ein Beispiel dafür wäre das Legen von Produkten von einem Flieÿ-

band in einen Karton. Eine weitere Möglichkeit wäre, die Roboter innerhalb der Produkti-

onskette einzusetzen um bspw. Ober�ächen zu polieren, lackieren oder schweiÿen. Für die

Implementierung der Steuerung wird ein grundlegendes Wissen über die Funktionsweise

der Gelenke und die mathematischen Berechnungen dieser benötigt.

Der verwendete Industrieroboter wird von Universal Robots gebaut und trägt die Be-

zeichnung UR-5. Insgesamt verfügt dieser über sechs Gelenke, die sich jeweils um die eigene

Achse drehen können (Abb. 2). Alle sechs Gelenke sind über statische Elemente miteinander

verbunden, man spricht von einer Gelenkskette oder Joint Chain. Am Ende der Kette be-

�ndet sich ein Ende�ektor. Dieser ist eine unspezi�sche Beschreibung für das Werkzeug des

Roboters. Das Werkzeug kann je nach Arbeitsaufgabe des Industrieroboters und Einsatz-

gebiet bspw. ein Greifer, Schweiÿ- oder Poliergerät sein. Genau wie bei einem menschlichen

Arm ist die Position des Ende�ektors von der Stellung der Gelenke im Arm des Roboters

abhängig. Der verwendete Roboter besitzt Gelenke mit jeweils einem Freiheitsgrad. Das

bedeutet, dass sich die Gelenke jeweils um eine feste Achse drehen können. Folglich hat

der gesamte Roboter sechs Gelenke mit insgesamt sechs Freiheitsgerade. Mit der erreichten

Beweglichkeit kann der Roboter �exibel innerhalb seines Arbeitsraums eingesetzt werden.
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Abbildung 2: Die sechs Gelenke des UR5

Die Gröÿe des Arbeitsraumes ist durch Maÿe wie die Länge des Roboterarmes begrenzt.

Der gesamte Arbeitsraum des Roboters setzt sich aus allen durch seinen Ende�ektor er-

reichbaren Positionen zusammen. Die Position wird in Kartesischen Koordinaten angege-

ben, man spricht auch vom Kartesischen Raum oder Cartesian space. Sowohl Translation

im Raum entlang der Achsen x, y und z, als auch die Rotationen yaw, pitch und roll (Abb.

3) werden entweder als zwei 3-dimensionale Vektoren oder ein 6-dimensionaler Vektor dar-

gestellt.

Abbildung 3: Die drei Achsen der Rotation

Die Position des Ende�ektors bei A6 (Abb. 2) ist von der Stellung aller Gelenke abhängig.

Die aktuelle Position des Ende�ektors wird mit Hilfe der einzelnen Gelenke A1 bis A6

und einer Vorwärtskinematik Matrix berechnet. Der Winkel eines Gelenkes Ai beträgt θi.

Über alle Winkel und den jeweils dazugehörigen Transpositionsmatrizen wird das Produkt

gebildet. Allgemein gilt: handelt es sich um einen Roboter mit n Gelenken, die sich jeweils
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um θi drehen, ergibt sich für die Matrix 0
nT :

0
nT =

n∏
i=1

i−1
i T (θi)

Die Transpositionsmatrix i−1
i T vom i − 1-ten zum i-ten Gelenk enthält sowohl einen

Translations- als auch Rotationsanteil:

i−1
i T = R(zi−1, θi) · T (zi−1, di) · T (xi−1, ai) ·R(xi, αi)

Die Matrizen T (xi−1, ai) und R(xi, αi) beschreiben die Translation und Rotation um die

lokale x-Achse, die Matrizen T (zi−1, di) sowie R(zi−1, θi) hingegen die Translation und

Rotation um die z-Achse. Der Parameter θi ist bei dem UR-5 von der aktuellen Position des

Gelenkes abhängig, die Parameter für di, ai sowie αi können aus der Tabelle 1entnommen

werden. Mit der Matrix 0
6T für den UR-5 kann mit Hilfe von gegebenen Gelenkswerten

θ1, ..., θ6 die Position des Ende�ektor berechnet und visualisiert werden. (Paul, 1981)

Gelenk a α d θ O�set

1 0 π
2 0.089159 q1 0

2 −0.425 0 0 q2 −π
2

3 −0.39225 0 0 q3 0

4 0 π
2 0.10915 q4 −π

2

5 0 −π
2 0.09465 q5 0

6 0 0 0.0823 q6 0

Tabelle 1: Denavit-Hartenberg-Parameter des UR-5

Umgekehrt wird die Position der Gelenkswinkel für eine gegebene Position des End-

e�ektors mit Hilfe der inversen Kinematik berechnet. (Abb. 4) (Cubero, 2007) Dies wird

benötigt, wenn die Ende�ektorposition gegeben ist und eine mögliche Gelenkskon�guration

dazu gesucht wird.

Abbildung 4: Umrechnung vom Joint Space in das Kartesische Koordinatensystem

Die Berechnung der inversen Kinematik ist analytisch komplex. Daher verwendet man

einen algorithmischen Ansatz. Der verwendete Algorithmus für den UR-5 wird von Univer-

sal Robots zur Verfügung gestellt und ist unter �ur kinematics at indigo universal robots�

(2018) nachvollziehbar.

Mit Hilfe der Vorwärtskinematik und der inversen Kinematik lassen sich alle Gröÿen wie
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Gelenkswinkel berechnen um Steuerbefehle umzusetzen.

Eine weitere wichtige Art der Steuerung von Industrierobotern ist die Bahnplanung. Ein

Roboter kann unterschiedliche Formen von Bahnen abfahren. Die einfachste Form ist die

lineare Trajektorie ohne Kollisionserkennung. Der Roboter fährt eine Strecke zwischen zwei

de�nierten Punkten A und B entlang. (Abb. 5)

Abbildung 5: Lineare Trajektorie zwischen den Punkten A und B

Der aktuelle Punkt zum Zeitpunkt t auf der Bahn p(t) wird berechnet durch:

p(t) = pA +
s(t)

‖pApB‖
· (pB − pA)

pA und pB sind die Vektoren zu den Punkten A und B. ‖pApB‖ ist der Abstand zwischen
A und B. Die Funktion s(t) gibt an, wie viel Strecke zum Zeitpunkt t bereits zurückgelegt

wurde. s(t) ist von der maximalen Geschwindigkeit und Beschleunigung des verwendeten

Roboters abhängig. Die zurückgelegte Strecke, die Geschwindigkeit und Beschleunigung

in Abhängigkeit von der Zeit (Abb. 6) werden mit Hilfe der Bibliothek KDL berechnet.

(�Kinematic and Dynamic Solvers | The Orocos Project�, 2018)
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Abbildung 6: Strecke, Geschwindigkeit und Beschleunigung in Abhängigkeit von der Zeit

2.2. Visualisierung

Zur Visualisierung der Industrieroboter bieten sich unterschiedliche Geräte an. Ein Roboter

kann als 3D Modell auf einem Computer oder Tablet angezeigt werden. Seit dem Jahr 2016

gibt es eine noch anschaulichere Möglichkeit diese darzustellen.

Sogenannte Head-Mounted-Displays, die ähnlich wie Brillen getragen werden, werden

immer praxistauglicher. Man unterscheidet zwischen zwei Kategorien: Virtual Reality und

Augmented Reality. Die Virtual Reality simuliert dem Nutzer sämtliche visuelle Eindrücke.

Er sieht nicht mehr eine reelle Umgebung, sondern ausschlieÿlich eine Virtuelle. Wände,

Objekte und Personen werden vollständig als 3D Modelle dargestellt. Beispiele für Virtual

Reality Brillen sind Oculus Rift oder die HTC Vive. (�Oculus Rift | Oculus�, 2018; �VIVE

| Discover Virtual Reality Beyond Imagination�, 2018)

Im Gegensatz dazu wird in der Augmented Reality, zu Deutsch erweiterte Realität, die

Umgebung wie gewohnt dargestellt. Zusätzlich können mit Hilfe der Brille Hologramme

im Blickfeld platziert werden. Bspw. kann auf einem Tisch im Raum das 3D Modell eines

Industrieroboters angezeigt und von allen Seiten betrachtet werden. Die HoloLens von

Microsoft ist auf dem Markt seit Oktober 2016 erhältlich. Sie erkennt Gesten, die mit den

Händen ausgeführt werden. Auf diese Weise kann der Benutzer an Hologrammen ziehen,

diese antippen und manipulieren.

Weiterhin ist die HoloLens mit zahlreichen Sensoren ausgestattet. Sie verfügt über eine

Sensorleiste, die sich vorne oben an der Brille be�ndet. (Abb. 7) Darin enthalten sind vier

Umgebungskameras, die sich paarweise seitlich an der Sensorleiste be�nden. Sie dienen dazu

die Kopfbewegung in Relation zum Raum zu ermitteln. Des Weiteren enthält die Leiste eine

Inertial Measurement Unit (IMU), welche einen Beschleunigungsmesser, Rotationsmesser
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und Magnetometer beinhaltet. Hinzu kommt eine Tiefenkamera, die sich vorne zentral

be�ndet. Diese wird zur Hand- und Ober�ächenerkennung, auch Spatial Mapping genannt,

genutzt. Ein Umgebungslicht-Sensor, eine Kamera für Foto- und Videoaufnahmen sowie

vier Mikrofone komplettieren die Sensorik der HoloLens.

Abbildung 7: Sensorleiste der HoloLens

Die HoloLens wird zur Visualisierung und Steuerung des verwendeten Industrieroboters

genutzt. Bspw. wird der Ende�ektor mit Hilfe von Gesten in eine bestimmte Position

gezogen und gedreht. Der hologra�sche Roboterarm stellt die Gelenkswinkel automatisch

ein, sodass die gewünschte Position erreicht wird. Die Winkel des Armes müssen ebenfalls

manuell eingestellt werden. Das Resultat, die Position des Ende�ektors, muss berechnet

werden. Hierfür werden die Vorwärtskinematik und die inverse Kinematik (Kapitel 2.1)

des Roboters benötigt.

Wird der hologra�sche Roboter in die korrekte Position gebracht, nimmt der reelle Ro-

boter nach einer Bestätigung durch den Benutzer diese Position ein. Um dies ausführen zu

können, muss die HoloLens über ein Netzwerk mit dem Roboter verbunden sein. Handelt

es sich um einen einzigen Roboter, ist es möglich die HoloLens dermaÿen zu programmie-

ren, dass dieser direkt angezeigt und gesteuert werden kann. Handelt es sich um einen

Industriepark aus mehreren Robotern, die möglicherweise unterschiedlicher Art sind, ist

eine feste und direkte Verbindung zwischen Roboter und HoloLens eine unbefriedigende

Lösung.

2.3. Netzwerke

Ein Netzwerk mit vielen unterschiedlichen Teilnehmern ist ein verteiltes Netzwerk. Die

Teilnehmer können auf gleichen oder verschiedenen Hardware-Geräten laufen. Zusätzlich

können die Teilnehmer unterschiedlicher Natur sein. Beispiele für Teilnehmer eines ver-

teilten Netzwerkes sind Roboter, eine HoloLens oder Geräte wie Smartphone, Tablet oder

Computer. Verschiedene Anzeigegeräte sollen mit diversen Industrierobotern kommunizie-

ren und diese darstellen und steuern.

Die vollständige Netzwerkarchitektur kann vereinfacht über das Open Systems Inter-

connection Model (OSI-Modell) dargestellt werden. (ITU-T, 1994) Das Modell beschreibt
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dabei sieben Schichten: Physical, Data Link, Network, Transport, Session, Presentation und

Application. Die physikalische Topologie wird von den ersten beiden Layern beschrieben.

Dabei sind bspw. Leitungen und Stecker Teil der physikalischen Schicht und der Switch in

Kombination mit dem MAC-Protokoll Teil der Sicherungsschicht (Data Link Layer). Die

Kommunikation auf diesen beiden Schichten wird vernachlässigt und als gegeben betrach-

tet.

Auf Schicht drei, der Netzwerkschicht, wird in dem Anwendungsszenario das Internet-

Protokoll IP verwendet, auf Schicht vier, der Transportschicht, das Transmission Control

Protocol TCP. Die Schichten fünf bis sieben werden als Anwendungsschicht zusammenge-

fasst, in der zwei Protokolle eingesetzt werden. Der Groÿteil der Kommunikation erfolgt

über das von Google entwickelte Protokoll Protocol Bu�ers. In wenigen Ausnahmen wird

das bekannte Hypertext Transfer Protocol HTTP genutzt.

Auf Schicht drei und vier beruht die logische Topologie, das Overlay-Netzwerk. Hierbei

gibt es zahlreiche verschiedene Formen bzw. Architekturen. Gängige Formen sind Peer-to-

Peer oder Client-Server Architekturen. In der Peer-to-Peer Architektur sind alle Teilneh-

mer gleichberechtigt. Die Kenntnisse der einzelnen Teilnehmer übereinander muss dabei

nicht vollständig sein. (Abb. 8) Sie können innerhalb des Netzwerkes Dienste bereitstellen

und nutzen. Peer-to-Peer Netzwerke zeichnen sich durch ihre beachtliche Robustheit und

Performance gegenüber anderen Architekturen aus. (Bawa et al., 2003; Schollmeier, 2001)

Abbildung 8: Peer-to-Peer Netzwerk

Da es keine feste Anlaufstelle innerhalb einer Peer-to-Peer Architektur gibt, müssen

Funktionen für die Suche innerhalb eines Netzwerkes zur Verfügung gestellt werden. In

diesem Bereich liegen die Schwächen der Peer-to-Peer Architektur. (Cooper and Garcia-

Molina, 2004) Die Suche von Diensten im Netzwerk muss aufwendig implementiert werden,

da nicht jedem Teilnehmer alle weiteren Teilnehmer des Netzwerkes bekannt sind. Benötigt

bspw. eine HoloLens eine Liste von allen Teilnehmern mit bestimmten Eigenschaften, muss

diese zunächst alle Teilnehmer des Netzes �nden. Anschlieÿend überprüft die HoloLens, ob

die ermittelten Teilnehmer jeweils die Eigenschaften erfüllen.

Demgegenüber steht die Client/Server-Architektur. In dieser gibt es den Server als zen-

trale Anlaufstelle. Er vermittelt sämtliche Anfragen und Antworten zwischen den Teilneh-
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mern. Benötigt ein Gerät eine Liste von bestimmten Teilnehmern, wird diese beim Server

angefragt. Die Kommunikation innerhalb des Netzwerkes läuft ausnahmslos über den Ser-

ver. (Abb. 9) Dies stellt einen erheblichen Nachteil des Netzwerkes dar.

Während in Peer-to-Peer Netzwerken die Kommunikation direkt erfolgt, ist in der Cli-

ent/Server Architektur stets der Server dazwischen geschaltet. Sowohl Bandbreite als auch

Ausfallsicherheit sind in der Client/Server-Architektur deutlich geringer. Bei einem Ser-

verausfall bricht das gesamte Netzwerk zusammen. Verfügt der Server über eine geringe

Bandbreite, ist das gesamte Netzwerk überlastet. Im Gegensatz dazu ist die einfache Durch-

suchbarkeit des Netzwerkes von Vorteil, da der Server sämtliche Teilnehmer kennt.

Engeräte/AnzeigenMehrwertdienste

Roboter

Server

Abbildung 9: Client/Server-Architektur

Auf der Anwendungsebene wird Googles Protocol Bu�ers verwendet. Dies ist ein Format

zur serialisierten Übertragung von Daten. Geläu�ge Formate wie XML oder JSON sind

textbasiert. In Protocol Bu�ers werden die Daten im Binärformat übertragen. Protocol

Bu�ers ist ein weit verbreitetes, robustes und performantes Protokoll. Die Daten werden

in Textdateien durch eine eigene Syntax beschrieben und daraufhin mittels eines Compilers

für die jeweilige Programmiersprache compiliert. (Alg. 1)

Algorithmus 1 Beispiel für eine uncompilierte Protocol Bu�ers Nachricht

message Person {

required string name = 1;

required int32 size = 2;

optional string email = 3;

}

Insgesamt erfolgt die Netzwerkkommunikation mit IP, TCP, Protocol Bu�ers sowie

HTTP. Die entwickelte und verwendete Netzwerkarchitektur wird in Kapitel 4.1 vorge-

stellt.
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3. Stand der Technik

In Zeiten von Cloud basierten Systemen gibt es mehrere Ansätze der Dienst basierten Kom-

munikation zwischen Robotern. Ein Ansatz ist in �Robot control as a service � Towards

cloud-based motion planning and control for industrial robots� beschrieben. Hier geht es

um die Entwicklung eines o�enen und Service basiertem Framework zur �exiblen Bahnpla-

nung und Steuerung von Industrierobotern. Im Rahmen der Arbeit wird ein Testsystem

erfolgreich mit Hilfe des Frameworks implementiert. (Vick et al., 2015a) Die Abhandlung

�Cloud robotics: Formation control of a multi robot system utilizing cloud Infrastruktur�

befasst sich mit dem Steuern von mehreren Robotern über das Internet. Das Konzept wurde

erfolgreich umgesetzt. Der mögliche Einsatz von neuronalen Netzen wird in diesem System

ebenfalls analysiert. (Turnbull and Samanta, 2013) Eine Umgebung von verteilten Robo-

tern wird als Platform-as-a-Service in �A Cloud Computing Environment for Supporting

Networked Robotics Applications� vorgestellt. Diese Roboter teilen sich Rechnerresourcen

und verbinden sich mit virtualisierten Diensten im Netzwerk. (Agostinho et al., 2011)

Die open-source Plattform Rapyuta befasst sich ebenfalls mit der Cloud basierten Robo-

tersteuerung und kann gleichzeitig auf die Datenbank von RoboEarth zugreifen. Rapyuta

ermöglicht es Robotern Aufgaben, wie bspw. komplizierte Berechnungen, an andere Netz-

werkteilnehmer abzugeben. (Mohanarajah et al., 2015; van de Molengraft et al.)

In der Arbeit �Feasibility of connecting machinery and robots to industrial control Ser-

vices in the cloud� geht es um die Möglichkeiten Roboter ohne Netzwerkanbindung in

Cloud-Systeme zu integrieren. Dazu wird eine einheitliche Netzwerkschnittstelle entwickelt,

welche in drei unterschiedlichen Szenarien zur Anwendung kommt. (Horn and Krüger, 2016)

Die Schnittstellen werden in �Control of robots and machine tools with an extended factory

cloud� weiter genutzt um eine private Cloud für Roboterkontroller sowie programmierbare

Logikkontroller umzusetzen. Vor- sowie Nachteile des Ansatzes werden weiterhin diskutiert.

(Vick et al., 2015b)

Vorteile, Herausforderungen und Probleme mit der Verwendung von Robotern in der

Cloud werden in �Cloud robotics: architecture, challenges and Applications�, �Cloud robo-

tics: Current trends and possible use as a service� und �Robotic Services in Cloud Compu-

ting Paradigm� erarbeitet und ausgewertet. (Hu et al., 2012; Lorencik and Sincak, 2013;

Doriya et al., 2012) In �Cloud robotics: architecture, challenges and Applications� wird die

Sicherheit dieser Systeme genauer betrachtet. Die Arbeit �Cloud robotics: Current trends

and possible use as a service� analysiert die Vorteile der erhöhten Rechenleistung in der

Cloud und der Möglichkeit eine zentrale Steuerungseinheit zu entwickeln. Die Möglichkei-

ten groÿe Datenmengen in der Cloud zu verarbeiten um so Prozesse zu optimieren, wird

in �Robotic Services in Cloud Computing Paradigm� beurteilt.

Der Ansatz, die Cloud basierte Steuerung mit der Augmented Reality zu kombinieren, ist

kein Bestandteil bereits bestehender Arbeiten. Es kommen lediglich geschlossene Systeme

zur Anwendung. Zur Laufzeit können unbekannte Robotertypen nicht eingep�egt und in

Betrieb genommen werden. Auÿerdem wird oftmals auf eine Vielzahl von Protokollen zu-
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rückgegri�en, die alle miteinander kommunizieren. In dieser Ausarbeitung wird ein global

verwendetes Protokoll verwendet um alle Dienste zu nutzen.

Die Idee zur Visualisierung und Steuerung mittels Augmented Reality existierte bereits

zu Beginn dieser Arbeit. Innerhalb des Fachgebiets �Industrielle Automatisierungstechnik�

der Technischen Universität Berlin wurde vorher an einzelnen Komponenten gearbeitet.

Diese waren ohne eine Netzwerkarchitektur direkt miteinander verbunden.

Zur Steuerung eines Industrieroboters kam die ur-bridge zum Einsatz. Diese Software

ermöglicht es Steuerbefehle eines UR-5 Roboters mittels TCP/IP entgegenzunehmen und

an den Roboter weiterzugeben. Sie wurde im Rahmen der Arbeit verwendet und an die

neuen Bedingungen angepasst.

Um Roboter auf mobilen Endgeräten wie Tablets visualisieren zu können ist die Anwen-

dung RoboViz entwickelt worden. Der Name der Software sowie das verwendete 3D Mo-

dell wurden beibehalten. Bestimmte Komponenten wie die Manipulation des Hologramms

wurden weitestgehend umgeschrieben. Für die Kommunikation zwischen der Applikation

RoboViz und der ur-bridge wurde ein neues Netzwerkkonzept entwickelt.
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4. Konzept

Die Entwicklung des Konzepts ist in unterschiedliche Bereiche aufgeteilt. Zuerst wird ein

Netzwerk erarbeitet, welches die Grundlage des Systems zur Steuerung von Industriero-

botern bildet. Anschlieÿend wird eine mögliche Form der Visualisierung entworfen. Zum

Schluss wird auf die Steuerung der Roboter mittels augmented Reality eingegangen.

4.1. Netzwerk

Im Rahmen dieser Arbeit wurde eine Netzwerk- und Softwarearchitektur gesucht, die un-

abhängig von ihren Teilnehmern ist.

Des Weiteren gab es die Anforderung, dass das Netzwerk erweiterbar ist. Die Teilnehmer

sollen dabei innerhalb des Netzwerkes nicht angepasst werden müssen. Als Beispiel soll ein

neuer Roboter entwickelt und in die Umgebung und das Netzwerk integriert werden. Um

mit dem Roboter interagieren zu können, sollen alle Endgeräte, wie HoloLens oder Tablets,

nicht neu kon�guriert werden müssen. Der neue Roboter muss dazu in der Lage sein alle

Geräte über seine Eigenschaften zu informieren. Weiterhin sendet er eine Anleitung wie er

gesteuert wird.

Dies geschieht auf Basis von unterschiedlichen Diensten. Diese Dienste sind ebenfalls

Mitglieder des Netzwerkes. Dienste können Teil eines Roboters oder komplett unabhängiger

Komponenten sein. (Abb. 10)

Zusätzlich wurden einige Voraussetzungen gestellt um bereits bestehende Systeme in das

neue Netzwerk integrieren zu können. Diese existierenden Systeme nutzen bspw. zur Kom-

munikation TCP und Google Protocol Bu�ers. Beide Technologien bilden die Grundlage

für die neue Netzwerkarchitektur.

Im Folgenden wird fast ausschlieÿlich über Dienste gesprochen. Dabei ist dieser Begri�

generisch aufzufassen. Dienste können in Bezug auf ihre Aufgaben unterschiedlich sein. Die

einzige Gemeinsamkeit aller Dienste ist, dass sie auf einem Teilnehmer im Netzwerk lau-

fen und spezi�sche Aufgaben für einen oder mehrere Roboter im Netzwerk übernehmen.

Vor der Konzepterarbeitung bringt folgende beispielhafte Anwendung von unterschiedli-

chen Diensten und Geräten das gewünschte Resultat näher. Innerhalb eines Netzwerkes

be�nden sich ein Roboter, eine HoloLens und ein Rechner mit dem Betriebssystem Linux.

Der Roboter stellt zwei Dienste bereit. Ein Dienst ermöglicht die Achswinkel des Robo-

ters auszulesen, der zweite diese zu ändern. Der Dienst, welcher inverse Kinematiken für

Robotermodelle berechnet, wird auf dem Linux Computer ausgeführt. Die HoloLens stellt

wiederum die Dienste �Anzeigen� und �Steuern� bereit.
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Abbildung 10: Teilnehmer und Dienste (Inverse Kinematik und Trajektorie) innerhalb ei-
nes Netzwerkes

Alle diese Dienste interagieren miteinander. Um den Roboter korrekt anzeigen zu können,

benötigt die HoloLens die aktuelle Ausrichtung der Achsen des Roboters. Die HoloLens

erfragt den entsprechenden Dienst auf dem Roboter. Anschlieÿend kann sie den Roboter

korrekt als Hologramm im Raum darstellen. Möchte der Benutzer der HoloLens die Position

des Ende�ektors verändern, kommt der Dienst �Steuern� zur Anwendung. Mit Hilfe des

Dienstes positioniert er einen virtuellen Platzhalter für den Ende�ektor des Roboters an

der gewünschten Position im Raum. Um den Ende�ektor des Roboters an die Position

des Platzhalters zu steuern, benötigt die HoloLens die entsprechenden Achswinkel des

Roboters. Zur Berechnung der Achswinkel wird die inverse Kinematik aus Kapitel 2.1

benötigt. Es wird der Dienst �Inverse Kinematik� vom Linux Rechner angefragt und die

neuen Achswinkel werden berechnet. Die HoloLens erhält die neuen Achswinkel und kann

das Hologramm des Roboters entsprechend anpassen. Das Hologramm ist damit in der

neuen Position, der reelle Roboter hingegen nicht. Die HoloLens kontaktiert den Dienst

�Achswinkel setzten� auf dem Roboter und setzt die Winkel. Der reelle Roboter bewegt

seinen Ende�ektor auf die entsprechende Position.

Um diese Funktionalität im Netzwerk umzusetzen, wurde eine hybride Netzwerkarchi-

tektur und -struktur entwickelt. Das Netzwerk ist einerseits ein Client-Server Netzwerk bei

dem sich sämtliche Teilnehmer mit dem Server, genannt Broker, verbinden. Andererseits ist

es ein Peer-to-Peer Netzwerk in dem die Teilnehmer direkt untereinander kommunizieren.

(Abb. 11) Der Broker (Kreis) hat eine Verbindung zu allen Teilnehmern (Rechtecke). Diese

bauen untereinander bei Bedarf untereinander eine Verbindung auf. Innerhalb des Client-

Server Netzwerkes können Teilnehmer nach anderen Teilnehmern und Diensten suchen.

Der Broker speichert Listen über alle verfügbaren Teilnehmer sowie ihre jeweiligen Diens-

te ab. Fragt ein Teilnehmer nach einem speziellem Dienst im Netzwerk, kann der Broker
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direkt eine Auskunft erteilen, ob der Dienst verfügbar ist, oder nicht. Die Komplexität der

Suche ist minimiert. Ist ein Dienst verfügbar, kontaktiert der Teilnehmer diesen direkt und

ohne Umwege über den Broker. Der am Broker entstehende Tra�c wird minimiert. Die

im Kapitel 2.3 angesprochenen Probleme der beiden vorgestellten Netzwerkarchitekturen

werden damit deutlich reduziert.

Abbildung 11: Hybrid-Netzwerk aus Client-Server und Peer-to-Peer

Sollte der Broker durch einen Ausfall nicht mehr verfügbar sein, kann ein Teilnehmer

nicht nach Diensten suchen. Bereits laufende Dienste sind weiterhin verfügbar und nicht

von dem Ausfall betro�en. Nimmt der Broker die Arbeit erneut auf, müssen sich sämtliche

Teilnehmer erneut bei diesem melden. Der Broker aktualisiert schlieÿlich seine internen

Listen über vorhandene Geräte und Dienste.

Meldet sich ein neues Gerät im Netzwerk an, schickt es zunächst eine Benachrichtigung

an den Broker. Dies geschieht im Format �Ich stelle für folgende(n) Roboter folgende Diens-

te zur Verfügung�. Im Anschluss kann das Gerät den Broker nach Informationen fragen.

Diese werden im Format �Ich benötige eine Liste über alle Geräte folgenden Typs� für die

Anfrage einer Geräteliste oder �Ich benötige folgenden Dienst für folgenden Roboter(typ)�

für die Anfrage eines Dienstes geschickt.

4.2. Visualisierung

Die Visualisierung der Roboter mit Hilfe von mobilen Endgeräten wie der HoloLens oder

einem Tablet wird mittels Hologrammen umgesetzt. Für jeden Roboter innerhalb des In-

dustrieparks wird ein entsprechendes Hologramm erzeugt und im Raum dargestellt. Zu

Beginn ist kein Roboter sichtbar. Vor sich im Raum sieht der Nutzer eine Liste mit verfüg-

baren Robotern. Wählt der Benutzer einen Roboter aus, schlieÿt sich das Fenster der Liste.

Der Roboter erscheint vor dem Nutzer im Raum und folgt seinem Blick. Die gewünschte

Position des Roboters, bspw. ein Tisch im Raum, kann anvisiert werden. Wird der Roboter

durch den Benutzer verankert, folgt er nicht weiterhin dem Blick, sondern verbleibt an ent-

sprechender Stelle. Der Benutzer kann ab diesem Zeitpunkt den Roboter von allen Seiten
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betrachten. An Stellen, an denen der Benutzer mit dem Roboter in Interaktion treten kann,

werden Markierungen dargestellt. Ein Beispiel sind die einzelnen Gelenke des Roboters, die

beim Betrachten au�euchten und dem Benutzer anzeigen, dass sie veränderbar sind. (Abb.

12)

Abbildung 12: Hologramm eines UR-5 mit Steuerelementen für die Manipulation der Ach-
sen

Abschlieÿend gibt es die Möglichkeit Bewegungen zu simulieren. Das Hologramm führt,

unabhängig vom reellen Roboter, eine geplante Bewegung aus. Nach einer Überprüfung

der Simulation gibt es die Möglichkeit die Simulation an den Roboter zu übertragen. Er

führt die Bewegung der Simulation entsprechend aus.

4.3. Steuerung

Die Roboter werden mit Hilfe der geladenen Dienste visualisiert. Zusätzlich ist es mög-

lich Steuerungsbefehle an den Roboter zu senden. Im Rahmen dieser Arbeit werden drei

verschiedene Steuerungsmöglichkeiten exemplarisch für die HoloLens implementiert. Diese

stellen jeweils einen Dienst im Netzwerk dar.

Industrieroboter sollen häu�g Gegenstände greifen und in einer bestimmten Position hal-

ten. Dazu muss es möglich sein diese Position mit Hilfe der Gelenkswinkel anzusteuern. Der

Benutzer benötigt eine Eingabeober�äche mit deren Hilfe er direkt jede einzelne Achse in-

dividuell einstellen kann. Um dies umzusetzen muss an jedem Gelenk ein hervorgehobenes

Steuerelement sichtbar sein, welches der Benutzer auswählen und durch Handgesten ma-

nipulieren kann. Diese Gestenausführung hat eine Veränderung der Achswinkel zur Folge.

Der Dienst zur direkten Steuerung der Winkel heiÿt �SET_AXIS_ANGLES�.

Der folgende Dienst �GET_INVERSE_KINEMATIC� ist eine weitere Steuerungsopti-

on. Er ermöglicht dem Benutzer, den Ende�ektor direkt und nicht, wie bei

�SET_AXIS_ANGLES�, indirekt zu steuern. Um den Ende�ektor im Raum zu positionie-

ren, müssen Punkte verschoben und rotiert werden können. Letztendlich schwebt ein klar
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erkennbares Element im Raum, welches durch Gesten bewegt wird. (Abb. 13)

Abbildung 13: GUI zur Steuerung des Ende�ektors - Translation (links) und Rotation
(rechts)

Der Benutzer wählt eine Achse aus. Anschlieÿend kann entlang dieser das Objekt ver-

setzt werden. Um eine Rotation durchzuführen, wählt der Nutzer eine der Scheiben aus.

Durch eine Drehung dieser rotiert das zentrale Objekt. Mit Hilfe der drei Achsen der

Translation und Rotation können sämtliche Positionen im Raum erreicht werden. Die in-

verse Kinematik (s. Kapitel 2.1) bzw. der dazugehörige Dienst kann über das Netzwerk die

Stellung des Roboters berechnen. Aufgrund dessen sind die Achswinkel bekannt und kön-

nen gesetzt werden. Diese Funktion ist bereits durch den Dienst �SET_AXIS_ANGLES�

implementiert. Der Dienst �GET_INVERSE_KINEMATIC� baut somit auf dem Dienst

�SET_AXIS_ANGLES� auf.

Die dritte Möglichkeit der Steuerung ist die Bahnplanung. Der Benutzer de�niert im

Umfeld des Roboters Punkte im Raum. Der Industrieroboter fährt diese, bspw. linear oder

in Form eines Bezier-Splines, nacheinander ab. Der Dienst �INTERPOLATE_SERVICE�

errechnet die einzelnen Schritte der Bahnkurve. Nachfolgend wird für jeden Schritt die

Achsstellung durch den Dienst �GET_INVERSE_KINEMATIC� berechnet.

�SET_AXIS_ANGLE� bewegt den Roboter in die Stellung. Durch berechnete Schritte

zwischen den einzelnen Punkten resultiert eine gleichmäÿige Bewegung des Roboters ent-

lang der geplanten Strecke.

Diese drei Beispiele zeigen, dass der Benutzer den Roboter auf unterschiedliche Weise

steuern kann. Die Umsetzung ist dienstweise aufeinander aufgebaut. Der Benutzer muss in

der Lage sein mögliche Interaktionen zu erkennen. Jeder verfügbare Dienst, der über das

Netzwerk geladen wird, muss über eine sinnvolle und einfache Bedienung verfügen und mit

anderen Steuerungsdiensten kommunizieren können.
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5. Umsetzung / Implementierung

Dieses Kapitel befasst sich mit dem Prozess vom Konzept zur fertigen Software. Hierfür

mussten unter anderem sämtliche Rahmenbedingungen berücksichtigt und bereits vorhan-

dene Bibliotheken analysiert werden. Damit einhergehend wurde festgelegt, dass sämtli-

che Kommunikation mittels Google Protocol Bu�ers erfolgt. Nur in wenigen Ausnahmen

wurden andere Protokolle, wie HTTP, verwendet. Zur Kommunikation kommt auf der

Transportschicht (ITU-T, 1994) TCP zum Einsatz.

Bevor die einzelnen Teilnehmer, wie Broker, Roboter oder HoloLens, programmiert wer-

den, muss folgendes Problem der Netzwerkübertragung gelöst werden: Einzelne TCP/IP

Pakete haben eine begrenzte Gröÿe. Innerhalb eines Paketes können maximal 1.500 Bytes

übertragen werden. Davon sind 20 Bytes für den IP Header reserviert und 20 Bytes für

die Headerdaten von TCP. Für die Anwendung verbleiben maximal 1460 Bytes pro über-

tragenem Paket. Da in der Anwendung zum Teil gröÿere Pakete, von mehreren hundert

Interpolationsschritten innerhalb einer Nachricht, übertragen werden, muss die maximale

Gröÿe angehoben werden. Um innerhalb der Anwendung gröÿere Datensätze als 1460 Bytes

zu übertragen, wurde ein weiterer Bereich reserviert. 8 Bytes sind zusätzlich für die Angabe

der Gröÿe des Datensatzes reserviert (Abb. 14). Dieser Zusatz von 8 Byte stellt ein eigenes

Protokoll dar und wurde aufgrund der geringen Komplexität Microprotokol genannt.

IP
20B

TCP
20B

SIZE
8B

...

Abbildung 14: Gröÿe der Paket-Headerdaten durch die Protokolle IP, TCP und Micropro-
tokol

Es ist zu beachten, dass der Header von 8 Bytes immer zu Beginn eines Datensatzes

geschickt wird und nicht zwangsweise innerhalb jedes TCP/IP Paketes steht. Als Beispiel

wird die lineare Trajektorie des Ende�ektors für einen Roboter berechnet. Dazu werden

auf einer Gerade zwischen dem Start und dem Zielpunkt 1000 Schritte berechnet. Pro

Schritt werden für den UR-5 Roboter sechs Achswinkel benötigt. Die Zahlen werden als

�oat übertragen, nehmen somit jeweils 4 Bytes ein. Die Gröÿe der Zahlendaten in Bytes z

ist z = 6 · 4 · 1000 = 24000. Google Protocol Bu�ers benötigt für die Encodierung weitere

p = 4000 Bytes. Für die Bahnkurve werden insgesamt z + p = 28000 Bytes übertragen.

Für alle 1.000 Achsstellungen bzw. 28.000 Bytes werden
⌈
28000
1460

⌉
= 20 Pakete verschickt.

Um dieses Problem der Paketgröÿe zu lösen, wird für alle verwendeten Programmier-

sprachen zu Beginn jeweils die Klasse Microprotokol geschrieben. Die Klasse hat zwei

Methoden. read lieÿt von einem TCP Socket und write schreibt beliebig groÿe Datensätze

in einen TCP Socket. (Alg. 2; Alg. 3) Insgesamt wurde die Klasse in drei Programmier-

sprachen, Python, C++ und C#, implementiert.

19



Algorithmus 2 Implementierung der read-Methode in Python (Microprotokol)

buf = []

data = reader(self.MAX_HEADER_BYTE_SIZE) # read header from stream , also

blocks until data is received

# rCount is the total length of all data read from tcp stream

rCount = len(data)

# size is the total size of the data set; position is begining of the data

set

(size , position) = decoder._DecodeVarint(data , 0)

# add first data package to buffer

buf.append(data)

# read packages as long rCount (current size) is smaller then total size +

1

while rCount < size + 1:

data = reader(size + 1 - rCount)

rCount += len(data)

buf.append(data)

# combine all packages

binary_message = b''.join(buf)

# received message as byte stream without length prefix

return binary_message[position :( position + size)]

Algorithmus 3 Implementierung der write-Methode in Python (Microprotokol)

# calculate message length

bytes = encoder._VarintBytes(message.ByteSize ())

# write message length and message itself to stream writer

writer(bytes + message.SerializeToString ())

Mit Hilfe der Klassen ist es möglich Protocol Bu�ers Nachrichten in jeder der oben

genannten Programmiersprachen über TCP/IP zu schicken.

Somit konnten im Anschluss die Teilnehmer des verteilten Netzen umgesetzt werden. Im

ersten Schritt wurden der Broker entwickelt. Ein Kriterium für diesen war die Portabilität,

die Einsatzmöglichkeit auf unterschiedlichen Betriebssystemen. Als Plattform-unabhängige

und geeignete Programmiersprache wurde Python in der Version 3 festgelegt.

5.1. Broker

Nachdem die Grundlagen für das Versenden von Nachrichten innerhalb des verteilten Netz-

werkes durch TCP/IP und dem entwickelten Microprotokol gegeben sind, kann der Broker
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unabhängig von den anderen Teilnehmern entwickelt werden. Der Broker ist vollständig in

Python programmiert, wodurch er auf sämtlichen von Python unterstützten Plattformen

ausgeführt werden kann. Der Broker wartet in einem Thread auf eingehende Verbindungen.

Verbindet sich ein Client mit dem Broker, wird ein neuer Thread erstellt. Aufgrund dessen

kann der Broker mit mehreren Clients asynchron kommunizieren. Innerhalb des erstellten

Threads wartet der Broker mit Hilfe der Microprotokol-Klasse (Alg. 2) auf eingehende

Protocol Bu�ers Nachrichten.

Im ersten Schritt wurde die Routine zum Registrieren von Geräten auf dem Broker im-

plementiert. Jeder neue Teilnehmer im Netzwerk kann sich beim Broker melden und ihm

eine greeting Nachricht schicken. Inhalt der Nachricht greeting sind zwei Felder. Das Gerät

selbst sowie eine Liste von Diensten, die das Gerät anbietet:

message greeting {

device device = 1;

repeated service services = 2;

}

Die Angabe eines Feldes erfolgt durch die Typisierung gefolgt von einem Feldnamen.

Die Zahlen sind Tag-Nummern und werden von Googles Protocol Bu�ers intern genutzt.

Einziges Kriterium für diese ist die Einzigartigkeit innerhalb einer Nachricht. Das erste

Feld der Nachricht greeting hat den Namen �device� und ist vom Typ device. Das zweite

Feld ist vom Typ service und heiÿt �services�. Durch den Zusatz repeated wird aus dem

Feld eine Liste.

Eine device Nachricht enthält ebenfalls zwei Felder und sieht wie folgt aus:

message device {

repeated string identifiers = 1;

string ip = 2;

}

Der Inhalt des Feldes �ip� ist die IP-Adresse des Gerätes selbst. Das Feld �identi�ers� ist

eine Liste von Zeichenketten bzw. Strings. Die einzelnen Werte der Liste sind Bezeichner

um den Roboter zu identi�zieren. Die Reihenfolge ist relevant und wird von genau nach

ungenau sortiert. Ein Beispiel für die identi�ers eines UR-5 Roboters mit der Seriennum-

mer �S4X8D986� ist: ["UR-5-S4X8D986", "UR-5", "industrial-robot", "robot"]. Ein

Rechner, der den Dienst zum Berechnen einer inversen Kinematik für den UR-5 anbietet,

hat als identi�ers bspw. die Liste: ["inverse-kinematic", "UR-5", "service"].

Somit handelt es sich bei letzterem um einen Dienst für den UR-5 und nicht um einen

Roboter.

Jedes Gerät, welches Dienste anbietet, schickt diese Dienste als Liste innerhalb der gree-

ting-Nachricht. Eine Dienstnachricht service beinhaltet zwei Felder: den Namen des Diens-
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tes und die Portnummer unter der der Dienst läuft. Durch die IP-Adresse des Gerätes in

der device-Nachricht ist jeder Dienst eindeutig lokalisierbar.

message service {

enum names {

GET_AXIS_ANGLES = 0;

SET_AXIS_ANGLES = 1;

GET_FORWARD_KINEMATIC = 2;

GET_INVERSE_KINEMATIC = 3;

...

}

names name = 1;

int32 port = 2;

}

Das Feld �name� vom Typ names hat einen Wert aus der Liste enum names.

Möchte sich ein Teilnehmer des Netzwerkes beim Broker registrieren, schickt er eine

vollständige Nachricht mit IP-Adresse, Identi�ers und einer Liste seiner Dienste an den

Broker.

Es ist nicht festgelegt, dass das Gerät nach dem Verbinden mit dem Broker eine Begrü-

ÿung schickt. Einige Geräte stellen keine Dienste bereit und nutzten andere Dienste im

Netzwerk. Diese werden keine greeting Nachricht schicken. Es gibt Rechner, die ggf. zur

Laufzeit lokale Dienste starten oder beenden. Diese schicken eine neue Begrüÿung an den

Broker um diesen über die Änderung zu informieren.

Welcher Nachrichtentyp vom Rechner bzw. Client geschickt wird, ist nicht de�niert.

Daher wird eine logische Weiche benötigt. Der Client könnte bspw. eine greeting-Nachricht

oder alternativ die Suchanfrage für einen Dienst schicken. Der Broker muss vorausschauen

können, welche Nachricht als nächstes eintri�t. Dies kann durch einen endlichen Automaten

umgesetzt werden. Der Automat entscheidet je nach seinem aktuellen Zustand, welcher

Nachrichtentyp als nächstes eintri�t. (Wuttke/Henke, 2003) Für jeden Client, der mit dem

Broker verbunden ist, müsste folglich ein Automat im Hintergrund laufen.

Es gibt eine weitere Möglichkeit dieses Problem mit Hilfe von Protocol Bu�ers zu lö-

sen. Der Broker erwartet nur einen Nachrichtentyp. Teil der Sprache sind oneof -Felder.

Innerhalb dieser können Unterfelder de�niert werden. Eine Nachricht enthält genau einen

der Unterfelder als Wert. Über eine API-Methode lässt sich ermitteln, welches Unterfeld

einen Wert hat. Im Fall des Brokers erwartet dieser den Nachrichtentyp to_broker. Diese

Nachricht ist wie folgt de�niert:

message to_broker {

oneof request_or_greeting {

request request = 1;

greeting greeting = 2;
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}

}

Erhält der Broker von einem Client eine Nachricht, ist in dieser entweder ein request oder

eine greeting enthalten. Je nachdem welches Feld gesetzt ist, kann der Broker entscheiden

wie die Nachricht beantwortet wird.

In der Implementierung wurde ein Handler Interface umgesetzt. Für jeden Typ in dem

oneof -Feld request_or_greeting gibt es eine Klasse, die das Interface implementiert. Es

wird beim Eintre�en einer to_broker Nachricht der entsprechende Handler im Broker ge-

laden. (Alg. 4)

Algorithmus 4 Feld im oneof-Block - Entscheidung welcher Handler geladen wird

if _to_broker.WhichOneof("request_or_greeting") == "request":

print("request detected")

return self.request_handler

else _to_broker.WhichOneof("request_or_greeting") == "greeting":

print("greeting detected")

return self.greetings_handler

Der Handler führt die im Anschluss folgende Aktion aus. Empfängt der Broker ein gree-

ting, wird der Teilnehmer, bzw. das Gerät in einer Liste gespeichert. Die Liste der Dienste

wird ebenfalls mit einem Eintrag versehen. Dabei verweist innerhalb der Liste jeder Dienst

auf das entsprechende Gerät, welches den Dienst anbietet. Empfängt der Broker eine re-

quest Nachricht, wird ermittelt welche Information der Teilnehmer angefragt hat.

Teilnehmer können den Broker nach unterschiedlichen Informationen fragen. Die Nach-

richt ist wie die to_broker Nachricht aufgebaut und enthält ein oneof Feld. Die vollständige

Nachricht request beinhaltet folgende Felder:

message request {

bool use_or_for_query = 1;

device receiver = 2;

oneof requested_data {

bool bag = 3;

service service = 4;

}

}

Erneut kann nur ein Feld innerhalb des Blocks �request_data� einen Wert haben. Es

wird entweder eine bag oder ein service angefragt. Ist das Feld �bag� auf den Wert true

gesetzt, durchsucht der Broker seine Liste an Geräten. Welche Geräte zurückgegeben wer-

den, hängt wiederum vom Feld �receiver� ab. Dieses Gerät muss kein bestimmtes Gerät im
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Netz sein. Es können ein oder mehrere Identi�er angegeben werden um in der Liste eine

Auswahl an Geräten zu tre�en. Wird nach dem Gerät �UR-5� gesucht, werden alle Geräte,

die in ihren Identi�ers �UR-5� enthalten, zurückgegeben. Somit sind in der Liste alle Ro-

boter vom angegebenen Typ und Teilnehmer, die Dienste für diesen Robotertyp anbieten,

enthalten. Zur Präzisierung der Suche, können weitere Begri�e, wie �robot�, angegeben

werden. Umgekehrt ist es möglich durch das Setzten des Feldes use_or_for_query eine

Oder-Suche, anstatt einer Und-Suche, durchzuführen. In diesem Fall müssen die Geräte

mindestens einen der angegebenen Identi�ers haben.

Erfragt der Client einen Service, wird der zweite Wert von �request_data� gesetzt. Die

service Nachricht ist identisch mit der obigen in der greeting Nachricht. Lediglich der Wert

des Feldes �port� wird nicht gesetzt. Als Antwort erhält der Client vom Broker eine Nach-

richt vom Typ response. Sie ist erneut mit mehreren Feldern ausgestattet, die je nach Fall

einen Wert haben.

message response {

oneof response_data {

string error = 1;

device_bag devices = 2;

service_adress location = 3;

string message = 4;

}

}

Sind Fehler aufgetreten, weil bspw. ein angefragter Service nicht zur Verfügung steht, ist

das Feld error mit einer entsprechenden Nachricht gesetzt. Andernfalls ist jeweils das Feld

gesetzt, nach dem gefragt wurde.

Zur Verdeutlichung folgt ein beispielhafter Ablauf mit drei Teilnehmern und dem Broker.

Die drei Teilnehmer sind eine HoloLens, ein Roboter und ein Rechner mit Diensten.

Schritt 1 Der Rechner verbindet sich mit dem Broker und grüÿt ihn. Er schickt eine

to_broker Nachricht mit einer greeting als Inhalt. Die Begrüÿung beinhaltet sei-

ne Bezeichner �UR-5� sowie �service� und seine IP Adresse. Als Dienste schickt

der Rechner eine Liste mit einem Eintrag, dem

GET_INVERSE_KINEMATIC und der entsprechenden Portnummer.

Schritt 2 Die HoloLens verbindet sich mit dem Broker und fragt nach einer Liste mit

Robotern. Sie schickt eine Nachricht to_broker. Diese enthält einen request als

Inhalt. Für das Feld receiver wird eine device Nachricht mit dem Bezeichner

�robot� geschickt. Als request_data wird das Feld bag auf true gesetzt.

Schritt 3 Der Broker antwortet der HoloLens mit einer response. Es traten keine Fehler

auf. Somit wird als �response_data� das Feld devices gesetzt. Die device_bag

enthält eine leere Liste, da noch kein Roboter den Broker gegrüÿt hat.
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Schritt 4 Der Roboter meldet sich beim Broker und begrüÿt ihn. Der Inhalt der to_broker

Nachricht ist wieder ein greeting, mit den Bezeichnern �UR-5-Seriennummer�,

�UR-5�, �robot� und seiner IP Adresse. Die Dienste sind eine Liste mit zwei

Eintragen, GET_AXIS_ANGLES und SET_AXIS_ANGLES, und den je-

weiligen Portnummern.

Schritt 5 Alle 5 Sekunden erfragt die HoloLens, wie in Schritt 2 beschrieben, erneut eine

Liste.

Schritt 6 Der Broker antwortet wie in Schritt 3. Die device_bag beinhaltet nun einen

Eintrag, den Roboter aus Schritt 4.

Schritt 7 Die HoloLens lädt den Roboter in die Szene und erfragt beim Broker, ob Dienste

für den Roboter vorhanden sind. Pro Dienst wird eine request Nachricht, die

den jeweiligen Namen des Dienstes im Feld service beinhaltet, geschickt.

Schritt 8 Der Broker antwortet für jeden Dienst mit einer service_adress. Für die Dienste

GET_AXIS_ANGLE und SET_AXIS_ANGLE liefert er die IP des Roboters

mit den jeweiligen Portnummern. Für den Dienst

GET_INVERSE_KINEMATIC wird die service_adress zum Rechner aus Schritt

1 zurückgegeben.

Schritt 9 Die HoloLens kennt die verfügbaren Dienste für den Roboter, kann eine GUI

laden und sich mit Diensten verbinden.

Da die HoloLens beim Platzieren Dienste für einen Roboter erfragt (Schritt 7), ist es

nötig, dass sich Mehrwertdienste, wie die zur Berechnung der inversen Kinematik, vorher

beim Broker anmelden. Nur dann erhält die HoloLens vom Broker einen entsprechenden

Eintrag. Diese Voraussetzung verringert die Komplexität. Weiterhin bringt sie kaum bis

keine Nachteile mit sich, da davon auszugehen ist, dass sich Mehrwertdienste einmalig beim

Starten des Programm mit dem Broker verbinden. Lediglich Roboter werden in manchen

Situationen ab- und wieder angeschaltet.

Nach der Beschreibung der Protocol Bu�ers Nachrichten, die mit dem Broker ausge-

tauscht werden, wird die Verarbeitung dieser Nachrichten implementiert. Innerhalb des

Broker gibt es zwei Verzeichnisse, eines für Geräte bzw. Teilnehmer und eines für Dienste.

Wird eine Nachricht aus Schritt 1 empfangen, verarbeitet der �greetings_handler� (Alg.

4) die Nachricht. Dabei werden sowohl die Dienste des grüÿenden Gerätes, als auch das

Gerät selber registriert. (Alg. 5)
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Algorithmus 5 Hinzufügen eines neuen Geräts in die Bestandsliste und Registrierung
seiner Dienste

def registerDevice(self , client , greeting):

self.known_devices.append(client)

self.device_resolver.addDevice(greeting , client)

self.service_resolver.addServices(greeting , client)

Jeder Dienst innerhalb der greeting wird im Dienstverzeichnis service_resolver mit der

Methode addServices hinzugefügt. Innerhalb der Methode wird ein Kanal für jeden Dienst

erzeugt, welcher sämtliche Informationen über den Dienst enthält.

Erhält der Broker eine request Nachricht, wird der �request_handler� für die Verar-

beitung der empfangenen Nachricht verwendet. Der Handler entscheidet, wie die Anfrage

beantwortet wird. Es können zwei verschiedene Daten angefragt werden. Entweder wird

eine device_bag, eine Liste von Geräten eines bestimmten Typs, oder ein service für einen

speziellen Roboter angefordert. Wird der Broker nach einer Geräteliste gefragt, sucht er

innerhalb des Geräteverzeichnisses device_resolver nach entsprechenden Geräten.

requested_identifiers = _to_broker.request.receiver.identifiers

devices = self.broker.device_resolver.findDevices(requested_identifiers)

Die gefundenen Geräte werden anschlieÿend mit Hilfe einer response Nachricht an das

anfragende Gerät zurückgesendet. Im Falle einer Anfrage eines Dienstes an den Broker

wird nicht der device_resolver, sondern der service_resolver angefragt.

service_channel = self.broker.service_resolver.resolveFirstService(

_to_broker.request.receiver ,

_to_broker.request.service ,

_to_broker.request.use_or_for_query

)

Für jeden auf dem Broker registrierten Dienst wird ein Kanal erzeugt. Die Klasse für

den Kanal heiÿt ServiceChannel und enthält unter anderem die Methode isResponsableFor.

Diese überprüft, ob der Kanal für einen Dienst zuständig ist.

Wird ein Dienst, wie in Schritt 7, angefragt, überprüft der Broker jeden ServiceChannel,

ob er für den angefragten Dienst zuständig ist. Dafür werden drei Parameter benötigt: der

angefragte Name des Dienstes, das Gerät, für welches der Dienst zuständig sein muss, und

in welchem Modus gesucht werden soll. (s. use_or_for_query in request) Ist der Kanal für

einen anderen Dienst zuständig, kann direkt mittels False verneint werden. Sind der Na-

me vom angefragten Dienst und vom vorliegenden Kanal identisch, wird die Zuständigkeit

überprüft. Ein Dienst, wie GET_INVERSE_KINEMATIC, ist nicht für jeden Roboter
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zuständig. Somit muss überprüft werden, ob die Identi�ers des Kanals mit denen des

angefragten Roboters übereinstimmen. Hierbei ist der Wert der Flag use_or_for_query

relevant. Ist der Wert False, müssen die Listen identisch sein. (Alg. 6)

Algorithmus 6 Algorithmus zum Überprüfen der Zuständigkeit eines Dienstes für ein
Gerät

for identifier in device.identifiers:

if identifier not in self.device.identifiers:

return False

return True

Nur wenn beide Listen dieselben Identi�ers beinhalten, liefert die Methode True. Für

denn Fall, dass use_or_for_query denWert True hat, muss ein Identi�er des Gerätes in der

Liste der Identi�ers des Kanals enthalten sein. Dazu muss die Methode isResponsableFor

bei der ersten Übereinstimmung eines Identi�ers True zurückgeben. Der Kanal enthält

sowohl die IP-Adresse, als auch den Port des Dienstes. Die Werte werden anschlieÿend als

service_adress an das anfragende Gerät zurückgeliefert.

Die HoloLens erfragt eine Liste aller Teilnehmer. Im Anschluÿ dazu lädt die HoloLens

alle verfügbaren Dienste. Sie erfragt beim Broker die Adresse und verbindet sich mit dem

jeweiligen Dienst. (Abb. 15)

Broker HoloLens Roboter Dienst

register devices
and services

greet broker

greet broker

get devices
send device list

display robot

GAA - get axis angles GIK - get inverse kinematic

send service adress
connect to GAA accept client

�nd service GIK
send service adress

connect to GIK accept client

SAA - get axis angles

�nd service SAA...

�nd service GAA

Abbildung 15: Beispielhafte Kommunikation zwischen Broker, HoloLens, Roboter und
Dienst

Durch die Implementierung der Funktionen greeting und requesting, ist der Broker in

der Lage Geräte zu listen und Dienste zwischen den Teilnehmern zu vermitteln.
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5.2. HoloLens

Die HoloLens wird mit der Entwicklungsumgebung Unity programmiert. (�Unity�, 2018)

Unity ist eine Plattform, mit der Spiele und Anwendungen für Augmented Reality, erweiter-

te Realität, entwickelt werden. Für die Programmierung wird von Microsoft eine Paket für

Unity bereitgestellt, in dem bereits Funktionen implementiert sind. (�MixedRealityToolkit-

Unity uses code from the base MixedRealityToolkit [...]�, 2018) In Unity werden einzelne

Bereiche der Anwendung in Szenen unterteilt. Eine Szene, ähnlich wie im Theater, ist eine

Zusammenstellung von Objekten (Requisiten) und dem Spieler (Schauspieler). Der Spie-

ler kann mit den Objekten innerhalb der Szene interagieren. Objekte können zur Laufzeit

der Szene hinzugefügt und wieder entfernt werden. Im Bereich der Augmented Reality

unterscheidet sich die Szene maÿgeblich von Spielen. Während in Spielen die Umgebung

hinzugefügt werden muss, ist diese bei der HoloLens von Beginn an sichtbar. Die Objekte

in der Szene sind Hologramme, die in die Umgebung eingeblendet werden.

Wie bereits erwähnt, handelt es sich bei Hologrammen um Objekte. Unity bezeichnet

diese als GameObject. Ein GameObject wird mit Komponenten versehen. Eine wichtige

Komponente ist das Mesh. Dieses ist die Form des Objektes. Ohne Mesh ist ein GameObject

nicht sichtbar. Solche unsichtbaren Objekte werden auch leere, bzw. empty GameObjects

genannt. Weitere Komponenten sind Kollisionsboxen für die Physik, Texturen für die Ober-

�äche und Skripte. Ein Skript ist eine C#-Klasse, welche die Unity-Klasse MonoBehaviour

erweitert. Wird ein solches Skript an ein GameObject als Komponente gebunden, kann mit

Hilfe des Skriptes das Objekt programmiert werden. Dabei gibt es vorde�nierte Methoden

innerhalb der Klasse, welche von Unity selbst ausgeführt werden. Beim Platzieren des Ob-

jektes in der Szene wird die Methode start aufgerufen. Soll sich ein in der Szene platzierter

Roboter mit einem Dienst über das Netzwerk verbinden, geschieht dies in dieser Methode.

Eine weitere wichtige Methode ist update. Diese wird innerhalb jedes einzelnen Frames von

Unity aufgerufen. Schickt ein Roboter in regelmäÿigen Abständen seine Achswinkel an die

HoloLens, muss das Hologramm in der Szene entsprechend verändert werden. Innerhalb

der update Methode können die regelmäÿigen Änderungen statt�nden.

5.2.1. Sensorik

Um die Kommunikation mit der Sensorik zu vereinfachen, wurden im ersten Schritt Hilfs-

klassen programmiert. Die HoloLens ist in der Lage Gesten, wie ein Fingertippen oder eine

Handbewegung, zu erkennen. Zur vereinfachten Handhabung dieser Gesten wurden Ma-

nager, welche jeweils eine Geste managen, implementiert. Der einfachste Manager ist der

TapEventManager. Er bietet eine Schnittstelle zur Kommunikation zwischen der HoloLens

Sensorik und dem eigentlichen Programm. Erkennt die HoloLens ein Tap (tippen) mit dem

Finger, wird dieses Event vom Manager registriert und an Objekte in der Szene geleitet.

Aus Sicht des Managers gibt es zwei unterschiedliche Formen von Objekten, globale und lo-

kale. Globale Objekte erhalten Kenntnisse über sämtliche vom Benutzer ausgeführte Taps.

Lokale Objekte erfahren hingegen nur von solchen, die direkt auf Sie gezielt wurden. Dazu
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wird vom TapEventManager ein Raycast, ein Strahl von der Position der Kamera in Blick-

richtung, durchgeführt. Das erste getro�ene Objekt ist das lokale Objekt. Dieses empfängt

zusammen mit den globalen Objekten die Benachrichtigung über einen Tap. (Alg. 7)

Nicht jedes Objekt soll über einen lokalen Tap informiert werden. Um Objekte anspre-

chen zu können, müssen diese bestimmte Schnittstellen, genannt Interfaces, implemen-

tieren. Derzeit existieren Interfaces für die Gesten Tippen (ITapable), Navigieren (INa-

vigatable) und Manipulieren (IMovable). Um ein Interface zu implementieren, muss eine

MonoBehaviour -Komponente die entsprechende Schnittstelle erweitern. Somit wird das

lokale Objekt lediglich über den Tap informiert, wenn es über die Komponente ITapable

verfügt.

Algorithmus 7 Benachrichtigung globaler und lokaler Objekte mittels OnTapped()

private void NavigationRecognizer_Tapped(TappedEventArgs e)

{

// trigger all global tapables

foreach (var globalTapable in _globalTapables)

{

globalTapable.OnTapped ();

}

// perform raycast

RaycastHit hit;

if (Physics.Raycast(e.headPose.position , e.headPose.forward , out hit))

{

// store tapped object

CurrentTappedObject = hit.transform.gameObject;

// fetch ITapable component from GameObject

var iTapable = CurrentTappedObject.GetComponent <ITapable >();

// trigger method if iTabable is not null

iTapable ?. OnTapped ();

// ...

}

}

Für die Interfaces INavigatable und IMovable wurden ebenfalls entsprechende Manager,

NavigateEventManager und ManipulateEventManager, implementiert. Diese erkennen die

jeweiligen Gesten, verarbeiten sie und rufen anschlieÿend die dazugehörigen Methoden der

Komponenten auf.

Um die Umgebung realistisch in der Anwendung abbilden zu können, erfolgt ein räum-

liches Kartogra�eren, genannt Spatial Mapping. Die HoloLens ermittelt durch den Tiefen-

sensor (s. Kapitel 2.2) den Abstand zu Elementen im Raum und berechnet daraus ein Mesh,

welches über den Raum gelegt wird. Wird ein Hologramm im Raum platziert, platziert die

HoloLens es auf dem Mesh. Der Benutzer erhält den Eindruck, dass das Hologramm auf
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einem Gegenstand, bspw. Tisch, steht.

Die Umgebungserkennung wird von vier seitlich angebrachten Kameras und einem Tie-

fensensor vorgenommen. Das HoloToolKit beinhaltet das GameObject SpatialMapping. Ist

das Objekt in der Szene enthalten, wird ein Mesh zur Laufzeit berechnet und über die

Raumober�äche gelegt. (Abb. 16)

Abbildung 16: Visualisierung der Ober�ächenerkennung durch ein Mesh

In dieser Hardwareversion der HoloLens erfolgt die Erkennung der Ober�ächen unprä-

zise. Der linke Tischrand ist bspw. um 3cm nach links verschoben. Die dünnen Tischbeine

werden kaum erkannt. Glatte Ober�ächen, wie die Tischplatte oder Wände, werden hin-

gegen äuÿerst genau wahrgenommen. Aufgrund dessen kann das Mesh zur Positionierung

der Hologramme im Raum genutzt werden.

5.2.2. Netzwerkkommunikation

Zum Verschicken der Protocol Bu�ers Nachrichten mit Hilfe des TCP/IP wird dieMircopro-

tokol Klasse in C# verwendet. (s.Kapitel 5) Beim Starten der Unity Applikation RoboViz

auf der HoloLens wird in der Startszene ein empty GameObject namens BrokerCommunica-

tor erzeugt. Dieses unsichtbare Objekt enthält ein Skript, welches die Verbindung mit dem

Broker steuert. Da GameObjects bzw. deren Komponenten miteinander kommunizieren

können, greifen alle GameObjects in der Szene auf das Objekt BrokerCommunicator mit

dem Verbindungsskript zu und kontaktieren darüber den Broker. Bspw. kann die Kompo-

nente zur Synchronisation der Roboterliste auf der HoloLens über diese Abstraktionsebene

leicht Anfragen an den Broker senden. Die Methode RequestDevices abstrahiert das Sen-

den einer request Nachricht mit einer device_bag und das Empfangen einer response. (s.

Kapitel 5.1; Alg. 8)
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Algorithmus 8 Synchronisation der Gerätelisten zwischen Broker und HoloLens

private async void LoadDevicesPeriodicaly ()

{

while (Client.IsConnected)

{

var devices = Broker.RequestDevices("robot");

SyncDeviceLists(_devices , devices.Devices.ToList ());

await Task.Delay(TimeSpan.FromSeconds(UpdateRate));

}

}

Während der Client mit dem Broker verbunden ist, wird die lokale Geräteliste mit der

Liste des Brokers in vorgegebenen Abständen synchronisiert.

Diese Synchronisation läuft in einer Endlosschleife. Dadurch entsteht ein entscheidendes

Problem. Die Methode LoadDevicesPeriodicaly kann nicht im Hauptthread des Program-

mes gestartet werden, da die Schleife nie zur Laufzeit verlassen wird. Dies führt wiederum

zum Einfrieren der gesamten Applikation. Die Methode LoadDevicesPeriodicaly muss auf

einem anderen Thread des Programmes laufen. Um dies zu erreichen wird die Methode

durch einen Task parallelisiert. 9

Algorithmus 9 Ausführung der Methode LoadDevicesPeriodicaly innerhalb eines neues
Tasks

new Task(LoadDevicesPeriodicaly).Start();

Durch dieses Parallelisierung wird der Hauptthread der Applikation während der Anfra-

gen an dem Broker nicht blockiert. Es werden weiterhin Gesten den Benutzers verarbeitet

und die Szene immer wieder neu aktualisiert und gezeichnet. Ist die Anfrage an den Bro-

ker erfolgreich beantwortet worden, müssen die empfangenen Daten in der Anwendung

verarbeitet werden. Dazu muss die neue Geräteliste vom Broker mit der bestehenden Ge-

räteliste auf der HoloLens verglichen werden. Neue Geräte im Netzwerk werden zur Szene

hinzugefügt und entfernte Geräte aus der Szene gelöscht.

Ein durch die Methode SyncDeviceList ermitteltes Gerät wird in der Szene dem Inventar

hinzugefügt. Zusätzlich erscheint ein kleiner Hinweis, dass ein neues Gerät im Inventar zu

�nden ist. (Abb. 17)
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Abbildung 17: Ansicht des Inventars und einer Benachrichtigung in der HoloLens

Um ein Objekt der Szene hinzuzufügen, muss dieses instanziiert werden. Dies geschickt

mittels GameObject.Instanciate. Erfolgt dieser Aufruf innerhalb der Methode SyncDevice-

List, um bspw. ein Item im Inventar anzuzeigen oder den Hinweis in der Szene zu platzieren,

wird dies mit der Fehlermeldung �Instanciate can only be called from the main thread.�

quittiert. Problematisch ist, dass der Aufruf von GameObject.Instanciate im Nebenthread

und nicht im Hauptthread der Anwendung erfolgt. Unity ist eine Non-Thread-Safe Platt-

form. Sämtliche Methoden von Unity müssen im Hauptthread ausgeführt werden.

Das Anzeigen im Inventar inklusive Hinweismeldung muss im Hauptthread erfolgen. Um

dieses Problem der Thread-Kommunikation zu lösen, wird das interne Parallelisierungs-

system, Coroutines, von Unity genutzt. Die Coroutines ermöglichen es Aufgaben in den

Hauptthread einzufügen. Unity verwendet dafür einen Slicing-Ansatz. Die Aufgaben wer-

den im Hauptthread vorrangig und nicht parallel ausgeführt. Dennoch eignet sich diese

Form der Umsetzung für kleine Aufgaben, wie das Anzeigen einer Nachricht am Bild-

schirmrand, da diese wenig Rechenzeit benötigen.

Um die Kommunikation zwischen Hauptthread und Nebenthread zu vereinfachen, wurde

eine weitere Hilfsklasse implementiert. Innerhalb des Hauptthreads läuft eine FifoQueue,

die Coroutines sammelt und bei Bedarf ausführt. (Alg. 10)

Algorithmus 10 First-In-First-Out Queue des Dispatchers zur Thread-Synchronisation

public class Dispatcher : Singleton <Dispatcher > {

private static readonly Queue <Action > ExecutionQueue = new Queue <Action

>();

// ...

}

In jedem Frame werden vom Dispatcher alle in der ExecutionQueue enthaltenen Ak-

tionen im Hauptthread eingebunden. Um eine Aktion innerhalb jedes einzelnen Frames

auszuführen, stellt Unity die bereits beschriebene Methode Update bereit. Während der

Verarbeitung der Queue darf kein weiterer Thread diese verändern. Aus diesem Grund

wird die Queue für alle anderen Threads mittels lock gesperrt. (Alg. 11)
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Algorithmus 11 Frameweise Abarbeitung der Queue mittels Update-Methode

public class Dispatcher : Singleton <Dispatcher > {

// ...

public void Update ()

{

lock (ExecutionQueue)

{

while (ExecutionQueue.Count > 0)

{

ExecutionQueue.Dequeue (). Invoke ();

}

}

}

// ...

}

Möchte ein Nebenthread eine Aufgabe in die Warteschlange einfügen, genügt ein Aufruf

der Methode Enqueue auf dem Dispatcher. Diese sperrt die Queue für den Hauptthread,

sodass dieser nicht vorzeitig mit der Abarbeitung beginnen kann. Weiterhin fügt er eine

anonyme Aktion inklusive Coroutine der Queue hinzu. (Alg. 12) Die Verwendung einer Co-

routine innerhalb des Hauptthreads sorgt dafür, dass Unity die Aktion nicht sofort, sondern

zum bestmöglichen Zeitpunkt ausführt. Idealerweise ist dies, wenn sich der Hauptthread

nicht mit rechenintensiven Aufgaben, wie Spatial Mapping, beschäftigt.

Algorithmus 12 Hinzufügen einer neuen Aufgabe zum Dispatcher mittels Enqueue-
Methode

public class Dispatcher : Singleton <Dispatcher > {

// ...

public void Enqueue(IEnumerator action)

{

lock (ExecutionQueue)

{

ExecutionQueue.Enqueue (() => {

StartCoroutine(action);

});

}

}

// ...

}

Innerhalb der Methode SyncDeviceList erfolgt für jeden neuen Roboter ein Aufruf der

Methode Enqueue des Dispatchers. (Alg. 13) Es wird eine anonyme Funktion, genannt
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Closure, verwendet um die Aktion in einer Coroutine starten zu können. Der Inhalt der

Closure, EventBus.Fire, wird zu einem späterem Zeitpunkt ausgeführt.

Algorithmus 13 Auslösung des Events auf dem Main-Thread

Dispatcher.Instance.Enqueue (() => { EventBus.Fire(new RobotAdded(device));

});

Durch den EventBus werden die nötigen Aufgaben, wie das Anzeigen der Hinweisnach-

richt oder das Einfügen des Roboters in das Inventar, ausgeführt. Es ist möglich auf dem

EventBus Listener zu registrieren. Ein Listener wartet auf einen de�nierten Eventtyp um

infolgedessen eine Funktion auszuführen. Auf das Event RobotAdded warten zwei Liste-

ner, InventoryListener und DisplayNoti�cationListener. Sie sorgen für das Anzeigen des

Roboters im Inventar sowie Benachrichtigen am Bildschirmrand.

Sind Roboter im Inventar vorhanden, kann dieses geö�net werden. Der Benutzer erhält

eine Übersicht über alle im System registrierten Industrieroboter. (Abb. 17) Wählt der Be-

nutzer einen Roboter aus, wird dieser vor ihm platziert, jedoch nicht verankert. Bewegt der

Benutzer seinen Kopf, bewegt sich der Roboter mit ihm. Be�ndet sich das Hologramm des

Roboters in einer vom Benutzer erwünschten Position, kann dieser den Roboter durch einen

Tap verankern. Der Roboter wird an dieser Stelle im Raum, bspw. auf einer Tischplatte,

�xiert. (Abb. 18)

Abbildung 18: Positionierung des Hologramms auf dem Mesh, bspw. auf einer Tischplatte

Nach dem Fixieren wird vom Roboter ein Ladevorgang gestartet. Der Roboter ermit-

telt sämtliche für ihn verfügbaren Dienste im Netzwerk. Dazu wird erneut der Broker

kontaktiert. Jeder Roboter besitzt eine Skript-Komponente, Identität bzw. Identity. Diese

ermöglicht es dem Roboter den Broker nach Diensten zu fragen. (Alg. 14)
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Algorithmus 14 Laden aller verfügbaren Dienste mit ihren Abhängigkeiten

public class Identity : MonoBehaviour

{

// ...

public void LoadAvailableServices ()

{

var loader = ServiceLoader.GetInstance ();

loader.LoadService(service.Types.names.GetAxisAngles , this);

loader.LoadService(service.Types.names.SetAxisAngles , this);

loader.LoadService(service.Types.names.GetForwardKinematic , this ,

false);

loader.LoadService(service.Types.names.InterpolateService , this ,

false ,

service.Types.names.SetAxisAngles , service.Types.names.

GetForwardKinematic);

loader.LoadService(service.Types.names.GetInverseKinematic , this ,

false ,

service.Types.names.SetAxisAngles , service.Types.names.

GetForwardKinematic);

// ...

}

// ...

}

Die Methode LoadService der Klasse ServiceLoader führt eine Anfrage beim Broker aus.

Dazu wird eine entsprechende Protocol Bu�ers Nachricht an den Broker geschickt. (s. Ka-

pitel 5.1 - Abb. 15; Alg. 15) Enthält die Antwort eine gültige service_adress, wird der

Dienst gebaut. Das bedeutet, es werden Steuerelemente in der Szene platziert und die

Dienste nehmen die Kommunikation mit den Endpunkten auf.

35



Algorithmus 15 Laden der Adresse des Endpunktes

public service_adress RequestService(service.Types.names serviceName ,

string [] identifiers , bool useOrForQuery)

{

var message = new to_broker ()

{

Request = new request ()

{

UseOrForQuery = useOrForQuery ,

Receiver = new device ()

{

Identifiers = { identifiers }

},

Bag = false ,

Service = new service ()

{

Name = serviceName

}

}

};

Protocol.SendMessageWithHeader(message);

var response = Protocol.ReadMessage <response >();

if (response.ResponseDataCase != response.ResponseDataOneofCase.

Location)

{

throw new ServiceNotFoundException(

"Invalid response for service ...");

}

return response.Location;

}

Konnte die Adresse nicht ermittelt werden, wird der Dienst nicht gestartet. Weitere

Dienste, die diesen benötigen, werden ebenfalls nicht gestartet.

Der vollständige Ablauf der Netzwerkkommunikation zwischen HoloLens und dem Broker

wurde in Abbildung 15 in Kapitel 5.1 bereits veranschaulicht.

Ist die Verbindung zu den einzelnen Diensten aufgebaut, wird der Broker für die weitere

Kommunikation nicht mehr benötigt. Die HoloLens schickt infolgedessen alle Anfragen

direkt an die Dienste.

5.2.3. Interaktion

Um eine Interaktion mit einem reellen Roboter zu ermöglichen, benötigt die HoloLens für

ihr Hologramm die aktuellen Achswinkel des Roboters. Der entsprechende Dienst heiÿt

�GET_AXIS_ANGLES�. Wird der Dienst gestartet, verbindet er sich mit dem reellen Ro-

boter. Um die Anwendung nicht zu blockieren, wird Multi-Threading benötigt. Zu Beginn

wird ein neuer Thread gestartet um darin die Methode SyncAxisAngles auszuführen. Die

HoloLens wartet in diesem Thread auf eine Nachricht mit neuen Achswinkeln des Robo-
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ters. Beim Empfangen einer Nachricht werden die Winkel in einen gemeinsamen Speicher

CurrentState von Haupt- und Nebenthread abgelegt. Zusätzlich wird mittels der Flag Cur-

rentStateChanged der Hauptthread über eine Aktualisierung des Speichers informiert. Im

nächsten Frame wird das Hologramm mit den neuen Winkeln aktualisiert. (Alg. 16)

Algorithmus 16 Multi-Threading zur Synchronisation im Dienst GET_AXIS_ANGLES

public class GetAxisAngleService : Service

{

// ...

protected get_axis_angles CurrentState = new get_axis_angles ();

protected bool CurrentStateChanged;

public override void Start()

{

new Task(SyncAxisAngles).Start ();

}

// Update is running in main thread each frame

public override void Update ()

{

lock (CurrentState)

{

// check for changes in main thread

if (! CurrentStateChanged) return;

// update hologram

_identity.Interaction.SetAxisAngles(CurrentState.States);

CurrentStateChanged = false;

}

}

// SyncAxisAngles is running in sub thread

private void SyncAxisAngles ()

{

while (SyncClient.IsConnected)

{

var angleMessage = proto.ReadMessage <get_axis_angles >();

lock (CurrentState)

{

CurrentState = angleMessage;

CurrentStateChanged = true;

}

}

}

}

Die Interaktion zwischen dem Benutzer, dem Hologramm und somit dem Roboter erfolgt

über Gesten. Mittels Tap kann der Benutzer Steuerelemente an den einzelnen Achsen aus-

wählen. Führt er anschlieÿend eine Navigationsgeste aus, wird nach Beendigung dieser eine

Nachricht an die Steuerzentrale des Roboters geschickt. Der Roboter führt die Bewegung
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aus und schickt nach dem Erreichen der Endposition eine Bestätigung. (Alg. 17)

Algorithmus 17 Setzen von Winkeln am reellen Roboter durch SET_AXIS_ANGLES

public class SetAxisAngleService : Service

{

// send joints asynchron to real robot , use new thread for sending

public void SendJointStatesAsync ()

{

// access gameobject in main thread

var joints = _identity.Interaction.GetAxisAnglesRad ();

// send joints in non blocking thread

new Task (() =>

{

SendJointStates(joints);

}).Start ();

}

// send given joints to ur -bridge and wait till completion

public void SendJointStates(List <float > joints)

{

var message = new set_axis_angles

{

States = new joint_states { Axis = {joints} }

};

Proto.SendMessageWithHeader(message);

Proto.ReadMessage <joint_states >();

}

}

In Kapitel 4.3 wurden neben dem Dienst SET_AXIS_ANGLES zwei weitere Diens-

te, GET_INVERSE_KINEMATIC und INTERPOLATE_SERVICE, vorgestellt. Beide

besitzen eine Abhängigkeit zu dem Dienst GET_FORWARD_KINEMATIC. (Alg. 14)

GET_FORWARD_KINEMATIC berechnet die aktuelle Position des Ende�ektors. (s. Ka-

pitel 2.1) Nachdem die Netzwerkadresse des Dienstes für die Vorwärtskinematik ermittelt

wurde, verschickt die HoloLens eine Nachricht calculate_forward an diesen. Sie beinhal-

tet die aktuellen Achswinkel. Als Antwort versendet der Dienst die Nachricht calcula-

te_forward_result, welche eine Position beinhaltet. Diese Position besteht aus der Trans-

lation und der Rotation des Ende�ektors.

Um die inverse Kinematik für den Dienst GET_INVERSE_KINEMATIC zu berechnen,

wird an der aktuellen Position des Ende�ektors mit dem Dienst

GET_FORWARD_KINEMATIC ein Dragger-Objekt platziert. (Abb. 19)
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Abbildung 19: Roboter mit Dragger - Steuerung des Ende�ektors durch Dragger

Der Benutzer wählt eine der Achsen den Draggers aus und verschiebt bzw. rotiert diese.

Dazu wird die ausgewählte Achse beim NavigateEventManager registriert und kann über

die Gestensteuerung bewegt werden. Im Hintergrund wird beim Bewegen des Draggers ei-

ne Protocol Bu�ers Nachricht calculate_inverse an den Dienst geschickt. Der Inhalt der

Nachricht sind die aktuellen Gelenkswinkel und die Position des Draggers, welche der ge-

wünschten Position des Ende�ektors entspricht. Der Dienst berechnet für die neue Position,

mit Hilfe der inversen Kinematik (s. Kapitel 2.1) und den aktuellen Gelenkswinkel, neue

Werte für die Achsen. Die aktuellen Winkel werden für die Berechnung der Abweichung

benötigt. Die Stellung mit der geringsten Abweichung gegenüber der gegenwärtigen wird

verwendet, um die erforderliche Bewegung möglichst gering zu halten.

Der Dienst antwortet nach Berechnung mit der Nachricht calculate_inverse_result. Der

Inhalt der Nachricht ist die neue Gelenkskon�guration sowie ein bool'scher Wert. Der

Boolean ist bei einem gültigem Ergebnis true, sonst false. Ungültige Ergebnisse werden vom

Dienst geliefert, falls sich der Dragger auÿerhalb des Arbeitsraumes des Industrieroboters

be�nden. Ist das Ergebnis gültig, werden die Gelenkswinkel innerhalb der Nachricht an das

Hologramm übertragen und die Winkel angepasst. Insgesamt wird die Berechnung maximal

acht mal pro Sekunde ausgeführt. Daraus resultiert eine angemessen �üssige Bewegung des

Hologramms und reduziert zugleich die Anzahl der versendeten Nachrichten.

Als dritte Methode zur Steuerung des Roboters wurde die Interpolation entlang einer

linearen Trajektorie gewählt. Der Benutzer setzt freie Punkte im Raum, welche sich mit-

einander linear verbinden. (Abb. 20) Die Dragger-Komponente des

GET_INVERSE_KINEMATIC Dienstes wurde erneut verwendet. Durch einen doppel-

ten Tap platziert der Benutzer vor sich einen neuen Punkt im Raum. An der Stelle wird

ein Dragger-Objekt instanziiert. Das Objekt wird automatisch mit dem vorherigem ver-

bunden. Den Start bildet die Position des Ende�ektors. An dieser Position wird mittels

GET_FORWARD_KINEMATIC ein Dragger platziert. Der Benutzer kann jeden einzel-

nen Punkt mit Hilfe der Achsen anpassen. Die Verbindungslinien aktualisieren sich dement-

sprechend.
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Abbildung 20: Drei de�nierte Punkte im Raum, die durch den Roboter abgefahren werden

Stellt der Benutzer einen linearer Pfad ein, wird anschlieÿend eine Nachricht an den

INTERPOLATE_SERVICE Dienst gesendet. Die Nachricht interpolate beinhaltet fünf

Felder. Zwei Felder de�nieren die maximale Geschwindigkeit und Beschleunigung, welche

der Roboter ausführen kann. Des Weiteren können viele Industrieroboter eine maximale

Anzahl an Steuerbefehlen pro Sekunde entgegennehmen. Der UR-5 verarbeitet in jeder

Sekunde maximal acht Befehle zum Setzen seiner Achsen. Diese update_rate wird ebenfalls

in der Nachricht übergeben. Schlieÿlich enthält die Nachricht die aktuellen Achswinkel im

Feld initial_state sowie die Positionen aller de�nierten Punkte.

Die Nachricht wird an den Dienst im Netzwerk gesendet und verarbeitet. Das Ergebnis

empfängt die HoloLens in Form einer interpolate_result Nachricht. Sie beinhaltet für jeden

Schritt, den der Roboter ausführen muss, die jeweilige Position der Achsen. Die HoloLens

sendet für jeden Schritt eine Nachricht an den SET_AXIS_ANGLES Dienst. Der reelle

Roboter aktualisiert daraufhin seine Gelenkswinkel. Da der Dienst GET_AXIS_ANGLES

die Position des echten Roboters mit dem des Hologramms synchronisiert, sieht der Be-

nutzer das Resultat unmittelbar vor sich.

5.2.4. Problemlösung

Während der Implementierung der Software RoboViz traten Probleme mit dem Frame-

work der HoloLens auf. Die HoloLens verwendet eine angepasste Windows Distribution,

auf welcher .Net Core ausgeführt wird. Dieses Framework muss im Zusammenhang mit

der Software verwendet werden. Dazu zählen Klassen zur Netzwerkkommunikation oder

für das Multi-Threading. Die Programmierumgebung Unity basiert auf dem .Net Frame-

work, welches ebenfalls auf Windows 10 installiert ist. Durch diese zwei unterschiedlichen

Frameworks ist der Quellcode häu�g nicht miteinander kompatibel. Für die Übertragung

von Daten wird Googles Protocol Bu�ers verwendet. Google stellt eine Bibliothek zur

Verfügung, die unter .Net Framework funktioniert. Auf der HoloLens funktioniert diese

Bibliothek hingegen nicht. Der Code musste an mehreren Stellen angepasst werden, sodass

abhängig von der Umgebung der richtige Code ausgeführt wird. Bspw. wurde die Methode

�GetBu�er� der Klasse System.IO.MemoryStream in .Net Core umbenannt in �TryGetBuf-

fer�. Die Compiler-Flag NETFX_CORE erlaubt es, Code an den entsprechenden Stellen
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auszutauschen. (Alg. 18)

Algorithmus 18 Verwendung der Compiler-Flag NETFX_CORE um .Net Core zu un-
terstützen

byte[] bytes;

#if NETFX_CORE

// Code in .Net Core

ArraySegment <byte > buffer;

memoryStream.TryGetBuffer(out buffer);

bytes = buffer.Array;

#else

// orginaler Code in .Net Framework

bytes = memoryStream.Length == memoryStream.Capacity ? memoryStream.

GetBuffer () : memoryStream.ToArray ();

#endif

Des Weiteren war das verwendete 3D Modell des UR-5 Roboters fehlerhaft. Die Achsen

fünf und sechs wiesen falsche Drehrichtungen auf. Dies wurde korrigiert, indem zusätzliche

empty GameObjects in das Robotermodell eingefügt wurden. Diese GameObjects wurden

entlang einer orthogonalen Achse der Drehachse um 180◦ gedreht. Anschlieÿend wurde die

betro�ene Achse in die korrekte Position rotiert. Aufgrund dieser Vorgehensweise wechselt

die Drehrichtung der Drehachse das Vorzeichen.
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5.3. Roboter

Die Software zur Robotersteuerung ist in C++ geschrieben. Es wurde die bereits vorhan-

dene Software �ur-bridge� (s. Kapitel 3) als Grundlage verwendet. Die Steuerungssoftware

stellt drei Dienste bereit. Der Dienst GET_AXIS_ANGLES startet auf dem Port 9050

einen TCP/IP Server, welcher auf Netzwerkteilnehmer wartet. Verbindet sich ein Teilneh-

mer, bspw. eine HoloLens, schickt der Server in regelmäÿigen Abständen von 50ms die

aktuelle Kon�guration der Gelenkswinkel. (Alg. 19)

Algorithmus 19 Bereitstellen des Dienstes GET_AXIS_ANGLES durch den Server

robo_sim :: TcpipProtobufServer <RoboSimulation :: get_axis_angles ,

RoboSimulation :: get_axis_angles > serv_axes_provider (

port_serv_axes_provider /* 9050 */);

serv_axes_provider.setCallbackFunctionForMessageToBeSent( cbSendAxesVals );

serv_axes_provider.setSleepForMilliSecondsDuringSpin (50);

Die aktuellen Gelenkswinkel werden lediglich dann geschickt, wenn sich diese verglichen

zur letzten Nachricht geändert haben. Die Methode cbSendAxesVals akzeptiert als Para-

meter eine Referenz auf die ausgehende Nachricht. Diese enthält keinen Inhalt und kann

innerhalb der Funktion, durch die Referenz, verändert werden. Als Rückgabewert liefert

die Funktion einen Boolean. Ist der Wert true wird die Nachricht verschickt, andernfalls

nicht. (Alg. 20)

Algorithmus 20 Callback für das Senden der Achswinkel

bool cbSendAxesVals(RoboSimulation :: get_axis_angles& msg)

{

axisAnglesAct = get_actual_robot_angles ();

bool axisAreEqual = std::equal(

axisAnglesAct.begin (),

axisAnglesAct.end(),

axisAnglesOld.begin (),

[]( double value1 , double value2)

{

return std::fabs(value1 - value2) < epsilon;

});

axisAnglesOld = axisAnglesAct;

if( !axisAreEqual ) {

msg = build_protobuf_robot_message( axisAnglesAct ); //

store inside reference

return true;

}

return false;

}
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Als weiteren Dienst stellt die ur-bridge SET_AXIS_ANGLES zur Verfügung. Der Dienst

ermöglicht bspw. der HoloLens die Gelenkswinkel des Roboters zu manipulieren. Über den

Port 9051 schickt die HoloLens set_axis_angles Nachrichten an die ur-bridge. Die Nach-

richten enthalten das Feld states mit joint_states. Wird eine solche Nachricht empfangen,

sendet die Software einen Steuerungsbefehl an den Industrieroboter. Der UR-5 wird mit-

tels der Skriptsprache URScript programmiert. ("The URScript Programming Language",

2015)

Algorithmus 21 Funktion zum Setzten der Gelenkswinkel mittels URScript

def moving ():

movej ([0.000000 , -1.570000 , 0.000000 , -1.570000 , 0.000000 ,

0.000000] ,1.400000 , 1.050000 , 0.000000 , 0.000000)

movej ([0.000000 , 0.000000 , 0.000000 , 0.000000 , 0.000000 ,

0.000000] ,10.000000 , 10.000000 , 0.000000 , 0.000000)

end

Die Hauptfunktion moving wird automatisch beim Laden des Programms ausgeführt.

Die Funktion movej ist Teil der Sprache und erwartet, unter anderem, sechs Gelenkswin-

kel. Der Roboter bewegt sich erst in die Achspositionen 0°, −90°, 0°, −90°, 0° und 0°. Im

zweiten Schritt stellt der Roboter alle Achsen auf 0°. Innerhalb der ur-bridge werden diese

Befehle als Zeichenkette erstellt und an die Roboterschnittstelle gesendet. (Alg. 22) Die

Werte werden der Protocol Bu�ers Nachricht entnommen.

Algorithmus 22 Erstellen der Steuerzeichenkette in URScript und Senden an die Schnitt-
stelle

std:: string cmd = "";

cmd = "def moving ():\n";

cmd += "\t";

cmd += urCreateMoveString( q_start_arr , "j", false);

cmd += "\n";

cmd += "\t";

cmd += urCreateMoveString( conf_arr , "j", false , MAX_ACC , MAX_VEL);

cmd += "\n";

cmd += "end\n";

driver_ ->rt_interface_ ->addCommandToQueue(cmd);

Nach dem Versenden des Befehls wird solange gewartet, bis der Roboter das Programm

vollständig ausgeführt hat. Im Anschluss dazu wird eine Protocol Bu�ers Nachricht an die

HoloLens zurückgeschickt. Diese wird informiert, sobald der Roboter mit seiner Bewegung

fertig ist.
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Der dritte Server auf der ur-bridge nimmt Befehle für einen Greifer an und läuft auf

dem Port 9060. Der Greifer wird ebenfalls mittels URScript angesteuert. Empfängt der

Server eine gripper Nachricht, enthält diese einen Positionswert zwischen 0 und 255. Der

Wert 0 steht für komplett o�en, der Wert 255 für komplett geschlossen. Der Server erstellt

nach dem Empfangen der gripper Nachricht das Steuerungsskript und übermittelt es, wie

beim SET_AXIS_ANGLES Dienst. Anschlieÿend wartet der Server bis das Programm

durchlaufen ist und antwortet mit einer gripper_complete Protocol Bu�ers Nachricht.
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5.4. Mehrwertdienste

Die Steuerung des Industrieroboters mittels direkter Eingabe der Gelenkswinkel ist mit

Hilfe der HoloLens (Kapitel 5.2.3) und der ur-bridge (Kapitel 5.3) möglich. Es werden

weitere Dienste für die Steuerung mit inverser Kinematik oder das Abfahren einer de-

�nierten Strecke benötigt. Zwei der Dienste laufen auf einem Server. Die beiden Diens-

te GET_FORWARD_KINEMATIC und GET_INVERSE_KINEMATIC basieren auf

ROS. ("ROS.org | Powering the world's robots", 2018) Es wurde bereits vorhandene

Software, wie die ur-bridge, erweitert und an das Netzwerk angepasst. Der ursprüng-

liche GET_FORWARD_KINEMATIC Dienst lieferte falsche Rotationswerte und wur-

de korrigiert. Benötigt ein Netzwerkteilnehmer die Vorwärtskinematik, schickt er eine

calculate_forward Nachricht an den Dienst. Die Nachricht beinhaltet die Gelenkswinkel

des Industrieroboters. Als Antwort schickt der Server eine Nachricht vom Typ calcula-

te_forward_result mit der Position als Inhalt. (Alg. 23)
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Algorithmus 23 Berechnen der Vorwärtskinematik mit Hilfe von ROS

void callBackForIncomingForwardMessage(const RoboSimulation ::

calculate_forward &msg)

{

// read joints from message

std::vector <double > joints;

for(signed int axis = 0; axis < msg.joint_states ().axis_size ();

axis ++)

{

joints.push_back(msg.joint_states ().axis(axis));

}

// calculate forward kinematic with ROS and store in storage

found_pose_ = kinematics_handler_ ->forwardKinematics( joints );

}

bool callBackForwardResult(RoboSimulation :: calculate_forward_result &msg)

{

tfScalar x, y, z, roll , pitch , yaw;

// extract rotation

found_pose_.getBasis ().getRPY(roll , pitch , yaw);

// extract translation

x = found_pose_.getOrigin ().getX();

y = found_pose_.getOrigin ().getY();

z = found_pose_.getOrigin ().getZ();

// write result into msg (by reference)

RoboSimulation :: point* point = new RoboSimulation :: point;

msg.set_allocated_position(point);

point ->set_x(x);

point ->set_y(y);

point ->set_z(z);

point ->set_ar(roll);

point ->set_ap(pitch);

point ->set_ay(yaw);

return true;

}

Der inverse Kinematik Dienst GET_INVERSE_KINEMATIC läuft identisch wie der

GET_FORWARD_KINEMATIC Dienst. Er erwartet als Eingabe einen Punkt mit x, y

und z, sowie yaw, pitch und roll. Optional kann die aktuelle Position des Industrieroboters

ebenfalls angegeben werden. Anschlieÿend werden durch ROS die Gelenkswinkel errechnet.

Findet der Algorithmus keine gültige Lösung, wird als Gelenkswinkel ∞ zurückgegeben,

in jedem anderen Fall die errechneten Winkel.

Um eine lineare Bahn zu berechnen, wird der Dienst INTERPOLATE_SERVICE im-

plementiert. Der Dienst nutzt die Bibliothek KDL von Orocos. ("Kinematic and Dynamic

Solvers | The Orocos Project", 2018) Er erwartet eine Protocol Bu�ers Nachricht vom Typ

interpolate und sendet als Antwort die Nachricht interpolate_result. Als Parameter werden
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innerhalb der Nachricht die maximale Geschwindigkeit des Roboters und seine maximale

Beschleunigung übergeben. Zusätzlich enthält die Nachricht das Feld update_rate. Dieses

enthält die Anzahl der Schritte pro Sekunde, die interpoliert werden sollen. Im letzten

Feld werden die Punkte als Liste übergeben. Es wird von Punkt zu Punkt jeweils linear

interpoliert.

Im ersten Schritt wird zwischen zwei Punkten eine Bahn, eine Trajektorie, erstellt. (Alg.

24)

Algorithmus 24 Erstellen einer Trajektorie zwischen den Punkten start und target

std::shared_ptr <KDL:: Trajectory > traj;

KDL::Frame p0(KDL:: Rotation ::RPY(start[3], start [4], start [5]), KDL:: Vector

(start[0], start [1], start [2]));

KDL:: Frame p1(KDL:: Rotation ::RPY(target [3], target [4], target [5]), KDL::

Vector(target [0], target [1], target [2]));

KDL:: RotationalInterpolation_SingleAxis* ri = new KDL::

RotationalInterpolation_SingleAxis ();

ri ->SetStartEnd(p0.M, p1.M);

KDL:: Path_Line* path = new KDL:: Path_Line(p0, p1, ri , eqrad); // ri is

deleted by destructor (path_line take ownership)

KDL:: VelocityProfile_Trap* vp = new KDL:: VelocityProfile_Trap(this ->

max_vel_ , this ->max_acc_);

vp ->SetProfile (0, path ->PathLength ());

traj.reset <KDL:: Trajectory_Segment >( new KDL:: Trajectory_Segment(path , vp)

); // p & vp are deleted by destructor of Traj_Seg (takes ownership)

Im zweiten Schritt wird die Trajektorie schrittweise interpoliert. Die Anzahl der Schritte

ist von der Dauer (in s) und der update_rate, der Anzahl der Schritte pro Sekunde, ab-

hängig. Jeder Punkt pro Schritt wird in der Protocol Bu�ers Nachricht gespeichert (Alg. 25)
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Algorithmus 25 Einfügen der Punkte in die Protocol Bu�ers Nachricht

double time_rate = 1 / update_rate;

double time = 0;

while(time < traj ->Duration ()) {

KDL::Frame current_frame = traj ->Pos(time);

double roll , pitch , yaw;

RoboSimulation :: point* points = return_msg.add_points ();

points ->set_x(current_frame.p.x());

points ->set_y(current_frame.p.y());

points ->set_z(current_frame.p.z());

current_frame.M.GetRPY(roll , pitch , yaw);

points ->set_ar(roll);

points ->set_ap(pitch);

points ->set_ay(yaw);

time += time_rate;

}

Im Letzten Schritt wird time = traj->Duration(); gesetzt. Aufgrund dessen ist der

letzte Eintrag identisch dem Endpunkt der Trajektorie. Die return_msg ist vom Typ inter-

polate_result und wird im Anschluss zurückgeschickt. Der anfragende Teilnehmer erhält

eine Liste aller Punkte auf der Bahn.

Durch die Kombination der Dienste GET_FORWARD_KINEMATIC,

GET_INVERSE_KINEMATIC, INTERPOLATE_SERVICE und SET_AXIS_ANGLES

lässt sich auf der HoloLens eine vollständige Bewegung des Hologramms und reellen Robo-

ters durchführen. Der folgende Algorithmus lässt den Roboter von der aktuellen Position

auf einen vorher de�nierten Punkt (s. Kapitel 5.2) fahren.
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Algorithmus 26 Ende�ektor des Roboters fährt von der aktuellen Position an einen
de�nierten Punkt

var points = new List <point >();

// start position via forward kinematic

points.Add(Identity.Helper.EndeffectorPositionRos ());

points.Add(Target);

var response = InterpolateService.CalculateTrajectory(points);

foreach (var point in response.Points)

{

var joints = InverseKinematicService.CalculateInverse(Identity.

Interaction.GetAxisAnglesProto (), point);

if (joints == null)

{

Debug.Log("invalid step ... aborting");

return;

}

// send joints to ur-bridge

SetAxisAngleService.SendJointStates(joints);

await Task.Delay(TimeSpan.FromMilliseconds(update_rate)); // update

rate in ms

}

Debug.Log("finished trajectory");

Eine vollständige Liste der implementierten Dienste kann aus der Tabelle 2 entnommen

werden.
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6. Validierung

6.1. System

Das System dient der Visualisierung und Steuerung von Industrierobotern mit Hilfe von

mobilen Endgeräten. Es wurde eine Software, die es ermöglicht mit Hilfe einer HoloLens

und Augmented Reality einen Industrieroboter vom Typ UR-5 zu kontrollieren, entwickelt.

Um die Funktionalität und Exaktheit der Software zu überprüfen, wurde ein Experiment

durchgeführt. Mittels der HoloLens soll ein UR-5 Roboter programmiert werden, ein Ele-

ment von einem Punkt auf einen anderen zu legen. Im Folgenden wird dokumentiert, wie

zuverlässig der Roboter die geplante Bewegung ausführt. Zusätzlich wird gemessen, wie

stark das hologra�sche Bild von dem reellen Bild abweicht.

6.1.1. Versuchsaufbau

Der Roboter ist an einer festen Position auf einer Arbeitsplatte �xiert. Ausgerüstet ist er

mit einem Greifer. Zum Greifen liegt ein 3, 1cm breiter, 6, 2cm langer und 9, 6cm hoher

Gegenstand bereit. Zu Beginn des Experiments bzw. bei Start der Anwendung schaut der

Benutzer frontal auf den Roboter.

Abbildung 21: Abweichungen (grün) an den Achsen zwischen Hologramm und Roboter

Der Roboter sowie die HoloLens sind in einem gemeinsamen Netzwerk. Zusätzlich stehen

alle Dienste aus Tabelle 2 im Netzwerk zur Verfügung.

6.1.2. Versuchsdurchführung

Nachdem der Roboter über das Netzwerk geladen wurde, wird das Hologramm vom Be-

nutzer über den reellen Roboter gelegt. Das Mesh vom Spatial Mapping wird zur Positio-

nierung verwendet. Nach Start der Anwendung und dem Platzieren des Roboters werden

die Abweichungen zwischen den Achsen des Hologramms und des Roboters mit einem
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Maÿband gemessen. Anschlieÿend wird das Programm zum Aufheben des Gegenstandes

fünf mal in Folge ausgeführt. Die Anwendung RoboViz wird zwischen den Abläufen nicht

neu gestartet, um die Zuverlässigkeit der Anwendung zu validieren. Nach dem fünfmaligem

Ausführen wird die Abweichung zwischen dem reellen Roboter und dem Hologramm erneut

gemessen. Danach wird die Anwendung RoboViz neu gestartet und der Roboter erneut auf

der Arbeitsplatte positioniert. Die Anwendung wird insgesamt fünf mal gestartet, mit je-

weils fünf Programmabläufen. Der Gegenstand wird 25 mal aufgehoben und versetzt. Es

wird an allen sechs Achsen jeweils zehn mal gemessen.

6.1.3. Messprotokoll

Die verwendeten Variablen:

� i - Nummer des Anwendungsstarts von RoboViz

� j - Nummer der Achse

� sij - Abweichung (in mm) an Achse j nach dem i-ten Start von RoboViz und vor

dem Start des Programms zum Aufheben des Gegenstandes

� tij - Abweichung (in mm) an Achse j nach dem i-ten von RoboViz und fünf Pro-

grammdurchläufen

� Mj - Median der Abweichung im j-ten Start von RoboViz

j 1 2 3 4 5 6

i si1 ti1 si2 ti2 si3 ti3 si4 ti4 si5 ti5 si6 ti6
∑ ∑

12 Mj

1 3 5 4 15 10 10 25 22 30 27 37 33 221 18, 4 15

2 19 37 31 35 33 28 29 29 14 19 21 21 316 26, 3 28

3 8 11 9 13 9 14 12 21 19 23 20 24 183 15, 3 13

4 18 16 18 15 25 25 25 26 20 23 29 28 268 22, 3 23

5 21 21 19 21 25 24 29 30 29 25 27 25 296 24, 7 25

Tabelle 4: Messergebnisse der Abweichungen (in mm) zwischen Hologramm und reellem
Roboter

6.1.4. Versuchsauswertung

Von den 25 durchgeführten Versuchen wurden alle erfolgreich abgeschlossen. Der Greifer

hob den Gegenstand in jedem Durchlauf von derselben Stelle auf und platzierte ihn immer

an der vorher de�nierten Position. Für die Abweichung A zwischen dem Hologramm und

dem reellen Roboter wird der Durchschnitt berechnet. Die Messung sij bezeichnet die Mes-

sung nach dem Start der Anwendung im i-ten Durchlauf an der j-ten Achse. Die Messung
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tij bezeichnet analog dazu die Messung nach dem Durchlaufen der fünf Wiederholungen.

A =
5∑
i=1

6∑
j=1

(sij + tij)

2

Die gesamte Abweichung beträgt im Durchschnitt A = 21, 4mm. Zusätzlich werden die

Summen aller Messungen pro Anwendungsstart, der Durchschnitt der Messungen und der

Median ermittelt.

a =
5∑
i=1

(si6 + ti6)

2

An Position j = 6 weist der Ende�ektor eine Abweichung a von durchschnittlich 26, 5mm

auf. Aufgrund der perspektivischen Verzerrung zwischen Hologramm und Roboter beträgt

der Messfehler 2mm.

6.2. Software

Der Broker ist das Zentrum des Netzwerkes. Fällt dieser aus, können keine neuen Verbin-

dungen aufgenommen werden. Dennoch laufen bestehende Verbindungen zwischen Diens-

ten, Robotern und Anzeigegeräten weiter. Daher ist eine fehlerfreie Funktionsweise des

Brokers entscheidend, um die Funktionsfähigkeit des gesamten Netzwerkes zu gewährleis-

ten. Der Broker basiert auf Komponenten. Diese verwalteten gröÿere Bereiche der Softwa-

re, wie bspw. das Geräteverzeichnis device repository. (Abb. 22) Eine Komponente besteht

aus vielen kleineren Softwareteilen, sogenannten Units. Eine Software-Unit führt genau ei-

ne Aufgabe innerhalb einer Komponente aus. Sie sind die kleinste logische Einheit in der

Software.

Broker

add device find device remove device register service remove service

device repository service repository

find service

Abbildung 22: Broker Software-Architektur

Die gesamte Software funktioniert nur dann fehlerfrei, wenn sämtliche Komponenten

der Software dies ebenfalls sind. Eine Komponente ist wiederum fehlerfrei, wenn auch

sämtliche Units ohne Fehler sind. Da Units kleine Softwarebereiche sind und de�nierte

Aufgaben übernehmen, lassen sich diese gut testen. Diese Tests heiÿen Unit-Tests.

Die Funktionsweise und das Testen sollen anhand des Beispiels �add device� beschrieben

werden. Die Anfangs- und Ausgangsbedingungen einer Unit sind de�niert. Der Zustand

ist die aktuelle Liste des Geräteverzeichnisses. Zu Beginn ist die Liste leer. Bei Eingabe

eines Gerätes, wird eine Liste mit einen Gerät ausgegeben. Dieser Ablauf lässt sich testen.
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(Alg. 27) Der Test endet mit dem Aufruf eines assert Befehls. Dieser überprüft, ob die

erforderliche Ausgangssituation eintri�t. Andernfalls wird eine Fehlermeldung ausgegeben

und das Testergebnis ist negativ.

Algorithmus 27 Unit-Test zum Hinzufügen eines Gerätes in ein leeres Repository

def test_a_device_can_be_added_to_the_repository(self):

# creating of state is not required , repository is empty by default

# create input

greeting = self.buildGreeting("some -unique -id",

["identifier -1", "..."])

self.resolver.addDevice(greeting , "channel")

self.assertEqual(len(self.resolver.list_of_devices), 1,

"one device should be in repository")

Andere Units, wie ��nd service�, werden ebenfalls getestet. Dazu muss zunächst für

jeden Testdurchlauf derselbe Ausgangszustand hergestellt und eine Eingabe erzeugt wer-

den. (Alg. 28) Am Ende wird die Ausgabe der Unit erneut mit einem assert Befehl getestet.

Algorithmus 28 Unit-Test zum Finden eines Services im Repository

def test_a_service_can_be_resolved(self):

# register services (state)

greeting = self.buildGreeting(

"some -unique -id", ["robot", "arm"],

[[ service_msg.GET_AXIS_ANGLES , 1234] ,

[service_msg.GET_INVERSE_KINEMATIC , 1234] ,]

)

self.resolver.addServices(greeting , "channel")

# build service request (input)

device = device_msg ()

device.identifiers.extend (["some -unique -id"])

service = service_msg ()

service.name = service_msg.GET_AXIS_ANGLES

# resolve channel service (result)

channel = self.resolver.resolveFirstService(device , service)

# test result

self.assertEqual(channel.channel , "channel",

"resolved channel did not match")

Jede Unit wird mit unterschiedlichen Zuständen und Eingaben getestet. Je nach Ergeb-

nis wird eine Fehlermeldung oder ein �OK� nach Ende des Testdurchlaufes ausgegeben.
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(Abb. 23) Dabei sollten nicht nur gängige Eingaben getestet werden. Diese führt die Soft-

ware meist korrekt aus. Wichtiger ist es, falsche Eingaben und die Reaktionen der Software

darauf, zu testen. Wird bspw. die korrekte Fehlermeldung erzeugt, wenn ein Dienst nicht

vorhanden ist? Was passiert, wenn ein Gerät versucht sich mehrmals anzumelden? Wie

reagiert der Broker, wenn ein Gerät entfernt werden soll, welches nicht in der Liste auf-

taucht?

Wie Abbildung 23 zu entnehmen ist, wurden 15 Units getestet. Alle Tests wurden er-

folgreich absolviert.

Abbildung 23: Ergebnisse eines Unit-Tests vor und nach Behebung eines Softwarefehlers

Durch die unterschiedlichen Tests der einzelnen Units, ist die korrekte Funktionsweise

jeder gröÿeren Komponente gewährleistet. Dies wiederum sorgt für eine zuverlässige Soft-

ware. Der vollständige Code des Brokers kann nicht durch Unit-Tests überprüft werden,

da nicht jeder Code zu einer Unit gehört. Bspw. der Code, der einzelne Units miteinander

verbindet, muss separat geprüft werden. Insgesamt konnte der Broker umfangreich getestet

werden. Folglich ist fehlerfreie Funktionsweise garantiert.

6.3. Diskussion

Die Durchführung eines Versuches und das Testen mittels Unit-Tests haben gezeigt, dass

das Netzwerk mit allen Teilnehmern funktioniert. Der UR-5 Roboter lässt sich mit der Ho-

loLens programmieren und kann wiederholt eine Aufgabe ausführen. Auch äuÿere Einwir-

kungen, wie das manuelle Bewegen des Roboters zwischen Programmabläufen, irritierten

das System nicht. Die Änderungen werden automatisch über das Netzwerk synchronisiert.

Der Roboter lässt sich durch drei Eingabemethoden steuern. Die erste Variante ist die

Veränderung der Achsen des Hologramms durch Gesten. Der reelle Roboter bewegt sich je

nach Gestensteuerung in die neue Position. In der zweiten Form der Steuerung lässt sich die

Position des Ende�ektors mit Hilfe der GUI verändern. Hierzu zeigt das Hologramm eine

Vorschau der neuen Roboterposition. Nach Bestätigung bewegt sich der Industrieroboter in

die Position. Die dritte Eingabemethode ist die lineare Punkt-zu-Punkt Bewegung durch

Interpolation. Sie verwendet intern die beiden anderen Eingabemethoden und erweitert

diese.

Um den Roboter interaktiv zu steuern, wurde das Hologramm über den Industrieroboter

55



gelegt. Die Sensoren der HoloLens sind in der vorliegenden Version nicht präzise genug,

um das Hologramm exakt an der Umgebung auszurichten. Dies lässt sich ebenfalls den

Messwerten entnehmen. Das Hologramm weicht im Durchschnitt um 21, 4mm vom reel-

len Roboter ab. Diese Abweichung resultiert aus der Positionierung des Hologramms auf

dem Mesh. Der Benutzer muss die Abweichung durch Einberechnung dieser kompensieren.

Für präzise Aufgaben, wie Schweiÿarbeiten, kann die HoloLens nicht verwendet werden.

Hingegen für andere Aufgaben, wie das Greifen und Platzieren von Gegenständen, ist die

HoloLens problemlos einsetzbar.
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7. Zusammenfassung und Ausblick

Ziel der Arbeit war es ein Netzwerk zu scha�en, welches einen dynamischen Aufbau er-

möglicht. Mobile Endgeräte müssen keine genauen Funktionen über Netzwerkteilnehmer

besitzen, um diese zu steuern. Der Fokus lag auf der Visualisierung und Steuerung eines

beliebigen Industrieroboters. Ein Netzwerk, welches als Topologie eine Hybridstruktur zwi-

schen Peer-to-Peer und Client/Server-Netzwerk aufweist, wurde erfolgreich implementiert.

Im Zentrum des Netzwerks steht der Broker, welcher die einzelnen Teilnehmer untereinan-

der vermittelt. Nach der Vermittlung läuft die Kommunikation direkt zwischen den Teil-

nehmern. Das Endgerät, bzw. die HoloLens ermittelt zur Laufzeit die Roboter, sowie die

benötigten Dienste und lädt diese über das Netzwerk. Anschlieÿend wird der Roboter über

ein Hologramm visualisiert und durch Gesten gesteuert. 24

Abbildung 24: Steuerung des Industrieroboters mittels Gesten

Durch einen Versuch (s. Kapitel 6.1) hat sich herausgestellt, dass die Sensorik der Ho-

loLens ungenau ist. Durch das verwendete Spatial Mapping zur Positionierung des Ho-

logramms weicht dieses um durchschnittlich 21, 4mm vom reellen Roboter ab. Zusätzlich

bereitete die Plattform der HoloLens während der Implementierung zahlreiche Probleme.

Die HoloLens verwendet das proprietäre Framework .Net Core. Dieses ist mit zahlreichen

bestehenden Bibliotheken, wie Googles Protocol Bu�ers, inkompatibel. Die Bibliotheken

wurden an das Framework angepasst und funktionieren sowohl unter .Net Framework als

auch .Net Core.

Es ist möglich den Roboter mit Hilfe der HoloLens zu programmieren. Einige Funktio-

nen wurden nicht implementiert. Bspw. existiert für den Greifer kein 3D Modell, welches

durch Gesten manipuliert werden kann. Der Greifer kann jedoch über einen Dienst in

Programmen eingebunden werden.

Eine Möglichkeit um die ermittelte Abweichung zwischen Hologramm und Industriero-

boter zu verringern, ist die Implementierung eines Marker-Trackings. Das Hologramm

wird folglich anhand eines exakt positionierten Markers ausgerichtet. Bestehende Tracking-

Systeme sind allerdings nicht mit der HoloLens kompatibel. Des Weiteren können durch
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die HoloLens zusätzliche Sensoren visualisiert werden. Es ist möglich die Punktwolke einer

Kinect mit Diensten aufzuarbeiten und anschlieÿend in der HoloLens anzuzeigen. ("Kinect

� Entwicklung von Windows-Apps", 2018) Die Gestenerkennung kann mittel externer

Hardware, wie Leap Motion, optimiert werden. ("Leap Motion", 2018)

Nicht nur die Visualisierung und Steuerung, auch das Netzwerk lässt sich um zahlreiche

Funktionen, wie bspw. das Zusammenstellen von Robotergruppen, erweitern. Zusätzlich ist

ein Authenti�zierungssystem für den produktiven Einsatz notwendig. Auf diese Weise ist

gewährleistet, dass lediglich Nutzer mit einer Berechtigung Roboter steuern und Dienste

nutzen können. Die Steuerung weiterer Werkzeuge kann ebenfalls implementiert werden.

Das Vorhaben, Industrieroboter mittels Augmented Reality zu steuern, wurde erfolg-

reich umgesetzt. Dennoch weist das Thema �Entwurf und Entwicklung eines Systems zur

Visualisierung und Steuerung von Industrierobotern auf mobilen Endgeräten� ein groÿes

Potenzial zur Weiterentwicklung auf.
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A. Installationsanleitung

A.1. Voraussetzungen

Für die Installation des Systems werden folgende Komponenten vorausgesetzt. Python wird

für die Ausführung des Brokers benötigt. Visual Studio, Unity, .Net Framework und das

Windows Universal SDK werden für die Anwendung RoboViz der HoloLens verwendet.

Für die Mehrwertdienste werden ROS, Catkin und Cmake benutzt.

A.2. Broker

Der Broker verwendet Python, eine Skriptsprache. Diese müssen nicht compiliert werden.

Der Broker wird mit dem Befehl python broker.py gestartet.

A.3. HoloLens

Die Anwendung der HoloLens muss erstellt werden. Im ersten Schritt wird die Anwen-

dung RoboViz mit Unity geö�net. Anschlieÿend wird unter �File →Build Serttings...� die

Anwendung für die Universal Windows Plattform gebaut. Nach erfolgreichem Bauen ö�-

net sich automatisch der Windows Explorer mit dem Build-Verzeichnis. Nach dem Ö�nen

der .sln-Datei mit Visual Studio kann die Anwendung auf der HoloLens installiert wer-

den. Dazu muss als Systemtyp �x86� ausgewählt werden. Im Anschluss daran wird in der

Liste der verfügbaren Geräte die HoloLens ausgewählt. Diese muss per USB-Kabel mit

dem Computer verbunden sein. Nach der Installation wird die Anwendung automatisch

gestartet.

A.4. Roboter und Mehrwertdienste

Sowohl die Software der Robotersteuerung ur-bridge, als auch die Mehrwertdienste werden

unter Linux compiliert. Im Falle des �interpolator� und der �ur-bridge� muss im Terminal

mittels cd path-to-project/build in das Unterverzeichnis �build� gewechselt werden. Je

nach System muss ggf. Cmake kon�guriert werden. Dazu wird im build-Order ccmake ..

ausgeführt. Der Pfad zur Protocol Bu�ers Bibliothek muss entsprechend eingetragen wer-

den. Anschlieÿend wird mit dem Befehl make die Software compiliert. Abhängig vom Pro-

jekt wird die Anwendung mittels ./ur-bridge oder ./interpolator gestartet.

Der Mehrwertdienst für die Vorwärtskinematik und die inverse Kinematik muss im

Catkin Workspace liegen. Nach dem Ausführen von catkin_make wird der Dienst mit

roslaunch inverse_kinematic_service launch_without_robot.launch gestartet.
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