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Abstract

The waggle dance patterns of the western honey bee are well under-
stood and researched. New methods in computer vision systems allow
long-term tracking of individual bees to capture the spatiotemporal po-
sition of each bee in the hive. Previous research on the detection of the
waggle dance primarily focuses on videos with a high frame rate. The
few currently known methods on spatiotemporal data require a high
temporal resolution of at least 13 Hz to capture the waggle behav-
ior part. Contrary to the dancer, research on the detection of waggle
dance followers is not existent.

This thesis introduces a new model to detect waggle-dancers and
their followers in spatiotemporal data with a low temporal resolution
by using domain knowledge to engineer specific features that match
these behaviors. We describe the model of the waggle-dance and their
followers, the patterns behind it and the process to utilize this knowl-
edge into specific features.

The proposed model allows the discovery of not only the waggle-
dancers but its followers; the combination of long-term tracking and
the detection enables further research into the relation between each
bee in the colony.



Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand ande-
rem als meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie
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1 Introduction

1 Introduction

A honey bee colony has little-known command structure; each bee acts au-
tonomously while working together on complex tasks otherwise not feasible
alone. Nest construction, brood control, defense and division of labor are
just a few examples of behaviors where organization and communication are
paramount.
The waggle dance or the round-dance are examples of such a communication
behavior, the bee performs either dance to convey the location information
about a food source [1]. A bee discovering a food source returns to the
hive and communicates the location by encoding it in the dance. Any bee
following the dance, subsequently called followers, can decode the location
and is able to find the advertised site. This thesis focuses its efforts on the
waggle dance.
Our understanding of the honey bee is limited; there is very little knowledge
about behaviors and interaction over a long time frame. The BeesBook
Project1 focuses on these gaps of knowledge and the discovery of short and
long term behaviors.
The research requires the tracking of each bee to extract repeating patterns
and thus behaviors. Traditional tracking approaches were composed of man-
ual labeling over a very short time frame or on a very limited number of
bees; a colony containing just a few thousand bees renders prolonged track-
ing nearly impossible. The BeesBook project solved this issue by developing
a computer vision system to record the ID and the spatiotemporal position
of each bee within a hive, at a frequency of 3 Hz over a period of nine weeks
[2]. The computer vision system uses a probabilistic approach; the ID is not
always perfectly decodable, a probability indicates the confidence. Further
work transformed the probabilistic nature into an explicit trajectory for each
bee [3–6]. The trajectory contains data about the position, orientation and
ID of the bee at each time.
The low temporal resolution of the source material is a challenge when de-
tecting behaviors; some parts of behaviors contain fast movements which are
not covered by 3 Hz data. Two examples of these behaviors are the waggle
dance with its waggle part where the bee moves its body from side to side
at a frequency of about 13 Hz [7] and the stop signal which lasts about a
tenth of a second and exhibits a vibration of about 320 Hz [8].
Previous research on detection on waggle dancers exclusively use this fast
moving feature [2, 9–11]. This thesis presents another way to detect waggle
dancers and their followers with a different set of defining features. The
described approach uses intricate domain knowledge about the dance and
follow behavior to characterize patterns. The patterns are subsequently
used and combined to create a classification model. The model is evaluated

1A project by the BioRobotics lab of the Freie Universität Berlin.
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1 Introduction

against a manually labeled ground truth samples to determine the accuracy
and error.
The proposed method allows the detection of waggle dancers and followers
in low-frequency spatiotemporal data. Previous detection methods focused
on the dancers; there are no known publications about automatic detection
of followers. The automatic detection of dancers and followers, coupled with
long term tracking, enables the research into dance-to-follower communica-
tion patterns over a long time frame.
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2 Related Work

2 Related Work

The following sections cover the related work from different aspects: the
behavioral models of the dance and follow behavior, the detection of waggle
dances on spatiotemporal and video data and the necessity of this work
from a software perspective. There are to date no publications about the
automatic detection of waggle-dance followers in either videos or trajectories.

2.1 Behavioral Model

Karl von Frisch was the first to publish extensive research on the waggle
dance. He describes in his publications “Aus dem Leben der Bienen” [12]
and “The dance language and orientation of bees”[1] the spatiotemporal
pattern of the waggle dance.
While there is a lot of excellent research continuing the work by Frisch, this
thesis will focus on its most relevant research. The waggle dance pattern
is further described by Landgraf et al. in “Analysis of the Waggle Dance
Motion of Honeybees for the Design of a Biomimetic Honeybee Robot” [13]
and explores different intrinsic properties. Different velocities, durations and
frequencies are just a few of those properties; this thesis uses some of these
properties to accurately model the dance and their followers.

The follower is further described by Božič and Valentinčič [14], and Grüter
and Farina [15]. They describe the spatiotemporal pattern of the follower
and the orientation and position of followers in relation to the dancer.

2.2 Waggle Dance Detection

There are two publications which relate to the detection of waggle dancers
on spatiotemporal data and one publication which detects dancers on videos.
The first and most similar work on spatiotemporal detection is by Feldman
and Balch from 2003 published in “Automatic identification of bee move-
ment” [9]. The second is by Kimura et al. in their publication “A new
approach for the simultaneous tracking of multiple honeybees for analysis
of hive behavior” [10].
The final result of the work by Feldman and Balch is the ability to differenti-
ate between trajectories of dances and other behaviors. The main difference
to this thesis is the higher resolution data of 30 Hz. They start by trans-
forming the trajectory into a sequence of labels. Each label represents a
different type of movement and is specifically feature engineered; the most
prominent are the “arcing left”, “arcing right”, “waggle” and “straight” la-
bel. The sequence of labels is put into a hidden Markov model and the
resulting transition matrix was split into two transition graphs by removing
transitions with a probability of less than 0.005.
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2.2 Waggle Dance Detection

The first transition graph (see Figure 1a) could determine the probability
of a dance given a sequence of labels; the second graph (see Figure 1b) did
not represent any other behaviors.

Waggle Arcing Left

Arcing Right

0.98

0.98

0.97

0.012

0.08

(a) First transition graph.
Shows the approximate state transi-
tion of a typical waggle-dance behav-
ior.

Dead Track Loitering

Straight

0.98 0.99

0.97

0.017

0.007
0.016

(b) Second transition graph.
Shows no apparent behavior.

Figure 1: Transition graphs from “Automatic identification of bee movement” by Feld-
man and Balch [9]. Extracted by removing all transitions with a prob. of
0.005 or lower from the hidden Markov model transition matrix.

The described approach is not applicable to this thesis; the resolution of 3
Hz prevents the extraction of aforementioned engineered features such as
the waggle which oscillates at approximately 13 Hz or the arcing movement
which in fast dances look like a line. The use of a hidden Markov model in
our thesis is also not necessary and would add needless complexity.

The second publication by Kimura et al. [10] tracks bees in 30 fps videos and
claims to detect waggle dances from these trajectories. The publication does
not convey any information about the success or the approach of the dance
detection. The method cannot be reproduced due to missing explanation in
the methodology.

The detection on videos has been solved by Wario et al. [2]. They devel-
oped and published a system which is divided into two parts. Methods for
automatic tracking in honey bees and the decoding of dances. The first part
describes a system to detect the identity and position of each bee within
three fps videos and produces the data for this thesis. The second part
describes the detection of waggle dances and their locations within 120 fps
videos without the ability to detect the identity of the dancer.
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2.3 Existing Software Solutions

2.3 Existing Software Solutions

JAABA [16] is a general purpose tool to annotate animal behavior. It ad-
vertises their learning feature in which the tool learns from a few samples
and their video and trajectories. The relation to this work is that choosing a
working solution over something new is preferable. JAABA learns through
human labeling with the initial learning attempt on a video, trajectory and
set of labeled behaviors. It tries to learn when a specific input of frames
defines a behavior. The result is applied either to the same video to find
other unlabeled occurrences or to another video to present the results in a
user interface. The researcher can then correct or add labels to improve the
system. The learning phases are of iterating nature, the system predicts,
the researcher corrects.
JAABA requires both the source video and the trajectories and is not opti-
mized for large amounts of data in the order of hundreds of terabyte. The
software is written in Matlab; integration into any pipeline would add large
technical debt and is an issue. A goal of this thesis is the detection on
trajectories alone to reduce the amount of data processed by a factor of
thousand.
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3 Implementation

3 Implementation

This implementation section describes the process of modeling features to
detect dancer and follower by using domain specific knowledge. The process
is described in a linear fashion and explains each step and the decision behind
it.
Section 3.1 gives an overview of the provided data and highlights its charac-
teristics and challenges. The following section 3.2 illustrates the behavioral
model and the interaction between a waggle-dancer and its followers. Section
3.3 describes the extraction of egocentric velocities from the spatiotemporal
data to explain in section 3.4 the intrinsic patterns of each iteration of the
dance and their followers.
Section 3.5 uses the described patterns to build a rank correlation function
for a single point in time associated with the middle of the iteration. A
dancing and following bee performs in most cases multiple iterations; section
3.6 describes the use of this knowledge to improve the correlation function
by summarizing over a time window. The last section 3.7 finds the optimal
time in the correlation function and designs a classifier from it.

3.1 Data

The data which this thesis relies on is a product of a series of contributions.
A complete honey bee colony was observed for nine weeks. Each individual
bee was tagged with an unique ID; high-resolution cameras recorded the
honeycomb with 3 fps. A computer vision system processes the videos and
decodes the ID and the location of each bee in a video-frame into probabilis-
tic bits. The setup is described by Wario et al. [2] in “Automatic methods
for long-term tracking and the detection and decoding of communication
dances in honeybees”.
Further work improves the decoding of the ID with a mix of neural networks
[4]. The tracking [5, 6] finalizes the process by combining the probabilistic
IDs and their spatiotemporal position into trajectories of a single bee. The
produced data is the foundation for this thesis.
The data is in a table format style from a trajectory/track perspective. Each
track consists of several rows, in which each row conveys location information
about a bee, see Table 1.

Each row contains the following information:

• track id
Unique ID indicating the track this position belongs to.

• timestamp
Time the location was recorded as a Unix timestamp.
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3.1 Data

track id timestamp x y orientation bee id

11 1471258925.79 1150 2287 -1.57 [0.1, 0.0, ... , 0.0, 0.0]
11 1471258926.13 1164 2287 -0.52 [0.0, 0.1, ... , 0.0, 0.0]
11 1471258925.46 1150 2288 -0.83 [0.9, 0.0, ... , 0.1, 0.0]
11 1471258924.13 1226 2237 -0.72 [0.0, 0.0, ... , 0.0, 0.0]
29 1471258924.13 2114 1275 -0.38 [0.0, 0.0, ... , 0.0, 1.0]
29 1471258924.47 2126 1276 -0.64 [1.0, 0.0, ... , 0.0, 0.0]
29 1471258924.80 2126 1289 -0.27 [0.0, 0.0, ... , 0.0, 1.0]
29 1471258925.13 2125 1289 -0.71 [0.1, 0.0, ... , 0.0, 0.0]
29 1471258925.46 2115 1325 -0.01 [0.0, 0.0, ... , 0.0, 1.0]
41 1471258927.45 2726 2515 1.66 [0.4, 0.4, ... , 0.3, 0.4]
41 1471258927.12 2714 2527 2.14 [0.5, 0.7, ... , 0.2, 0.6]
41 1471258924.80 2627 2577 2.31 [1.0, 0.7, ... , 0.0, 0.8]
41 1471258924.47 2563 2575 2.75 [1.0, 0.0, ... , 0.0, 1.0]
41 1471258924.13 2538 2562 2.71 [1.0, 0.0, ... , 0.0, 1.0]
50 1471258924.13 2375 1901 1.65 [0.8, 0.8, ... , 0.7, 0.4]

Table 1: Excerpt of the data

• x and y
The location in pixels.

• orientation
The direction the bee faces as an angle measured in radians.

• bee id
Twelve confidence probabilities representing each bit in the decoded
ID of the bee. E.g. [0.7, 0.3, . . . ] → the first bit has a confidence of
0.7 to be a 1, the second a confidence of 0.3 and so on.

The detection on the data poses different challenges through errors or gaps
in the trajectory. The following problems in the data either occur very often
or pose a severe challenge in the detection.

• Gaps in tracks
The track allows gaps of up to five seconds. The location of the bee
can be unknown for this duration; a new track is generated if the bee
is unknown for a more extensive time. The gaps allow for stabler and
longer tracks where bees can be missing for a short time and occurs
when the camera is not able to capture the tag of the bee. The gaps
are an advantage in most cases; without it the smallest obstruction of
the tag would lead to fragmentation of the track. The obstruction can
either be by another bee covering the tag or when tracked bee moves
into a cell or leaves the recording area. Gaps occur very often.
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3.2 Model of a Dancer and Follower

• Tracking error
A track should only embody the trajectory of a single bee. Low confi-
dence values in the ID can lead to false concatenation of observations
into a track. The trajectory jumps from one bee to another. The error
occurs rarely.

• Jumps in the orientation
Some circumstances lead to erroneous jumps in the orientation by up
to 180 degrees. The error occurs rarely.

Ground Truth Data

Evaluating any model requires ground truth data to calculate the false pos-
itive and the false negative error. Evaluating just the positive classified
(dancers and followers) would neglect the false negative error; we would
have no knowledge about dancers and followers which we did not find with
our model. Measuring each type of error requires full knowledge in a limited
time frame.

We labeled the behavior of each bee in a time frame of ten minutes into the
three classes: dancer, follower or other. The labeling process consisted of
two steps. Generating a video for each track within the ten minutes and the
review thereof to determine the behavior of the bee in the track. Labeling
ten minutes of ground truth data equaled to a review of over 29 hours of
video.
Each label is for simplification purposes track based, a track is labeled either
dancer or follower. The label is only given if the track is error free and with
a full iteration of the behavior present.

3.2 Model of a Dancer and Follower

A bee discovering a food source can convey the location information to its
fellow bees. Bees interested and motivated in learning the location par-
ticipate in the dance and receive the information by closely following the
movement of the dancer. The dance acts as a medium to communicate.
There are currently two known types of dances, the waggle-dance and the
round-dance. We focus in this thesis only on the waggle-dance.
The dancer and follower have each its own movement patterns which are rel-
ative to each other. Frisch was the first to extensively research and describe
the waggle-dance in his book from 1927 “Aus dem Leben der Bienen”[12].
Research about the follower bees are less extensive. Božič and Valentinčič
well describe the patterns of the followers in their publication “Attendants
and followers of honey bee waggle dances” [14].
This section will summarizes their research by explaining and illustrating
the sequence of patterns in each behavior.
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3.2 Model of a Dancer and Follower

(a) Begin of iter.&waggle (b) End of waggle (c) Begin of right arc

(d) End of right arc (e) Middle of iteration (f) Begin of left arc

Figure 2: The typical behavioral pattern of a waggle dancer and their followers. The
blue winged bee is a dancing bee, the gray winged are follower bees.

The dance consists of several iterations. Each iteration can be split into
four rough steps and together form a shape similar to an eight. Figure 2
illustrates the pattern in more detailed steps. The patterns of the followers
are explained in conjunction with the dancer patterns since they relate to
each other.

1. The waggle
The dancer bee swings her abdomen from side to side with a frequency
of about 13 Hz while moving forward with a small velocity. A follower
bee joining the dance can be on either side of the dancer facing the
abdomen (see Figure 2a) and starts to trail the dancer. The followers
continue to face the abdomen at the end of the waggle but are posi-
tioned more behind than to the side. The transition from Figure 2a
to 2b illustrates this.

2. Arc movement in either direction
The dancer rotates into either a right or a left direction and returns
in an arcing movement, similar to a half circle, approximately to the
beginning of the iteration. Figure 2c, 2d and 2e illustrates this arcing
movement. All followers, if previously not, are now on the same side
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3.3 Extraction of Trajectories and Egocentric Movement

of the dancer while continuously facing the flank of the dancer. This
is achieved by moving sidewards while slightly rotating.

3. The waggle
This step is the same as step one. Each follower is now on the same
side of the dancer.

4. Arc movement into opposite direction.
The dancer makes an arcing movement into the direction opposite to
step two (see Figure 2f). Everything else is same as step two.

A dancer performs typically multiple iterations of the above mentioned four
steps. The number of iterations for a follower has a higher variance, some-
times performing for just a single or half iteration.

3.3 Extraction of Trajectories and Egocentric Movement

The patterns mentioned in the previous section describes the dancing or
following from an egocentric perspective; simple coordinates or the vector
between is not enough. The extraction of egocentric movements is required.
The data in its source form yields only the position and the orientation of
the bee at time t; this spatiotemporal information can be transformed into
the following three velocities from an egocentric perspective (see Figure 3).

1. Forward velocity
The bee moves forward/straight.

2. Sideward velocity
The bee moves sideways.

3. Turn velocity
The bee rotates/turns.

Turn Velocity

The turn velocity, also called angular velocity, is calculated by subtracting
the orientation at time ot from the previous ot−1:

o′t = ot − ot−1.
The values range in [-2π,2π] and are not in a comparable order due to the
nature of angles. A simple calculation further explains this nature. The
following two angular movements are the same, a 40° clockwise movement
and still differ in result: 90◦ − 50◦ = 40◦ and 10◦ − 330◦ = −320◦. The
comparability issue is resolved using the arctan2 in combination with sin
and cos and results in the turn velocity:

turnvelocityt = arctan2(sin(o′t), cos(o
′
t)).

10



3.3 Extraction of Trajectories and Egocentric Movement

Figure 3: Forward, sideward and turn velocity

Forward and Sideward Velocity

The calculation of the forward and sideward velocity requires trajectories
which we can obtain by subtracting the position at time xt and yt from the
previous position at time xt−1 and yt−1:

x′t = xt − xt−1
y′t = yt − yt−1

The vectors x′i and y′i are not from an egocentric perspective and need to
be rotated by the orientation oi. Each x′ and y′ at time t form together a
vector and can be rotated resulting in the forward and sideward velocity.

forwardvelocityt = x′t ∗ cos(ot)− y′t ∗ sin(ot)

sidewardvelocityt = x′t ∗ sin(ot) + y′t ∗ sin(ot)

It is important to note that these calculations are just an approximation.
The rotation of the trajectory is based on the orientation at time t, but it is
not known when the rotation occurred. Does the bee rotate first and then
move (Fig. 4a), move and then rotate (Fig. 4b) or a mixture of both (Fig.
4c). Each version has different forward and sideward velocities.
The most reasonable assumption is a mixture of both where the angular
velocity happens in a linear fashion, see Figure 4c. This can be achieved by
rotating the vector with the averaged angle between ot and ot−1.
This thesis uses the second mentioned variant (see Figure 4b) of egocentric
velocity calculation to keep it simple. Any of the mentioned variants ap-
proximate for our purposes good enough. The chosen implementation yields
sufficient results to detect dancers and followers.
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3.4 Patterns

t t+1

(a) Major forward
movement

t t+1

(b) Major sideward
movement

t t+1

(c) Mix of sideward and
forward movement

Figure 4: Three different variants of egocentric velocity approximation.

3.4 Patterns

The waggle part of the dance is the most defining pattern to detect or
distinguish it from other behaviors. It consists of a slight forwards movement
while throwing its body from side to side in a fast fashion and looks to the
human eye like a vibration. This vibration part is the defining feature and
is not captured by the 3 Hz data used in this thesis.
The follower behavior does not exhibit such an outstanding feature, but
there are several other patterns appearing in either behavior:

High Velocity

An indicator of both the dancing and the following behavior is the increased
velocity, most bees in the hive move very slowly with a median velocity of
2.3mm/s while dancers and followers move at a median velocity of 10.5mm/s.
The same also applies to the turn velocity with an overall average of 34°/s,
or 213°/s for dancers and followers.

Lemniscate Shape

The trajectory of both behaviors matches a lemniscate shaped pattern,
which resembles the infinity symbol, also shown in Figure 2. The shape
can be in some iterations skewed or different depending on how crowded the
hive is; other bees may block or alter the path. A commonly observed de-
viation is that one arc movement has a smaller circumference. Another less
common observation is a repeated single arc movement into the same direc-
tion as before with the subsequent return to their regular lemniscate shape.
Our data does only support fragile detection for this pattern. The dancer
bee moves in some cases too fast, resulting in a triangle shape oberserved
trajectory. The data also contains gaps which make the shape even less
recognizable.
Detecting the shape is complicated, it requires the correct window size and
starttime of the iteration. The low frequency and missing quality of the
data only increase the complication.
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3.4 Patterns

(a) Egocentric velocities for a dancing bee
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(b) Egocentric velocities for a following bee
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(c) Egocentric velocities for a random bee
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Figure 5: Egocentric velocities in comparison to each other for an exemplary (a) dancer,
(b) follower and a (c) random bee. Each velocity has been smoothed over with
a moving average of 3 seconds to remove noise. The turn velocity is drawn as
an area plot to reduce clutter and effortlessly recognize the pattern but has no
further meaning behind it.
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3.5 Detecting Single Iterations

Alternating Left and Right Turn

The turn velocity in each iteration for both the dancer and the follower
contain two continuous 360 degree rotations. One 360° right rotation for
the right arc movement and one for the left arc movement. The pattern
is apparent in our model of the dance, see Figure 2. The velocity plots in
Figure 5a and 5b shows this pattern of alternating turn velocity in both the
dancer and the follower.

Alternating Left and Right Sideward Movement

The follower decodes the information by sticking to the dancer. She achieves
this by moving sidewards while the dancer executes the arc movement. This
pattern is similar to the alternating turn velocity described above with the
exception that it uses the sidewards velocity and occurs more strongly in
the follower. The pattern is also visible in Figure 5b.

3.5 Detecting Single Iterations

Combining the patterns described in the previos section yield better results
compared to using each pattern in isolation. The lemniscate pattern is ex-
cluded in this thesis due to the reason mentioned above to avoid complexity,
overfit and a worse detection. The two alternating patterns are of the same
nature and can be reduced to a single implementation. This implementation
of the alternating velocity can be combined with the high velocity pattern
and further simplified by restating the goal. We constrain the requirements
to find single points in time where a switch in the velocity direction occurs,
achieved by observing the last and next n points. Such a switch highly cor-
relates with the middle of a dancing or following iteration. The correlation
also occurs at the beginning of an iteration if there was an iteration before
or the end if there is one after. The constraint reduces the detection to
single iterations while simplifying the implementation.
A new function velocity direction switch (vds in future) is introduced which
correlates with the magnitude of such a switch in direction. The function can
be applied for both the velocity turn and the velocity side. The functionality
is explained in a top to bottom approach by first presenting the result and
then explaining each part.
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3.5 Detecting Single Iterations

M1(X) = mean(Xt−n ... Xt)

M2(X) = mean(Xt ... Xt+n)

vds t(X) = M1(X) ∗ −M2(X) ∗ min(|M1(X)|, |M2(X)|)
max(|M1(X)|, |M2(X)|)

vds turn t = vds t(velocity turn)

vds side t = vds t(velocity side)

(a) Dancer
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(b) Random bee
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Figure 6: The correlation between the vds turn and the turn velocity for a (a)
dancer and a (b) random bee. The vds turn shows a high value when the
turn velocity switches its direction.

A high vds at time t indicates a switch of direction in velocity, the correlation
between the velocity and its vds is shown in Figure 6. The idea is to find
the middle of a dance/follow iteration. We do for each point in time:

1. Quantify left and right side
Take n left and n right points, average each and call them M1 and
M2. The averaging reduces noise and errors and allows for comparison
between the left and right side.

2. Multiply M1 with -M2
We expect different signs on M1 and M2 when in the middle of the
iteration. The result is positive if a switch exists. Figure 7a shows the
correlation between M1 and M2. Our previous high velocity pattern
is included in this step; the result is greater the larger the switch in
direction is.

3. Add a penalizing factor
The turn and side velocity will be relatively constant, a sudden change
of speed in dancing or following is rare, e.g. the bee will not do a fast
right arc followed by a slow left arc. We add a factor to penalize a
mismatch in proportion. Figure 7b visualizes the correlation between
M1 and M2 with the penalization.
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Figure 7: Visualization of the vds turn as a heatmap (red for high values, blue for low
values) for each combination of M1 and M2. A visualization for vds side
would show the same pattern. (a) shows the correlation without a penalty
and (b) with the penalty.

Evaluation of the Function

We applied the vds function with both the turn and the sidewards velocity
on a one hour dataset not related to our ground truth data. We chose n = 7
as the constant by means of intuition which equals to a window size of about
4.66 seconds; the constant was kept after promising results. The 200 largest
values in both vds turn and vds side were evaluated by labeling the behavior
at time of the large values. Possible labels were dancer, follower and other.
The result of the evaluation shown in Table 2 shows moderate success in the
detection.

vds turn vds side

dancer 121 28
follower 25 120
other 54 52

200 200

unique dancers 17 4
unique followers 8 31

Table 2: Evaluation of top 200 values in vds turn and vds side. Each column shows the
distribution of the behaviors in their 200 largest vds scores (vds turn/vds side). The table
contains also the number of unique bees in the relevant behavioral classes.

The error rate for each is about 25%. The dancers and followers appear
in average multiple times per high vds, this repetitive pattern is used to
improve the detection in the next section. The evaluation method in this
section is just a quick way to grasp the capability of the vds score. It cannot
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3.6 Detecting Multiple Iterations

assess the amount of missed dancers and followers.

3.6 Detecting Multiple Iterations

The evaluation shows that each track for a dancer or follower, in general,
contains several points with a high vds score. The first approach to use
this observation consisted of a simple moving average; the correlation im-
proved slightly however still contained too much noise. The nature of the
vds function includes a fast decline when not in the middle of a velocity
switch. A window over multiple iterations would contain several of these
low vds values and would pull the average down. The fast decline between
each velocity switch is apparent in the previous figure 6a.
The second approach counted each occurrence in the track with a score above
a threshold. This solution favors long tracks where noise may randomly
exceed the threshold; the bias poses a problem due to the variance in the
track lengths, with some tracks being only 0.3 seconds long and others over
an hour. The approach also leads to loss of information about the time
where the threshold is exceeded.
The final approach adjusts the previous bias by counting the occurrences
over a threshold in a sliding window instead of the whole track. Each dance
or following has typically multiple iterations where a switch in velocity hap-
pens; the vds score will exceed the threshold frequently in a short time
frame.

sliding threshold count t =
t+n∑

i=t−n

{
1, if vds i > threshold

0, otherwise

The sliding threshold count (in future stc or stc turn/stc side) function has
two constants which determine the level of correlation. The first is the
window size 2 ∗ n and should ideally encapture two iterations. A sliding
window size with less than two iterations defeats the purpose of detecting
multiple iterations while a large window size favors long tracks. Each waggle-
dance iteration varies in time depending on the information the dancer wants
to convey [1]. We set the window size for the stc to 10 seconds to capture
even very short tracks. The second constant, the threshold, is more sensitive
to variation. We obtained good results after the initial setting to the 99.9
percentile of their respective vds score (e.g. the threshold for stc turn is the
99.9 percentile of all vds turn values). We kept this initial setting due to
good intermediate results.
Figure 8 shows the sliding threshold count for the turn velocity (stc turn)
in correlation with the velocity direction switch (vds turn). The stc turn
is highest when the window of 10 seconds contains multiple iterations of a
dance.
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Figure 8: The correlation between the vds turn function and the stc turn function with
a window size of 10 seconds. The subject is a dancer. The accumulating effect
is apparent; multiple occurrences of a vds turn over the threshold within a
short time results in a higher stc turn.

3.7 Classification

The sliding threshold count is a correlation function, a bigger value indicates
higher probability of a dance or follow behavior occurrence. The stc function
has no classification capability on its own. This section builds a classification
algorithm by selecting the optimal time t for the stc functions and uses these
values to build a decision boundary.
This optimal time t is where the information about the behavior is largest
and ideally where the stc turn and stc side is highest. The maximum stc
value of a track with a dance or follow behavior is very likely greater than
one without these behaviors, while in comparison the lowest value will be
in both cases about the same. Observations and previous evaluations have
shown that a dancer has in general a higher stc turn with a bit stc side and
the follower the other way around. Selecting a time t with the maximum
value in either stc turn or stc side introduces a bias. The addition of a new
variable stc sum, a sum of stc turn and stc side, resolves this.

stc sum t = stc turn t + stc side t

The selected time t is where stc sum is greatest. We define new variable
names for these values.

i = argmax(stc sum t) ∀t ∈ T
stc turn max = stc turn i

stc side max = stc side i

stc max = stc sum i

The decision boundary can be calculated with any standard classification al-
gorithm using the features stc turn max, stc side max and the label (dancer,
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3.7 Classification

follower, other) of each track. This thesis decided on the logistic regression
to avoid overfitting on the dancer and follower samples with out of the box
settings.
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Figure 9: The decision boundaries of the logistic regression.
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4 Evaluation

The evaluation described in this section is under some limitations. The first
limitation is the evaluation on a per track basis; each track has a single
class. The classification in time series containing multiple classes can be
complex, detecting the right start and end time for the class is a challenge.
This challenge also applies to the manual labeling to acquire ground truth
data and is the reason for this decision. Acquiring the ground truth data is
a labor-intensive process as described in section 3.1. The simplification to
a per track basis also simplifies the labeling and classification process. The
drawback occurs when a long track contains multiple dances, followings or
a mix of both but does not apply to our situation. No sample with this
conflict was found during the labeling of the ground truth data.

behavior no. of samples percentage

dancer 6 0.4
follower 22 1.6
other 1308 97.9

Table 3: The number of samples per behavioral class. The table shows the magnitude of
the class imbalance.

The second limitation is that the evaluation used the same ground truth
data as the logistic regression. The cross-validation of the samples is not
possible, only 2% of the samples are dancer or follower. The magnitude of
this class imbalance is shown in Table 3. The drawback is the possibility of
an overfit in the logistic regression but can not be further evaluated without
more ground truth data.

predicted

dancer follower other accuracy

dancer 5 1 0 0.833
truth follower 1 18 3 0.818

other 0 1 1307 0.999

accuracy 0.833 0.9 0.998 0.996

Table 4: Confusion matrix of the model.

The model performed well under the given limitations with a total accuracy
of 0.996. The class imbalance skews this number, the confusion matrix in
Table 4 details each type of error in our model. The F1-score is another more
suitable metric to explain the amount of error. The model shows success
with an F1-score of 0.83 and 0.86 for a dancer and follower. A more detailed
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report is shown in Table 5.

precision recall f1-score support

dancer 0.833 0.833 0.833 6
follower 0.900 0.818 0.857 22
other 0.998 0.999 0.998 1308

avg / total 0.995 0.996 0.995 1336

Table 5: Precision, recall, F1-score and the support for each class.

A detailed investigation of the misclassifications shows different types of
error and is divided into following groups:

• High gap
A high gap in the data may either lead to unrecognized dancers or
followers or the misclassification between them. Missing data points
either distort or obstruct the pattern.

• Single iteration
The variance in the number of iterations for a follower is high. A
follower sometimes follows for just a half iteration or single iteration.
The requirements for a dancer or follower label is the execution of at
least a single full iteration. The sliding threshold count on the other
hand is designed to detect multiple iterations and may fail to correlate
with a single iteration.

• Overcrowded hive
An overcrowded hive may lead to deviations in the trajectory and
variation in the patterns.

• Attendees
Honey bee attendees, first described by Božič and Valentinčič [14], may
exhibit patterns similar to the follower. Motivated attendees may sway
left and right with the dancer while not participating in the dance. The
swaying matches the pattern of the alternating side velocity and can
in few cases lead to misclassification.
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5 Future Work

This thesis presented a model to automatically detect waggle dancers and
their followers on low temporal-resolution spatiotemporal data. The detec-
tion of dance-followers is novel; previous work focused only on detecting
dancers using the waggle part of the dance as the only feature.
The presented model uses domain knowledge to identify and implement
multiple waggle-dance patterns for the detection. The implementation is
divided into four steps. The first step described the typical behavioral model
of the dancer and follower and subsequently identifying the patterns in it.
The second step selected a subset of these patterns and implemented a rank
correlation function associated with the middle or beginning of a single dance
iteration. The selection of the patterns focuses on the capability to detect the
behaviors in a low temporal-resolution space. The data used in this thesis
is recorded with 3 Hz and does not permit the detection of fast movements
like the previously mentioned waggle part. The third step improved the
robustness of the correlation function with a sliding window to extend it
to multiple dance iterations. The last step of the implementation finds the
optimal point in time in the correlation function and builds a classifier from
it.
The evaluation showed the success of the model with an F1-score of about
0.85 for dancers and followers even under conditions of strong class imbal-
ance. The number of dancer and follower samples comprise respectively
0.4% and 1.6% of the population. Typical machine learning models han-
dle a class imbalance poorly when working with small datasets. The use of
domain knowledge mitigated such a problem by constructing discriminitive
features with a significant decision boundary.

While the thesis provided a different and novel approach to detect waggle
dancers and followers, parts of it lacked methodology. Future work could
improve the theoretical foundation of the model. Following three instances
detail the gaps in the methodology and present a solution to each.
The first instance of lacking methodology is the window size for the veloc-
ity direction switch. The window size was chosen by intuition but could
have been determined with research about the range of duration a single
dance iteration can take. The work by Landgraf et al. in 2011 [13] anal-
yses waggle dances metrics and can be used in the future to improve the
theoretical foundation.
The second instance is the use of the 99.9 percentile as the threshold. The
correct approach would have been an analysis of the sliding threshold count
distribution for dancers and followers. The analysis would require more
ground truth data than currently available.
The evaluation is the third instance of lacking methodology by reusing data.
The same data to learn the logistic regression is used in the evaluation. No
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cross-validation techniques were applied, this can lead to overfitting and
reduces the confidence in the evaluation results. The scarcity of ground
truth data is the cause for the lack of cross-validation. Splitting the few
dancer and follower samples would not yield any significant result.

A future improvement unrelated to the scientific methods is the use of
weighted classification algorithms. The current state does not address the
class imbalance and slight overestimation of the other behavior. Discarding
samples of the majority class or the implementation of different learning con-
stants per class can negate some of the impacts of the class imbalance. An
increase in ground truth data would, similar to the other problems, benefit
and increase leeway.

This section shows that the prerequisite for most of the future work lies
in the generation of more ground truth data. More data would improve
the significance of the validation and enable to test more variations without
fear of overfitting. While generating more ground truth data is no challenge
itself, the necessary time effort poses a limitation within the frame of this
thesis.
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