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Abstract. Nowadays, real-time capable visual odometry and visual simultaneous
localization and mapping have become popular research topics. Since robots
depend on the precise determination of their own motion, visual methods can be
used for trajectory generation, localization or path planning. Different kinds of
sensors can be used to tackle this — in general hard to solve — task, but it is
always a trade-off between configuration effort and monetary cost of the system
as well as other quality factors. Hence, it becomes increasingly popular to use
cameras as sensors for the ego-motion determination of a robot.

This thesis deals with the extension of a monocular direct sparse visual odom-
etry to a stereo direct sparse visual-inertial odometry and the evaluation of the
outcome.

The depth information from a stereo camera is used to eliminate the initialization
step and to pre-initialize the depth of selected pixels of keyframes. Furthermore,
depth information and inertial measurements significantly robustify pose pre-
initialization for new frames. Due to the known depth, the unknown scale issue
is solved and the scale drift is eliminated. The experiments carried out in this
work show that the extensions significantly increase both robustness and tracking
accuracy.
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Chapter 1

Introduction

Modern vehicles have various sensors to monitor their immediate environment,
e.g., Lidar, Radar and Cameras. These sensors are particularly important for
autonomous driving in order to detect moving objects and avoid collisions. The
determination of own motion (a.k.a. ego-motion) of a mobile robot is particularly
crucial, since the robot has an influence on it by its actions [1].

Multiple different sensors — also a combination of sensors — can be used for
motion estimation. An odometer and an inertial measurement unit (IMU) are
often used. The odometer counts the wheel turns over time [1], and the units
of an IMU are typically gyroscopes and accelerometers, which measure rotation
and velocity [2]. A Lidar or global positioning system (GPS) can also be used by
matching the laser scans [1] and by distinguishing their data over time.

Which sensors are used depends on the application, the cost and the desired
accuracy. Each sensor has its own drawbacks. The wheel odometry is affected by
wheel slip in uneven terrain, or other adverse conditions [1]. GPS and IMU suffer
from drift [2], in particular the inexpensive ones, and today’s laser scanners are
not affordable for everyone. Especially, the inaccuracy of inexpensive sensors and
the high cost of laser scanners require affordable alternative solutions. A camera
is an inexpensive and lightweight sensor and offers a possible alternative.

Ego-motion estimation of a vehicle from visual input started in the early 1980s.
Most of the first visual odometry (VO) researches have been motivated by the
NASA for the Mars exploration program. The challenge was to provide an ability
to measure the six degrees of freedom (DOF) motion for all-terrain rovers. [1]

VO describes the process of estimating the ego-motion of a camera or multiple
cameras. If additionally an IMU is attached to the VO system, it is referred
to as visual-inertial odometry (VIO). There are many different methods of VO
and VIO. All of these methods can be classified into feature-based (indirect),
appearance-based (direct) and hybrid methods [1]. Indirect methods pre-process
the raw sensor measurements first to generate an intermediate representation,
e.g., extracting and matching a sparse set of feature descriptors [3]. The direct
methods skip the pre-processing step and directly uses the raw sensor measure-
ments [3]. Hybrid methods combine both approaches [1].
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Engel et al. [3] propose a Direct Sparse Odometry (DSO) formulation for mo-
nocular cameras, which jointly optimizes for all involved parameters, effectively
performing the photometric equivalent of windowed sparse bundle adjustment.

This master’s thesis has been developed in a project of Autonomos GmbH. From
the point of view of this project the goal of ego-motion estimation is to provide
relative, accurate and consistent camera poses as well as three-dimensional (3D)
coordinates of world points (landmarks).

Figure 1.1 shows a stereo camera built and used by Autonomos GmbH. Such
a stereo camera has a built-in IMU, field-programmable gate array (FPGA),
and provides an Ethernet interface. The stereo camera sends over the Ethernet,
among other things, the left and right image, the disparity map and inertial
measurements.

Figure 1.1: An example of a stereo camera used by the Au-
tonomos GmbH.

Source: https://www.autonomos-systems.de

This thesis aims to provide a VIO through the extension of DSO. Furthermore,
by adding depth information and inertial measurements to (1) eliminate the ini-
tialization step, (2) pre-initialize the inverse depth of keypoints, (3) provide an
orientation pre-initialization for new frames, (4) increase the tracking (direct im-
age alignment) accuracy, (5) resolve the unknown scale issue, and (6) eliminate
the scale drift.

The structure of the remaining work is as follows. Chapter 2 presents a summary
of previous work on visual methods for pose estimation. Chapter 3 paves the way
to the theory behind stereo direct sparse visual-inertial odometry (SDSVIO).
Chapter 4 describes the implementation of the extension. Chapter 5 presents the
experimental setup and shows the results. Chapter 6 discusses the weaknesses
and strengths of the proposed method. Chapter 7 presents the conclusions of this
thesis and gives an outlook on further work.

https://www.autonomos-systems.de
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Chapter 2

Related Work

This chapter gives an exemplary overview of some other works, which have con-
tributed to visual odometry.

Hans Peter Moravec, a pioneer of VO, accepted the NASA challenge and intro-
duced a motion estimation pipeline in his Ph.D. thesis [4]. His work is based
on, what he termed, a “slider stereo” camera. Slider stereo is a single camera
sliding on a rail. The system is reliable for short trips but is not real-time ca-
pable. The robot digitized and analyzed images after each meter. While moving
horizontally, the camera grabbed nine pictures at equidistant intervals. In an
image, corners are detected and matched along the epipolar lines on the other
eight images, using normalized cross correlation (NCC). Outliers are removed by
applying a depth consistency check. A coarse-to-fine strategy is used to deter-
mine matches again by correlation at the next robot location. The rigid body
transformation is computed by aligning the triangulated 3D points, seen at two
consecutive positions.

Based on Moravec’s work, Matthies and Shafer [5] took advantage of integrating
the stereo geometry triangulation uncertainty as an error covariance matrix into
the motion estimation step.

Several decades of research produced many non-real-time implementations [1].
The first real-time long-run capable visual odometry systems were proposed in
2004 by Nister et al. [6]. Their work has coined the term visual odometry. The
term VO is based on the wheel odometry, because of the similar basic functional-
ity. Contrary to previous works, they have detected and matched features instead
of tracking them. They also compute the relative motion as a 3D-to-2D camera
pose estimation problem instead of 3D-to-3D alignment problem.

Kerl et al. [7] and Engelet et al. [8, 9, 3] push direct methods forward. Kerl
et al. [7] present a direct dense visual simultaneous localization and mapping
(V-SLAM) method for RGB-D cameras that minimizes both the depth and the
photometric error over all pixels. They also propose a keyframe selection based
on entropy similarity measurements. Engel et al. [8] propose a direct semi-dense
VO for monocular cameras, with the main idea to continuously estimate a semi-
dense inverse depth map for the current image, which in turn is used to track the
motion using direct dense image alignment.
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In [9], Engel et al. demonstrate the large-scale direct monocular V-SLAM (LSD-
SLAM), another direct method for monocular cameras. LSD-SLAM is reliable
for large-scale trips and creates a consistent map of the environment. The pro-
posed method involves a probabilistic depth noise model and aims to recognize
scale drift. In their further work, Engel et al. [10] extended LSD-SLAM to
stereo LSD-SLAM (S-LSD-SLAM). They took advantage of depths from both
stereo-view (capture images from different cameras at same time) and multi-
views (capture images from same camera at different times), and propose an
approach to handle aggressive brightness changes between images. Usenko et al.
[11] extend S-LSD-SLAM by tightly incorporating an IMU that simultaneously
estimates camera pose, velocity, and IMU biases, minimizing a combined photo-
metric and inertial energy function. Zhu [12] contributes three improvements to
S-LSD-SLAM: (1) a dual Jacobian optimization scheme to avoid local optima and
improve the accuracy, (2) the gradient-based keypoint representation to be robust
to changes in illumination, (3) a joint direct VO energy function to incorporate
the information from multiple images.

Engel et al. [13, 3] present a simple photometric calibration method and direct
sparse VO. They aim in [13] to improve the input in a preprocessed manner for di-
rect approaches by providing photometric calibration, which contains the camera
response function and pixel-wise attenuation factors. In [3], they propose a di-
rect sparse VO formulation for monocular cameras. In contrast to existing direct
methods, [3] jointly optimizes for all involved parameters, effectively performing
the photometric equivalent of windowed sparse bundle adjustment. The proposed
model integrates a full photometric calibration, accounting for lens vignetting,
non-linear response functions and exposure time. Furthermore, [3] shows that
the proposed direct formulation outperforms the state-of-the-art feature-based
(indirect) monocular SLAM method ORB-SLAM [14].

During the emergence of this master’s thesis a similar work “Stereo DSO” from
Wang et al. [15] has been published. In contrast to this thesis, [15] is independent
of other sensors and uses the stereo image pair as input to verify the selected
points and assist the depth initialization.

Methods based on machine learning [16, 17], especially convolutional neural net-
works (CNN), are becoming increasingly common nowadays and could one day
become the new state-of-the-art.
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Chapter 3

Fundamentals

This chapter paves the way to the theory behind Stereo Direct Sparse Visual-
Inertial Odometry (SDSVIO).

3.1 Visual Odometry

Vehicles have a device called odometer on the dashboard, which indicates the
length of the travelled distance. In robotics, odometry refers to estimating the
entire trajectory of a mobile robot, not just the traveled distance. When one
or more cameras are used for trajectory determination, it is called VO. The
trajectory determination contains the motion estimation (also referred to as ego-
motion estimation) step, which estimates the pose change between the current
and the previous camera. Six parameters have to be determined in 3D space,
since a pose contains six DOF. A camera pose consists of a position = (x, y, z)⊺

and an orientation = (α, β, γ)⊺ with respect to the previous frame and can also
be written as stacked vector: ξ = (x, y, z, α, β, γ)⊺. There is more than one way
to represent the six pose parameters. The position is described here along the
three axes in the Cartesian coordinate system. Three Euler angles α, β and γ

describe the orientation, also known as roll, pitch and yaw. In general, to obtain
the final orientation, a rotation around the x-axis is applied by α degree, then
around the y-axis by β degree and finally around the z-axis by γ degree.

VO describes the process of estimating the ego-motion of a camera or multiple
cameras, where the pose of the camera is incrementally determined. VO aims
to achieve local consistency of the trajectory. An optimization over the last n

poses (referred to as windowed bundle adjustment) is often used to obtain a more
accurate trajectory [1]. In general, sequentially ordered images of geometrically
calibrated cameras are used. Direct approaches also benefit from photometric
calibration [3, 13, 18]. When only one camera is used, it is referred to as monoc-
ular VO. When using several cameras, it is called stereo VO. If additionally an
inertial sensor is attached to the VO system, it is referred to as visual-inertial
odometry (VIO).

Both monocular and stereo approaches have their benefits and drawbacks. In
contrast to stereo approaches, where the absolute scale can be determine by 3D
measurements, in the monocular case the motion can only be determined up to
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an unknown scale factor. The monocular methods require an initialization step,
often setting the distance between the first two poses to one. Subsequently, the
relative scale and pose of the new images are determined with respect to the first
two images. In case of small motions, the monocular scheme shows more drift
than the stereo scheme [1]. For the reasons mentioned above, the stereo methods
are often more robust. However, if the distance to the scene is much larger
than the baseline, stereo VO degenerates into the monocular case and monocular
methods must be used [1]. The same case occurs when the distance to the scene
is too small. Depending on the application, the weight and size of the VO system
also plays a decisive role. A very small drone robot (e.g. a robobee) is not always
able to carry a stereo system, and again monocular methods must be used.

In fact, the unknown scale factor is not a problem in practice if everything else
within the frame of reference is correct. But that is not the case, because the rel-
ative scale of a frame is only known in relation to its predecessor. Any inaccuracy
in the measurement is propagated and this may cause the scale to successively
change over time. This core problem of monocular VO is called scale drift. The
trajectory is more and more different from the ground truth. Techniques such
as windowed bundle adjustment or a combination with other sensors, such as
inertial sensor, can reduce the scale drift [1].

For the VO to work effectively, a number of conditions must be applied. Suffi-
cient illumination is required as well as a static scene with sufficient texture, and
sufficient scene overlap of consecutive frames. [1]

3.2 Stereo Vision

It is interesting to see the difference between using a stereo camera which is
simply two separate cameras in space, and using only a single camera. When
the 3D world is projected onto a 2D image, one dimension — the distance — is
completely lost. The lost dimension can be reconstructed using a stereo camera,
similar to the human vision.

Figure 3.1a illustrates the theory of depth reconstruction based on epipolar geom-
etry. It is obvious that the involved points, world point X, both camera centers
C and C′, span a plane π and that the projected points x and x′ of X are in
this plane. Furthermore, as illustrated in figure 3.1b, the corresponding pixels in
both cameras are needed for robust depth reconstruction.

Often an axis-parallel stereo system is used, which is characterized by a parallel
orientation of the optical axes of both cameras, i.e., the cameras are only moved
horizontally and their coordinate systems are not rotated against each other. The
two optical centers are only horizontally shifted. In practice, the cameras can only
be approximately aligned in parallel. It therefore requires a virtual alignment
of the cameras in order to convert them into an axis-parallel camera system.
Rectification accomplishes that. The aim of the rectification is that the so-called
epipolar lines (see figure 3.1b) are all horizontal and thus the corresponding pixels
are on the same image line. By using rectification, simpler processing structures
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(a) Epipolar plane (b) Epipolar line

Figure 3.1: Illustration of epipolar geometry [19]

and thus more efficient pixel correspondence analysis can be achieved. Since the
image rows are located on the same image line after the rectification, the different
perspectives of the cameras, with respect to the world point X, lead to a pure
horizontal offset in the image. This difference is called disparity d and is used to
compute the distance of X as follows:

z =
B × f

d
(3.1)

Where z is the distance from the left camera center, B describes the distance
between the camera centers, called baseline, f represents the distance from camera
center to sensor plane, called focal length.

A stereo camera mounted on a vehicle not only provide images, but also distance
information available in the form of disparity maps. A stereo camera system
consists of two to each other shifted cameras, which observe a scene. With such
a system, two perspectively different images of a scene are captured simulta-
neously. Due to the fixed and known geometry between the cameras, a depth
reconstruction is possible.

In the context of this thesis, the experimental testbed has been equipped with a
stereo camera used to provide images and distance information in form of dispar-
ities. The stereo correspondence analysis is performed on the built-in FPGA and
assumed as given for this work. Figure 3.2 shows a rectified camera image with
the corresponding disparity image.

3.3 Inertial Measurement Unit

An IMU typically uses accelerometers to measure velocity and gyroscopes to
measure rotation — and there are usually several of each inside [2]. Also MPU-
6050 [20] — built-in the used stereo camera — is using a gyroscope and a ac-
celerometer.
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(a) rectified image (b) disparity image

Figure 3.2: The left image of a stereo camera and the corre-
sponding disparity image.

The black pixels in the disparity image indicates where no sufficient information
is available for pixel correspondence analysis. The grayscale encode disparity

values: bright = near and dark = far.

The MPU-6050 also includes a motion processing unit (MPU), which supports
3D motion processing and gesture recognition algorithms. The MPU collects 3-
axis accelerometer and 3-axis gyroscope measurements while synchronizing data
sampling at a user defined rate. [20, p. 11]

In addition to accelerometer and gyroscope measurements, the MPU calculates
the orientation in the space of the IMU. The accelerometer measurements are used
to detect orientation in relation to the gravity. The gyroscope is used to detect
rotation changes in space. However, it is not documented by the manufacturer
how this is calculated in detail and is therefore assumed to be as given for this
work.

3.4 Direct Sparse Odometry

This section gives an overview over the functionality of DSO [3]. DSO is a novel
sparse and direct formulation of monocular VO developed at the Technical Uni-
versity of Munich.

DSO operates directly on image intensities and is able to sample a sparse pixel set
from all image regions that provide an intensity gradient, i.e., it does not depend
on hand-crafted feature descriptors, so it does not need to perform descriptor
extraction or descriptor matching. It is based on minimizing the photometric
error of the sparse pixel set between frames, instead of minimizing the reprojec-
tion (geometric) error, e.g., like bundle adjustment. The camera tracking is done
by direct image alignment using the coarse-to-fine strategy. DSO optimizes for
all involved parameters, camera poses, camera intrinsics, and geometry — repre-
sented as inverse depths. Essentially, performing the photometric equivalent of
windowed sparse bundle adjustment.
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The tracking uses the coarse-to-fine strategy and the keypoint selection operates
on image gradients. Direct approaches took advantage of photometric undistor-
tion. As an early preprocessing step, each image is photometrically undistorted
and image pyramids, as well as gradient pyramids are produced.

3.4.1 Formulation

For simplicity, the method has been formulated for a pinhole camera model. It is
assumed that the images are geometrically undistorted in a preprocessing step.

The projection is denoted by Πc : R3 → Ω and reprojection by Π−1
c : Ω × R →

R
3, where c denotes the camera intrinsics. Camera poses are represented as

transformation matrices Ti, transforming a point from the world frame into the
camera frame.

Photometric Calibration

The used image formation model comes from [13], it takes into account a non-
linear response function G : R → [0, 255] and lens attenuation (vignette) V : Ω →
[0, 1]. The combined model is given by

Ii (x) = G (tiV (x)Bi(x)) , (3.2)

where ti is the exposure time, Bi is the irradiance and Ii the pixel intensity in
frame i. The photometric correction model is given by

I ′i (x) = tiBi(x) = G−1(Ii(x))× V −1(x). (3.3)

Where I ′i is the photometrically undistorted image. However, in the further course
of the work, Ii refers to the photometrically undistorted image I ′i.

The response function of an image sensor represents an association of received
irradiance values by a photocell during the exposure time to the respective pixel
value. To undo this, the inverse response function is used so that the pixel value
is linear to the received irradiance value. The vignette describes the lens effect,
which causes photocells at the corners of the image sensor to receive less irradiance
than central photocells. The vignette represents a pixel-wise attenuation factor.
Since a division is more computationally expensive than a multiplication, the
inverse vignette is used instead.

Photometric Error

Figure 3.3: The residual pattern Np
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The photometric error over all active keyframes and all active points is given by

Ephoto =
∑

i∈F

∑

p∈Pi

∑

j∈obs(p)

Epj. (3.4)

Where i runs over all keyframes F , p over all points Pi in frame i, j over all
frames obs(p) where the point p is visible. Epj denotes the photometric error
with residual pattern Np of p, as shown in figure 3.3, in reference frame Ii and
observed in another frame Ij is formulated as

Epj =
∑

p̂∈Np

wp̂

∥

∥

∥

∥

Ij(p̂
′)− bj −

tje
aj

tieai
(Ii(p̂)− bi)

∥

∥

∥

∥

γ

. (3.5)

Where ‖ ‖γ denotes the Huber norm, ti, tj the exposure times of the images Ii, Ij,
eai , eaj the multiplicative part and bi, bj the additive part of a brightness transfer
function of the images Ii, Ij and p̂′ represents the projected point position of p̂
in Ij with inverse depth dp, given by

p̂′ = Πc

(

RΠ−1
c (p̂, dp) + t

)

(3.6)

with

(

R t

0 1

)

= TjT
−1
i , (3.7)

and wp̂ is a gradient-dependent weighting, that down-weights pixels with high
gradient, given by

wp̂ =
c2

c2 + ‖∇Ii (p)‖
2
2

(3.8)

with some constant c.

For clarify, each point contributes with ‖Np‖ = 8 residuals to the error function
to improve the robustness against motion blur.

In summarize, the error depends on: (1) the inverse depth dp of each point, (2)
the camera intrinsics c, (3) the pose of the involved frames Ti, and (4) their
brightness transfer function parameters ai, bi, aj, bj.

The additional dependency of each residual on the pose of the host frame repre-
sents the only difference to the classical reprojection error, i.e., each term depends
on two instead of just one frames.

If the exposure times, as well as the camera response function are known, the
modeling of the affine brightness changes is omitted. Than the equation 3.5 —
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which models the direct image alignment in combination with an affine brightness
transfer function – only represents the direct image alignment part by

Epj =
∑

p̂∈Np

wp̂ ‖Ij(p̂
′)− Ii(p̂)‖γ . (3.9)

3.4.2 Front-End

The front-end is the part of the algorithm that decides (1) which points and
frames are used, (2) about the visibility of points in other frames, (3) about
outlier removal and occlusion detection, and (4) about marginalization of points
and frames.

Frame Management

DSO always keeps a fixed size window of active keyframes. Every new frame is
initially tracked with respect to the newest keyframe. Then, DSO decides whether
the frame is discarded or selected as a new keyframe. When a new keyframe is
created, the photometric error is optimized. Afterwards, the marginalization is
applied.

Initial Frame Tracking: All active points from all active keyframes are pro-
jected onto the new selected keyframe, this always creates a semi-dense
depth map. The coarse tracking also pre-calculates the pose — based on
previous motion and additionally on a constant motion model — of the
current frame by minimizing the photometric error during the direct image
alignment. This is done in a combination with coarse-to-fine method with
respect to only the newest keyframe.

Keyframe Creation: Combines the following three criteria to decide if a new
key frame is required. A new keyframe should be taken when:

1. the field of view changes sufficiently.
2. translation causes occlusions and disocclusions.
3. the exposure time changes significantly.

Keyframe Marginalization: Old keyframes are removed by marginalization
using the Schur complement [3, 21]. The marginalization works as follows:

1. Always keep the latest two keyframes.
2. Frames with less than 5% of their points visible in the latest keyframe

are marginalized.
3. If more than a given number of frames are active, except the latest

two keyframes, marginalize the one which maximizes a distance score.

A keyframe is marginalized by first marginalizing all hosted points, and
then the frame itself.
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Point Management

DSO always keeps a fixed number of active points, equally distributed across
space and active frames. First, candidate points are identified. Candidate points
are traced individually in subsequent frames and not immediately added into the
optimization. Candidate points are reserved for activation when new points are
needed. The tracing generates a coarse depth value which will serve as initializa-
tion.

Candidate Point Selection: The image is divided into blocks of 32×32 pixels.
For each block all points with a gradient magnitude greater than a fixed
threshold plus the median absolute gradient are selected.

Candidate Point Tracing: Point candidates are traced in subsequent frames
using a discrete search along the epipolar line. For the best match the
depth and associated variance is refined. The depth and variance is used to
constrain the search interval for the subsequent frame.

Candidate Point Activation: New point candidates are activated to replace
the marginalized ones. All active points and candidate points are projected
onto the most recent keyframe. It then activates candidate points which
maximize the distance to any existing point.

Outlier and Occlusion Detection

DSO aims to identify and remove potential outliers as early as possible, since
the image data generally contains much more information than can be used in
real-time. Points for which the depth minimum is not sufficiently distinct dur-
ing candidate tracing, are permanently discarded. Point observations for which
the photometric error surpasses a — continuously adapted (with respect to the
median residual in the respective frame) — threshold are removed.
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Chapter 4

Implementation

This chapter describes the extension of DSO with stereo camera and inertial
sensor data.

The VO application implemented in this work is at the beginning of a processing
chain for map creation of short vehicle trips. The results of this work are used in
applications such as ground mesh estimation and ground projection.

For the extension, disparities and inertial measurements are used as additional
information provided directly by the stereo camera. The right image of the stereo
camera is not used. The inertial measurements are not integrated in to the
optimization.

In DSO, a point is parametrized by the inverse depth in the reference frame, so
during this chapter, depth refers to inverse depth.

4.1 Stereo Camera Integration

Depth information is used to eliminate the initialization step, which is required
in the monocular case to give the world a scale, and to pre-initialize the depth of
candidate points.

4.1.1 Initialization

Monocular approaches can determine the motion up to an unknown scale factor.
Therefore, the distance between the first two poses in the internal unit is often
set to 1. DSO uses a coarse initialization step that processes multiple frames
and constantly refines the pose of the subsequent frames and the depth values
of the semi-dense point set by minimizing the photometric error. Afterwards, a
sparse subset of the semi-dense set of point is randomly selected and provides the
necessary information for the described procedure in section 3.4.2 together with
the first and last frame of the initialization step.

However, using a stereo camera makes obtaining initial depth values more straight-
forward thus makes the initialization step unnecessary. Instead, candidate points
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are determined for the first incoming frame, and all points with existing depth
information are activated.

4.1.2 Candidate Point Selection and Tracing

Before a candidate point is activated, its depth is continuously refined by tracing
in subsequent non-keyframes. In the monocular case, the candidate points are
initialized with a depth range [0,∞], that corresponds to a big variance.

The used stereo camera provides dense disparity maps, so candidate points are
only selected if a disparity value for the point is available. The depth range is
restricted by a small area around the given depth value.

4.1.3 Frame Tracking

When a new keyframe is selected, all active points from all active keyframes are
projected onto it. That produces a semi-dense depth map. Based on this semi-
dense depth map related to the newest keyframe, subsequent non-keyframes are
coarse tracked.

In the extension, a combination of projected depth values from multi-views and
depth values from the stereo-view are used. Primarily depth values from the
stereo-view and secondarily from the multi-views. If no depth information on the
projected pixel from the stereo-view is available, only the obtained depth values
from multi-views are used.

4.2 Inertial Sensor Integration

The orientation of the inertial unit supports the coarse tracking. Motion detec-
tion based on the inertial measurements is applied to reduce the computational
consumption and the number of keyframes if no movement is detected.

4.2.1 Constant Motion Model

The pre-initialization of new frames is based on previous motion. The assumption
is that the current motion is similar to the previous one.

If the current root-mean-square error (RMSE) for a frame is more than twice
the previous frame, it is assumed that the direct image alignment failed and the
motion differs greatly from the previous one and attempt to recover by initial-
izing with up to 27 different small rotations in different directions is made. To
make direct image alignment more robust, the rotation of the assumed motion is
overwritten with the inertial sensor orientation. In theory, only the translational
part has to be determined in this way.
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4.2.2 Motion Detection

Based on all measurements, angular velocity, linear acceleration, and orientation
the inertial sensor is used for motion detection. Motion is assumed when one of
the values exceeds its corresponding threshold value. To avoid false negatives the
threshold values are sufficient small. Combining both threshold-based signals,
inertial and visual, detects when there is no ego-motion. When this occurs,
only the inertial measurements are monitored, e.i., no direct image alignment is
performed and thus no keyframes are selected until the inertial sensor reports
motion.

This simple strategy helps, among other things, when standing at the traffic lights
and while waiting at crossroads.
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Chapter 5

Evaluation

This chapter presents the recording setup of the own stereo dataset and the results
obtained by SDSVIO (Stereo Direct Sparse Visual-Inertial Odometry) on trips
recorded from a vehicle driving outdoors with challenging real-word scenarios,
which is referred to as Stereo Dataset. To be comparable with other approaches
an evaluation is also conducted on the popular KITTI dataset [22]. Both datasets
provide synchronized and rectified stereo images.

5.1 Stereo Dataset

For the experiments, a stereo camera and two monocular cameras are mounted
on a vehicle roof and are aligned with the driving direction. All cameras are
triggered simultaneously to capture images. The setup shown in figure 5.1 has
also an Applanix GPS/INS and a wheel odometry installed. All cameras are
extrinsically calibrated to the vehicle. Therefore, the fusion of Applanix GPS/INS
data and wheel odometry is considered as ground truth. The poses of the ground
truth are interpolated and transformed into the stereo camera coordinate frame.

Figure 5.1: A monochrome stereo camera system (in the center)
and two monocular color cameras (on the sides) are used for ex-
periments in this work, mounted on a vehicle roof and aligned to
the driving direction. Only data from the stereo camera was used

for the evaluation.

All cameras run with 30 Hz and the IMU with 40 Hz. IMU data is not syn-
chronized with the stereo frames. Approximate time synchronization is used to
match the corresponding IMU data to the stereo frames, effectively performing
the nearest neighbor algorithm on the time line.
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The stereo camera has built-in monochrome cameras with a resolution of 752 x
480 pixels and a baseline of 25 centimeters. The dense disparity map provided
by the stereo camera is used to calculate the depth information.

The two monocular color cameras with a baseline of 48 centimeter and a resolution
of 1920 x 1200 pixels can also be used as a stereo camera, but they are only
triggered simultaneously. That’s why it is not guaranteed that they provide the
images with the same timestamp. Since they, e.g., have an independent auto
exposure control, and the extrinsic calibration is also not to be trusted after a
few recording days, in contrast to the stereo camera. However, only data from
the stereo camera was used for the evaluation.

The results are compared with DSO. For the sake of fairness, DSO is initialized
with the correct scale by providing the first ten depth images but without IMU
data.

The following shows four trips with path plots and absolute translation errors.
The path plots show the path of ground truth, DSO and SDSVIO. The absolute
translation error plots present the absolute distance of DSO and SDSVIO to the
ground truth on all three axes and also shows the euclidean distance corresponding
to the traveled distance based on the ground truth.
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Figure 5.6: Path comparison of the trip engler-eightloop I
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Figure 5.8: Path comparison of the trip engler-eightloop II
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5.2 KITTI Visual Odometry Benchmark

The training sequences of the KITTI Visual Odometry Benchmark [22] are also
used for evaluation. The grayscale images are captured with 10 Hz, a resolution
of 1392 x 512 pixel and opening angle of 90◦ × 35◦ and the baseline is roughly 54
centimeters [22]. Since the method implemented in this work is based on iner-
tial measurements, the sequences of the KITTI Raw Dataset [23] corresponding
to each odometry sequence are used to obtain the inertial measurements. The
inertial data is synchronized with the stereo frames and gaps are linearly inter-
polated [23]. In addition, inertial data has been transformed into the camera
coordinate frame. However, the raw sequence 2011_09_26_drive_0067, which
corresponds to the odometry sequence 03, was not available on the KITTI web-
site at the time of writing this work. The sequence 03 is therefore analyzed with
depth information only, i.e. without inertial measurements.

For the calculation of depth information OpenCV1, an open source computer
vision library, is used. The block matching algorithm is used, because it is com-
patible to the results of the used stereo camera.

The KITTI dataset does not provide photometric calibration. To counteract this
drawback, it has been decided to analyze the influence of using a high pass filter.
This idea is inspired by [12], in particular the contribution of the gradient-based
keypoint representation to be robust to changes in illumination. To be precise, the
magnitude of both gradient directions is used. Note, in case of gradient images
as input, a second order image gradient is applied during the pixel selection.

The KITTI evaluation computes translational and rotational errors for subse-
quences of length 100,. . . ,800 meters. For the sake of fairness, DSO is again ini-
tialized to the correct scale by providing the first ten depth images, but without
IMU data. In Table 5.1 the average results of DSO and SDSVIO are summarized.
Both are executed with grayscale images (referred as “grayscale”) and gradient
images (referred as “gradient”). Figure 5.10 shows the average of translational and
rotational errors of SDSVIO on gradient images for different trajectory lengths
and driving speeds over all test sequences. A more detailed comparison of each
sequence can be found in the supplementary appendix A.

Furthermore, the comparison of the VO accuracy of different methods on the
KITTI training set is presented in Table 5.2. The proposed SDSVIO on gradient
images is compared to “Stereo DSO” [15], S-LSD-VO [10] and ORB-SLAM2 [24].
The first method “Stereo DSO” is similar to this master thesis, since both works
are based on DSO. The other methods, S-LSD-VO and ORB-SLAM2, are cur-
rently the state-of-the-art direct and indirect stereo V-SLAM methods. The re-
sults for S-LSD-VO are cited from [10]. S-LSD-VO means S-LSD-SLAM, but
only performing loop-closure in a small window of the latest frames, this turns
S-LSD-SLAM into a VO [10]. Both results for “Stereo DSO” and ORB-SLAM2
are cited from [15]. The authors of [15] obtained the results for ORB-SLAM2 by

1https://opencv.org/
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running the code with default settings but turned off the loop-closure detection
and global bundle adjustment. This turns ORB-SLAM2 also into a VO.

SDSVIO DSO [3]
grayscale gradient grayscale gradient

Seq. trel rrel trel rrel trel rrel trel rrel

00 1.700 0.266 1.319 0.254 193.260 0.292 229.790 0.266
01 1.585 0.105 2.946 0.082 19.338 0.097 13.471 0.086
02 1.546 0.208 0.915 0.195 155.910 0.220 157.300 0.221
03 2.492 0.119 1.258 0.135 15.901 0.124 13.151 0.130
04 2.656 0.095 1.415 0.159 4.377 0.199 4.501 0.160
05 2.398 0.191 1.404 0.179 96.624 0.208 102.400 0.183
06 2.873 0.189 1.620 0.168 56.320 0.201 52.944 0.173
07 4.265 0.952 1.641 0.256 45.212 0.265 48.290 0.312
08 2.109 0.251 1.650 0.238 197.790 0.273 228.890 0.262
09 1.896 0.190 1.343 0.179 32.196 0.214 42.819 0.194
10 1.036 0.175 0.796 0.168 33.132 0.165 32.487 0.182

mean 2.232 0.249 1.483 0.183 106.260 0.282 115.760 0.271

Table 5.1: Comparison of DSO vs. SDSVIO accuracy on KITTI
training set, sequence 00− 10.

trel: translation RMSE (%)
rrel: rotational RMSE [degree per 100 meters].

The best results are represented as bold numbers.
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Figure 5.10: KITTI Average Error on Training Set (00− 10) of
SDSVIO on gradient images

SDSVIO St. DSO [15] S-LSD-VO [10] ORB-SLAM2 [24]
Seq. trel rrel trel rrel trel rrel trel rrel

00 1.32 0.25 0.84 0.26 1.09 0.42 0.83 0.29
01 2.95 0.08 1.43 0.09 2.13 0.37 1.38 0.20
02 0.92 0.20 0.78 0.21 1.09 0.37 0.81 0.28
03 1.26 0.14 0.92 0.16 1.16 0.32 0.71 0.17
04 1.42 0.16 0.65 0.15 0.42 0.34 0.45 0.18
05 1.40 0.18 0.68 0.19 0.90 0.34 0.64 0.26
06 1.62 0.17 0.67 0.20 1.28 0.43 0.82 0.25
07 1.64 0.26 0.83 0.36 1.25 0.79 0.78 0.42
08 1.64 0.24 0.98 0.25 1.24 0.38 1.07 0.31
09 1.34 0.18 0.98 0.18 1.22 0.28 0.82 0.25
10 0.80 0.17 0.49 0.18 0.75 0.34 0.58 0.28

mean 1.48 0.18 0.84 0.20 1.14 0.40 0.81 0.26

Table 5.2: Comparison of the VO accuracy of different stereo
methods on the KITTI training set, sequence 00− 10.

trel: translation RMSE (%)
rrel: rotational RMSE [degree per 100 meters].

The best results are represented as bold numbers.
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Chapter 6

Discussion

This work proposes the extension of monocular VO to give a mobile robot the
ability to provide motion estimation in a large-scale environment from a stereo
camera supported by an inertial sensor. The unknown scale issue arising at
the initialization step of a monocular approach is solved and the scale drift is
eliminated. The gradient images, in combination with the proposed method,
increase the accuracy on the KITTI dataset. As the results show, the extension
increases the tracking accuracy.

Figure 5.2 shows the path of the trip tunnel. This trip is without a loop, but
the vehicle drove through a tunnel. The tunnel entrance is at the 400th meter
and the exit at the 900th meter. Figure 5.3 shows the absolute translation error.
Here DSO falls abruptly after the tunnel entry to a much smaller scale. This is
shown by the fact that the error on the z-axis increases strongly.

Figure 6.1: Three images of the stereo camera (at the top) and
the corresponding grayscale images of the monocular camera (be-

low) are shown.

The first evaluated trip tunnel contains the images shown in figure 6.1. The
images show how challenging the images of this particular stereo camera are
after a tunnel exit and not only for direct methods. Compared to the monocular
camera images, the stereo images are completely overexposed. However, DSO has
already big difficulties with the tunnel entrance, so that it falls into another scale.
SDSVIO even manages the exit without a big accumulated drift. Nevertheless,
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it should not go unmentioned that the euclidean distance at the end is about 20
meters.

In the second trip engler-loop a loop was driven. The path plot 5.4 shows only
a small difference between DSO and SDSVIO. This is also shown by the error
plot 5.5. At the beginning DSO even has a lower error. Because there are no
disturbing factors, e.g., other traffic participants, DSO comes through without
problems.

Figure 6.2: The left side shows the result using an inertial sensor
and the right side shows the result without inertial sensor. The
produced trajectory is shown at the top and the keyframes be-
low. The colored pixels represent the tracked points and the color

encode the depth values, red = near and blue = far.

The inertial sensor not only contributes to the orientation pre-initialization for
new frames, but is also used for motion detection. If the inertial measurements
show no movement, the tracking is not applied, therefore no keyframes are gen-
erated. Figure 6.2 shows a scene from a previous setup on the trip engler-loop,
where the field of vision of the camera is restricted by tilting the camera down.
The large black lower area masks the engine cover of the vehicle. The left side
shows the result using an inertial sensor for motion detection and the right side
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shows the result without inertial sensor support. The trajectory is shown at the
top and the keyframes below. The same scene produces more keyframes with-
out inertial support. When the vehicle does not move and other vehicle pass it,
the proposed method can be confused by passing cars. The proposed approach,
without an inertial sensor, leads to incorrect results if the vehicle does not move
and other vehicles in front of it do move. As the bus passes through, each frame
becomes a keyframe (only every 4th is shown), so the VO is carried away. The
original DSO has even been lost in the scene and has reset itself.

Figure 5.6 shows the path plot and figure 5.7 the absolute translation error of the
third evaluated trip engler-eightloop I. On this trip DSO changes its scaling twice.
DSO starts with a slightly smaller scale, probably because the vehicle does not
move at the beginning. However, the scaling changes again after another stop.
This increases the error of DSO compared to the error of SDSVIO.

On the fourth evaluated trip, engler-eightloop II, DSO starts at a slightly smaller
scale and maintains this scale to the end, see figure 5.8. The average error of DSO
is greater than that of SDSVIO, but the error at the end of the trip is slightly
lower, see figure 5.9. This leads, apart from the wrong scale, to the conclusion
that the accumulated drift of DSO is lower on this particular trip.

Another trip from a previous setup demonstrates another challenge to the pro-
posed method. The field of vision in the previous setup is restricted by tilting the
camera down. Figure 6.3 shows the focusing on a single dominant motion that
leads to a wrong trajectory. This is not observed in the presented experimen-
tal setup, because now there is the opportunity that the dominant motion takes
place in the high-rise buildings and trees. However, this can also happen in the
presented experimental setup. This should be improved in future work.

The evaluation on the KITTI sequences in table 5.1 shows that the gradient im-
ages increase the accuracy of SDSVIO, but surprisingly decrease the accuracy in
DSO. Table 5.2 shows that the combination of gradient images, which counteract
the lack of photometric calibration and inertial orientation that support tracking,
lead to a lower rotation error compared to other state-of-the-art methods.

The KITTI dataset provides image captures at 10 Hz while driving at a speed
of up to 80 km/h. For direct methods this low frame rate is a challenge as they
exploit small intra-frame movements. It is surprising that DSO tends to drift
on the KITTI dataset while on our own stereo dataset it abruptly changes the
scale and continues without a drift. The scale drift on the KITTI dataset may
be due to the different camera FoV. However, the scale change of DSO on our
own stereo dataset occurs when the environment changes, e.g., tunnel entrance or
when there is no ego-motion, but new keyframes are selected. In case of SDSVIO
the depth information takes care that no scale changes appear. Very small scale
changes also occur in our own stereo dataset, when depth information from both
stereo-view and multi-view are used and equally weighted as proposed in [10] or
stereo depths are heavily weighted as proposed in [15]. This does not happen on
the KITTI dataset, since the vehicle always stays in motion.
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Figure 6.3: Focus on a single dominant motion leads to a wrong
trajectory shown above. The colored pixels represent the tracked
points and the color encode the depth values, red = near and blue

= far.

Figure 6.4 shows a stereo and monocular camera scene. The left image from the
monocular camera reveals a traffic sign in the center of the image, which is not
visible on the right image of the stereo camera. The monocular camera takes into
account the entire image for exposure time control. The traffic sign is not visible
in the stereo images because the stereo camera controls the exposure time based
on the lower half image. For this reason, especially in this scene, a stroboscopic
effect caused by a repetitive environment can be observed.

Consider the upper left and lower images in figure 6.5. Even though the vehicle
moved forward a line marker phase, the road surface looks almost the same,
making it look like the vehicle has stopped between the upper left and lower left
keyframes. The vehicle drives at a highway speed up to 90 km/h, at 30FPS which
is around 0.83 meters per frame. With such speed, each frame must become a
keyframe, but eleven frames are skipped because of repetitive structures. The
lower left frame jumps back to the position of the upper left frame.

An advantage of a direct approach is that it also produces an accurate, semi-
dense 3D point cloud containing pixels in gradient-rich areas. Figure 6.6 shows
an exemplary piece of the reconstructed point cloud of the engler-loop trip.

For the Autonomos GmbH project, the consistency of the camera poses in relation
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Figure 6.4: Comparison of the details of the stereo image (right)
and the monocular image (left). Consider the center of the images,
the left image of the monocular camera reveals a traffic sign that

is not visible on the right image of the stereo camera.

Figure 6.5: The images with colored pixels are keyframes, the
others are none-keyframes. Repetitive structures cause the lower
left frame to jump back to the position of the upper left frame. The
colored pixels represent the tracked points and the color encode the

depth values, red = near and blue = far.

to the landmarks is important. All landmarks are projected into the keyframes
for the consistency checks. Figure 6.7 demonstrates ten consecutive keyframes
with projected points from the entire point cloud. The yellow points indicate
selected landmarks of other keyframes. Only a small subset is selected from the
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Figure 6.6: A large-scale scene reconstruction.

shown keyframes. The magenta points in a keyframe indicate selected landmarks
of that keyframe. It can be seen that the points are firmly anchored in place
despite a translation and rotation of the vehicle.

As the results show, the extension not only increases tracking accuracy but also
robustness. Despite the fact that the extension has increases the tracking accu-
racy and robustness, it can still be improved. From both sides, hardware and
software. Exposure control is to be improved on the camera side to provide en-
hanced input data. A tightly incorporation of all inertial measurements into the
direct image alignment can also lead to an improvement. The frequency of the
inertial sensor may need to be increased for this. Based on the outcome of this
work, several tasks (e.g. ground mesh estimation and ground projection) are
successfully performed despite the sometimes difficult-to-master scenes.
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Figure 6.7: All points are projected onto keyframes and colored
yellow. The hosted points of the displayed keyframes are magenta.
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Chapter 7

Conclusion and Outlook

This master’s thesis proposed a stereo direct sparse visual-inertial odometry.
Depth information is obtained primarily from the stereo-view and secondarily,
if there is no depth information from the stereo-view of the tracked pixel, from
the multi-view. A semi-dense point cloud reconstruction is performed. In con-
trast to a previous DSO extension, this extension is able to run on pure monocular
camera images (as original DSO), in addition, it can be supported in combina-
tion or individually with depth information and orientation of an inertial sensor.
This allows the processing data not only from monocular and stereo cameras, but
also from other sensors, e.g., RGB-D camera. As the evaluation and discussion
shows, the extension has increased tracking accuracy and robustness, but can still
be improved. Adjustments to the camera have to be implemented to fully exploit
the strengths of the proposed method.

In future work the frequency of the inertial sensor could be increased and the
inertial integration could be tightly combined with direct image alignment in the
optimization. Porting the system to the stereo camera itself is also considered.
A GPS integration can enhance the accuracy and robustness on the global scale,
but providing absolute instead of relative poses is also interesting. Moreover,
to avoid the focus on a single dominant motion, it is planned to use the, inside
the Autonomos GmbH, available pixel-wise classification pipeline for masking
potential dynamic objects like vehicles and persons. Nevertheless, multi rigid-
body motion segmentation and estimation is more effective since it not only
determines the dominant motion, but also provides motion of individual moving
objects. It is also under discussion to integrate nonholonomic constraints into
tracking and optimization. Finally, since the proposed method is a pure VIO
and therefore suffers from accumulated drift, it could also be extended by an
independent SLAM backend to enhance accuracy.
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Appendix A

KITTI Evaluation

This appendix presents the full evaluation of KITTI Visual Odometry Benchmark
[22] on training sequences. In all sequences IMU data was used except for sequence
03, the raw data [23] is not available for this sequence.



II Appendix A. KITTI Evaluation

 0

 100

 200

 300

 400

 500

-300 -200 -100  0  100  200  300

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 00 path

 0

 0.5

 1

 1.5

 2

 2.5

 100  200  300  400  500  600  700  800

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 100  200  300  400  500  600  700  800

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10  15  20  25  30  35  40  45  50  55

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 10  15  20  25  30  35  40  45  50  55

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.1: KITTI seq. 00 Errors



Appendix A. KITTI Evaluation III

-1500

-1000

-500

 0

 0  500  1000  1500

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 01 path

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100  200  300  400  500  600  700  800

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 100  200  300  400  500  600  700  800

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 1

 2

 3

 4

 5

 6

 7

 40  45  50  55  60  65  70  75  80  85  90

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 40  45  50  55  60  65  70  75  80  85  90

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.2: KITTI seq. 01 Errors



IV Appendix A. KITTI Evaluation

 0

 200

 400

 600

 800

-200  0  200  400  600  800

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 02 path

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100  200  300  400  500  600  700  800

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 100  200  300  400  500  600  700  800

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 20  25  30  35  40  45  50  55

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 20  25  30  35  40  45  50  55

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.3: KITTI seq. 02 Errors



Appendix A. KITTI Evaluation V

-100

 0

 100

 200

 300

 0  100  200  300  400

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 03 path

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300  350  400  450  500

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 100  150  200  250  300  350  400  450  500

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10  15  20  25  30  35  40

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 10  15  20  25  30  35  40

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.4: KITTI seq. 03 Errors



VI Appendix A. KITTI Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

-200 -150 -100 -50  0  50  100  150  200

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 04 path

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  150  200  250  300

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 100  150  200  250  300

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 42  44  46  48  50  52  54  56  58

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 42  44  46  48  50  52  54  56  58

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.5: KITTI seq. 04 Errors



Appendix A. KITTI Evaluation VII

-100

 0

 100

 200

 300

 400

-200 -100  0  100  200

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 05 path

 0

 0.5

 1

 1.5

 2

 2.5

 100  200  300  400  500  600  700  800

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 100  200  300  400  500  600  700  800

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10  15  20  25  30  35  40  45

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 10  15  20  25  30  35  40  45

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.6: KITTI seq. 05 Errors



VIII Appendix A. KITTI Evaluation

-100

 0

 100

 200

 300

-200 -100  0  100  200

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 06 path

 0

 0.5

 1

 1.5

 2

 2.5

 100  200  300  400  500  600  700  800

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 100  200  300  400  500  600  700  800

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 20  25  30  35  40  45  50  55  60

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 20  25  30  35  40  45  50  55  60

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.7: KITTI seq. 06 Errors



Appendix A. KITTI Evaluation IX

-100

-50

 0

 50

 100

-200 -150 -100 -50  0

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 07 path

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100  200  300  400  500  600

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 100  200  300  400  500  600

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10  15  20  25  30  35  40  45

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 10  15  20  25  30  35  40  45

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.8: KITTI seq. 07 Errors



X Appendix A. KITTI Evaluation

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100  0  100  200  300  400

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 08 path

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100  200  300  400  500  600  700  800

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 100  200  300  400  500  600  700  800

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10  15  20  25  30  35  40  45  50  55

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 10  15  20  25  30  35  40  45  50  55

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.9: KITTI seq. 08 Errors



Appendix A. KITTI Evaluation XI

 0

 100

 200

 300

 400

 500

-200 -100  0  100  200  300  400

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 09 path

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100  200  300  400  500  600  700  800

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 100  200  300  400  500  600  700  800

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 25  30  35  40  45  50  55  60

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 25  30  35  40  45  50  55  60

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.10: KITTI seq. 09 Errors



XII Appendix A. KITTI Evaluation

-300

-200

-100

 0

 100

 200

 300

 400

 0  100  200  300  400  500  600  700

z 
[m

]

x [m]

GT
SDSVIO

Start

(a) KITTI seq. 10 path

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100  200  300  400  500  600  700  800

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Path Length [m]

Translation Error

(b) Translation Error vs. Path Length

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 100  200  300  400  500  600  700  800

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Path Length [m]

Rotation Error

(c) Rotation Error vs. Path Length

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10  15  20  25  30  35  40  45  50  55  60

T
ra

ns
la

tio
n 

E
rr

or
 [%

]

Speed [km/h]

Translation Error

(d) Translation Error vs. Speed

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 10  15  20  25  30  35  40  45  50  55  60

R
ot

at
io

n 
E

rr
or

 [d
eg

/m
]

Speed [km/h]

Rotation Error

(e) Rotation Error vs. Speed

Figure A.11: KITTI seq. 10 Errors


	Introduction
	Related Work
	Fundamentals
	Visual Odometry
	Stereo Vision
	Inertial Measurement Unit
	Direct Sparse Odometry
	Formulation
	Photometric Calibration
	Photometric Error

	Front-End
	Frame Management
	Point Management
	Outlier and Occlusion Detection



	Implementation
	Stereo Camera Integration
	Initialization
	Candidate Point Selection and Tracing
	Frame Tracking

	Inertial Sensor Integration
	Constant Motion Model
	Motion Detection


	Evaluation
	Stereo Dataset
	KITTI Visual Odometry Benchmark

	Discussion
	Conclusion and Outlook
	Bibliography
	KITTI Evaluation

