&

PIOROBOTICS Freie Universitat £

Diplomarbeit

Neurocopter

Eine fliegende Experimentierplattform zur Erforschung der
Hirnaktivitat von Honigbienen

Tobias Ludwig

2. Mai 2016

Freie Universitat Berlin
Fachbereich Mathematik und Informatik
Institut fur Informatik
Arbeitsgruppe Intelligente Systeme und Robotik
Biorobotics Lab

Betreuer
Prof. Dr. Tim Landgraf

Gutachter
Prof. Dr. Raul Rojas
Prof. Dr. Tim Landgraf

Eidesstattliche Erklarung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als
meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bii-
cher, Internetseiten oder dhnliches sind im Literaturverzeichnis angegeben. Zitate
aus fremden Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher
in gleicher oder dhnlicher Form keiner anderen Priifungskommission vorgelegt und
auch nicht veroffentlicht.

Berlin, den 2. Mai 2016

(Tobias Ludwig)

Inhaltsverzeichnis

Zusammenfassung

1. Einleitung

1.1. Motivation: Die Honigbiene in der Neurobiologie
1.2. Zielsetzung: Eine fliegende Experimentierplattform

1.2.1.
1.2.2.

Hardware
Software

2. Stand der Technik
2.1. Manuelle Steuerung . . .
2.2. Flugcontroller

2.3.

2.2.1.

Sensoren

2.2.2. Gegeniiberstellung gangiger Flugcontroller

2.2.3.

Bodenstation . .

Antrieb

2.3.1.
2.3.2.

Stromversorgung
Motoren

2.3.3. Motorsteuerung (ESC, electronic speed control)

2.3.4.

Propeller

2.4. Rahmen
2.5. Bordcomputer
2.6. Zusammenfassung

3. Implementierung
3.1. Auswahl der Bordelektronik

3.2.

3.1.1.
3.1.2.

Konstruktion des Copters

3.2.1.
3.2.2.
3.2.3.
3.2.4.
3.2.5.
3.2.6.
3.2.7.

Bordcomputer . .
Flugcontroller .

Schubmessung .
Arme.
Plattform
Motorklemmen .
Antrieb

Manuelle Steuerungo

Technische Daten

23
23
23
23
25
26
27
28
29
29
30
30

3.3. Software 32
3.3.1. MAVLink 32
3.3.1.1. Protokollbeschreibung 32
3.3.1.2. Codegenerierung 35
3.3.2. Berlin United Framework 37
3.3.2.1. Architektur 37
3.3.2.2. Konfiguration 38
3.3.2.3. Testumgebung zur Fehlersuche 38
3.3.3. ar2clipse 39
3.3.3.1. Funktionsweise 40
3.3.4. Bordsoftware oo 41
3.3.4.1. Datenaustausch zwischen den Modulmanagern 42

3.3.4.2. Manipulation verschiedener Daten von MAVLink-
Gerdaten 42
3.3.4.3. MAVLink-Service 43
3.3.4.4. Bereitstellung empfangener MAVLink-Pakete 44
3.3.4.5. Weitere MAVLink-Module und Repréasentationen . . 45
3.3.5. Bodenstation o0 49
3.3.6. Konfiguration von Flugrouten und Verhalten 49
3.4. Zusammenfassung 49
4. Evaluierung 51
4.1. Copter 51
4.1.1. Rahmen 51
4.1.2. Plattformdampfung 51
4.2. Flugcontrollero 53
4.2.1. Position halten 0oL 53
4.2.2. Senderate der MAVLink-Datenstrome 56
4.3. Werkzeug: ar2clipse 56
4.4. Bordsoftware Y4
4.4.1. MAVLink 57
4.4.2. Integration in das Berlin United Framework 59
4.4.3. Wartbarkeit 60
5. Diskussion 61
5.1. Flugcontroller 61
5.1.1. Position halten oo 61
5.1.2. Senderate der MAVLink-Datenstrome 62
5.2, Copter e 62
5.2.1. Plattform 63
5.2.2. Antrieb 63
5.3. Bordsoftware 64
5.4. Bodenstation 65

ii

6. Ausblick
6.1. Flugcontroller
6.2. Copter

6.2.1. Plattform,

6.3. Bordsoftware
A. Anhang
Literaturverzeichnis

Nomenklatur

67
67
67
68
68

69
73
83

iii

Abbildungsverzeichnis

2.1. Multicopter-Konfigurationen 8
2.2. Schematischer Aufbau eines Multicopters 9
2.3. Funkfernbedienung und Empfanger 10
2.4. Magnetometer Lo 11
25, SONAT 11
2.6. GPS-Modul 11
2.7. Sensoren zur Bestimmung des optischen Flusses 12
2.8. Bodenstationssoftwareo 14
2.9. Bodenstation APM Planner 15
2.10. Motor mit Propeller 15
2.11. Lithium-Polymer-Akku 16
2.12. Birstenloser Motor 16
2.13. Motorregler L 17
2.14. Propeller 17
2.15. Multicopterrahmen 18
2.16. Motorbefestigungen 18
2.17. Einplatinencomputero 20
3.1. Spannungswandlero 23
3.2. Neurocopter-3D-Modell 25
3.3. Schubmessung L 26
3.4. Mittelstick o 27
3.5. Plattform-3D-Modell oo 28
3.6. Plattformklemme Lo 28
3.7. Elektronikplattform00 28
3.8. Motorhalterung 30
3.9. Montierter Motor 30
3.10. MAVLink-Paketstruktur o000 32
3.11. MAVLink-Parameterprotokoll 35
3.12. Klassendiagramm der abstrahierten Ubertragungsmoglichkeiten . . . 43
3.13. Zustandsdiagramm zur Anforderung der Parameter 48
4.1. Beschleunigungssensordaten im Schwebeflug 52
4.2. Positionsdaten eines unbewegten GPS-Empfangers 53
4.3. Optische Positionsbestimmung des Copters 54
4.4. Positionsdaten des schwebenden Copters 55

vi

A.1. Wurzelverzeichnis der DVD . . .
A.2. Datenverzeichnis der DVD
A.3. Neurocopter-Verzeichnis der DVD

Tabellenverzeichnis

2.1. Flugcontroller 13
2.2. Multicopterrahmen 19
2.3. Auswahl géngiger Einplatinencomputer 20
3.1. Technische Daten des Neurocopters 31

vii

Zusammenfassung

Die Honigbiene besitzt bemerkenswerte Gedéchtnisleistungen und Navigationsfahig-
keiten, was sie zum idealen Modellorganismus der Hirnforschung macht. Aufgrund
ihrer geringen Grofle ist es jedoch bislang nicht moglich, sie im freien Flug zu un-
tersuchen. Um sowohl die Hirnaktivitat elektrophysiologisch zu analysieren als auch
das Verhalten kiinstlicher neuronaler Netze zu untersuchen, wurde in dieser Arbeit
mit dem Neurocopter eine fliegende Experimentierplattform geschaffen.

Das entwickelte System besteht aus einem Quadcopter, der iiber unterschiedliche
Sensoren, eine Kamera und einen leistungsstarken Bordcomputer verfiigt. Ein auf
dem Bordrechner laufendes Framework ermdoglicht den einfachen Zugriff auf die Sens-
ordaten und Kamerabilder, so dass hiermit Experimente dokumentiert und kontrol-
liert werden konnen. Uber eine Funkverbindung koénnen die Daten zu einer Boden-
station iibertragen und dort visualisiert werden. Zur Planung der Versuche lassen
sich anhand von GPS-Koordinaten Routen festlegen, die der Copter autonom ab-
fliegt.

1. Einleitung

Die Européische Honigbiene (Apis mellifera) eignet sich hervorragend als Modellsys-
tem der Hirnforschung. Als Insekt ist sie einfach in Haltung und Handhabung. Trotz
ihres sehr kleinen Gehirns mit einem Volumen von nur 1 mm? mit etwa 960 000 Neu-
ronen [1] weist sie Féhigkeiten auf, die sonst nur bei hoher entwickelten Lebewesen
wie Wirbeltieren zu erwarten sind [2]. So besitzt sie beispielsweise ein ausgeprag-
tes Sozialverhalten [3], woraus sich besondere Lern- und Gedéchtnisleistungen erge-
ben [1]. Beim Ausschwérmen zur Nahrungssuche entfernt sich eine Biene tiber 10 km
von ihrem Heimatstock [4]. Nach dem Auffinden einer neuen Tracht (Futterquelle)
fliegt sie dann auf direktem Weg zurtick [5] und teilt den anderen Arbeiterinnen
Richtung und Entfernung der Tracht durch einen Schwinzeltanz im Inneren des
Stocks mit [4]. Hierbei lauft die Tanzerin auf der Wabe den Hinterleib rhythmisch
hin und her bewegend ein Stiick geradeaus, kehrt in einem Halbkreis zum Ausgangs-
punkt zuriick, schwénzelt dann erneut die gerade Strecke, fithrt nun den Halbkreis
in die entgegengesetzte Richtung aus und fahrt so immer wieder im Wechsel fort [4].
Die Himmelsrichtung zur Tracht wird dabei durch den Winkel der Schwénzelstrecke
relativ zur Schwerkraft und die Entfernung durch das Tanztempo angegeben [4].
Fir dieses Verhalten sind gute Navigationsfdhigkeiten und ein Gedéchtnis iiber die
Futterquellen nétig [6]. Um die Luftlinie zur Tracht im Tanz angeben zu kénnen,
summiert die Biene die bei der Suche geflogenen und durch optischen Fluss gemes-
senen [7] Teilstrecken per Pfadintegration [4] auf und erhélt so den direkten Vektor
zum Ziel.

AuBerdem sind Bienen in der Lage, den direkten Weg zwischen zwei bekannten
Orten durch unbekanntes Terrain zu fliegen, was sich nicht mehr allein durch das
Modell der Pfadintegration erkléren lésst [8]. Eine mogliche Interpretation dieses
Phénomens ist eine kognitive Karte [8,9], in der Orte und Landmarken rdumlich so
zueinander in Relation gesetzt werden, dass sie zur Selbstlokalisierung genutzt wer-
den kénnen [10]. Ein solches Kartengedéchtnis wird dem nur bei héher entwickelten
Lebewesen vorhandenen Hippocampus zugeschrieben [10, 11] und ist erst etwa bei
Ratten [10,11] und Méusen [12] anzutreffen, weswegen diese These noch umstritten
ist [13,14]. Daher sind diese fiir Insekten einzigartigen Féhigkeiten der Honigbienen
umso beeindruckender und geben der Forschung noch viele Fragen auf.

Kapitel 1 Einleitung

1.1. Motivation: Die Honigbiene in der Neurobiologie

In der Neurobiologie lassen sich die Einsatzmoglichkeiten der Honigbiene grundle-
gend in zwei Bereiche teilen: Zum einen werden in der Elektrophysiologie Hirnakti-
vitdten analysiert. Im Gegensatz dazu verfolgt die Neuroinformatik einen syntheti-
schen Ansatz, der auf kunstlichen neuronalen Netzen basiert.

Die Elektrophysiologie stofit schnell an physikalische Grenzen, wenn die Hirnstro-
me im Flug untersucht werden sollen. Dies kann erforderlich sein, da ein alleiniges
Beobachten des Verhaltens und daraus gezogene Riickschliisse auf die tatsichlichen
Vorgange im Gehirn einen erheblichen Interpretationsspielraum lassen. Eine Biene
kann etwa 50 mg und ohne groflere Einschrankungen sogar nur 20 mg tiber lange-
re Zeit tragen [15]. Folglich scheidet ein Befestigen der noétigen Sensorik und Auf-
zeichnungselektronik am Insekt selbst aus. Als mogliche Losung kann der freie Flug
im Labor in einer virtuellen Arena aus LCD-Monitoren simuliert werden [16]. Ein
solcher Aufbau ermoglicht zwar eine hervorragende Reproduzierbarkeit des Experi-
ments, jedoch weicht er erheblich von der Realitdt ab und erzeugt nur einen Bruchteil
der tatsachlich auftretenden Reize. So hat etwa ein zuséatzliches Anstromen des In-
sekts mit Luft zur Vortduschung von Flugwind Einfluss auf sein Verhalten [17]. Ein
moglicher Schritt in Richtung der idealen Losung wére ein fliegendes Labor, in dem
die Biene allen Umwelteinfliissen ausgesetzt ist.

Genauso muss bei einer Computersimulation der Welt zur Analyse neuronaler Netze
berticksichtigt werden, dass sich diese immer von der Realitdt unterscheidet. Eine
biorobotische fliegende Plattform, die eine Biene sensorisch und motorisch imitiert,
kann strengere Kriterien als eine reine Simulation erfiillen und somit ergénzend zur
Uberpriifung von Hypothesen eingesetzt werden.

1.2. Zielsetzung: Eine fliegende
Experimentierplattform

Wie in Abschnitt 1.1 erlautert, gibt es in der Neurobiologie mehrere Einsatzmoglich-
keiten fir ein fliegendes Labor zur Erforschung von Honigbienen. Dieser Abschnitt
befasst sich mit den Anforderungen an eine solche Plattform, die hier fiir Hardware
und Software aufgestellt werden.

1.2.1. Hardware

Um Bienen oder das Verhalten neuronaler Netze wahrend des Flugs zu untersu-
chen, sollten die Manovrierfahigkeit und das Flugverhalten der Insekten moglichst
naturgetreu wiedergeben werden kénnen. Neben schnellen Richtungs- und Geschwin-
digkeitswechseln kénnen Bienen auch punktgenau landen und auf einer Stelle schwe-

1.2 Zielsetzung: Eine fliegende Experimentierplattform

ben [4,18]. Diese Anforderungen konnen von Flugzeugen nicht erfiillt werden, wo-
durch als Fluggeriat nur noch Helikopter und Multicopter zur Wahl stehen. Ers-
tere sind technisch sehr komplex: Um etwa den Hubschrauber entlang der Quer-
oder Langsachse zu neigen, muss der Einstellwinkel der einzelnen Rotorblatter zy-
klisch wahrend eines Umlaufs des Hauptrotors variiert werden. Dies wird mechanisch
durch ein tber eine Taumelscheibe angesteuertes Gesténge gelost [19]. Dem gegen-
iiber zeichnet sich ein Multicopter durch den kompletten Verzicht auf mechanische
Ansteuerungen aus. Ein solches Fluggerat besitzt mehrere auf einer Ebene ange-
ordnete Propeller mit nach unten wirkendem Schub. Gesteuert wird es allein durch
Drehzahldnderungen der Motoren [20]. Dieser einfache und kostengtinstige Aufbau
reduziert den Wartungsaufwand und erhoht die Zuverlassigkeit [20,21]. Somit soll
das fliegende Labor auf Basis eines Multicopters konstruiert werden.

Um Experimente verfolgen und dokumentieren zu kéonnen oder Reize fiir ein neuro-
nales Netz zu erzeugen, werden etliche Sensoren benétigt. Neben einem GPS-Modul
zur Positionsbestimmung sowie Lage- und Beschleunigungssensoren, soll der Copter
auch iiber eine Kamera verfiigen. Prinzipbedingt neigt sich ein Multicopter beim
Fliegen in die entsprechende Richtung. Daher kann es notig sein, dass eine Kamera
oder fixierte Biene gedreht werden muss, um immer im gleichen Winkel zum Boden
gehalten zu werden. Dies kann von einem Gimbal, einer elektronischen kardanischen
Aufhédngung, bewerkstelligt werden. Zur Auswertung der Kamerabilder und ande-
rer versuchsspezifischer Daten bedarf es eines leistungsfahigen Bordrechners. Dieser
muss tber ein Funkmodul verfiigen, damit wiahrend eines Experiments etwa zuséitz-
liche Steuersignale gesendet oder Statusinformationen tibertragen werden konnen.

1.2.2. Software

Wie in Abschnitt 1.2.1 auf Seite 4 beschrieben, sollte der Multicopter iiber einen
leistungsstarken Bordcomputer verfiigen, der zur Auswertung und Steuerung der Ex-
perimente dient. Diese miissen reproduzierbar sein, damit sich Ergebnisse verifizieren
lassen. Das lasst sich erreichen, indem der Copter die Moglichkeit bietet, vorgegebe-
ne Routen autonom anhand von GPS-Koordinaten abzufliegen und an festgelegten
Punkten oder bei anderen Ereignissen immer die gleiche Aktion auszufithren. Dabei
muss es trotzdem immer moglich sein, im Zweifelsfall héndisch einzugreifen und die
Steuerung sofort zu tibernehmen.

Zur Bereitstellung dieser Funktionalitét wird ein Framework (Rahmenstruktur) be-
notigt, das einen einfachen Zugriff auf die Sensordaten des Copters erméglicht. Zu-
dem muss die Kommunikation iiber die Funkverbindung integriert sein, so dass auch
auf diese Daten zugegriffen werden kann.

Als Gegenstiick wird eine Bodenstation-Software bendtigt, mit der die empfange-
nen Daten aufbereitet und visualisiert werden konnen, um die laufenden Versuche
beobachten zu kénnen. Zur Konfiguration der abzufliegenden Routen wird ebenfalls

Kapitel 1 Einleitung

entsprechende Software benétigt, mit der es beispielsweise moglich ist, die Punkte
anhand einer virtuellen Karte vorzugeben.

Um die Auswahl weiterer fiir Versuche benétigter Programme nicht vorab einzu-
schranken, miissen Bodenstation und Konfigurationssoftware des Copters weitge-
hend plattformunabhéngig sein, das heifit unter Microsoft Windows, Mac OS X
und Linux nutzbar sein. Als weitere wichtige Anforderung kommt die Quelloffenheit
sdmtlicher verwendeter Software, insbesondere der Firmware des Flugcontrollers,
hinzu. Kommerzielle zivile Multicopter werden héufig zum Kunstflug oder der An-
fertigung von Luftaufnahmen verwendet. Der geplante Einsatzzweck als fliegendes
Labor weicht davon teils erheblich ab. Deswegen ist damit zu rechnen, dass langfristig
Anderungen an Kernkomponenten der Flugsteuerung notig werden, um bestimmte
Versuche zu ermoglichen. So etwas ist ohne erheblichen Aufwand nur méglich, wenn
der Quelltext vollumfanglich zur Verfiigung steht.

2. Stand der Technik

Die fliegende Experimentierplattform Neurocopter soll als Multicopter konstruiert
werden. Dieses Kapitel verschafft einen Uberblick der zum Zeitpunkt des Entwurfs
verfiigharen Komponenten und erlautert die allgemeine Funktionsweise und den Auf-
bau eines Multicopters.

Wie bereits in Abschnitt 1.2.1 auf Seite 4 erwahnt, wird ein Multicopter ohne zuséatz-
liche bewegliche Teile allein durch Drehzahlanderungen seiner Motoren gesteuert.
Um die erzeugten Drehmomente dieser auszugleichen und eine stdndige Rotation
des Copters um die Hochachse zu verhindern, wird eine gerade Anzahl Motoren
verwendet, von denen sich eine Halfte mit und die andere gegen den Uhrzeigersinn
dreht. Typische Konfigurationen verwenden vier, sechs oder acht Motoren, die an
Auslegern rund um eine zentrale Plattform auf unterschiedlichste Weise angeordnet
sind, wie in Abbildung 2.1 auf der ndchsten Seite veranschaulicht wird. Es existieren
auch Losungen, die bis zu zwolf Motoren zulassen [22]. Diese Vielfalt dient der Er-
filllung unterschiedlicher Anforderungen, wie beispielsweise eines moglichst grofien
Sichtfelds fiir eine Kamera oder zur Erzeugung von Redundanz fiir den Fall eines
Motorversagens.

Der Flugcontroller nimmt vom Piloten per Fernsteuerung gesendete Befehle entge-
gen. Dabei wird der Ist-Zustand der Lage des Copters im Raum mit Hilfe verschie-
denster Sensoren bestimmt und mit dem iibermittelten Soll-Zustand verglichen. Dar-
aus werden dann entsprechende Drehzahlen fiir die einzelnen Propeller berechnet.
Aus einem Lithium-Polymer-Akku gespeiste Motorregler erzeugen daraus dann die
Strome zur Ansteuerung der Motoren, die die Propeller in der Regel direkt antreiben.
Der allgemeine Aufbau dieser elektronischen Komponenten wird in Abbildung 2.2
auf Seite 9 schematisch dargestellt.

2.1. Manuelle Steuerung

Zur manuellen Steuerung kénnen herkémmliche Funkfernsteuerungen aus dem Mo-
dellbau verwendet werden. In der Regel verfiigen diese iiber zwei Steuerkniippel, die
jeweils horizontal und vertikal bewegt werden konnen und so insgesamt vier Funk-
tionen kontrollieren. Zusatzlich gibt es meist noch mehrere Schalter und Drehregler
fiir weitere Funktionen. Die Ubertragung an den Empfinger findet auf dem 2,4 GHz-
Band statt und verwendet fiir jede Funktion einen Kanal. Abbildung 2.3 auf Seite 10
zeigt exemplarisch eine Fernbedienung und den dazugehorigen Empféanger.

Kapitel 2

Stand der Technik

O+

(a) +-Quadcopter

Q)
@

(d) x-Quadcopter

QL

O,

(b) +-Hexacopter

@
©
®

(e) x-Hexacopter

QT
OFNO;

(¢) +-Octocopter

@

®

S
10

(f) x-Octocopter

= SR 9
X S ©

@

(g) y-Hexacopter (h) koaxialer x-Octocopter (i) y-Quadcopter

Abbildung 2.1.: Multicopter-Konfigurationen [23]
Allen Konfigurationen gemein ist die gerade Anzahl von Rotoren, von denen sich eine Hélfte mit
dem Uhrzeigersinn (griin) und die andere dagegen (blau) dreht. Die Spitze an der Plattform deutet
die Vorderseite des Copters an. Abbildungen 2.1a bis 2.1c zeigen Copter in +-Konfiguration, die
sich durch Arme entlang der Léngsachse auszeichnen. Die Bezeichnung riihrt vom Quadcopter, der
mit seinen vier Armen an ein + erinnert. Analog dazu zeigen die Abbildungen 2.1d bis 2.1f x-
Konfigurationen. Die Abbildungen 2.1g und 2.1h zeigen Copter, bei denen sich an jedem Arm zwei
koaxial angeordnete Propeller befinden. Von all diesen symmetrischen Aufbauten unterscheidet
sich der in Abbildung 2.1i dargestellte Copter, bei dem die Plattform nach vorn versetzt ist. Dies

ermdglicht ein ungestorteres Sichtfeld fiir eine nach vorn gerichtete Kamera.

2.2. Flugcontroller

Das Flugverhalten von Multicoptern ist inharent instabil [20,25]. Daher wird zur La-
geregelung ein Flugcontroller benotigt. Dieser soll auflerdem das autonome Abfliegen
von Routen tibernehmen.

Géangige Flugcontroller verfiigen iiber eine Vielzahl von Sensoren, die zur Lagerege-
lung und Steuerung des Copters verwendet werden.

2.2 Flugcontroller

| Typical Quadcopter Layout |

"
> Srapuiier Ardupilot Board

1 =
=

Bropeller

L
[}

= L S

el

talsermative to a power 4
ditntribution beard) <=4

Brushiess
Outrunnsr Moter

Tiit 3erve

Brushless
Lipo Battery e]
o = Propeticr

! " Please note that the Ardupilet board in this
cnbn i pwiared through the BEC Sarvy comnstion

By Jethrs Haselhurst

Abbildung 2.2.: Schematischer Aufbau eines Multicopters [24]
Herzstiick des Quadcopters ist der Flugcontroller (Ardupilot Board). Steuersignale der Fernsteue-
rung werden vom Empfinger (Receiver) an den Flugcontroller geleitet und dort unter Zuhilfenahme
mehrerer interner (nicht gezeigt: Gyroskop, Accelerometer, Magnetometer, Barometer) und exter-
ner (GPS-Modul) Sensoren in Motordrehzahlen umgerechnet. Daraus erzeugen die Motorregler
(ESC) die Strome zum Antrieb der biirstenlosen Gleichstrommotoren (Brushless Outrunner Mo-
tor), die direkt mit den Propellern verbunden sind. Die gesamte Stromversorgung wird von einem
Lithium-Polymer-Akku (LiPo Battery) geleistet. Zusatzlich kann der Flugcontroller mit einem
Gimbal (Optional 2 Axis Gimbal) eine Kamera unabhingig von der Lage des Copters ausrichten.

2.2.1. Sensoren

Gyroskop

Die in Multicoptern verwendeten Gyroskope messen die Winkelgeschwindigkeiten
um die drei Achsen des kartesischen Koordinatensystems. Diese Werte werden vom
Flugcontroller verwendet, um die Lage des Copters zu stabilisieren [26]. Dabei wird
einem plotzlich auftretenden Kippen durch entsprechende Drehzahlénderungen der
Motoren entgegengewirkt [27]. Die absolute Lage des Copters im Raum kann mit
einem Gyroskop nicht bestimmt werden [20]. Die durch Aufintegration der Mess-
werte erhaltene Schitzung weicht wegen Messungenauigkeiten, der diskretisierten
Zeitschritte und nicht zuletzt der ungenauen Repréasentation numerischer Werte im
Mikroprozessor mit der Zeit immer mehr vom tatséchlichen Wert ab [28].

Kapitel 2 Stand der Technik

(a) Fernbedienung (b) Empfianger

Abbildung 2.3.: Funkfernbedienung und Empfinger

Turnigy 9X Fernbedienung (Abb. 2.3a): Mit den beiden Steuerkniippeln lisst sich das Flugmodell
kontrollieren. Bei einer der vielen méglichen Konfigurationen steuert der rechte Kniippel das Modell
in der Ebene, indem er es seitwérts rollt oder vor und zuriick nickt. Der linke Hebel kontrolliert
iiber den Schub die Auf- und Abbewegungen des Modells und dreht es um die Hochachse, wenn
er seitwérts bewegt wird. Einer der Kippschalter ldsst sich so konfigurieren, dass er zwischen
verschiedenen Modi eines Flugcontrollers wechseln kann.

Turnigy 9X8C-V2 Empfdanger (Abb. 2.3b): Der Empfianger besitzt fiir jede der acht steuerbaren
Funktionen einen Anschluss, der entweder einen Servo oder Motorregler steuert, oder an einen
Flugcontroller angeschlossen werden kann.

Accelerometer

Zur Beschleunigungsmessung entlang der drei Achsen des Koordinatensystems wer-
den Accelerometer verwendet. Mit diesen Messwerten lassen sich Nick- und Roll-
winkel bestimmen, um den Copter waagerecht zu halten [26] und den Drift des
Gyroskops zu kompensieren [27]. Bei der Positionsbestimmung durch Aufintegrati-
on driftet das Ergebnis — genauso wie bei der Lagebestimmung mit einem Gyroskop
— mit der Zeit immer weiter ab.

Magnetometer

Die Lage des Copters im Raum lédsst sich durch ein Magnetometer, einen 3-Achsen-
Kompass, bestimmen. Die Ausrichtung muss bekannt sein, wenn der Copter GPS-
Koordinaten anfliegen soll [26]. Neben der Stiarke des Erdmagnetfelds misst das
Magnetometer allerdings auch die Felder, die etwa durch die Stréme zur Steuerung
der Motoren erzeugt werden. Diese Storungen miissen gegebenenfalls kompensiert
werden. Abbildung 2.4 auf der nidchsten Seite zeigt ein Magnetometer, dass getrennt
vom Flugcontroller ausgefiihrt ist und so entfernt von Storquellen angebracht werden
kann.

10

2.2 Flugcontroller

Barometer

Ein Anhaltspunkt iiber die Hohe des Cop-
ters lasst sich mit einem Barometer aus dem
Luftdruck tiber die barometrische Hohenfor-
mel bestimmen [26]. Dieser Sensor kann leicht
durch Windbo6en oder witterungsbedingte Luft-
druckschwankungen gestort werden, weswe-
gen die Messwerte zumindest gefiltert oder
mit denen anderer Sensoren kombiniert wer-
den sollten.

Abbildung 2.4.: Magnetometer
ieses externe 3-Achsen-Magnetometer wird
mit dem Flugcontroller verbunden und kann

entfernt von Storquellen angebracht werden.

Sonar

Ein Sonar sendet Ultraschallsignale aus, die
zuriickgeworfen werden, wenn sie auf ein
Hindernis treffen. Aus der Laufzeit ldsst sich
die Entfernung bestimmen. Multicopter kon-
nen dieses System zur Kollisionsvermeidung
und Hohenbestimmung nutzen [21]. Abbil-
dung 2.5 zeigt ein typisches in Multicoptern
verwendetes Sonar.

Abbildung 2.5.: Sonar
Ein Sonar bestimmt durch Aussenden von
Ultraschallwellen die Entfernung zu Objek-
ten und kann so zur Kollisionsvermeidung
GPS und dem Halten der Flughdhe verwendet

werden.

Mit einem GPS-Sensor wird iiber ein Netz
aus Navigationssatelliten die Position auf
der Erde bestimmt, die sich aus Breiten-
grad, Langengrad und Hohe zusammensetzt.
Auflerdem koénnen noch die Uhrzeit mikro-
sekundengenau, Geschwindigkeit und Bewe-
gungsrichtung ermittelt werden [29]. Abbil-
dung 2.6 zeigt eine Platine bestiickt mit
GPS-Modul und Antenne. Abbildung 2.6.: GPS-Modul
Platine mit Keramikantenne (Abb. 2.6a)
und u-blox GPS-Modul (Abb. 2.6b)

(a) Oberseite (b) Unterseite

Optischer-Fluss-Sensor

Bei der Bestimmung des optischen Flusses werden Verschiebungsvektoren von wie-
dererkannten Regionen in aufeinander folgenden Bildern berechnet. Bei einer nach
unten gerichteten Linse kann aus diesen Informationen zusammen mit der genau-
en Entfernung und Orientierung des Sensors zum Boden die Geschwindigkeit des
Copters bestimmt werden. Diese Technik findet beispielsweise in optischen Com-
puterméusen Anwendung. Deren Sensoren lassen sich mit einer anderen Linse in

11

Kapitel 2 Stand der Technik

Multicoptern nutzen. Abbildung 2.7 zeigt einen solchen mausbasierten und einen
aufwéndigeren Sensor.

(a) mausbasierter Sensor ADNS3080 [30] (b) PX4Flow [31]

Abbildung 2.7.: Sensoren zur Bestimmung des optischen Flusses
Zur Geschwindigkeitsbestimmung berechnet ein Optischer-Fluss-Sensor Verschiebungsvektoren von
wiedererkannten Regionen in aufeinander folgenden Bildern. Einfache Sensoren, wie der in Abbil-
dung 2.7a, basieren auf der Technik von optischen Computerméusen. Abbildung 2.7b zeigt ein
komplexeres Modell, das ein Gyroskop und Sonar zur Lage- und Abstandsbestimmung besitzt [31].

2.2.2. Gegeniiberstellung gangiger Flugcontroller

Die Vielzahl erhéltlicher Flugcontroller unterscheidet sich je nach angedachtem Ein-
satzzweck. So verfiigen ausschlieBlich fiirs manuelle Fliegen konzipierte Modelle nur
iiber die notigsten Sensoren zur Stabilisierung des Copters und bieten keine Er-
weiterungsmoglichkeiten. Demgegentiber besitzen aufwendigere autonom fliegende
Modelle deutlich mehr Sensoren und Erweiterungsmoglichkeiten. Auch die Konfigu-
ration des Controllers reicht vom integrierten Display mit einigen Tastern bis hin zur
umfangreichen Software, die verschiedene Einstellungen speichern und laden kann.
Hier werden nun einige Flugcontroller anhand der in Abschnitt 1.2 auf Seite 4 ge-
stellten Anforderungen gegentibergestellt. Hardwareseitig werden hauptséachlich die
verfiigharen Sensoren verglichen. Um deren Werte wahrend des Flugs vom gefor-
derten Bordcomputer auswerten lassen zu konnen, muss der Flugcontroller tiber
eine entsprechende Schnittstelle verfiigen. Diese kann direkt als serielle Schnittstelle
(UART, wuniversal asynchronous receiver/transmitter) oder iiber einen integrierten
USB-Konverter ausgefithrt sein. Auflerdem wird ein Augenmerk auf die verwend-
baren Motorsteuerungen gelegt. Einige Flugcontroller setzen spezielle hauseigene
Regler voraus und schlieflen so die Verwendung besser verfiigharer, deutlich kosten-
gunstigerer Modellbau-ESCs (siche Abschnitt 2.3.3 auf Seite 17) aus. Zudem wird
untersucht, ob es Anschlussméglichkeiten fiir ein Gimbal gibt, um etwa eine Kamera
lageunabhéngig vom Copter bewegen zu kénnen. Softwareseitig wird zum einen die
Firmware des Controllers betrachtet. Hierbei werden Funktionen wie das Abfliegen
von Routen, die Ansteuerung eines Gimbals und die Anordnungsmoglichkeiten der
Motoren, wie sie bereits in Abbildung 2.1 auf Seite 8 gezeigt wurden, untersucht.
Zum anderen wird die Verfiigbarkeit quelloffener plattformunabhéngiger Software

12

2.2 Flugcontroller

zur allgemeinen Konfiguration des Copters und zum Programmieren von Routen
verglichen. Tabelle 2.1 zeigt die Ergebnisse.

Eigenschaften
Software Hardware
Flugcontroller Firmware Boden Sensoren
2 .80 g
o0l | B
B
2 \EE|BE| |5Eg |zle :
g &S| g8 |BlER £ =
=| £ |R|2|%|E|=|S|5| 8|~ E|E|E =
o E SlolzlEalelelelele8le)
| 3 |82 3E 2125 8lel g =
S| & |2F Sl ol gl =la)
:waoﬂu:“Q@OQbﬂomc@,ﬂ
S| 2 |Bl5|E5/E|B|58E 52 2] g2
Firmware Hardware ol & |22 |0a o AlZ0| <= (n|O|Al o
.C
APM 2.5° 33 v VIVIVIVIVIV]e]|e|30
ArduCopter [321| Pixhawk 3] || v/|C++ | V|V sl VIVIVIVIVIVIVIV]|e|e]|e
PX4FMU [37,38) [34)[35] VIVIVIVIVIV e |e]|e
Pixhawk [36] C, VIVIVIVIVIV | e|e]|e
PX4 139, 40] PX4FMU [37,38) v C++ I \/\/ VIVIVIVIV ie|e]|e
v
MWC Crius SE|(| v/ aa |V [V IV V| |V
MultiWii [41,42] 43)| C++ |45]|[46]|[47)|[48)|[48]| - ¢ |[50)| v |V |V |V |V | ® | @ @€
FlightCtrl V2.5||v VIV -|-|VIV
Mikrokopter [52-54] 55 C++ | v |[56]|i57]|[581|55)59[60) = | v | v |V o|- |-
Steveis KK2.1 Hobbyking
62] KK2.1.5 [63,64] ||V |[ASM| - |V |V | -9 A A A
v ja / vorhanden e optional

- nein / nicht vorhanden

optional, eingeschrankt unterstiitzt

%einfache und koaxiale Anordnung von 4, 6 oder 8 Motoren in +
Abbildung 2.1 auf Seite 8)

bwird nur von Firmwareversionen kleiner v3.3 unterstiitzt

“unterstiitzt nur den mausbasierten Sensor ADNS3080 und nicht den PX4FLOW [32]

YKonfiguration von Wegpunkten nur per Drittanbietersoftware méglich [49)

“Unterstiitzung nur in modifizierter Firmware von Drittanbietern [49, 51]

Jes konnen nur per I°C angesteuerte Motorsteuerungen verwendet werden [61]

9keine Konfigurationssoftware vorhanden

Tabelle 2.1.: Flugcontroller

oder x Konfiguration (vgl.

Gegeniiberstellung verschiedener Flugcontroller. Verglichen werden Hardwareeigenschaften wie

Sensoren, Féhigkeiten der Firmware und am Boden laufender Software zur allgemeinen Konfi-

guration des Copters und zur Programmierung abzufliegender Wegpunkte.

13

Kapitel 2 Stand der Technik

2.2.3. Bodenstation

Eine Bodenstationssoftware zur allgemeinen Konfiguration des Copters, Planung
von Routen und Anzeige von Flugdaten ist prinzipbedingt stark an den verwende-
ten Flugcontroller gekoppelt, da diese unterschiedliche Protokolle zur Datentiber-
tragung verwenden. Deswegen wird diesem Thema nur ein kurzer Unterabschnitt
gewidmet, der exemplarisch den Funktionsumfang einer Bodenstation eines der im
Abschnitt 2.2.2 auf Seite 12 gezeigten Flugcontrollers umreifit.

Sowohl die PX4-Firmware [65] als auch ArduCopter [66] setzen auf das offene, er-
weiterbare Protokoll MAVLink [67], was prinzipiell die Nutzung verschiedener Bo-
denstationsprogramme ermoglicht. Da sich die Flugcontroller aber in ihren Konfigu-
rationsmoglichkeiten unterscheiden, bringen beide eigene Software mit, die speziell
fir sie angepasst ist. Das PX4 verwendet hierfiir QGroundControl (Abbildung 2.8a)
und ArduCopter setzt das Programm APM Planner (Abbildung 2.8b) ein, welches
im Folgenden beschrieben wird.

AAAAAAAAAAA

O o e e R Gemww s

(a) QGroundControl [68] (b) APM Planner

Abbildung 2.8.: Bodenstationssoftware
Die Programme QGroundControl (Abb. 2.8b) und APM Planner (Abb. 2.8a) kommunizieren iiber
das MAVLink-Protokoll mit dem Multicopter und kénnen zur Konfiguration und Planung von
Flugrouten verwendet werden. Bei beiden wird hier eine Flugdatenansicht gezeigt, die neben der
Lage des Copters durch Kompass und kiinstlichen Horizont auch die aktuelle Position in einer

Landkarte anzeigt.

Bei der grundlegenden Konfiguration wird die Art des Multicopters durch Anzahl
und Positionierung der Motoren festgelegt (vgl. Abbildung 2.1 auf Seite 8) sowie
die angeschlossenen Sensoren ausgewéhlt und kalibriert. Daneben ldsst sich auch
die Fernsteuerung einrichten. Hierbei werden die maximalen Ausschliage und Null-
stellungen der Steuerhebel bestimmt und optional weiteren Kanélen, die etwa tiber
Kippschalter oder Taster gesteuert sein kéonnen, Funktionen wie der Wechsel zwi-
schen verschiedenen Flugmodi zugewiesen. Sofern der Flugcontroller iiber eine Funk-
verbindung oder auch per Kabel mit dem Bodenstationsrechner verbunden ist, kon-
nen Fluglage und Position des Copters angezeigt werden (Abbildung 2.8b). In einer

14

2.3 Antrieb

anderen Ansicht kann der Verlauf verschiedener per MAVLink iibertragener Sensor-
daten visualisiert werden (Abbildung 2.9a). Auflerdem kénnen in dieser Darstellung
im Stillstand die Logdaten des internen Speichers des Flugcontrollers tibertragen
werden, so dass sie sich als Logdatei speichern oder genauso wie die MAVLink Da-
ten anzeigen lassen. Nicht zuletzt stellt APM Planner eine Landkarte zur einfa-
chen Planung von Flugrouten aus Wegpunkten bereit (Abbildung 2.9b). Fur jeden
dieser Punkte lassen sich verschiedene Optionen wie die Anderung der Flughéhe,
Geschwindigkeit oder Ausrichtung des Copters festlegen. Auch kénnen Punkte zum
automatischen Starten, Landen oder Riickkehren zum Startpunkt bestimmt werden.

s [E P e—p——,

(a) Sensordaten (b) Routenplanung

Abbildung 2.9.: Bodenstation APM Planner
Weitere Ansichten der Bodenstationssoftware APM Planner (Abbildung 2.8b auf Seite 14): Sens-
ordaten konnen visualisiert (Abb. Abbildung 2.9a) und abzufliegende Routen auf einer Landkarte
geplant werden (Abb. Abbildung 2.9b).

2.3. Antrieb

Der Modellbau bietet besonders im Be-
reich der Flugmodelle viele teils sehr
kostengiinstige Komponenten, die in
Multicoptern verwendet werden kénnen.
Deswegen konzentriert sich dieser Ab-
schnitt besonders auf solche Teile. . =

Die Propeller sind in der Regel direkt Abbildung 2.10.: Motor mit Propeller
auf der Motorwelle befestigt und wer- Der Propeller ist direkt mit der Welle des biirs-
den ohne zusatzliche Getriebe in Rota- tenlosen AuBenliufers verbunden, der den Strom
tion versetzt, wie Abbildung 2.10 zeigt. von einem Motorregler (ESC) bezieht.

Dieser Verzicht auf zusétzliche bewegli-

che Teile verringert die Komplexitat des Systems und reduziert das Gewicht.

15

Kapitel 2 Stand der Technik

2.3.1. Stromversorgung

Zur Stromversorgung bieten sich
wegen ihrer relativ hohen Energie-
dichte Lithium-Polymer-Akkus an.
Bei gangigen Exemplaren aus dem
Modellbau sind mehrere Zellen mit
einer Nennspannung von jeweils
3,7V durch Reihen- oder Paral-
lelschaltungen verbunden. Abbil-
dung 2.11 zeigt einen Akku mit drei ~ Abbildung 2.11.: Lithium-Polymer-Akku

in Reihe geschalteten Zellen. Bei diesem Akku mit einer Ladung von 5000 mAh sind

drei Zellen mit einer Nennspannung von jeweils 3,7 V

in Reihe geschaltet, so dass sich eine Gesamtspannung
von 11,1V ergibt.

2.3.2. Motoren

Als Motoren werden biirstenlose Auflenlaufer verwendet. Diese sind effizienter als das
Pendant mit Schleifkontakten zur Stromiibertragung in die sich drehenden Spulen
des Motors. Beim biirstenlosen Motor (Abbildung 2.12a) werden die Spulen des
Stators (Abbildung 2.12b) direkt mit Drehstrom versorgt, der ein sich drehendes
magnetisches Feld erzeugt und so den mit Permanentmagneten bestiickten Rotor
(Abbildung 2.12¢) in Bewegung versetzt.

(a) Motor (b) Stator (c) Rotor

Abbildung 2.12.: Biirstenloser Motor
Bei diesem birstenlosen Auflenldufer (Abb. 2.12a) dreht sich der glockenférmige aufien liegende
mit Permanentmagneten besetzte Rotor (Abb. 2.12¢) um den im Inneren fest stehenden Stator
(Abb. 2.12b), der durch Spulen ein magnetisches Feld erzeugt.

16

2.3 Antrieb

2.3.3. Motorsteuerung (ESC, electronic speed control)

Um aus dem Gleichstrom der Akkus den
Drehstrom fiir die Motoren zu erzeugen,
werden elektronische Steuergeriate benotigt
(Abbildung 2.13). Diese besitzen einen Mi-
kroprozessor, der den eingehen Gleichstrom
durch Transistoren ein- und ausschaltet und
so den benotigten Dreiphasenwechselstrom
moduliert. Die Firmware der fiir Modellflug-
zeuge entwickelten ESCs verfiigt oft iiber
zusatzliche Logik, die die Geschwindigkeits-
vorgabe weichzeichnet [20]. Dies soll sonst
entstehende starke Spitzen des Stromver-
brauchs glatten, die die Schaltelektronik
des Reglers beschiadigen konnten [20]. Auch
kann der damit einhergehende Spannungs-
abfall einen Ausfall der Bordelektronik ver-
ursachen [20]. Das Weichzeichnen fithrt aber
auch dazu, dass ausreichend dimensionier-
te, von dieser Problematik nicht betroffene,
ESCs unnotig trige reagieren und der Cop-
ter weniger prazise gesteuert werden kann.
Um dem entgegen zu wirken, kann eine al-

(b) Unterseite

(a) Oberseite

Abbildung 2.13.: Motorregler
Gezeigt wird ein Modellbaumotorregler, der
Strome von bis zu 30 A steuern kann. Da-
bei schaltet ein Mikroprozessor (Abb. 2.13b)
iiber Transistoren (Abb. 2.13a) den einge-
henden Gleichstrom (rotes und schwarzes
Kabel) pulsweise an und erzeugt so einen
dreiphasigen Wechselstrom (blaue Kabel)
zur Ansteuerung des biirstenlosen Motors.
Uber die weile Leitung des dreiadrigen Ka-
bels wird die gewiinschte Drehzahl vorgege-

ben.

ternative Firmware verwendet werden, die die Drehzahlvorgaben direkt umsetzt [69].

2.3.4. Propeller

Da sich die Motoren zum Drehmomentausgleich in unterschiedliche Richtungen dre-
hen, werden dementsprechend links- und rechtsdrehende Propeller bendtigt. Ver-

it

(a) rechts

e

(b) links

_)

(c) rechts

(d) links

Abbildung 2.14.: Propeller

Gezeigt werden jeweils ein links- und ein rechtsdrehender Propeller zwei verschiedener Varianten ei-

ner 12 x 4,5"”-Luftschraube, die sich in der Form der Blitter unterscheiden. Die beiden Ziffern geben

dabei Propellerdurchmesser und Steigung in Zoll an (Durchmesser: 305 mm, Steigung: 114 mm).

Kapitel 2 Stand der Technik

fiighare Modelle besitzen zwei bis vier Rotorblatter und sind aus Kunststoff, Holz,
glas- oder kohlefaserverstarktem Kunststoff oder aus Kohlefasergewebe laminiert.
Abgesehen vom Durchmesser unterscheiden sie sich in Form und Steigung der Ro-
torblatter. Abbildung 2.14 auf Seite 17 stellt zur Veranschaulichung zwei Modelle
gleichen Durchmessers mit unterschiedlich geformten Blattern gegeniiber.

2.4. Rahmen

Genau wie beim Antrieb (Abschnitt 2.3 auf Seite 15) werden aus Kostengriinden nur
Multicopterrahmen aus dem Modellbau- und Hobbybereich betrachtet. Der generelle
Aufbau dieser besteht aus einer zentralen Plattform, um die herum die Arme zur
Befestigung der Motoren angeordnet sind, wie Abbildung 2.15 veranschaulicht.

(a) Turnigy Talon [70] (b) PYRAMID X580 [71] (c) RotorBits HexCopter [72]

Abbildung 2.15.: Multicopterrahmen
Ubersicht einiger Multicopterrahmen aus dem Modellbau. Von der zentralen Plattform, die Akku

und Elektronik tragen soll, gehen Ausleger zur Befestigung der Motoren ab.

(a) Turnigy Talon [70] (b) HMF U580 [73] (c) RotorBits HexCopter [72]

Abbildung 2.16.: Motorbefestigungen
Am Ende der Arme der Multicopterrahmen (sieche Abbildung 2.15) sitzen die Motoren. Deren

Halterungen sind auf unterschiedliche Weise an den runden oder quadratischen Auslegern befestigt.

Fir das zentrale Stiick wird auf glasfaserverstarkte und kohlenstofffaserverstérkte
Platten und Kunststoffspritzgussteile (GFK bzw. CFK) zuriickgegriffen. Die Ausle-

18

2.4 Rahmen

ger sind in der Regel Aluminium-, GFK- oder CFK-Rohre mit rundem oder qua-
dratischem Querschnitt. Miteinander verbunden werden die Teile durch direkte Ver-
schraubung oder Kunststoff- und Aluminiumklemmen. Zur Befestigung der Motoren
an den Armen werden meist Klemmen verwendet (Abbildung 2.16 auf Seite 18), die
am Ende aufgesteckt oder an beliebiger Stelle geklemmt werden kénnen. Das Aufste-
cken bringt den Nachteil mit sich, dass die Motorpositionen und somit das Verhalten
des Copters nicht variiert werden konnen und fest vorgegeben sind. In der Gegen-
iiberstellung gangiger Rahmen in Tabelle 2.2 féllt besonders das teils hohe Gewicht
auf, obwohl auf leichte Materialien wie Kohlefaser zuriickgegriffen wurde. Neben
diesem Aspekt sind die meisten Rahmen so konstruiert, dass der Schwerpunkt des
Copters weit unterhalb der Rotorebene liegt. Bedingt ist dies durch die Positionie-
rung schwerer Komponenten wie Akku und Gimbal an der Unterseite der Plattform,
die in einer Ebene mit den Armen und somit unter der Rotorebene liegt. Entgegen
der Intuition ist ein tiefer Schwerpunkt dem Flugverhalten nicht zutréglich. Da die
Lageregelung von einem Flugcontroller gesteuert wird, kann ein instabiles oszillie-
rendes System in Kauf genommen werden [74]. Ein knapp unterhalb der Rotorebene
platzierter Schwerpunkt ergibt einen Copter, der unanfillig fiir Storungen ist und
schnell auf Steuerbefehle reagiert [74].

2
)
S
=
e
2 £ g
g o - g =
= E = = &
&) = S [} =
o = = oY g
2 g 3 2 &
Rahmen oW n O A =
Turnigy Talon [70] 4 1498mm | 240g | 229 mm* CFK
Turnigy Talon V2 [73] 4 | 550mm | 280¢g | 229 mm* CFK
PYRAMID X650F (76 4 | 550mm | 598 ¢ | 280mm | GFK, Aluminium
HMF U580 (73] 4 | 580mm | 558 g | 381 mm CFK, GFK
PYRAMID X580 [71] 4 | 585mm | 418 ¢ | 280mm | GFK, Aluminium
PYRAMID T650-X4-16 (771 || 4 | 650mm | 580 g | 356 mm GFK
Skylark M4-680 (78] 4 | 680mm | 420g | 381 mm CFK
RotorBits HexCopter [72] 6 | 720mm | 360g | 254 mm CFK, GFK

“Wert stammt mangels Herstellerangabe von mit dem Rahmen kompatibel gelisteten Motoren

Tabelle 2.2.: Multicopterrahmen

Gegeniiberstellung von Multicopterrahmen aus dem Modellbau anhand ihrer Eckdaten.

19

Kapitel 2

Stand der Technik

2.5. Bordcomputer

Abbildung 2.17.: Einplatinencomputer
Einplatinencomputer ODROID-U3: 2 GiB Ar-
beitsspeicher, 1,7 GHz 4-Kern ARM Cortex-A9

CPU, 83 mm x 48 mm, 48 ¢

Neben dem Flugcontroller, der die
grundlegende Steuerung des Copters
iibernimmt, wird ein zuséatzlicher Rech-
ner benotigt, der neben komplexen
Aufgaben wie Bildverarbeitung auch
die Dateniibertragung zur Bodenstation
iibernehmen soll. Fiir die Eignung als
Bordcomputer sind neben Rechenleis-
tung und Schnittstellen vor allem Gro-
Be und Gewicht entscheidend. Abbil-
dung 2.17 zeigt ein kreditkartengrofies
Modell, das einer Auswahl gédngiger Ein-
platinencomputer in Tabelle 2.3 ge-
geniibergestellt wird. Abmessungen und

Gewicht der Computer liegen nah beieinander, einzig Prozessor und Arbeitsspeicher
weisen sichtliche Unterschiede auf. Inwiefern diese relevant sind, wird sich erst in der
Praxis zeigen und héngt stark von den Anforderungen der Software des jeweiligen

Experiments ab.

Raspberry Pi 2 | ODROID-U3 IGEPv2 Banana Pi M3
Model B [79,s0] [81,82] 83, 84] 85]
Architektur Cortex-AT7 Cortex-A9 Cortex-A8 Cortex-A7
CPU|Kerne 4 4 1 8
Takt 900 MHz 1,7GHz 1 GHz 2 GHz
RAM 1 GiB 2 GiB 512 MiB 2 GiB
Gewicht 45 g 48 g 47 g? 4bg
Abmessungen |85,6 mm x 56 mm|83 mm X 48 mm|95 mm x 65 mm |92 mm x 60 mm
USB Ports 4 3 2 3
GPIO-Pins 40 36° 28¢ 40
“nachgewogen

bnur iiber separates 10 Shield
“expansion connector J990

Tabelle 2.3.: Auswahl géngiger Einplatinencomputer

Die Einplatinencomputer werden anhand von Eigenschaften, die fiir den Bordcomputer eines Mul-

ticopters besonders relevant sind, gegeniibergestellt. Neben Rechenleistung und Anschliissen fiir

weitere Komponenten (USB-Ports und GPIO-Pins) spielen vor allem Groéfile und Gewicht eine

entscheidende Rolle.

20

2.6 Zusammenfassung

2.6. Zusammenfassung

In diesem Kapitel wurden géingige Flugcontroller, zugehorige Software, Einplatinen-
computer sowie Multicopterrahmen und -antrieb vorgestellt. Es hat sich gezeigt,
dass kein Komplettsystem die Anforderungen des Projekts Neurocopter vollumfang-
lich erfiillt.

Verfiigbare Flugcontroller und Konfigurationssoftware konnen je nach Modell unver-
andert verwendet werden. Fiir die Anbindung des Controllers an den Bordcomputer
und die dortige Auswertung, Kombination mit Kamerabildern und Weiterleitung der
Flugdaten muss jedoch entsprechende Software entwickelt werden. Fiir den Antrieb
des Copters kann vollstindig auf kostengiinstige Modellbaukomponenten zuriickge-
griffen werden. Finzig die betrachteten Rahmen weichen zu sehr von den Anforde-
rungen ab. Sie sind entweder unnétig schwer, haben eine sehr geringe Armléinge,
einen ungiinstigen Schwerpunkt oder sind durch fest vorgegebene Motorpositionen
und andere Befestigungen zu unflexibel.

Daraus ergibt sich, dass zur Durchfiihrung des Projekts ein Multicopterrahmen kon-
struiert wird, fiir dessen Antrieb Standardkomponenten verwendet werden koénnen.
Auflerdem wird eine Software entwickelt, die die Kombination von Flugcontroller,
Bordcomputer, Kamera und Bodenstation bewerkstelligt und so ein Framework fiir
zukiinftige Experimente bereitstellt.

21

3. Implementierung

Dieses Kapitel beschreibt sowohl die Konstruktion des Multicopters, als auch die
Software des Bordcomputers die zusammen als fliegendes Labor zur Erforschung
der Hirnaktivitat von Honigbienen verwendet werden sollen (siehe Abschnitt 1.2 auf
Seite 4).

3.1. Auswahl der Bordelektronik

Die Bordelektronik des Copters wird
von einem Spannungswandler (Abbil-
dung 3.1) gespeist, der direkt an den
Akku, der auch die Motoren mit Strom
versorgt, angeschlossen ist.

3.1.1. Bordcomputer Abbildung 3.1.: Spannungswandler [86]

Spannungswandler zur Stromversorgung der Bor-
Aus den in Abschnitt 2.5 auf Sei- delektronik. Ausden 11,1V des Akkus werden 5V

te 20 vorgestellten Einplatinencompu- erzeugt.

tern wurde das ODROID-U3 ausge-

wahlt. Dieses hat zwar nicht die grofite Rechenleistung, verfiigt aber neben dem
Banana Pi M3 mit 2 GiB iiber den grofiten Arbeitsspeicher, hat die kleinste Pla-
tine und einen geringeren Preis als das leistungsstarkere Banana Pi M3. Fiir die
Funkverbindung zur Bodenstation wird ein herkommlicher WLAN-USB-Stick ver-
wendet, der direkt in den Rechner gesteckt und mit Klebeband an der Buchse gegen
Herausfallen gesichert wird.

3.1.2. Flugcontroller

Von den in Abschnitt 2.2.2 auf Seite 12 vorgestellten Flugcontrollern scheinen das
APM 2.5, PX4FMU und Pixhawk mit der ArduCopter- oder PX4-Firmware am
besten geeignet. Dies sind die einzigen Systeme, fiir die eine quelloffene plattfor-
munabhéngige Bodenstationssoftware existiert, mit der unter anderem Flugrouten
konfiguriert werden kénnen.

23

Kapitel 3 Implementierung

Da Teile der PX4-Codebasis in C verfasst sind, wurde die Entscheidung zu Gunsten
von ArduCopter getroffen. Dies ist in der Annahme begriindet, dass der komplett
in C++ verfasste Quelltext wegen der erweiterten Moglichkeiten der Sprache gegen-
iiber C einfacher zu verstehen ist, so dass gegebenenfalls notige Anpassungen leich-
ter durchgefithrt werden koénnen. Zudem teilt sich die ArduCopter-Firmware mit
den beiden anderen auf die gleiche Hardware setzenden Projekten ArduRover [87]
und ArduPlane [88] eine gemeinsame Codebasis. Daher wére es prinzipiell moglich,
das fiur den Neurocopter entwickelte Framework auch mit fahrenden ArduRover-
Modellen zu verwenden, um beispielsweise den Verlauf geplanter Experimente vorab
in einer einfacheren Umgebung zu tiberpriifen.

Von den drei von der ArduCopter-Firmware unterstiitzen Flugcontrollern wurde
das APM 2.5 wegen des geringen Preises gewéhlt, da es sich abgesehen von einem
deutlich schwacheren Prozessor nicht erheblich von den anderen unterscheidet.

Sensoren

Das APM 2.5 bringt auf der Platine Gyroskop, Accelerometer, Barometer und Ma-
gnetometer mit. Letzteres wird durch ein externes ersetzt, das zur besseren Abschir-
mung gegeniiber Storfeldern weiter entfernt von der restlichen Elektronik angebracht
werden kann. Auflerdem werden noch ein GPS-Modul und ein Sonar angeschlossen.
Eine Beschreibung der verschiedenen Sensortypen befindet sich in Abschnitt 2.2.1
auf Seite 9.

Flugmodi

Die ArduCopter-Firmware stellt verschiedene Flugmodi bereit [89], zwischen denen
iiber einen zusatzlichen Kanal der Fernsteuerung gewechselt werden kann. Dazu
wird der entsprechende Ausgang des Empféngers mit dem APM 2.5 verbunden (vgl.
Abbildung 2.2 auf Seite 9), das Signaldnderungen registriert und sofort den Mo-
dus dndert. Das Flugverhalten geht dabei von einem einfachen manuellen Modus,
bei dem Schub, Roll- und Nickwinkel des Copters direkt iiber die Steuerkniippel
vorgegeben werden [90], iiber das zusitzliche Halten der Hohe [91] oder auch der
Position im Raum [92,93] bis hin zum automatischen Abfliegen von vorkonfigurier-
ten Routen aus Wegpunkten [94]. Letzteres lasst sich jederzeit unterbrechen, indem
in einen anderen Modus gewechselt wird [94]. Zudem kann der Copter iiber weitere
Modi angewiesen werden, sofort zu landen [95] oder zuvor noch zum Startpunkt
zurtickzukehren [96].

Gimbal

In der Gegentiberstellung der Flugcontroller (siehe Tabelle 2.1 auf Seite 13) wurde
bereits festgestellt, dass das APM 2.5 in der Lage ist, ein Gimbal anzusteuern und

24

3.2 Konstruktion des Copters

so eine Kamera unabhéangig von der Lage des Copters auszurichten. Dazu werden
die Servos der entsprechenden Drehachsen entweder mit gesonderten speziell dafiir
vorgesehenen oder auch nicht verwendeten Ausgédngen der Motorsteuerungen ver-
bunden [34]. Mit der Konfigurationssoftware lassen sich dann Winkelbereiche und
Nullstellungen festlegen. Auch konnen Kanéle der Fernsteuerung ausgewahlt werden,
um manuell einen anderen Winkel zur Horizontalen vorzugeben.

Verbindung zum Bordrechner

Zur Verbindung mit dem Bordcomputer wird ein kurzes USB-Kabel verwendet, das
auf Flugcontroller-Seite einen Micro-USB-Stecker und an der anderen einen her-
kommlichen USB-A-Stecker besitzt. Dieser lédsst sich einfach aus dem ODROID-U3
ausstecken und kann dann mithilfe eines USB-Verldngerungskabels mit einem an-
deren Computer, wie dem Bodenstationsrechner, verbunden werden, so dass ein
direkter Zugriff auf das APM 2.5 moglich ist.

3.2. Konstruktion des Copters

Dieser Abschnitt beschreibt die Konstruktion der einzelnen Komponenten, die zu-
sammen den in Abbildung 3.2 gezeigten Quadcopter ergeben.

Abbildung 3.2.: Neurocopter-3D-Modell
Gezeigt wird ein Modell des Copters. Oberhalb der Arme, die durch ein Aluminiumteil in der Mitte

starr verbunden sind, befindet sich die Bordelektronik auf mehreren Ebenen. Zuoberst befinden
sich Flugcontroller, Empfanger, Kamera und Bordrechner auf einer geddmpften Platte. Darunter
liegt der Akku. Zwischen diesem und den Armen werden die ESCs und ein Spannungswandler zur

Stromversorgung der Bordelektronik platziert.

25

Kapitel 3 Implementierung

Wie sich in Abschnitt 2.4 auf Seite 18 herausgestellt hat, muss ein Rahmen konstru-
iert werden, der die Anforderungen des Projekts erfiillt. Dazu muss zuerst entschie-
den werden, wie viele Arme und Motoren der Multicopter besitzen soll, da dieser
Entschluss das Design grundlegend beeinflusst. Ein viermotoriger Quadcopter bietet
sich aus vielerlei Griinden an: Zum einen wird die Fertigung der Einzelteile durch
die rechtwinklige Anordnung der Arme vereinfacht. Zum anderen nimmt der Wir-
kungsgrad eines Propellers mit dessen Durchmesser zu [97], so dass ein mdéglichst
effizienter Multicopter den notigen Schub durch groflere, statt zusétzliche Propeller
erzeugt. Selbstverstdndlich hat die Formgebung der Propellerblétter auch einen er-
heblichen Einfluss auf den Wirkungsgrad [98], doch das ist fiir diese Entscheidung
unerheblich.

Der verwendete Flugcontroller bietet die Moglichkeit zur Ansteuerung mehrerer Ser-
vos, die ein Gimbal drehen und so die Neigung des Copters ausgleichen kénnen (vgl.
Abschnitt 3.1.2 auf Seite 24). Die in Abschnitt 1.2.1 auf Seite 4 angedeuteten Ein-
satzmoglichkeiten fiir solch einen Lageausgleich sind jedoch sehr versuchsspezifisch.
Daher kann die Konstruktion erst vorgenommen werden, wenn konkretere Einsatz-
szenarien feststehen, und sie ist somit nicht Teil dieser Arbeit.

3.2.1. Schubmessung

Um einen Anhaltspunkt fiir die Dimensionierung des Copters zu erhalten, wurde der
Schub eines 305 mm-Propellers an einem 200 W-Motor bestimmt. Solch ein Antrieb

1000
800 /
600

o/
/

0

Schub (g)

—

0 50 100 150 200

Leistung (W)
(a) Priifstand (b) Schubkurve

Abbildung 3.3.: Schubmessung
Zur Schubmessung wurde ein 200 W-Motor mit einem 305 mm-Propeller an einem Hebel befestigt,
iiber den er auf eine Waage driickt (Abb. 3.3a). Auf diese Weise wurden bei verschiedenen Drehzah-
len der statische Schub und und die Leistungsaufnahmen gemessen (Abb. 3.3b): Der Wirkungsgrad

nimmt mit zunehmendem Schub ab.

26

3.2 Konstruktion des Copters

wird etwa in Quadcoptern verwendet, die ein Gimbal mit einem Action-Camcorder
tragen konnen und somit eine dhnliche Nutzlast wie der geplante Neurocopter ha-
ben. Abbildung 3.3 auf Seite 26 zeigt den prinzipiellen Aufbau der Messapparatur
und die damit ermittelte Schubkurve. Demnach betragt der maximale Schub eines
Propellers knapp 1000 g. Um den Copter auch bei Windbdéen jederzeit kontrollieren
zu kénnen, sollte der gemeinsame Schub aller Propeller mindestens das doppelte des
Gesamtgewichts betragen, was demnach unter 2000 g liegen muss. Da das Gewicht
solcher Copterrahmen bei bis zu 600 g liegt (siche Abschnitt 2.4 auf Seite 18), scheint
der gepriifte Antrieb ausreichend fir das fliegende Labor, den Neurocopter zu sein.

3.2.2. Arme

Als Material fiir die Arme bieten sich CFK-Rohre an. Diese sind leicht und au-
Berst verwindungssteif. Das Gewicht der verwendeten 16 mm dicken Rohre mit einer
Wandstérke von 1 mm betragt nur 79,5 £. Die gezeigten erhaltlichen Rahmen (Ab-
schnitt 2.4 auf Seite 18) verschrauben oder klemmen die Arme an einer zentralen
Plattform. Dieser Aufbau bringt den Nachteil mit sich, dass das Mittelstiick, das an-
sonsten nur die Bordelektronik tragt, stabiler ausgelegt werden muss, um die durch
die langen Ausleger auftretenden Krifte aufnehmen zu kénnen, die an dieser Stel-
le durch deren Hebelwirkung am grofiten sind. Um dies zu umgehen, wurde ein
Aluminiumdrehteil konstruiert, in dem die Arme verklebt werden (Abbildung 3.4).

30,00
2

84,00
24,00
| I |
]
=
Y
[1 H
20,00 2,00
|
g
&
&

5,00

(a) Konstruktionszeichnung (b) mit Armen verklebt

Abbildung 3.4.: Mittelstiick

Ein aus Aluminium gedrehtes und gefréstes 28 g schweres Mittelstiick verbindet die eingeklebten
Copterarme aus CFK-Rohr.

Die Spannweite wurde mit 900 mm sehr grofiziigig bemessen und lasst zwischen den
305 mm-Propellern einen Abstand von einen Rotordurchmesser zu. Zum einen wird

27

Kapitel 3 Implementierung

der Copter mit zunehmender Armlange trager, wodurch ein stabileres Flugverhal-
ten erzielt wird. Auflerdem storen sich zu nah beieinander liegende Rotoren und
verringern den Wirkungsgrad des Gesamtsystems [99].

3.2.3. Plattform

H“ AA(Z:1)
2]
' w0

Abbildung 3.5.: Plattform-3D-Modell Abbildung 3.6.: Plattformklemme
Schematischer Aufbau der Elektronikplattform, Die Elektronikplattform wird mit vier dieser
die iiber vier Klemmen mit den Armen des Cop- gefristen Klemmen an den Armen des Cop-

ters verbunden ist. ters befestigt.

Da die Arme des Quadcopters durch ein Aluminiumteil verbunden sind, muss die
Plattform lediglich die Bordelektronik tragen und kann somit aus nur 1 mm dicken
CFK-Platten konstruiert werden. Wie bereits in Abschnitt 2.4 auf Seite 18 erlautert,
sollte der Schwerpunkt des Copters knapp unterhalb der Rotorebene liegen. Dazu
wird die gesamte Elektronik oberhalb der Arme auf mehreren Ebenen platziert. Diese

(a) Draufsicht (b) Seitenansicht

Abbildung 3.7.: Elektronikplattform
Auf der gedampften Elektronikplattform befinden sich Flugcontroller und Sensoren, der Empfan-
ger der Fernsteuerung und der Bordcomputer. Auf der linken Seite ist die beweglich angebrachte
Kamera zu sehen. Die Komponenten sind so angeordnet, dass sich der Schwerpunkt in der Mitte
der Plattform befindet.

28

3.2 Konstruktion des Copters

sind zusammen mit diinnen CFK-Rohren als Abstandshalter auf Polyamidgewinde-
stangen aufgefidelt und werden so mit den Klemmen (Abbildung 3.6 auf Seite 28)
zur Befestigung an den Armen verspannt. Dieser Aufbau wird in Abbildung 3.5 auf
Seite 28 schematisch gezeigt: Direkt iiber den Armen werden die ESCs und ein Span-
nungswandler zur Stromversorgung der Bordelektronik angebracht. Dartiber liegt der
Akku auf einer CFK-Platte, an der er mit einem Riemen befestigt wird. Zuoberst
befindet sich die restliche Elektronik samt Kamera auf einer gedampften Platte
(Abbildung 3.7 auf Seite 28). Dadurch werden die vibrationsanfilligen Sensoren von
den Motoren entkoppelt, das Magnetometer moglichst weit von den restlichen Kom-
ponenten entfernt und das GPS mit ungestorter Sicht zum Himmel ausgerichtet.
Zur Dampfung werden Gummipuffer verwendet, die urspriinglich zur Aufhdngung
von Action-Camcordern konzipiert sind. Abbildung 3.7 auf Seite 28 zeigt die fertig
bestiickte gedampfte Elektronikplatte, an deren Vorderseite eine Kamera drehbar
angebracht ist. Dafiir wurde das Kunststoffgehduse einer PlayStation Fye-Kamera
zur Gewichtsersparnis zurechtgeschnitten und mit gefrasten Polyamidhalterungen
und einem CFK-Rohr als Achse gelenkig befestigt. Die CFK-Platte ist in diesem
Bereich durch eine auflaminierte zweite Schicht verstérkt.

3.2.4. Motorklemmen

Zur Befestigung der Motoren an den Armen wurde ein Klemmsystem konzipiert. Die
in Abbildung 3.8 auf der nachsten Seite gezeigten zweiteiligen Aluminiumklemmen
sind als Drehteile ausgefiihrt und wurden mit einer Frése nachbearbeitet. Neben
den Motoren halten die Klemmen auch die Landefiile des Copters, die aus Ringen
eines PVC-Rohres gefertigt wurden. Abbildung 3.9 auf der néchsten Seite zeigt einen
montierten Motor.

3.2.5. Antrieb

Bei Motoren, ESCs und Propellern wurde wie in Abschnitt 2.3 auf Seite 15 beschrie-
ben auf Modellbaukomponenten zuriickgegriffen. Als Motoren kommen biirstenlose
Auflenlaufer mit einer maximalen Leistungsaufnahme von 243 W und Drehzahl von
880 @ zum Einsatz, die die Propeller mit einem Durchmesser von 305 mm an-
treiben. Zur Stromversorgung wird ein dreizelliger Lithium-Polymer-Akku mit einer
Nennspannung von 11,1V und einer Ladung von 5000 mAh verwendet. Einzig die
Motorregler, die einen maximalen Strom von 30 A schalten kénnen, wurden durch
Aufspielen einer anderen Firmware modifiziert, um die in Abschnitt 2.3.3 auf Sei-
te 17 erlauterten negativen Eigenschaften von Modellbau-ESCs auszugleichen. Dazu
wurden die zur Programmierung des Mikroprozessors nétigen, auf der Oberseite der
Platine befindlichen 6 Pins iiber ein Flachbandkabel nach auflen gefithrt. An dessen
Ende wurde eine kleine Buchsenleiste mit einem Rastermafl von 1,27 mm gelttet, so
dass ein Programmiergerit jederzeit erneut fiir eine mogliche Aktualisierung ange-
schlossen werden kann.

29

Kapitel 3 Implementierung

(a) Oberseite

I 7Y

A-A(2)

A
T 4 FF
Q;
kgl rzz2
A
:

(b) Unterseite

Abbildung 3.8.: Motorhalterung Abbildung 3.9.: Montierter Motor
Zur Befestigung der Motoren an den runden Der Motor, die Klemme am Arm und der Lande-
CFK-Armen werden zweiteilige 10 g schwere fufl aus PVC-Rohr werden durch zwei Schrauben
Klemmen aus Aluminium verwendet. zusammengehalten.

3.2.6. Manuelle Steuerung

Zur manuellen Steuerung wird die in Abschnitt 2.1 auf Seite 7 vorgestellte Funk-
fernbedienung Turnigy 9X verwendet. Dieses sehr kostengiinstige Exemplar kann
neben den vier Kanélen zur Steuerung noch vier weitere an den Empfanger Turnigy
9X8C-V2 iibertragen, womit mehr als ausreichend viele Zusatzfunktionen kontrol-
liert werden konnen.

3.2.7. Technische Daten

Abschlieflend werden hier noch die Eckdaten des fertig konstruierten Quadcopters
aufgelistet (Tabelle 3.1 auf der néchsten Seite). Zur Schwerpunktbestimmung wur-

30

3.2 Konstruktion des Copters

den sdmtliche Komponenten einzeln gewogen und vermessen, so dass daraus der
vertikale Schwerpunkt berechnet werden konnte.

Rahmengewicht® 343 ¢g
Gewicht des Antriebs ° 546 g
Gewicht der Bordelektronik © 218¢
Gesamtgewicht ohne Akku 1107g
Gesamtgewicht mit Akku 1479 ¢
Schwerpunkt unter Rotorebene| 26 mm
maximale Spannweite 900 mm
Schub? 3984 ¢

%ncl. geddmpfter Elektronikplatte, Akkubefestigung, Motorhalterungen und Schrauben
®Motoren, Motorregler, Verkabelung, Propeller, etc.

¢Flugcontroller, Sensoren, Bordcomputer, Kamera, etc.

4Summe des statischen Schubs aller vier Motoren

Tabelle 3.1.: Technische Daten

Eckdaten des Neurocopters. Der theoretische Maximalschub betrdgt mehr als das doppelte des
Gesamtgewichts, so dass der Copter iiber geniigend Leistung verfiigt, um jederzeit manévrierfahig
zu sein und eine zusétzliche Nutzlast von 500 g zu tragen. Durch den knapp unter der Rotorebene
liegenden Schwerpunkt kann er schnell auf Steuerbefehle reagieren.

31

Kapitel 3 Implementierung

3.3. Software

Nachdem in den vorherigen Abschnitten die Auswahl der Hardwarekomponenten
und die Konstruktion des Copters beschrieben wurden, widmet sich dieses Kapitel
nun der Software des Neurocopters. Dabei werden verwendete Programmbibliothe-
ken und Frameworks (Rahmenstrukturen) charakterisiert und deren Integration und
darauf aufbauende Entwicklungen veranschaulicht.

Um Programme zur Dokumentation oder Steuerung von Experimenten mit dem
fliegenden Labor entwickeln zu kénnen, wird ein Framework bereitgestellt, das die
Kommunikation mit dem Flugcontroller und einen einfachen Zugriff auf dessen Sens-
ordaten und die Bordkamera erméglicht. Aulerdem regelt das in C++ entwickelte
Framework die Dateniibertragung an die Bodenstation. C++ wurde als Sprache ge-
wahlt, um die begrenzten Ressourcen des Bordrechners moéglichst effizient nutzen zu
konnen. Als Betriebssystem kommt die vom Hersteller des ODROID-U3 (vgl. Ab-
schnitt 3.1.1 auf Seite 23) bereitgestellte Linux-Distribution Ubuntu zum Einsatz.

3.3.1. MAVLink

ArduCopter setzt auf das quelloffene erweiterbare Protokoll MAVLink zur Daten-
ibertragung. Auf diese Weise kann der Flugcontroller mit der Bodenstation und
anderen Komponenten kommunizieren. Dieser Unterabschnitt beschreibt das Proto-
koll, verfiighare C- und neu entwickelte C++-Software.

3.3.1.1. Protokollbeschreibung

e Ein MAVLink-Paket (Abbildung 3.10)
B kann bis zu 255 B Nutzdaten enthal-
BT LR 680 VA SO NS £SO KA CKB ten und verwendet nur zuséatzliche 8 B
0 STX _ |Préambel zur Erkennung von Ubertragungsfeh-
1 LEN _|Nutzdatenlénge n lern und -verlusten, Kennzeichnung des
2 SEQ _|Sequenznummer Pakettyps und Identifikation des Ab-
3 SYS | Absender-System-1D senders [67]. Die verschiedenen Paket-
4 COMP | Absender-Komponenten-ID | typen sind in XML spezifiziert, woraus
5 MSG | Nachrichten-ID automatisiert C-, C#- oder Python-
6 PAYLOAD | Nutzdaten (0 bis 255 B) Programmcode zum Senden und Emp-

5+mn fangen der Daten generiert wird [100].

6+n CKA Priif Die Pakete konnen dabei Schriftzei-
ruisumime

7+n| CKB chen, Ganzzahlen und FlieBkommazah-

len und Arrays dieser Datentypen ent-
halten [67,101]. Das Senden und Emp-
fangen einer Nachricht wird am Bei-

Abbildung 3.10.: Paketstruktur [67]
Ein MAVLink-Paket ist 8 B bis 263 B grof, und
enthélt maximal 255 B Nutzdaten.

32

3.3 Software

spiel eines Heartbeat-Pakets (Auflistung 3.1), das die Betriebsbereitschaft des Sys-
tems signalisiert, erlautert.

Auflistung 3.1: Heartbeat-Paket

typedef struct _ _mavlink_heartbeat_t A
uint32_t custom_mode;
uint8_t type;
uint8_t autopilot;
uint8_t base_mode;
uint8_t system_status;
uint8_t mavlink_version;
} mavlink _heartbeat t;

Auflistung 3.2: MAVLink-Paket

typedef struct __mavlink_message {
uintl6_t checksum;
uint8_t magic;
uint8_t len;
uint8_t seq;
uint8_t sysid;
uint8_t compid;
uint8_t msgid;
uint64_t payload64[
(MAVLINK_MAX_PAYLOAD_LEN
+ MAVLINK_NUM_CHECKSUM_BYTES + 7)/8];
} mavlink_message_t;

Senden Um ein mavlink_heartbeat_t-Paket zu senden, muss zuerst ein entspre-
chendes mavlink_message_t-Paket (Auflistung 3.2) mit den gepackten Daten erzeugt
werden. Dazu wird die Funktion uint16_t mavlink_msg_heartbeat_encode_chan(...)}
verwendet, die als Eingabeparameter das Heartbeat-Paket, die Absenderadresse und
die zum Kodieren verwendete Kanalnummer erhalt. Beim Kodieren werden nun die
einzelnen Komponenten des Pakets in Little-Endian-Byte-Reihenfolge in das Array
payload64 des als Ausgabeparameter iibergebenen mavlink_message_t-Pakets ge-
schrieben. Anhand der Kanalnummer wird dabei auf eine Struktur zugegriffen, die
kanalspezifische Informationen wie die néchste Sequenznummer enthélt. Alternativ
kann auch die Funktion uint16_t mavlink_msg_heartbeat_pack_chan(...) verwen-
det werden, der anstelle des Heartbeat-Pakets samtliche darin enthaltenen Felder als
zusétzliche Parameter tibergeben werden.

Anschliefend werden die Nutzdaten aus dem mavlink message_t-Paket mit der
Funktion uint16_t mavlink_msg_to_send_buffer(...) extrahiert und serialisiert in
einen iibergebenen Puffer geschrieben. Aus diesem kénnen sie dann iiber eine belie-
bige Verbindung iibertragen werden.

'Die Parameter wurden zur besseren Lesbarkeit ausgelassen und durch ,,...“ angedeutet.

33

Kapitel 3 Implementierung

Empfangen Zum Parsen von empfangenen Daten werden diese byteweise mit der
Funktion uint8_t mavlink_parse_char(...) ausgewertet, bis sie iber einen Riickga-
bewert von 1 signalisiert, dass sich nun eine vollstandige Nachricht im tibergebenen
Ausgabeparameter mavlink_message_t befindet. Dabei wird, genauso wie beim Sen-
den, iiber einen weiteren Parameter auf den aktuellen Parsezustand des verwendeten
Kanals zugegriffen.

Nun kann iiber das Feld type der mavlink_message_t der Nachrichtentyp abgefragt
werden, um dann iiber entsprechende Funktionen auf den Inhalt der Nachricht zuzu-
greifen. Handelt es sich um ein mavlink_heartbeat_t-Paket, so kann beispielsweise
mit der Funktion uint8_t mavlink_msg_heartbeat_get_system_status(...) dessen
Feld system_status ausgelesen werden. Alternativ kénnen auch alle Felder mit der
Funktion void mavlink_msg_heartbeat_decode(...) in ein mavlink_message_t-Paket
extrahiert werden.

Waypoint-Protokoll Das Waypoint-Protokoll dient zur Konfiguration von abzu-
fliegenden Routen aus Wegpunkten, an denen bestimmte Aktionen ausgefithrt wer-
den sollen. Um die Zustinde von Copter und Bodenstation konsistent zu halten, ist
das Protokoll transaktionsbasiert gestaltet, so dass im Fehlerfall der vorherige Zu-
stand der Wegpunktliste des Copter unveriandert bleibt [102]. Ein Wegpunkt-Paket
(mavlink_mission_item_t) enthélt neben der Empfiangeradresse, Sequenznummer
und Koordinaten die an diesem Punkt auszufiihrende Aktion sowie vier weitere
Parameter mit aktionsspezifischer Bedeutung. Mogliche Aktionen sind beispielswei-
se das Starten oder Landen, Positionshalten, Andern der Flughohe, Ausrichten des
Copters in eine bestimmte Himmelsrichtung, Ansteuern eines Servos, Abwerfen einer
Nutzlast, Ausrichten eines Gimbals oder Auslosen einer Kamera.

Zur Manipulation der Liste gibt es mehrere Pakettypen, mit denen die Liste gelesen,
geloscht oder erweitert werden kann. Auch kann der aktive Punkt tiber seinen Index
in der Liste bestimmt werden (mavlink_mission_current_t). Anderungen werden
dabei vom Flugcontroller mit Empfangsbestatigung (mavlink_mission_ack_t) quit-
tiert. Wenn der nachste Punkt der Liste erreicht ist, wird dies der Bodenstation
durch ein mavlink_mission_item_reached_t-Paket mitgeteilt.

Parameterprotokoll Mit dem Parameterprotokoll kénnen verschiedenste Werte
des Flugcontrollers [103] wie etwa Parameter von PID-Reglern, maximale Geschwin-
digkeiten, die Wertebereiche der Kanale der Funkfernsteuerung oder die Belichtungs-
zeit einer angeschlossenen Kamera konfiguriert werden.

Mit einem mavlink_param_request_list_t-Paket wird der Flugcontroller angewie-
sen, alle Parameter zu tibertragen. Dazu werden mavlink_param_value_t-Pakete ver-
wendet, in denen die Gesamtzahl der Parameter und Name, Index, Typ und Wert
des jeweiligen Parameters enthalten sind. Nachdem die Liste tibertragen wurde,
kann ein Parameter durch ein mavlink_param_set_t-Paket iiberschrieben werden,
das ihn durch seinen Index oder Namen referenziert. Einzelne Parameter konnen

34

3.3 Software

auch durch mavlink_param_request_read_t-Pakete erneut gelesen werden, die eben-
falls Index oder Namen zur Referenzierung verwenden. Veranschaulicht werden diese
Vorgange noch einmal mit Sequenzdiagrammen in Abbildung 3.11.

QGroundControl MAV Component @GroundControl MAV Component

Send parameter name and value

Start timeout for receiving
updated value / ACK

Request parameters |
|
|

Send updated values |
|
|
|
|

Set send indexto 0
start transmission

Send parameter 1..N

Start timeout for receiving
all N parameters

If timeout and and parameters are incomplete:

If loss occurs: Restart write transmission

Send read requests for missing parameters

(a) Lesen aller Parameter (b) Schreiben eines Parameters

Abbildung 3.11.: MAVLink-Parameterprotokoll [104]

Sequenzdiagramme zur Veranschaulichung des Lesens und Schreibens von Parametern eines Flug-
controllers (MAV Component) tiber das MAVLink-Parameterprotokoll von einer Bodenstation aus
(QGroundControl).

Data Streams Ein Datenstrom (Data Stream) setzt sich aus verschiedenen Paket-
typen zusammen, die vom Flugcontroller mit einer festgelegten Datenrate gesendet
werden. Zur Konfiguration wird ein mavlink_request_data_stream_t-Paket gesen-
det, das neben der Empfingeradresse die Datenstrom-ID, gewiinschte Frequenz und
ein Flag zum Ein- und Ausschalten des Streams enthélt.

3.3.1.2. Codegenerierung

Wie in Abschnitt 3.3.1.1 auf Seite 32 beschrieben, wird automatisiert C-Programm-
code zum Kodieren, Dekodieren und Zugrift auf die einzelnen Felder fiir die in einer
XML-Datei spezifizierten Nachrichtentypen erzeugt. Da die Programmiersprache C
keine Moglichkeiten zur Uberladung von Funktionen bietet, enthalten etwa die Na-
men der Kodierungsfunktionen den entsprechenden Pakettypen zur Differenzierung.
Daraus ergibt sich der Nachteil, dass es nicht moglich ist, template-basierten Code
zu schreiben, der den Parametern entsprechend die richtige Funktion auswahlt. Des-
wegen wurde der in Python verfasste C-Codegenerator so erweitert, dass zusétzliche
C++-Funktionen generiert werden.

Kodierung Die Funktion mavlink_message_t mavlink_msg_encode(...) wird fir al-
le Pakettypen zum Kodieren der Nachrichten iiberladen. Intern ruft sie hierzu die
entsprechende C-Funktion auf, die am Beispiel des Heartbeat-Pakets folgende wére:
uint16_t mavlink_msg_heartbeat_encode_chan(...).

35

Kapitel 3 Implementierung

Dekodierung Da zum Dekodieren einer mavlink_message_t-Nachricht die Funkti-
on nicht einfach tiberladen und so anhand ihrer Parameter ausgewahlt werden kann,
wird ein anderer Ansatz verfolgt. Dazu wird das Funkions-Template

template<typename MAVLINK_MSG>
MAVLINK_MSG mavlink_msg_decode (const mavlink_message_t&);

fiir samtliche Nachrichtentypen spezialisiert. Fiir das exemplarische Heartbeat-Paket
wird somit

template <>
mavlink_heartbeat_t mavlink_msg_decode <>(
const mavlink_message_t&);

generiert.

Hilfsfunktionen Die MAVLink-Pakettypen werden anhand eindeutiger IDs un-
terschieden, die die Struktur mavlink _message_t im Feld msgid speichert. Der C-
Codegenerator erzeugt fiir jeden Typen ein Makro, das die ID enthélt. Durch Spe-
zialisierung des Funktions-Templates

template<typename MAVLINK_MSG>
constexpr uint8_t mavlink_message_id ();

template <>

constexpr uint8_t mavlink_message_id<mavlink_heartbeat_t>() {
return MAVLINK_MSG_ID_HEARTBEAT;

}

kann der Wert nun auch in Template-Code verwendet werden.

Ausgabe Zur Visualisierung der MAVLink-Pakete wurde aulerdem der Ausgabe-
operator fiir sémtliche Typen tiberladen:

std::ostream& operator<<(std::ostreamé&,
const mavlink heartbeat t&);

Dieser gibt die Namen der einzelnen Felder und deren Inhalt aus. Einige Felder
enthalten dabei Werte aus Aufzidhlungstypen. Da diese Zuordnung jedoch nicht in
der XML-Paketspezifikation festgehalten ist, konnen die Namen der numerischen
Werte nicht vollstandig automatisiert ausgegeben werden. Zur Abhilfe wurde diese
Zuordnung manuell im C++-Codegenerator festgehalten. Gleiches gilt fiir ein einziges
Bitfeld, fiir dessen Ausgabe jedoch direkt manuell C++-Code geschrieben wurde.

Zudem wird eine allgemeine Variante fiir mavlink_message_t-Pakete generiert, die
die Headerinformationen ausgibt, das Paket der ID entsprechend dekodiert und dann
dessen Ausgabeoperator verwendet.

36

3.3 Software

3.3.2. Berlin United Framework

Das Berlin United Framework [105] ist ein modulares in C++ verfasstes Software-
paket, das zur Implementierung autonomer Agenten konzipiert wurde. Durch die
starke Modularisierung werden Wiederverwendbarkeit und Testbarkeit von Code
begiinstigt [106], wodurch es sich hervorragend fiir das Projekt Neurocopter eignet.
Entwickelt wurde es in Zusammenarbeit der FUmanoids, dem Team humanoider
Fuf3ballroboter der Freien Universitidt Berlin, und dem NaoTeam der Humboldt-
Universitat zu Berlin [107] ausgehend von deren NaoTH-Framework.

3.3.2.1. Architektur

Die zugrunde liegende Struktur des Frameworks ist das Blackboard, in dem Da-
ten zusammen abgelegt werden. Im Folgenden werden die weiteren Komponenten
erlautert.

Reprasentationen Reprisentationen sind Objekte, die Daten speichern und keine
weiteren komplexen Operationen bereitstellen [106].

Blackboard Ein Blackboard fasst mehrere Reprasentationen zusammen und bildet
so eine Datenbasis, die zur Losung komplexer Probleme herangezogen werden
kann [106].

Module Die Module arbeiten auf den Reprasentationen eines Blackboards und bein-
halten die Programmlogik. Dabei kann jeweils genau ein Modul eine Reprasen-
tation fiir andere Module bereitstellen und erhélt dafiir schreibenden Zugriff,
so dass es die Daten erzeugen kann. Diese kénnen dann von beliebig vielen
anderen Modulen ausschlielich lesend verwendet werden [106].

Modulmanager Ein Modulmanager fithrt seine Module sequentiell aus [106]. Dabei
muss die Ausfiihrungsreihenfolge so bestimmt werden, dass das eine Représen-
tation bereitstellende Modul ausgefithrt wurde, bevor diese von anderen ver-
wendet wird [105]. Diese Abhéngigkeiten der Module und Représentationen
lassen sich durch Kanten eines gerichteten Graphen formulieren, der azyklisch
ist, wenn eine giiltige Reihenfolge existiert. Fiir verschiedene Funktionen gibt
es unterschiedliche Arten von Modulmanagern: So kann die Ausfiihrung der
Module etwa durch ein Ereignis wie das Eintreffen eines neuen Kamerabildes
oder zeitgesteuert mit einer festgelegten Frequenz veranlasst werden.

Services Die Ausfithrung der Modulmanager sowie weitere Funktionen, die sich
nicht allein mit Modulen und Reprasentationen losen lassen, werden als Diens-
te realisiert. Diese laufen als eigenstandige Threads (Ausfithrungsstréange) und
sind global verfiigbar. Zu ihren Aufgaben zahlt etwa das Warten auf ein neues
Kamerabild und anschliefendes Senden eines Signals, um die Ausfiithrung eines
Modulmanagers zu veranlassen, oder die Verwaltung der Netzwerkkommuni-
kation [105].

37

Kapitel 3 Implementierung

Dieser Aufbau birgt mehrere Vorteile. Durch die Modularisierung und Kapselung
der Daten in Représentationen wird die gemeinsame Arbeit an einem Projekt ver-
einfacht. Es bestehen keine direkten Abhéngigkeiten zwischen den Modulen und
einmal berechnete Daten stehen allen zur Verfiigung. Durch die sequentielle Aus-
fithrung der Module muss bei der Entwicklung auflerdem keinerlei Riicksicht auf
Synchronisationsmechanismen fiir den Zugriff auf die Daten genommen werden.

Dieses Konzept eignet sich hervorragend fiir den Neurocopter, da sich auf diese Wei-
se in Modulen realisierte Versuche zum einen unabhéngig voneinander realisieren
lassen, aber trotzdem der Zugriff auf eine gemeinsame Datenbasis moglich ist.

3.3.2.2. Konfiguration

Das Framework stellt eine Schnittstelle bereit, mit der verschiedenste Konfigurati-
onsparameter hierarchisch in Sektionen unterteilt in einer Baumstruktur verwaltet
werden konnen. Solch ein Parameter ist entweder eine FlieBkommazahl, eine Ganz-
zahl, eine Zeichenkette oder ein auf diesen Typen basierender neuer Typ, wie viele
aus der Boost.Units-Bibliothek. Er verfiigt iiber eine optionale Beschreibung und
einen Standardwert. Zugegriffen werden kann auf den Parameter iiber seinen ein-
deutigen Namen, der das entsprechende Blatt in der Baumstruktur identifiziert. Zur
Unterteilung der Sektionen werden Punkte im Namen verwendet.

Hinzugefiigt werden konnen Konfigurationsparameter tiber die Klasse ConfigRegistry.
Soll beispielsweise die Parametergruppe address mit den Parametern ip und port
hinzugefiigt werden, so wird dafiir folgender Programmcode verwendet:

auto cfg_ip = ConfigRegistry::registerOption<std::string>(
"address.ip", "Standardwert", "Beschreibung");

auto cfg_port = ConfigRegistry::registerOption<uintil6_t>(
"address.port", 12345, "Beschreibung");

Ausgelesen werden kann der Parameter ip dann mit der Zeile:

std::string ip = cfg_ip->get();

Alternativ kann auch iiber den Namen auf den Parameter zugegriffen werden:

std::string ip =
services.getConfig().get<std::string>("address.ip");

Fiir alle registrierten Parameter werden auflerdem automatisch Kommandozeilenop-
tionen zum Setzen beim Starten des Programms erzeugt.

3.3.2.3. Testumgebung zur Fehlersuche

Zum Testen der Module stellt das Framework eine Reihe von Funktionen zur Ver-
fiigung. So kénnen Codesegmente zur Laufzeit deaktiviert, Variablen angezeigt und

38

3.3 Software

modifiziert, Statusinformationen gesendet und Kamerabilder, in die mit speziellen
Funktionen gezeichnet wurde, iibertragen werden [106]. Die Klasse Debugging stellt
dhnlich wie die ConfigRegistry (vgl. Abschnitt 3.3.2.2 auf Seite 38) Funktionen be-
reit, iiber die bestimmte Optionen zur Analyse und Fehlerfindung registriert werden
konnen. Solch eine Option kann zur Laufzeit an- und ausgeschaltet werden und tiber-
tragt beispielsweise Zeitmessungen, Text oder Linien, die ins Kamerabild gezeichnet
werden konnen.

Der Zugriff von aulerhalb auf diese Funktionen ist entweder direkt iiber telnet? oder
spezielle grafische Software wie FUremote moglich.

FUremote FUremote [108] ist ein grafisches plattformunabhéngiges erweiterungs-
fahiges Programm, das auf dem FEclipse Rich Client Platform (RCP) Framework
basiert [109]. Mit ihm kann anstelle von telnet auf Funktionen des Berlin United
Frameworks zugegriffen werden. Es bietet interaktive Ansichten zum Editieren von
Variablen, zeigt gesendete Statusinformationen und Kamerabilder an, kann Module
ein- und ausschalten und stellt viele weitere, teils Fufballroboter-spezifische, An-
sichten und Optionen bereit.

3.3.3. ar2clipse

Bei genauerer Betrachtung stellte sich heraus, dass die MAVLink-Dokumentation
sehr knapp gehalten ist. Daher wurde es an mancher Stelle nétig, den ArduCopter-
Quelltext zu lesen, um etwa den Inhalt bestimmter Pakete zu verstehen. So ent-
hélt beispielsweise das mavlink_raw_imu_t-Paket die Accelerometer-, Gyroskop- und
Magnetometerwerte, deren Einheiten jedoch nicht angegeben sind. Auch ist an kei-
ner Stelle festhalten, aus welchen Pakettypen sich die MAVLink-Datenstrome (data
streams, vgl. Abschnitt 3.3.1.1 auf Seite 35) zusammensetzen.

Der ArduCopter-Code wurde urspriinglich fir das APM1 mit der Arduino IDE
(Integrierte Entwicklungsumgebung) entwickelt [110], die nur die notigsten Funktio-
nen bereitstellt und weder eine syntaktische noch semantische Analyse des Quell-
texts beherrscht [111]. Dann wurde zu Gunsten der Unterstiitzung weiterer Hard-
wareplattformen, insbesondere des PX4 [112], in der Software eine Schicht zur Ab-
straktion der Hardware hinzugefiigt [113]. Diese verwendet nicht mehr die Arduino-
Laufzeitbibliothek, wodurch die Kompatibilitdt mit der Arduino IDE aufgegeben
wurde [110]. Stattdessen wird nun auf das Build-Management-Tool make [114] oder
eine modifizierte Variante der Arduino IDE [110] zuriickgegriffen.

Trotzdem wird weiterhin am Arduino-Erstellungsprozess (build process) festgehal-
ten, der einen eigenen C++-Dialekt verwendet, der einen Zwischenschritt mit auto-
matisierter Codeerzeugung benotigt, bevor der Quelltext von einem reguliaren C++-
Compiler verarbeitet werden kann [115]. Dabei werden die Arduino-Sketch-Dateien

2telnet ist ein Programm, das das TELNET-Protokoll zur interaktiven zeichenorientierten Kom-
munikation iber TCP-Verbindungen nutzt.

39

Kapitel 3 Implementierung

[116] zu einer einzigen grofien Datei zusammengefiigt, #include-Direktiven eingefiigt
und Funktionsprototypen erzeugt. Auflerdem werden dem Linker die Verzeichnisse
der verwendeten Arduino-Bibliotheken einzeln als Suchpfade tibergeben [117]. Dies
ist notig, da eine Arduino-Bibliothek aus einem Verzeichnis besteht, in dem sich ei-
ne gleichnamige Header-Datei und Quelltextdateien befinden [111]. Zum Verwenden
der Bibliothek wird aber nur die Header-Datei ohne das vorangestellte gleichnamige
Verzeichnis in der #include-Direktive angegeben [111].

Durch diesen sehr eigenen Prozess ist es nicht moglich, den Quelltext in einer vollwer-
tigen Entwicklungsumgebungen wie Eclipse zu untersuchen, da deren semantische
Codeanalyse am Arduino-Dialekt scheitert.

Zur Losung dieser Probleme wurde das Python-Programm arZ2clipse entwickelt, das
die Einstellungen eines Eclipse-Projekts anpasst, Dateien durch symbolische Ver-
kntipfungen einbindet und ein Minimum an Quelltext generiert.

3.3.3.1. Funktionsweise

Das Kommandozeilenprogramm setzt ein mit dem AVR FEclipse Plug-in erzeugtes
Eclipse CDT-Projekt mit einigen manuell vorgenommenen Grundeinstellungen vor-
aus und modifiziert dieses dann so, dass der ArduCopter-Code bearbeitet und kom-
piliert werden kann. Eingestellt werden miissen zum alleinigen Bearbeiten lediglich
der AVR-Prozessortyp des APM und einige wenige Makros mit vom Quelltext ver-
wendeten Konstanten. Soll der Code auch kompiliert werden, so miissen zusatzlich
noch die Compiler- und Linkerparameter angegeben werden. Nach dieser Konfigu-
ration fithrt das Skript bei jedem Aufruf die im Folgenden beschriebenen Schritte
aus, um das Projekt anzupassen:

e Um die grofle C++-Datei zu erhalten, die aus den zusammengefiigten Arduino-
Sketch-Dateien und Funktionsprototypen besteht, wird der make-Prozess des
ArduCopter-Projekts angestofien.

e Alle Bibliotheksunterverzeichnisse des ArduCopter-Projekts werden dem Eclipse-
Projekt durch symbolische Verkniipfungen auf Dateisystemebene hinzugefiigt.

e Genauso werden alle Sketch-Dateien verkntipft.

e In der groflen C++-Datei wird der Inhalt sdmtlicher Sketch-Dateien durch
#include-Direktiven der entsprechenden Verkniipfungen auf diese Dateien er-
setzt. Dies ist der einzige generierte Code, der dem Eclipse-Projekt hinzugetiigt
wird.

e Nun werden die Projekteinstellungen bearbeitet, indem alle verwendeten Bi-
bliotheksverzeichnisse zu den Suchpfaden hinzugefiigt werden.

o Auflerdem werden die nicht verwendeten Bibliotheken und eventuelle Code-
Beispiele der Bibliotheken in den Projekteinstellungen exkludiert.

40

3.3 Software

Bearbeitung der Eclipse-Projekteinstellungen Die Einstellungen eines FEclipse
CDT-Projekts werden in der XML-Datei .cproject im Projektverzeichnis festge-
halten. Zum Bearbeiten wird das Python-Modul xml.etree.ElementTree verwen-
det, mit dem auf die Elemente der Baumstruktur des Dokuments zugegriffen werden
kann. Dabei wurden fiir die wichtigsten Knoten, auf denen mehrere Operationen né-
tig sind, Python-Klassen zur Abstraktion verwendet, die die zahlreichen Funktionen
kapseln.

Ein Projekt kann tiber mehrere Konfigurationen (<cconfiguration>) wie etwa Debug
oder Release verfiigen, die die Einstellungen fiir unterschiedliche Erstellungsprozesse
verwalten. Eine Konfigurationen verfiigt wiederum tiber Toolchains (<toolChain>),
die jeweils die einzelnen Werkzeuge (<tool>) wie Compiler, Linker und Assembler
fiir einen bestimmten Erstellungsprozess bestimmen.

Um die Suchpfade wie in Abschnitt 3.3.3.1 auf Seite 40 beschriebenen anzupassen,
wird bei jeder Konfigurationen des manuell erstellen Projekts in der AVR-GCC Toolchain
in den Werkzeugen AVR Assembler, AVR Compiler und AVR C++ Compiler der Kno-
ten <option name="includePath"> entsprechend modifiziert oder auch erstellt, soll-
te er nicht bereits existieren. Die zu exkludierenden Verzeichnisse werden hingegen
direkt in den Konfigurationen als Kind des <sourceEntries> Knotens angegeben:
<entry excluding="..."/>.

3.3.4. Bordsoftware

Nachdem in den vorangegangenen Unterabschnitten 3.3.1, 3.3.2 und 3.3.3 verwen-
dete, erweiterte und eigens entwickelte Werkzeuge vorgestellt wurden, befasst sich
dieser Unterabschnitt nun mit der Implementierung der Bordsoftware des Neuro-
copters, die versucht, die in Abschnitt 1.2.2 auf Seite 5 gestellten Anforderungen
umzusetzen. Dabei geht es in erster Linie um die Bereitstellung eines Frameworks,
das den Zugriff auf die Sensordaten des Flugcontrollers ermoglicht und die Kom-
munikation mit der Bodenstation regelt, um so eine Umgebung zur Durchfiithrung
und Beobachtung von Experimenten rund um die Erforschung von Honigbienen zu
schaffen.

Als Basis der Bordsoftware wird das Berlin United Framework (vgl. Abschnitt 3.3.2
auf Seite 37) mit zwei Modulmanagern verwendet. Einer davon dient der Verarbei-
tung von Kamerabildern und st683t die Ausfithrung seiner Module beim Eintreffen
eines neuen Bildes an. Der andere Modulmanager ist hingegen zeitlich gesteuert
und dient der Verarbeitung sdmtlicher MAVLink-Pakete. Diese werden kontinuier-
lich von einem im Hintergrund laufenden Service empfangen und bis zur Ausfithrung
der Module in einem Puffer zwischengespeichert.

41

Kapitel 3 Implementierung

3.3.4.1. Datenaustausch zwischen den Modulmanagern

Da die beiden Modulmanager nebenldufig ausgefiithrt werden, ist ein direkter Zu-
griff auf die Repréasentationen des Blackboards des jeweils anderen Managers ohne
Synchronisationsmechanismen nicht méglich. Dies kann jedoch nétig sein, wenn bei-
spielsweise zur Bildverarbeitung die Lage des Copters herangezogen werden soll. Um
den Zugriff dennoch zu ermoglichen, wird jedem Manager hierfiir ein weiteres Mo-
dul hinzugefiigt und mit dem Berlin United Framework ein neues Event registriert,
das zu deren Kommunikation verwendet wird. Dabei 16st das Modul im MAVLink-
Modulmanager das Fvent aus, das einen Zeiger auf die bendtigten Daten enthélt
und synchron verarbeitet wird. Um darauf reagieren zu konnen, implementiert das
Modul im anderen Manager eine zusatzliche Schnittstelle. In deren Riickruffunktion
(callback function) werden die Daten dann kopiert und vorerst im Modul zwischen-
gespeichert, um anschlieBend bei seiner nichsten Ausfithrung in die von ihm be-
reitgestellte Repréasentation kopiert zu werden, auf die die anderen Module regulér
zugreifen konnen.

3.3.4.2. Manipulation verschiedener Daten von MAVLink-Geraten

Viele Operationen miissen fiir alle angeschlossenen, per MAVLink kommunizieren-
den Gerate gleichermafien ausgefiihrt werden. Um Codeduplikate zu minimieren
und das Entfernen oder Hinzufligen eines neuen Gerats so einfach wie moglich zu
gestalten, wurde die template-basierte Struktur device_data konzipiert, die mehrere
Instanzen einer Klasse enthélt und beliebige Operationen darauf ausfithren kann:

template<typename T>
struct device_data {
T gnd;
struct copter_t {
T apm;
T px4flow;
template<typename F, typename... U>
void exec(const F &f, U&... u);
} copter;
template<typename F, typename... U>
void exec(const F &f, U&... u);

¥

Derzeit sind Verbindungen mit einer Bodenstation (gnd) und auf dem Copter selbst
mit dem Flugcontroller (apm) und einem Sensor zur Bestimmung des optischen Flus-
ses (px4flow) vorgesehen. Um eine Operation fir jedes dieser drei Geréte auszu-
fihren, wird die Methode exec verwendet, die als Parameter einen Funktor und
beliebig viele device_data-Objekte erhalt. Der Funktor wird dann fiir jedes der
drei MAVLink-Gerédte mit dem Gerét selbst und den entsprechenden Feldern aus
den weiteren Parametern aufgerufen. Fiir die Bodenstation wird dementsprechend

42

3.3 Software

f(this->gnd, u.gnd...); ausgefithrt. Sollte eine Operation nur fiir die Geréate auf
dem Copter ausgefiihrt werden, kann die Methode exec des geschachtelten Objekts
copter_t verwendet werden.

3.3.4.3. MAVLink-Service

Der MAVLink-Service lauft im Hintergrund und empfangt kontinuierlich die Nach-
richten aller angeschlossenen MAV Link-Geraten.

Abstraktion des Ubertragungskanals Da MAVLink-Pakete iiber beliebige Kané-
le wie serielle Schnittstellen oder TCP-Verbindungen iibertragen werden konnen,
wurde die abstrakte Klasse abstract_read_write mit Schnittstellen zum Lesen und
Schreiben verwendet, von der die konkreten Implementierungen erben, um die ver-
schiedenen Ubertragungsmoglichkeiten zu abstrahieren. Diese Struktur wird in Ab-
bildung 3.12 in vereinfachter Weise dargestellt.

abstract_read_write socket abstract_file_descriptor
+read(...): ssize_t +bind(...): void #m_file descriptor: int
+write(...): ssize_t 4 —| A
A .
tcp_socket
+listen(...): void udp_socket
+accept(...): tcp_socket_raii — Al
+connect(...): void +recvfrom(...): ssize t €
dummy +recv(...): ssize t +sendto(...): ssize_ t
+send(...): ssize_t
1 1 1 ?
tcp_server tcp_client udp_connection -
terminal

#m_socket: tcp_socket_raii ||#m_socket: tcp_socket_raii ||#m_socket: udp_socket_raii

Abbildung 3.12.: Klassendiagramm der abstrahierten Ubertragungsmoglichkeiten
Zur Abstraktion der Ubertragung von MAVLink-Paketen wird von der abstrakten Klasse
abstract_read write geerbt, so dass TCP-Verbindungen (tcp server und tcp client), UDP-
Ubertragungen (udp_ connection) und serielle Schnittstellen (terminal) gleichermafien genutzt wer-
den kdénnen. Die Klasse dummy kann als Platzhalter verwendet werden, wenn keine Verbindung

verwendet werden soll.

Senden und Empfangen von MAVLink-Paketen In Abschnitt 3.3.1.1 auf Seite 32
wurde bereits erlautert, dass zum Senden und Empfangen von MAVLink-Paketen
den entsprechenden Funktionen eine Kanalnummer iibergeben werden muss, mit der
auf Variablen wie die aktuelle Sequenznummer oder den Parsezustand des Kanals
zugegriffen wird. Diese Funktionalitdt wurde in der Klasse mavlink_send_reveive
abstrahiert, die ein abstract_read_write-Objekt kapselt und so mit einer festgeleg-
ten Kanalnummer Funktionen zum Senden und Empfangen bereitstellt. Zum Senden

43

Kapitel 3 Implementierung

wird eine template-basierte Methode verwendet, die auf die automatisch generier-
ten Sendefunktionen zuriickgreift (vgl. Abschnitt 3.3.1.2 auf Seite 35). Beim Parsen
einer eingehenden Nachricht miissen die Daten solange byteweise einer M AV Link-
Funktion tibergeben werden, bis ein vollstandiges Paket erkannt wurde. Dies ist
durch eine Schleife realisiert worden, die vom abstract_read_write-Objekt liest.

Da die Methode zum Empfangen folglich solange blockiert, bis eine komplette Nach-
richt erhalten wurde, wird dieser Vorgang nebenlaufig ausgefiihrt. Dies geschieht in
der Klasse mavlink_channel, die intern das zuvor beschriebene mavlink_send_reveive-
Objekt verwendet. Die erhaltenen Nachrichten werden zusammen mit ihrem Emp-
fangszeitpunkt solange in einem std: : vector zwischenspeichert, bis sie tiber die Me-
thode std: :vector<timestamped_mavlink_message_t> get_received_messages() ab-
geholt werden. Uber eine im Berlin United Framework registrierte Debug-Option
konnen die erhaltenen Nachrichtentypen optional angezeigt werden. Auflerdem stellt
die Klasse eine Methode zur Verfiigung, die tiberpriift, ob sich unter den aktuell er-
haltenen Nachrichten ein Heartbeat-Paket befindet. Dies kann verwendet werden,
um zu warten, bis ein Gerét betriebsbereit ist. Zu sendende Nachrichten werden
direkt an das mavlink_send_reveive-Objekt weitergereicht.

Der eigentliche Service Durch die Kapselung der gesamten benotigten Funktiona-
litat (vgl. Abschnitt 3.3.4.3 auf Seite 43) besteht die eigentliche Aufgabe des Dienstes
mavlink_communication nur noch in der Erzeugung von mavlink_channel-Objekten
fiir die verbundenen Geréte. Zur Verwaltung der verschiedenen Verbindungen wird
ein device_data<std::unique_ptr<mavlink_channel>>-Objekt verwendet (vgl. Ab-
schnitt 3.3.4.2 auf Seite 42).

Um die Verbindungsarten der einzelnen Gerate frei konfigurieren zu konnen, wur-
de fiir jeden Verbindungstyp eine Klasse konzipiert, die im Berlin United Frame-
work entsprechende Konfigurationsparameter (vgl. Abschnitt 3.3.2.2 auf Seite 38)
in einer Sektion eintragt. Diese Klassen werden wiederum in der Klasse connection
zusammengefasst, die zusatzlich einen Konfigurationsparameter fiir den verwende-
ten Verbindungstyp enthélt. Anhand dessen kann dann die entsprechende Klasse
instanziiert und iiber die gemeinsame Schnittstelle abstract_read_write zuriickge-
geben werden.

Da diese Verbindungsoptionen fiir jedes der MAVLink-Geréte benotigt werden, wird
auf die template-basierte Struktur device_data<connection> zur Zusammenfassung
zuriickgegriffen.

3.3.4.4. Bereitstellung empfangener MAVLink-Pakete

Fir den Zugriff auf die Sensordaten und andere Statusinformationen des Flugcon-
trollers ist die MAVLink-Kommunikation die zentrale Komponente. Daher miissen
die mithilfe des MAVLink-Services (vgl. Abschnitt 3.3.4.3 auf Seite 43) empfangenen
Nachrichten allen Modulen in geeigneter Form zur Verfligung gestellt werden.

44

3.3 Software

Reprasentation Die Reprisentation verwaltet alle MAVLink-Nachrichten, die seit
der letzten Ausfithrung des Modul-Managers empfangen wurden. Dabei wird wie-
der auf die template-basierte Struktur device_data zuriickgegriffen, die fiir jedes
MAVLink-Gerét ein eigenes mavlink message_container-Objekt enthélt, das nun
naher erlautert wird. Zum einen enthélt es die vom MAVLink-Service erzeugte Liste
(std::vector<timestamped_mavlink_message_t>), in der sich die Nachrichten zeit-
lich sortiert zusammen mit ihren Empfangszeitstempeln befinden. Auflerdem wird
ein assoziatives Datenfeld (std::map) angelegt, in dem die Nachrichten nach ihren
IDs abgelegt werden. Die gespeicherten Werte setzen sich dabei aus je zwei Listen
(std::vector) zusammen. Eine davon referenziert lediglich die kodierten Nachrich-
ten in der Liste aller Nachrichten, wiahrend die andere die dekodierten Nachrichten,
wie etwa das mavlink_heartbeat_t-Paket, enthélt. Hierbei wird die Lazy Evalua-
tion-Auswertungsstrategie verfolgt: Die Dekodierung wird bis zum ersten Zugriff auf
die Liste verzogert, die bis dahin leer ist. Dieser Vorgang findet in einer template-
basierten Methode statt, die den korrekten Riickgabetyp hat, so dass das Typsystem
von C++ beim Zugriff nicht untergraben werden muss. Dies wird nur innerhalb der
Methode mit einem einzigen static_cast getan, um die Listen verschiedener Typen
zusammen in dem assoziativen Datenfeld speichern zu kénnen.

Durch die Lazy Evaluation-Auswertungsstrategie ist es auflerdem ohne zuséatzlichen
Aufwand moglich festzustellen, fiir welche MAVLink-Pakettypen auf die dekodierten
Nachrichten zugegriffen wurde. Dafiir miissen nur die Langen der beiden Listen des
Pakettyps im Datenfeld verglichen werden. Dadurch ist es beispielsweise moglich
auf einfache Weise festzustellen, ob ein angeschlossenes MAVLink-Gerat etwa nach
einem Softwareupdate neue Nachrichtentypen versendet.

Modul Das Modul zur Bereitstellung der empfangenen Nachrichten kann nun we-
gen der Verwendung der Struktur device_data sowohl im MAVLink-Service als auch
in der Reprasentation auf deren Methode exec zugreifen, um die Nachrichten aller
MAVLink-Geréte zu aktualisieren:

this->getreceived_mavlink_messages ().exec(
[](mavlink_message_container &lhs,
std::unique_ptr<mavlink_channel> &rhs)
{ lhs.update(*xrhs); I,
services.getMavlink_communication().get_channels ()

)

Dabei wird die Methode update jedes mavlink_message_container-Objekts mit dem
entsprechenden mavlink_channel-Objekt aufgerufen.

3.3.4.5. Weitere MAVLink-Module und Reprasentationen

Betriebsbereitschaft (Heartbeat) Das beispielhaft schon oft herangezogene Heart-
beat-Paket signalisiert die Betriebsbereitschaft eines MAVLink-Geréats. Die Boden-

45

Kapitel 3 Implementierung

stationssoftware APM Planner (vgl. Abschnitt 2.2.3 auf Seite 14) fligt beispielsweise
ein Gerat automatisch zur Ansicht hinzu, sobald ein Heartbeat-Paket von ihm emp-
fangen wurde. Sollte es dann wieder fiir eine bestimmte Zeitspanne ausbleiben, wird
dies signalisiert.

Zum Senden dieser Pakete wird ein Modul verwendet, das auf die Repréisentation
der empfangenen Nachrichten des Flugcontrollers zugreift und jeweils das aktuellste
Heartbeat-Paket an die Bodenstation weiterleitet.

Data Streams Ein MAVLink-Data-Stream (vgl. Abschnitt 3.3.1.1 auf Seite 35)
setzt sich mehreren Pakettypen zusammen, die kontinuierlich gesendet werden. Fiir
einige Streams sind die enthalten Pakete zwar spezifiziert, bei anderen werden sie
aber frei von der Implementierung des Flugcontrollers bestimmt [118]. An dieser
Stelle wurden die Typen mangels Dokumentation per Codeanalyse mit ar2clipse be-
stimmt, wobei sich herausstellte, dass auch die eigentlich vorgegebenen Typen von
der Spezifikation abweichen. Dabei fiel auflerdem auf, dass der Wert zur Bestimmung
der Senderate im mavlink_request_data_stream_t-Paket vom ArduCopter-Code an-
ders als erwartet interpretiert wird. Die Dokumentation des req_message_rate ge-
nannten Parameters besagt, dass er das Intervall zwischen zwei Ubertragungen an-
gibt: , The requested interval between two messages of this type® [119]. Stattdessen
wird der Wert vom ArduCopter-Code aber als Frequenz in Hertz interpretiert.

Um den Zugriff auf die Pakete typsicher zu gestalten, wurde fiir die Implementierung
der Reprasentation zur Zusammenfassung der Typen eines Streams das Klassen-
Template std::tuple gewéhlt, das eine feste Anzahl verschiedener Typen zusam-
menlegt. Fiir den Strom einer einzelnen Nachricht wird die template-basierte Klasse
template<typename TYPE> class message_stream verwendet. Diese kann aus einem
mavlink_message_container-Objekt, der Repréasentation der erhaltenen MAVLink-
Pakete (vgl. Abschnitt 3.3.4.4 auf Seite 44), die Liste der entsprechenden Pakete
auswéhlen und daraus die durchschnittliche Nachrichtenrate bestimmen. Aulerdem
konnen diese Pakete iiber ein mavlink_channel-Objekt, das das Senden und Emp-
fangen von Nachrichten kapselt (vgl. Abschnitt 3.3.4.3 auf Seite 43), weitergeleitet
werden.

Auflistung 3.3: Datenstrom aus mehreren MAVLink-Pakettypen

typedef data_stream<
MAV_DATA_STREAM_RAW_SENSORS,
mavlink _raw_imu_t,
mavlink_scaled_pressure_t,
mavlink_sensor_offsets_t

> apm_mavlink_data_stream_raw_sensors;

Die einzelnen Nachrichtenstrome werden nun mit dem Klassen-Template
template<enum MAV_DATA_STREAM ID, typename... TYPES> class data_stream un-
ter Verwendung des bereits erwahnten Klassen-Templates std: :tuple zu einem Da-

46

3.3 Software

tenstrom zusammengefasst. Auflistung 3.3 zeigt dies exemplarisch fiir einen Daten-
strom. Hier werden auflerdem die gewiinschte Datenrate und der Aktivierungszu-
stand des Streams gespeichert. Uber Objektmethoden kann die Frequenz geéndert
und abgefragt werden. Dabei stehen Minimum, Maximum und Durchschnitt der
einzelnen Nachrichtenstrome zur Verfiigung. Um die Methoden der einzelnen Nach-
richtenstrome zum Weiterleiten und Ermitteln der Rate sinnvoll nutzen zu kénnen,
werden hierfiir Funktionen bereitgestellt, die auf jedem Element des intern verwen-
deten std: :tuple-Objekts arbeiten. Fiir den Zugriff auf die einzelnen Tupelelemente
anhand ihres Typs wird eine zur Kompilierzeit auswertbare Funktion verwendet, die
den entsprechenden Index bestimmt, iiber den dann auf den Tupel zugegriffen wer-
den kann:

template<typename T>
constexpr std::size_t get_index_of () {

return O;
}
template<typename T, typename HEAD, typename... TAIL>
constexpr std::size_t get_index_of () {

return std::is_same<T, HEAD>::value

7?0
1 + get_index_of<T, TAIL...>();

Dabei werden die Template-Parameter HEAD, TAIL... rekursiv bis zum ersten Auf-
treffen des Typen T durchsucht, dessen Index dann zuriickgegeben wird.

Samtliche Data Streams werden mit einem weiteren variadischen Klassen-Template
zusammenfasst. Dadurch kann eine Operation gemeinsam auf allen Datenstrémen
ausgefiihrt werden, die diese wiederum an all ihren Nachrichtenstromen vornehmen.
Auf diese Weise konnen die Datenraten aktualisiert, Stream-Anforderungen bear-
beitet und entsprechende Pakete weitergeleitet werden.

Durch diese aufwéndige Représentation beschranken sich die Aufgaben des Data-
Stream-Moduls lediglich auf den Aufruf von Methoden, denen andere Reprasenta-
tionen iibergeben werden, so dass etwa auf die erhaltenen MAVLink-Nachrichten
zugegriffen werden kann. Auf diese Weise werden Datenstrome aktiviert, deren Rate
gedndert und Anfragen der Bodenstation beantwortet.

Parameterprotokoll Um Konfigurationsparameter des mit dem Bordcomputer ver-
bundenen Flugcontrollers von der Bodenstation aus auslesen zu kénnen, wurde das
MAVLink-Parameterprotokoll (vgl. Abschnitt 3.3.1.1 auf Seite 34) implementiert.
Alternativ wére es auch moglich gewesen, simtliche Pakete des Protokolls direkt an
den Flugcontroller weiterzuleiten. Dieser Ansatz wurde jedoch nicht gewédhlt, da es
so beispielsweise moglich ware, Einstellungen im Flugcontroller vorzunehmen, die
den Anforderungen von Modulen der Bordsoftware widersprechen. So ist es etwa

47

Kapitel 3 Implementierung

moglich, Datenstrome abzuschalten, da deren Datenrate direkt iiber einen Konfigu-
rationsparameter zuganglich ist. Aulerdem ist die Implementierung ohnehin nétig,
sobald die Bordsoftware Parameter lesen oder sogar schreiben soll.

Die vorgenommene Implementierung fordert die Parameter aller MAVLink-Geréate
an und speichert sie mit der Struktur device_data in entsprechenden param_map-
Reprasentationen. Anfragen der Bodenstation werden dann mit diesen gepuffer-
ten Werten beantwortet, so dass die MAVLink-Geréte entlastet werden. Die Klasse
param_map legt die Parameter in einem assoziativen Datenfeld (std: :map) ab, so dass
sie tiber ihren Namen zugénglich sind. Zusétzlich wird eine Liste (std: :vector) mit
Zeigern auf diese Werte verwaltet, so dass auch ein Zugriff iiber den Index moglich
ist.

$ Parameter/setze Time-out zurtick
kein Parameter)erster Paramete\r(warte auf letzter Parameter| alle Parameter
Lentry/ Parameterliste anfordernJ ’L restliche Parameter erhalten
A I A I
Time-out Time-out/fordere Parameter an

Abbildung 3.13.: Zustandsdiagramm zur Anforderung der Parameter
Dieses Zustandsdiagramm zeigt den allgemeinen Ablauf zur Anforderung der Parameterliste eines
MAVLink-Geréts. Solange noch nicht alle Parameter erhalten wurden, werden alle oder einzelne

fehlende angefordert.

Das vom Manager regelméflig ausgefiihrte Parameterprotokollmodul fordert iiber
entsprechende Methoden der Reprisentation zuerst alle Parameter an. Uber Time-
outs geregelt werden solange entweder erneut alle oder einzelne fehlende Parameter
angefordert, bis die gesamte Liste erhalten wurde. Dies wird im zugehorigen Zu-
standsdiagramm in Abbildung 3.13 veranschaulicht. Aulerdem behandelt das Modul
die Parameteranfragen der Bodenstation, sobald sémtliche Parameter des Flugcon-
trollers verfiigbar sind. Dabei wird sowohl auf einzelne namentlich oder per Index
angefragte Parameter als auch auf die Anforderung der gesamten Liste reagiert.
Letztere wird nicht auf einmal, sondern parameterweise mit jeder Ausfithrung des
Moduls tibertragen, um dessen Ausfithrungszeit konstant zu halten.

Um sicherzustellen, dass das Modul die Parameter gemafl der Implementierung des
ArduCopter-Codes anfragt, wurde dieser unter Zuhilfenahme von ar2clipse analy-
siert. Dabei zeigte sich, dass das Feld param_value des zur Ubertragung genutzten
mavlink_param_value_t-Pakets nicht der Dokumentation entsprechend genutzt wird.
Eigentlich sollten die vier Byte des float-Werts dem Feld param_type entsprechend
interpretiert werden, da sie auch zur Ubertragung von Nicht-FlieSkommazahlen ge-
nutzt werden. Stattdessen wird der zu iibertragende Wert in eine FlieSkommazahl
konvertiert, wodurch er sich &ndern und an Genauigkeit verlieren kann. Dies spielt
im Allgemeinen keine grofie Rolle, da die meisten iibertragenen ganzzahligen Wer-
te eher klein sind und somit verlustfrei in eine FlieSkommazahl und wieder zuriick

48

3.3 Software

konvertiert werden konnen. Dennoch muss diese vom Protokoll abweichende Art der
Ubertragung der Gegenseite bekannt sein, da sonst falsche Werte gesendet werden
wiirden. Aus diesem Grund stellte sich ArduCopter auch als inkompatibel zur Bo-
denstation QGroundControl (vgl. Abschnitt 2.2.3 auf Seite 14) heraus, da diese das
Protokoll geméfl der Spezifikation implementiert.

3.3.5. Bodenstation

Als Bodenstationssoftware werden die MAVLink-Bodenstation APM Planner (siehe
Abschnitt 2.2.3 auf Seite 14) und FUremote des Berlin United Frameworks (siehe
Abschnitt 3.3.2.3 auf Seite 39) zusammen eingesetzt. APM Planner eignet sich gut
zur Anzeige der weitergeleiteten Parameter und Datenstréme des Flugcontrollers
und zur Konfiguration des Copters, da es tiber die reine MAV Link-Kommunikation
hinaus speziell auf den ArduCopter-Code abgestimmt ist und eigene Meniis fir
die einzelnen Konfigurationsoptionen bietet. Auflerdem wurde die von der Spezi-
fikation abweichende Implementierung einiger MAVLink-Protokollbestandteile des
ArduCopter-Codes in APM Planner gleichermafien umgesetzt, so dass keine Kompa-
tibilitatsprobleme wie mit anderen Bodenstationen bestehen (vgl. Abschnitt 3.3.4.5
auf Seite 47).

Modulspezifische Einstellungen und Dateniibertragungen werden hingegen geson-
dert mit FUremote vorgenommen, da eine Integration der beiden Programme sehr
aufwéndig erscheint und keine erheblichen Vorteile birgt.

3.3.6. Konfiguration von Flugrouten und Verhalten

Um eine bessere Reproduzierbarkeit der Experimente zu gewéhrleisten, wurde ge-
fordert, dass der Neurocopter die Moglichkeit bietet, vorkonfigurierte Routen abzu-
fliegen und dabei an festgelegten Punkten bestimmte Aktionen ausfithrt (vgl. Ab-
schnitt 1.2.2 auf Seite 5). Zur Planung der Routen wird die Bodenstationssoftware
APM Planner verwendet (vgl. Abschnitt 3.3.5), die tiber das MAVLink-Waypoint-
Protokoll (vgl. Abschnitt 3.3.1.1 auf Seite 34) mit dem Flugcontroller kommuniziert
und so eine Liste von Wegpunkten tibertrégt. Einfache Aktionen wie Flugmand-
ver und die Ausrichtung des Gimbals kénnen dabei zusammen mit den Punkten
in der Bodenstation konfiguriert werden. Dariiber hinausgehendes Verhalten kann
realisiert werden, indem das experimentspezifische Modul (vgl. Abschnitt 3.3.2.1
auf Seite 37) das Erreichen eines Wegpunkts durch den Empfang der entsprechen-
den mavlink mission_item_reached_t-Nachricht vom Flugcontroller erkennt (vgl.
Abschnitt 3.3.1.1 auf Seite 34) und dann die gewiinschte Funktionalitit ausfiihrt.

49

Kapitel 3 Implementierung

3.4. Zusammenfassung

In diesem Kapitel wurden die Konstruktion des Neurocopters, die Auswahl von Flug-
controller und Bordcomputer und die Entwicklung der Bordsoftware beschrieben.

Hardware Der als Quadcopter konzipierte Rahmen wurde vollstandig aus CFK-
Rohren und -Platten und Aluminium-Dreh- und -Frésteilen konstruiert. Dadurch ist
ein sehr robuster und dennoch leichter Rahmen entstanden, der die Bordelektronik
zur Steuerung des Copters und Durchfithrung von Experimenten auf einer geddmpf-
ten Plattform tragt. Als Flugcontroller wurde das APM 2.5 ausgewéhlt, das mit
dem Bordcomputer ODROID-U3 verbunden ist, der tiber ein zusétzliches Funkmo-
dul zur Kommunikation mit einer Bodenstation verfiigt. Fiir den Antrieb wurden
kostengtinstige Propeller, Motoren, Motorregler und Akkus aus dem Modellbau ver-
wendet.

Software Die entwickelte Bordsoftware stellt ein Framework zur Verfiigung, mit
dem Softwaremodule ausgefithrt und auf die Kamera und Sensordaten des Flug-
controllers zugegriffen werden kénnen. Zur Verwaltung und Ausfithrung der Module
wird das Berlin United Framework verwendet. Der zentrale Bestandteil der ent-
wickelten Software ist die Kommunikation iiber das MAVLink-Protokoll, das von
Flugcontroller und Bodenstation zur Datentibertragung verwendet wird. Vom Flug-
controller werden dabei Sensordaten und Konfigurationsparameter angefordert, so
dass sie den Modulen zur Verfiigung gestellt oder an die Bodenstation weitergesendet
werden konnen. Zur Umsetzung wurden dabei mit dem Berlin United Framework
Module zur Anforderung und Aufbereitung der Daten und Reprisentationen fiir
deren Bereitstellung entwickelt. Zur teilweise nétigen Analyse des Flugcontroller-
quelltexts wurde das eigens entwickelte Werkzeug ar2clipse verwendet, durch das es
moglich wurde, die semantische Quelltextanalyse der IDE FEclipse zu verwenden.

Die Bodenstation zur Visualisierung der Flugdaten und des Experimentierverlaufs
setzt sich aus zwei getrennten Komponenten zusammen. Zum einen wird die Boden-
stationssoftware APM Planner des Flugcontrollers und zum anderen das Konfigu-
rationswerkzeug FUremote des Berlin United Frameworks verwendet.

50

4. Evaluierung

Nachdem im vorherigen Kapitel die Konstruktion des Neurocopters unter Verwen-
dung von Modellbaukomponenten und die Implementierung der Bordsoftware auf
Basis des Berlin United Frameworks beschrieben wurde, befasst sich dieses nun mit
der Evaluierung des Systems.

4.1. Copter

Fiir den Neurocopter wurde ein Rahmen konstruiert, da die erhéltlichen Modelle un-
notig schwer erscheinen, einen ungiinstigen Schwerpunkt besitzen und im Bereich der
Elektronikplattform nicht unverindert fiir dieses Projekt verwendet werden konnen,
da angepasste Befestigungsmoglichkeiten fiir den Flugcontroller und zusétzlichen
Bordrechner geschaffen werden miissten. Zudem verfiigt keiner der Rahmen iiber
eine Vibrationsdampfung der Bordelektronik.

4.1.1. Rahmen

Der entwickelte Copter wird von vier 304 mm groflen Propellern angetrieben. Ver-
flighare Rahmen, die dhnliche Rotorgrofien zulassen, weisen ein Gewicht von 418 g
bis 598 g auf (vgl. Tabelle 2.2 auf Seite 19). Damit ist die 343 g schwere Konstruk-
tion um 17,9% bis 42,6 % leichter. Unter Berticksichtigung des Gewichts der 28 g
schweren gedampften Elektronikplatte des Neurocopters, die in dhnlicher Weise fiir
die anderen Modelle ebenso hatte konstruiert werden miissen, vergroflert sich die
Gewichtsersparnis auf 23,1 % bis 45,2%. Durch ein zusatzliches Kiirzen der Arme
des Neurocopters auf die gleiche Léange der verglichenen Rahmen wiirde sich der
Vorteil auf 27,3 % bis 49,7 % erhohen.

4.1.2. Plattformdampfung

Die gesamte Bordelektronik des Copters ist auf einer gedampften CFK-Platte ange-
bracht, um die empfindlichen Sensoren des Flugcontrollers von den Vibrationen der
Motoren zu entkoppeln, die diese auf den Rahmen tbertragen (vgl. Abschnitt 3.2.3
auf Seite 28). Um die Wirksamkeit dieser Konstruktion zu iiberpriifen, wurden Sens-
ordaten im Schwebeflug mit und ohne Démpfung mittels der Logging-Funktionalitit

51

Kapitel 4 Evaluierung

des APM mit anndhernd 50 Hz aufgezeichnet. Dabei wurde zur Erhebung der un-
gedédmpften Daten die Elektronikplattform direkt mit dem Rahmen verschraubt.
Die Ergebnisse dieser Messungen werden in Abbildung 4.1 gegentibergestellt. Der
deutlich stiarkere Ausschlag in y-Richtung bei ungedédmpfter Plattform ist auf de-
ren asymmetrischen Aufbau zuriickzufiihren. Dies wurde in einem zweiten Versuch
bestétigt, bei dem der Flugcontroller um 90° rotiert nun grofleren Vibrationen in
x-Richtung ausgesetzt war. In der starker gestorten y-Richtung fiithrt die Plattform-
dampfung zu einer Verringerung der Standardabweichung der Messwerte um den
Faktor 12,4, in x- und z-Richtung hingegen um 6,2 beziehungsweise 4,4.

| |
| | |y
| | ‘\“:\ ‘M"‘M
\‘/“ ““\“\“(‘HM\‘\‘\"\‘\“““A}““
‘\‘HJ‘ i
|

TR T
,»Hw\““\\ “\““\JH“J‘” i
[”“\H “\‘\‘H it “‘\” T
IRVATARN [V |
W \“H‘““w\“““\“‘\“\‘“‘““'ﬁ‘
J“‘wu“\‘\‘\“hg\‘“\ A
| CHT vy
[f\u‘f‘w |

Beschleunigung (m/s?)

0 1000 2000) 3000 4000 5000
Zeit (ms)

(a) Elektronikplattform direkt mit dem Rahmen verbunden

Beschleunigung (m/s?)

0 1000 2000 . 3000 4000 5000
Zeit(ms)

(b) gedampfte Elektronikplattform
Abbildung 4.1.: Beschleunigungssensordaten im Schwebeflug

Vergleich der Beschleunigungssensordaten im Schwebeflug mit ungeddmpfter und geddmpfter Elek-
tronikplattform.

52

4.2 Flugcontroller

4.2. Flugcontroller

Zur Steuerung des Copters kommt der Flugcontroller APM 2.5 zum Einsatz, dessen
Funktionsweise in diesem Abschnitt untersucht wird.

4.2.1. Position halten

Die Firmware des Flugcontrollers bietet einen Modus zum Halten der aktuellen
Postion. Dabei werden GPS- und andere Sensordaten zur Abschétzung der aktuellen
Position herangezogen, um ein Abdriften zu erkennen und dem entgegenzuwirken.
Dieser Unterabschnitt beschreibt die Auswertung des Systems.

4.2.1.1. GPS-Genauigkeit

-11 -10 -9

Abweichung in Nord-Sud-Richtung (m)

-8
Abweichung in Ost-West-Richtung (m)

Abbildung 4.2.: Positionsdaten eines unbewegten GPS-Empfingers
Zeitlich korrelierte Messwerte des mit dem APM verbundenen u-blox GPS-Moduls. Angegeben ist
die horizontale Abweichung der einzelnen Messwerte zu deren Mittelwert. Die Werte bewegen sich
dabei in Ost-West-Richtung in einem Bereich von 11,8 m und in Nord-Sid-Richtung von 17,6 m.
Dabei betrdgt der mittlere Abstand zum Erwartungswert 3,6 m und der maximale 13 m.

23

Kapitel 4 Evaluierung

Da die Positionsbestimmung nicht allein durch Aufintegration der Accelerometer-
werte (vgl. Abschnitt 2.2.1 auf Seite 10) durchgefiihrt werden kann, miissen ver-
lasslichere absolute Positionsdaten in die Schétzung einbezogen werden. Die Genau-
igkeit des dazu verwendeten u-blox LEA-6 GPS-Moduls [29] wird hier anhand von
9700 Messwerten eines unbewegten Empfangers untersucht, die iiber einen Zeitraum
von 35 Minuten mit 4,5 Hz aufgezeichnet wurden. Dafiir wurde ein Modul fiir das
Berlin United Framework (vgl. Abschnitt 3.3.2.1 auf Seite 37) entwickelt, das den
entsprechenden MAVLink-Data-Stream (vgl. Abschnitt 3.3.1.1 auf Seite 35) vom
APM anfordert und in einer Logdatei des Bordrechners speichert. Dabei betragt
die Auflésung der tibermittelten Breitengrade immer etwa 1,1 cm, wahrend die der
Langengrade ortsabhéngig auch feiner sein kann. Die so bestimmten Werte werden
in Abbildung 4.2 auf Seite 53 visualisiert. Dazu ist die horizontale Abweichung der
einzelnen Messwerte vom Erwartungswert aufgetragen. Auffillig ist dabei die starke
zeitliche Korrelation der einzelnen Punkte, die in der systembedingten Art der ver-
schiedenen Fehlerquellen des GPS begriindet ist [120]. Wéhrend der Abstand zweier
aufeinanderfolgender Messwerte maximal 14,5 cm und im Mittel 1,9 cm betrégt, ist
die Abweichung zum Erwartungswert mit maximal 13m und im Mittel 3,6 m um
mehrere Groflenordnungen hoher. Daraus ergibt sich, dass die GPS-Daten mangels
ausreichender Genauigkeit nicht allein zur absoluten Positionsbestimmung heran-
gezogen werden konnen und mit anderen Werten in geeigneter Weise kombiniert
werden miissen.

4.2.1.2. Visuelle Positionsbestimmung

(a) Graustufenbild (b) Binéarbild (c) Dilatation (d) Erosion

Abbildung 4.3.: Optische Positionsbestimmung des Copters
Zur Positionsbestimmung wurde der Copter mit einer nach oben gerichteten Kamera gefilmt
(Abb. 4.3a). In dem mit einem konstanten Schwellwert erzeugten Binédrbild (Abb. 4.3b) werden
zunéchst kleinere Locher durch Dilatation geschlossen (Abb. 4.3c). AnschlieBend kénnen die schlan-
ken Arme des Copters durch Erosion entfernt werden, so dass nur noch der Kern der Plattform
iibrig bleibt (Abb. 4.3d). Dessen Schwerpunkt wird als Approximation fiir die Position des Copters

verwendet.

Um die Abweichung des fliegenden Copters von der zu haltenden Position zu be-
stimmen, wurde er im Schwebeflug in einer Héhe von 2,6 m von einer auf dem Boden

o4

4.2 Flugcontroller

befindlichen nach oben gerichteten Kamera mit 30 Bildern pro Sekunde gefilmt. Aus
den Videodaten liel sich dann die Position bildweise mittels einfacher Bildverarbei-
tungstechniken unter Verwendung der C++-Programmbibliothek OpenC'V extrahie-
ren. Dieser Vorgang wird in Abbildung 4.3 auf Seite 54 anhand eines Einzelbildes
veranschaulicht. Die Auflésung der so bestimmten Positionsdaten ergibt sich aus der
Flughohe des Copters und der Bildgrofle der Kamera und betréigt etwa 1,7 mm pro
Pixel. Der so ermittelte Positionsverlauf ist in Abbildung 4.4 visualisiert und zeigt,
dass sich der Copter in einem etwa 800 mm x 740 mm groflen Bereich bewegt. Zwi-
schen zwei aufeinanderfolgenden Einzelbildern driftet der Copter dabei im Mittel
um 3 mm und maximal um 9 mm.

500

s A
e =
-500 -400 -300 ‘ -200 { ‘-\Z\I.OO 0

\
\

700 800

- \-100

Abweichung in Nord-Sud-Richtung (mm)

-500

-600
Abweichung in Ost-West-Richtung (mm)

Abbildung 4.4.: Positionsdaten des schwebenden Copters
Gezeigt ist der horizontale Positionsverlauf des fiir 85s auf der Stelle schwebenden Copters. Bei
einer mittleren Abweichung von 270 mm vom Erwartungswert und einer maximalen von 479 mm
bewegt er sich um 800 mm in Ost-West-Richtung und um 740 mm in Nord-Siid-Richtung.

4.2.1.3. Fazit

Unter Beriicksichtigung der unterschiedlichen Aufnahmeraten der GPS-Positionsdaten
und der visuellen Positionsbestimmung des fliegenden Copters zeigt sich, dass der
Flugcontroller trotz zuséatzlicher Sensoren wie Accelerometer und Gyroskop die Po-
sition nicht genauer halten kann, als es unter alleiniger Verwendung des GPS zu

95

Kapitel 4 Evaluierung

erwarten ware. Dessen Werte unterscheiden sich pro Sekunde im Mittel um 8,8 cm,
die des fliegenden Copters um 8,7 cm.

4.2.2. Senderate der MAVLink-Datenstrome

Die ArduCopter-Firmware des Flugcontrollers kann auf Anfrage verschiedene Daten-
strome aus MAVLink-Paketen (vgl. Abschnitt 3.3.1.1 auf Seite 35) mit Sensordaten
und anderen Statusinformationen des Flugcontrollers tiber dessen serielle Schnitt-
stelle aussenden. Zur Analyse der Senderaten wurde ein Modul fiir das Berlin United
Framework (vgl. Abschnitt 3.3.2.1 auf Seite 37) geschrieben, das die Empfangszeit-
punkte der Pakete aufzeichnet. Das fiirs Senden verantwortliche Codesegment der
ArduCopter-Firmware wird mit 50 Hz ausgefiihrt und darf eine festgelegte maxima-
le Verarbeitungsdauer nicht iiberschreiten. Die zur Verfiigung stehende Rechenzeit
wird dabei nicht gleichméfig auf alle angeforderten Pakettypen verteilt. Stattdessen
arbeitet der Code die Nachrichten bei jeder Ausfiihrung solange in einer festgeleg-
ten Reihenfolge ab, bis der Zeitschlitz aufgebraucht ist. Wegen der schwachen, mit
16 MHz getakteten, 8-bit AVR ATmega2560 CPU [121] des APM 2.5, die es nicht
schafft, alle ausstehenden Pakete im aktuellen Zeitschlitz zu senden, und der Bevor-
zugung bestimmter Nachrichten kann es dazu kommen, dass andere iiberhaupt nicht
iibertragen werden. Auch wird das zur Verfiigung stehende Zeitfenster durch wei-
tere Faktoren beeinflusst: Wéahrend das Aktivieren der Logging-Funktion des APM
die Pakete nur um wenige Millisekunden verzogert und so die Senderate um 0,5 Hz
verlangsamt, haben die Flugmodi des Copters einen gréfleren Einfluss. Werden alle
verfiigharen Streams mit 10 Hz angefordert, so kann der sich nicht im Flugmodus
befindliche gesicherte Controller alle Pakete mit 8 Hz senden. Ein Wechsel in den
Modus zur manuellen Steuerung verringert die mittlere Rate auf 6,2 Hz, wobei die
niedrig priorisierten Nachrichten auf bis zu 4 Hz abfallen.

4.3. Werkzeug: ar2clipse

Zur Codeanalyse der ArduCopter-Firmware wurde das Programm ar2clipse (vgl.
Abschnitt 3.3.3 auf Seite 39) entwickelt, um die semantische Analyse der Entwick-
lungsumgebung Eclipse nutzen zu konnen. Insbesondere bei der Implementierung
der MAVLink-Datenstrome (vgl. Abschnitt 3.3.4.5 auf Seite 46) und des Parameter-
protokolls (vgl. Abschnitt 3.3.4.5 auf Seite 47) zeigte sich, wie notig dieses Hilfsmittel
fiir eine korrekte Umsetzung ist.

Durch die fast ausschlieflliche Verwendung von Verkniipfungen zur Einbindung der
Quelltextdateien ins Eclipse-Projekt konnen die Originaldateien auch direkt aus der
Entwicklungsumgebung heraus bearbeitet werden. Da zur Organisation des Quell-
texts der Firmware die Versionsverwaltungssoftware Git verwendet wird, kénnen
etwaige Korrekturen mit dieser direkt dem ArduCopter-Projekt zugéinglich gemacht
werden.

o6

4.4 Bordsoftware

Der Python-Code zur Bearbeitung der Eclipse-Projektdatei ist nicht speziell fiir die-
sen Anwendungsfall entwickelt, sondern sehr allgemein gehalten, so dass sich weitere
Konfigurationsmoglichkeiten von Projektdateien leicht ergédnzen lassen. So wére es
beispielsweise moglich, die im derzeitigen Arbeitsablauf noch einmalig manuell vor-
genommenen Einstellungen ebenso zu automatisieren.

4.4. Bordsoftware

Die Bordsoftware des Neurocopters wurde auf Basis des Berlin United Frameworks
(vgl. Abschnitt 3.3.2 auf Seite 37) entwickelt. Das so geschaffene Programmiergeriist
soll einfache Zugriffsmoglichkeiten auf die Sensordaten des Flugcontrollers und die
Bordkamera des Copters bereitstellen sowie die Funkkommunikation zu einer Bo-
denstation ermoglichen. In diesem Abschnitt wird das so entstandene Framework
des Neurocopters evaluiert.

4.4.1. MAVLink

Der Grofiteil der entwickelten Software dient der MAVLink-Kommunikation des
Bordcomputers mit dem Flugcontroller und der Bodenstation sowie der Aufberei-
tung der empfangenen Pakete fiir die weitere Verwendung in Modulen der Bordsoft-
ware. Dieser Unterabschnitt befasst sich mit der Auswertung dieser Komponenten.

4.4.1.1. Codegenerierung

Auf dem C-Codegenerator der MAVLink-Bibliothek [122] aufbauend wird zur ein-
facheren Verwendung innerhalb der Bordsoftware automatisiert C++-Code zur Ver-
arbeitung der MAVLink-Pakete erzeugt (vgl. Abschnitt 3.3.1.2 auf Seite 35). Die
Erweiterung des bestehenden Generators wurde dabei minimalinvasiv gehandhabt,
um mogliche zukiinftige Aktualisierungen des Generators so einfach wie moglich
zu gestalten: Es werden lediglich zwei aufeinanderfolgende Zeilen in einer Funktion
hinzugefiigt, die den C++-Generator aufrufen.

Generierte Funktionen Die generierten iiberladenen und template-basierten Funk-
tionen zum Kodieren und Dekodieren von MAVLink-Nachrichten ermoglichen es,
generischen Code zur Verarbeitung der Pakete zu schreiben. Demonstriert wird dies
in der template-basierten Reprasentation mavlink_message_container zur Bereit-
stellung der empfangenen Pakete in dekodierter Form (vgl. Abschnitt 3.3.4.4 auf
Seite 44). Beide Funktionsklassen verwenden im Gegensatz zu den durch sie gekap-
selten C-Funktionen keine Ausgabeparameter, sondern nutzen den Riickgabewert
der Funktion. Auf diese Weise wird vermieden, dass fiir die Ausgabe uninitialisierte
Objekte erzeugt werden miissen, die erst durch die Ubergabe an die Funktion in

o7

Kapitel 4 Evaluierung

einen definierten Zustand versetzt werden. Der tiibersetzte Maschinencode ist dabei
trotz der Grofle der zurlickgegebenen Objekte nicht weniger effizient. Dies ist in
der fiir C++-Compiler als obligatorisch zu betrachtenden NRV-Optimierung (Named
Return Value optimization) [123] bedingt.

Aktualisierung Die Codegenerierung muss nach einer Aktualisierung der verwen-
deten MAVLink-Bibliothek einmalig ausgefithrt werden. Anpassungen im bestehen-
den, die generierten Funktionen verwendenden Quelltext sind danach im Regelfall
nicht nétig. Ausnahmen bilden lediglich Anderungen in der Semantik bereits exis-
tierender MAVLink-Pakete, die nun neu interpretiert werden miissen. Ein Beispiel
hierfiir ist das Hinzufiigen eines neuen Pakets zu einem MAVLink-Datenstrom (vgl.
Abschnitt 3.3.1.1 auf Seite 35), das folglich bei dessen Verarbeitung beriicksichtigt
werden muss. Dies wird in den Abschnitten 4.4.1.2 und 4.4.1.3 noch im Detail er-
lautert.

4.4.1.2. MAVLink-Kommunikation

Wie in Abschnitt 3.3.4.3 auf Seite 43 beschrieben, werden empfangene MAV Link-
Nachrichten optional iiber eine Debug-Option des Berlin United Frameworks ausge-
geben. Auf diese Weise konnte die Kommunikation mit anderen MAVLink-Geréten
wie dem Flugcontroller und der Bodenstation beobachtet und iiberpriift werden.

Anderungen im Kommunikationsverhalten des Flugcontrollers konnen schnell er-
kannt werden, da die Représentation zur Bereitstellung empfangener MAVLink-
Pakete die Nachrichtentypen auflisten kann, die nicht dekodiert worden sind (vgl.
Abschnitt 3.3.4.4 auf Seite 44). Dies gilt insbesondere fiir neu hinzugekommene Pake-
te, die dementsprechend noch nicht verarbeitet und somit angezeigt werden. Auf die-
se Weise wurde festgestellt, dass dem MAVLink-Datenstrom MAV_DATA_STREAM_EXTRA3
der Pakettyp mavlink_rangefinder_t nachtraglich in einer neueren Firmwareversion
hinzugefiigt worden ist.

4.4.1.3. MAVLink-Datenstrome

Zur Anforderung und Bereitstellung der MAVLink-Datenstrome des Flugcontrollers
wurden eine template-basierte Reprasentation und ein entsprechendes Modul ent-
wickelt (vgl. Abschnitt 3.3.4.5 auf Seite 46). Das Hauptaugenmerk wurde dabei auf
eine moglichst einfache, nicht-redundante Konfiguration der Datenstrome gelegt.

Erweiterbarkeit Die Konfiguration der Pakete eines Datenstroms findet an einer
einzigen Stelle im Quelltext statt. So muss etwa ein neu hinzugekommenes Paket
nur dort eingetragen werden und steht ohne weitere Anpassungen iiber die Re-
prasentation der Datenstrome zur Verfiigung. In Abschnitt 4.4.1.2 wurde bereits

o8

4.4 Bordsoftware

angedeutet, dass ein MAVLink-Datenstrom bei einem Softwareupdate des Flug-
controllers verdndert wurde. Auflistung 4.1 zeigt die farblich hervorgehobene no-
tige Anpassung in der Datenstromdefinition zur Auswertung des neu hinzugefiigten
mavlink_rangefinder_t-Pakets.

Auflistung 4.1: Datenstrom-Anpassung fiir ein neues MAVLink-Paket

typedef data_stream<
MAV_DATA_STREAM_EXTRA3,
mavlink _ahrs_t,
mavlink_hwstatus_t,
mavlink_system_time_t,
mavlink_rangefinder_t

> apm_mavlink_data_stream_extra3;

Funktionstest Zur Uberpriifung der Funktionsweise des Moduls zur Anforderung
der Datenstrome wurden gezielt Pakete verworfen. Auf diese Weise konnte sicher-
gestellt werden, dass Datenstromanforderungen an den Flugcontroller nach Ablauf
eines Timeouts erneut gesendet werden.

4.4.1.4. MAVLink-Parameterprotokoll

Fiir den lesenden Zugriff auf die Konfigurationsparameter des Flugcontrollers wurde
das MAVLink-Parameterprotokoll (vgl. Abschnitt 3.3.4.5 auf Seite 47) implemen-
tiert. Um die Funktionsweise geméfl des Zustandsdiagramms in Abbildung 3.13 auf
Seite 48 zu verifizieren, wurde der Quelltext zu Testzwecken durch Praprozessordi-
rektiven modifiziert. So werden zum einen die Zustandsiibergiange durch Debug-
Ausgaben angezeigt, um Zustandswechsel nachvollziehen zu konnen. Um dabei auch
das Auslosen des Timeouts zur Neuanforderung einzelner Pakete testen zu konnen,
wurden einzelne Pakete vor der Verarbeitung durch das Modul mehrfach unter-
driickt. So wurde auch eine den Flugcontroller nicht erreichende Wiederanforderung
simuliert. Auf die Weise wurde die Korrektheit der Implementierung bestétigt.

Genauso wurden Parameteranfragen von der Bodenstation zuriickgehalten oder nicht
beantwortet, um diesen Teil der Implementierung erfolgreich zu iiberprifen.

4.4.2. Integration in das Berlin United Framework

Das Berlin United Framework (vgl. Abschnitt 3.3.2 auf Seite 37) wurde als Basis
der Neurocopter-Bordsoftware ausgewahlt. Grund hierfiir ist sein modularer Aufbau,
der Abhéngigkeiten reduziert und viele niitzliche Debug-Optionen beinhaltet, was
ein einfaches verteiltes Arbeiten beglinstigt.

29

Kapitel 4 Evaluierung

Samtliche bereitgestellten Funktionen der Bordsoftware wurden mit den Mitteln des
Frameworks entwickelt, so dass keinerlei Anpassungen notig waren: Ein Service rea-
lisiert den Empfang aller eingehenden M AVLink-Nachrichten. Diese Daten werden
dann von Modulen verarbeitet und in Reprdsentationen abgelegt. Die Bilder der
Bordkamera werden ebenfalls tiber eine Reprasentation verfiighar gemacht. Darauf
aufbauend konnen experimentspezifische Module entwickelt werden.

4.4.3. Wartbarkeit

Zur Versionsverwaltung des Neurocopter-Frameworks wird die Software Git verwen-
det. Dabei sind sowohl das Berlin United Framework (vgl. Abschnitt 3.3.2 auf Sei-
te 37) als auch die MAVLink-Bibliothek als Untermodule eingebunden und kénnen
so auf einfache Weise durch die Ausfithrung entsprechender Skripte aktuell gehalten
werden. Anschlielend muss lediglich wie bereits in Abschnitt 4.4.1.1 auf Seite 58 be-
schrieben der MAVLink-C++-Codegenerator ausgefithrt werden, um die Funktionen
zur Verarbeitung der MAVLink-Pakete zu erzeugen.

Zusammenfassend ergibt sich also eine sehr einfach zu bedienende Integration der
externen Bibliotheken, so dass diese aktuell gehalten werden konnen, um etwa Feh-
lerkorrekturen und Erweiterungen zeitnah verwenden zu kénnen.

4.4.3.1. Hinzufiigen weiterer MAVLink-Gerate

Die derzeitige Bordsoftware sieht neben der Bodenstation zwei per MAVLink ange-
schlossene Geréte vor: Den Flugcontroller und den PX4Flow-Sensor zur Bestimmung
des optischen Flusses (vgl. Abbildung 2.7b auf Seite 12). Sollen weitere Geréte hin-
zugefiigt werden, so reicht es, in der template-basierten Struktur device_data (vgl.
Abschnitt 3.3.4.2 auf Seite 42) einen Eintrag fiir sie anzulegen, um samtliche imple-
mentierte Funktionen wie etwa den Empfang von MAVLink-Nachrichten und deren
Organisation in einer Reprasentation oder den Zugriff auf die mit dem Parameter-
protokoll empfangenen Parameter zu nutzen.

60

5. Diskussion

Mit dem Neurocopter soll eine fliegende Experimentierplattform zur Erforschung
der Hirnaktivitdt von Honigbienen geschaffen werden. Der Quadcopter verfiigt iiber
einen leistungsstarken Bordcomputer, der mit dem Flugcontroller und einer am Cop-
ter befindlichen Kamera verbunden ist. Uber ein bereitgestelltes Framework kann
von der Bordsoftware auf die Sensordaten des Flugcontrollers und die Kamerabilder
zugegriffen werden. Auflerdem stellt es einen Ubertragungskanal zu einer Bodensta-
tionssoftware bereit, mit der die Empfangenen Daten wiahrend des Fluges visualisiert
und Experimente gesteuert werden konnen. Das entwickelte System wird im Folgen-
den diskutiert.

5.1. Flugcontroller

Als Flugcontroller kommt das APM 2.5 mit der ArduCopter Firmware zum Ein-
satz (vgl. Abschnitt 3.1.2 auf Seite 23). Es wurde aus Kostengriinden trotz seiner
schwachen 8-bit CPU mit 16 MHz wegen der sonst vergleichbaren Eigenschaften dem
leistungsstéarkeren PX4FMU vorgezogen. So kann es etwa vorprogrammierte Routen
aus Wegpunkten abfliegen, ein Gimbal ansteuern und seine Sensordaten iiber eine
serielle Schnittstelle zur Verfligung stellen.

5.1.1. Position halten

Bei der Uberpriifung des Flugmodus zum Halten der aktuellen Position stellte sich
heraus, dass der Flugcontroller trotz zusétzlicher Sensoren keine Verbesserung der
Genauigkeit gegentiber der reinen GPS-Daten erzielen kann (vgl. Abschnitt 4.2.1.3
auf Seite 55). Selbst in einem kleinen Zeitfenster von 85s weicht der Copter im Mit-
tel um 27 cm und maximal um fast 50 cm von der zu haltenden Position ab. Dies
gentigt nicht der Prézision einer Biene, die das nur wenige Zentimeter grofie Flugloch
des Bienenstocks zielsicher anfliegen kann. Inwiefern sich die Ungenauigkeit auf Ex-
perimente auswirkt, bei denen etwa Routen mit bekannten Landmarken abgeflogen
werden sollen, lasst sich derzeitig jedoch nicht beurteilen.

Bei der anschliefenden Codeanalyse des ArduCopter-Quelltexts mittels ar2clipse
(vgl. Abschnitt 3.3.3 auf Seite 39) zeigte sich, dass Techniken zur Verbesserung der
Positionsschétzung wie der erweiterte Kalman-Filter (EKF') zwar im Code vorhan-
den sind, jedoch leistungsschwachen Flugcontrollern wie dem verwendeten APM 2.5

61

Kapitel 5 Diskussion

nicht zur Verfiigung stehen und erst mit Prozessoren ab einer Taktrate von 150 MHz
genutzt werden kénnen [124,125]. Eine mogliche Verbesserung durch den Einsatz des
vom APM 2.5 unterstiitzten mausbasierten Sensors ADNS3080 zur Bestimmung des
optischen Flusses (vgl. Abbildung 2.7a auf Seite 12) wurde mangels eines Sensors
nicht untersucht und bleibt weiterfithrenden Arbeiten tiberlassen.

5.1.2. Senderate der MAVLink-Datenstrome

Die Senderate der MAVLink-Datenstrome kann je nach angeforderten Stromen,
Flugmodus und Pakettyp auf bis zu 4 Hz abfallen, was der leistungsschwachen CPU
des Flugcontrollers zuzuschreiben ist (vgl. Abschnitt 4.2.2 auf Seite 56). Der GPS-
Sensor liefert seine Positionsdaten mit 5 Hz. Insofern wird das Auslesen dieses Sen-
sors durch die geringe Senderate nicht beeintréachtigt. Accelerometer und Gyroskop
konnen allerdings um Groflenordnungen haufiger abgetastet werden. Daher musste
etwa bei der Evaluierung der Vibrationsddmpfung (vgl. Abschnitt 4.1.2 auf Sei-
te 51) zur Aufzeichnung der Beschleunigungssensordaten auf die interne Logging-
Funktionalitat des APM 2.5 zuriickgegriffen werden, um die Daten mit annéhernd
50 Hz zu erheben. Inwiefern sich diese Einschrénkung auf bienenspezifische Experi-
mente auswirkt, ldsst sich derzeitig mangels genauerer Anforderungen nicht beur-
teilen.

5.2. Copter

Mit dem Rahmen des Neurocopter ist eine Konstruktion gelungen, die erheblich
leichter als andere erhéltliche Modelle ist (vgl. Abschnitt 4.1.1 auf Seite 51). Meh-
rere Abstiirze bei Testfliigen haben gezeigt, dass diese Gewichtsersparnis nicht zu
Lasten der Stabilitat geht. Beispielsweise hat ein durch einen Pilotenfehler verursach-
ter ungebremster Fall aus etwa 6 m Hohe auf Betonboden alle Rotoren des Copters
zerstort und eine Motorwelle verbogen, wohingegen der Rahmen keinerlei Schaden
genommen hat. Im Gegensatz dazu verbiegen die bei einigen Modellbaurahmen ver-
wendeten dinnwandigen Aluminiumausleger bereits beim Aufsetzen des Arms auf
den Boden bei einer unsauberen Landung.

Nicht bedacht wurden bei der Konstruktion allerdings unsachgeméfie Montagearbei-
ten am Copter durch dessen Anwender. In einer ersten Version waren beispielsweise
die Unterteile der Motorklemmen (vgl. Abbildung 3.9 auf Seite 30) zur Gewichtser-
sparnis aus Polyamid gefertigt. Diese sind durch ein zu festes Anziehen der Schrau-
ben gebrochen und wurden durch die nun verwendeten Nachbauten aus Aluminium
ersetzt.

Ebenso muss bedacht werden, dass aufgrund des kompletten Eigenbaus durch Ab-
stiirze oder fehlerhafte Anwendung beschédigte oder zerstorte Komponenten neu
konstruiert werden miissen und nicht nachgekauft werden kénnen. Dieser Punkt

62

5.2 Copter

muss aber nicht zum Nachteil ausgelegt werden: Zum einen kann, die entsprechenden
Werkzeuge und Fachkunde vorausgesetzt, mit dem Neubau unmittelbar begonnen
werden, so dass sich die Reparaturzeit gegeniiber einer Bestellung der Komponen-
ten sogar verkiirzen kann. Zum anderen hat sich die Konstruktion als sehr Robust
erwiesen, so dass derartige Reparaturen als unwahrscheinlich einzustufen sind.

5.2.1. Plattform

Aufgrund der durchgehenden Arme des Rahmens konnte die Plattform sehr leicht
konstruiert werden, da sie nur die Bordelektronik tragen muss. Dieser Aufbau er-
laubt es beispielsweise, auf einfache Weise die Plattform durch eine andere nicht im
Zentrum des Rahmens liegende zu ersetzen. So kann der Schwerpunkt des Copters
verlagert werden, um etwa das Gewicht eines einseitigen Auslegers auszugleichen,
der fiir ein Experiment ben6tigt wird.

Die Elektronikplatte ist zur Vibrationsddmpfung tiber Gummipuffer mit der rest-
lichen Plattform verbunden. Dieses System erlaubt es, die gesamte Elektronik auf
eine etwaige andere Plattform zu iibertragen.

Die Dimensionierung der konstruierten Plattform wurde anhand der Grofle des Ak-
kus und der restlichen verwendeten Bordelektronik vorgenommen. Daraus ergibt
sich eine rechteckige, langliche, nicht-quadratische Grundfliche. Wenn der Neuro-
copter in +-Konfiguration statt der aktuellen x-Konfiguration (vgl. Abbildung 2.1
auf Seite 8) verwendet werden soll, ist die Plattform nicht mehr symmetrisch zu der
neuen um 45° rotierten Quer- und Langsachse des Copters. Dies gilt insbesondere
auch fiir die Anordnung der Gummidampfer der Elektronikplattform, die die Rest-
vibrationen nun nicht mehr gleichméfig entlang der Achsen tibertragen. Ob und in
welchem Ausmafl dies messbar ist, gilt es noch zu tiberpriifen. Diese Frage miisste
jedoch bei einer quadratischen Plattform erst gar nicht gestellt werden, weswegen
die minimale Dimensionierung der Plattform nicht optimal ist.

Zudem lasst die kleine Elektronikplatte, die so bestiickt ist, dass ihr Schwerpunkt
mittig der Dampfer ist, keinen Spielraum zur Montage einer zusatzlichen Kamera.
Dies ist nicht Teil der Projektanforderungen (vgl. Abschnitt 1.2.1 auf Seite 4); jedoch
ist denkbar, dass eine zweite Kamera zur Erzeugung stereoskopischer Aufnahmen in
Experimenten mit neuronalen Netzen benotigt wird.

5.2.2. Antrieb

Der Antrieb des Neurocopters setzt auf vier kompakte, leichte, biirstenlose Moto-
ren, die die 305mm groflen Propeller antreiben. Wie der Schubmessungsversuch
zur Dimensionierung des Copters gezeigt hat (vgl. Abschnitt 3.2.1 auf Seite 26),
nimmt der Wirkungsgrad des Systems mit zunehmendem Schub ab. Auflerdem ist
bekannt, dass die Effizienz von Propellern mit deren Durchmesser zunimmt (vgl.

63

Kapitel 5 Diskussion

Abschnitt 3.2 auf Seite 25). Von daher ist der derzeitige Antrieb in Bezug auf ei-
ne moglichst lange Flugzeit nicht optimal. Andererseits weisen kleine Propeller ein
geringeres Tragheitsmoment auf, wodurch Drehzahlénderungen schneller wirksam
werden und der Copter agiler wird. Der Neurocopter weist jedoch kein zu trages
Flugverhalten auf, weswegen das Antriebskonzept in Hinblick auf eine Maximierung
der Flugzeit iiberdacht werden sollte.

5.3. Bordsoftware

Die Bordsoftware des Neurocopters basiert auf dem Berlin United Framework und
ermoglicht den Zugriff auf die Sensordaten des Flugcontrollers APM 2.5 sowie auf
die Bilder der Bordkamera PlayStation Eye.

Die entwickelten Programmteile dienen hauptséchlich der MAV Link-Kommunikation
mit dem Flugcontroller, der Bodenstation und anderen MAVLink-Gerédten. Der
Funktionsumfang entspricht somit einem Teil der Funktionalitiat der Bodenstati-
onssoftware APM Planner des Flugcontrollers. Das Framework wurde jedoch auch
nicht mit dem Anspruch entwickelt, die Moglichkeiten einer Bodenstation komplett
nachzubilden. Die bereitgestellten und nicht vorhandenen Funktionen werden im
Folgenden diskutiert.

Parameterprotokoll Die Implementierung des Parameterprotokolls erlaubt nur den
lesenden Zugriff auf die Konfigurationsparameter des Flugcontrollers. Auf diese Wei-
se kann die Bodenstation so auf die Parameter zugreifen, als wére sie direkt mit
dem Flugcontroller verbunden. Der schreibende Zugriff wurde jedoch nicht imple-
mentiert, da dies weit iiber die gestellte Anforderung des Lesens der Sensordaten
hinausgeht (vgl. Abschnitt 1.2.2 auf Seite 5). Ferner sind Anderungen der Para-
meter nur wihrend der grundlegenden Konfiguration des Flugcontrollers nétig, so
dass die hierzu notige direkte Verbindung keine nennenswerte Beeintrachtigung im
allgemeinen Arbeitsablauf darstellt.

MAVLink-Datenstrome Uber das Bereitstellen von Datenstromen ermoglicht der
Flugcontroller den Zugriff auf seine Sensordaten und andere Statusinformationen.
Mit der Bordsoftware kénnen die Datenstrome angefordert werden. Der Bodensta-
tion wird ebenfalls der Zugriff ermoglicht, wobei ihr jedoch untersagt ist, geringere
Datenraten zu setzen, als sie von der Bordsoftware festgelegt sind. Diese Einschrén-
kung musste vorgenommen werden, um zu verhindern, dass fiir Experimente nétige
Datenstrome durch die Bodenstation negativ verandert werden.

Waypoint-Protokoll Das MAVLink-Waypoint-Protokoll wird zur Konfiguration
von Flugrouten verwendet (vgl. Abschnitt 3.3.1.1 auf Seite 34). Es wurde jedoch

64

5.4 Bodenstation

nicht implementiert, so dass der Bodenstation-Rechner zur Ubertragung direkt mit
dem Flugcontroller verbunden werden muss (vgl. Abschnitt 3.1.2 auf Seite 25). Diese
Einschrankung wurde zu Gunsten der Implementierung der Verwaltung der Daten-
strome und des Parameterprotokolls in Kauf genommen, da diese Funktionen fiir
die grundlegende Anbindung der Bodenstation unabdingbar sind.

Weitere MAVLink-Pakete Die Bordsoftware leitet keine MAVLink-Pakete direkt
zwischen den MAVLink-Geraten weiter. Dafiir ist immer ein Modul nétig, das aufs
entsprechende Paket reagiert und es verarbeitet oder explizit weiterleitet. Diese Ent-
scheidung erzwingt, dass die Kommunikation zwischen den Geraten genau bekannt
sein muss, so dass die benotigten Ablédufe implementiert werden kénnen. Dieses Ver-
fahren ist aufwéndig, stellt aber sicher, dass etwaige Protokollanderungen schneller
auffallen.

5.4. Bodenstation

Die Bodenstationssoftware des Neurocopters setzt sich aus zwei getrennten Program-
men zusammen (vgl. Abschnitt 3.3.5 auf Seite 49). Zur Konfiguration des Flugcon-
trollers und zur Anzeige dessen von Sensordaten wird die zugehérige Software APM
Planner verwendet. Weitere experimentspezifische Daten konnen iiber FUremote des
Berlin United Frameworks bearbeitet und angezeigt werden. Diese Teilung bringt
keine erheblichen Nachteile mit sich. Beide Programme erkennen von der Bordsoft-
ware beim Start automatisch gesendete Daten und zeigen den Copter an. Wéahrend
der Arbeit mit der Software muss zwischen Programmen statt Programmfenstern
oder Ansichten gewechselt werden. Der Mehraufwand in der Anwendung liegt folg-
lich beim Start zweier Programme und deren getrennter Pflege.

65

6. Ausblick

Im Rahmen dieser Arbeit wurde mit dem Neurocopter eine Basis fiir Experimente
zur Erforschung von Honigbienen wéahrend des Fluges geschaffen. Inwieweit die kon-
zipierte Plattform unverandert verwendet werden kann, wird sich erst im Verlauf
zukiinftiger Versuche zeigen.

Nun liegt es an weiterfiihrenden Arbeiten, auf den hier gewonnenen Erkenntnissen
und dem konstruierten Copter aufbauend die Experimentierplattform zu perfektio-
nieren. Dabei besteht in einigen Punkten Optimierungspotential, was im Folgenden
beschrieben wird.

6.1. Flugcontroller

Der verwendete Flugcontroller APM 2.5 hat sich als unzureichend erwiesen (vgl.
Abschnitt 5.1 auf Seite 61), was im wesentlichen auf dessen leistungsschwachen
Mikroprozessor zuriickzufithren ist. Folglich sollte zukiinftig auf einen schnelleren
Controller wie den PX4FMU (vgl. Abschnitt 2.2.2 auf Seite 12) gesetzt werden. Zu
erwarten sind zum einen eine deutlich héhere Senderate der MAV Link-Datenstrome
und zum anderen ein besseres Halten der Flugposition. Letzteres wird durch meh-
rere Aspekte beeinflusst: Der schnellere Prozessor kann aufwéandigere Verfahren zur
Positionsabschatzung wie den erweiterten Kalman-Filter einsetzen. Auflerdem kann
der PX4FLOW-Sensor zur Bestimmung des optischen Flusses verwendet werden,
um die Schéitzung weiter zu verbessern. Nicht zuletzt wird dieser Controller auch
von der neusten ArduCopter-Firmware unterstiitzt, die weitere Verbesserungen mit
sich bringen kann und stetig weiterentwickelt wird.

Diese aufgefithrten Schritte sollten iterativ ausgefithrt werden, um die ausschlagge-
benden Faktoren genau bestimmen und die einzelnen Phasen vergleichen zu konnen.

6.2. Copter

Um die Flugdauer zu maximieren, konnen gréflere, langsamer drehende 356 mm-
oder 381 mm-Propeller statt der derzeitig verwendeten 305 mm-Rotoren eingesetzt
werden. Fir diesen Umbau werden allerdings auch entsprechende Motoren niedri-
gerer Drehzahl benoétigt. Hier bietet es sich an, leicht iberdimensionierte, schwerere

67

Kapitel 6 Ausblick

Modelle in Betracht zu ziehen, die im Schwebeflug einen besseren Wirkungsgrad als
ausreichend ausgelegte Modelle besitzen und so ihr Mehrgewicht durch eine gerin-
gere Leistungsaufnahme trotz des notigen zusétzlichen Schubs kompensieren.

6.2.1. Plattform

Die rechteckige gedédmpfte Elektronikplatte des Copters ist sehr knapp dimensio-
niert und bietet keine Moglichkeiten zur Unterbringung weiterer Komponenten (vgl.
Abschnitt 5.1 auf Seite 61). Dies gilt insbesondere fiir eine zusétzliche zweite Kame-
ra. Sollte sich im Verlauf der Experimente ein Bedarf hierfiir herausstellen, so bietet
sich eine Neugestaltung der gesamten Plattform an. Zur Befestigung am Rahmen
kann weiterhin auf die vorhandenen Klemmen und Abstandhalter zurtickgegriffen
werden, so dass lediglich neu dimensionierte CFK-Platten gefertigt werden miissen.
Dabei kann die Konstruktion auch derartig gestaltet werden, dass die Elektronik-
platte mehrere Aufnahmen fiir die Gummidampfer besitzt, um eine um 45° rotierte
Montage fiir die Verwendung in der +-Konfiguration des Copters zu ermoglichen.

6.3. Bordsoftware

Neben neuen experimentspezifischen Anforderungen an die Bordsoftware existieren
auch allgemeine Erweiterungen, von denen alle Versuche profitieren konnen. Dabei
geht es in erster Linie um nicht implementierte Teile des MAVLink-Protokolls. Zum
einen kann die Implementierung des Parameterprotokolls so erweitert werden, dass
auch ein schreibender Zugriff auf die Werte moglich ist. Dabei ist abzuwégen, ob
Anderungen im Flug generell oder partiell untersagt werden sollten. Zum anderen
erscheint eine Implementierung des MAVLink-Waypoint-Protokolls nitzlich, da so
die Routenplanung auch iiber die drahtlose Verbindung von der Bodenstation tiber
den Bordrechner an den Flugcontroller erfolgen kann.

Eine weitere mogliche Erweiterung liegt in der Steuerung des Copters durch die
Bordsoftware. Dies kann entweder durch die Vorgabe von Bewegungen entlang der
Achsen durch das mavlink_manual_control_t-Paket &hnlich einer Fernsteuerung oder
abstrakter durch Angabe von GPS-Koordinaten geschehen. Letzteres Verfahren greift
auf das Waypoint-Protokoll zuriick. Dabei wird ein mavlink_mission_item_t-Paket
verwendet, das das Kommando MAV_CMD_OVERRIDE_GOTO enthéalt. Dieses gibt tiber
den Wert MAV_GOTO_HOLD_AT_SPECIFIED POSITION die Zielposition an, die der Cop-
ter anfliegt, um dort zu verharren, bis weitere Befehle folgen.

68

A. Anhang

Die beiliegende DVD enthélt den im Rahmen dieser Arbeit entstandenen Quelltext
sowie die zur Auswertung erhobenen Daten. Die Struktur des Datentréagers wird
durch die Abbildungen A.1 bis A.3 auf den Seiten 69-71 beschrieben.

/

| _ar2clipse/ooii.... Programm, das die Bearbeitung des
ArduCopter-Quelltexts mit der IDE Eclipse
ermoglicht (vgl. Abschnitt 3.3.3 auf Seite 39)

| _daten/........... ...l Im Rahmen dieser Arbeit erhobene Daten (sie-
he Abbildung A.2 auf der néchsten Seite)

| Neurocopter.pdf............ Digitale Fassung: ,,Neurocopter - Eine fliegen-
de Experimentierplattform zur Erforschung
der Hirnaktivitat von Honighienen*

| _neurocopteronboard/ Bordsoftware (siche Abbildung A.3 auf Sei-
te 71)

Abbildung A.1.: Wurzelverzeichnis
Struktur des Wurzelverzeichnisses der beigelegten DVD. Enthalten sind der im Rahmen dieser

Arbeit entstandene Quelltext und erhobene Daten, sowie eine digitale Fassung dieser Arbeit.

69

Kapitel A

Anhang

70

daten/
| _apm-logs/
vibrationsdaempfung/ ...

. _gps-logs/..............

| schubmessung/..............

| schwerpunkt/

| _tracking-video/............

mit der integrierten Logging-Funktionalitat
des Flugcontrollers erstellte Accelerometerda-
ten und deren Auswertung

per MAVLink-Datenstrom aufgezeichnete
GPS-Positionsdaten und deren Auswertung

Ergebnisse der Schubmessung (vgl. Ab-
schnitt 3.2.1 auf Seite 26)

Schwerpunktberechnungen des Copters und
der Plattform und dazu verwendete Gewicht-
stabellen der einzelnen Bauteile

Video der visuellen Positionsbestimmung
und C++Auswertungsprogramm (vgl. Ab-
schnitt 4.2.1.2 auf Seite 54)

Abbildung A.2.: Datenverzeichnis

Struktur des Datenverzeichnisses, das Messwerte und deren Auswertungen beinhaltet.

Anhang

neurocopteronboard/

| berlinunited/

| _src/
| _berlinunited_extensions/ .

| communication

| modules

| representations

| services

| _tools/
mavlink generator/

Bordsoftware

Ab-

Berlin United Framework (vgl.

schnitt 3.3.2 auf Seite 37)

. Hilfsfunktionen zur einfacheren Verwen-

dung einiger Bestandteile des Berlin Uni-
ted Frameworks

Klassen zur Abstraktion des Ubertra-
gungskanals (vgl. Abschnitt 3.3.4.3 auf
Seite 43)

generierter MAVLink-Code, MAVLink-
Hilfsfunktionen, allgemeine Hilfsfunktio-
nen, Klassen zur nebenlédufigen Program-
mierung

Module zur Verabeitung der MAVLink-
Pakete

von den Modulen verwendete Reprasenta-
tionen

Dienst zum Empfangen der MAVLink-
Nachrichten (vgl. Abschnitt 3.3.4.3 auf
Seite 43)

MAVLink-Codegenerator
schnitt 3.3.1.2 auf Seite 35)

(vel. Ab-

Abbildung A.3.: Neurocopter-Verzeichnis

Allgemeine Verzeichnisstruktur des Quelltexts der Bordsoftware. Auslassungen sind durch ...«

markiert.

71

Literaturverzeichnis

1]

MENZEL, Randolf ; GIURFA, Martin: Cognitive architecture of a mini-brain:
the honeybee. In: Trends in Cognitive Sciences 5 (2001), Nr. 2, 62-71. DOI:
10.1016/S1364-6613(00)01601-6. — ISSN 1364-6613

CHITTKA, Lars ; NIVEN, Jeremy: Are Bigger Brains Better? In: Current
Biology 19 (2009), Nr. 21, R995-R1008. DOI: 10.1016/j.cub.2009.08.023. —
ISSN 09609822

SEELEY, T.D.: The Wisdom of the Hive: the social physiology of honey bee
colonies. Harvard University Press, 1995. — ISBN 9780674043404

FriscH, Karl von: Tanzsprache und Orientierung der Bienen. Springer Berlin
Heidelberg, 1965

RILEY, J. R. ; GREGGERS, U. ; SMITH, A. D. ; STACH, S. ; REYNOLDS, D. R.
; STOLLHOFF, N. ; BRANDT, R. ; SCHAUPP, F. ; MENZEL, R.: The automatic
pilot of honeybees. In: Proceedings of the Royal Society of London B: Biological
Sciences 270 (2003), Nr. 1532, 2421-2424. DOI: 10.1098 /rspb.2003.2542. —
ISSN 0962-8452

MENZEL, R. ; GEIGER, K. ; CHITTKA, L. ; JOERGES, J. ; KUNZE, J. ; MULLER,
U.: The knowledge base of bee navigation. In: Journal of Fxperimental Biology
199 (1996), Nr. 1, 141-146. http://jeb.biologists.org/content/199/1/
141. — ISSN 0022-0949

EscH, Harald E. ; ZHANG, Shaowu ; SRINIVASAN, Mandyan V. ; TAUTZ,
Juergen: Honeybee dances communicate distances measured by optic flow. In:
Nature 411 (2001), May, Nr. 6837, 581-583. DOI: 10.1038/35079072. — ISSN
0028-0836

MENZEL, Randolf ; KIRBACH, Andreas ; HAASS, Wolf-Dieter ; FISCHER,
Bernd ; FucHs, Jacqueline ; KOBLOFSKY, Miriam ; LEHMANN, Konstantin
: REITER, Lutz ; MEYER, Hanno ; NGUYEN, Hai ; JONES, Sarah ; NOR-
TON, Philipp ; GREGGERS, Uwe: A Common Frame of Reference for Learned
and Communicated Vectors in Honeybee Navigation. In: Current Biology 21
(2011), Nr. 8, 645-650. DOI: 10.1016/j.cub.2011.02.039. — ISSN 0960-9822

CHEESEMAN, James F. ; MILLAR, Craig D. ; GREGGERS, Uwe ; LEHMANN,
Konstantin ; PAWLEY, Matthew D. M. ; GALLISTEL, Charles R. ; WARMAN,
Guy R. ; MENZEL, Randolf: Way-finding in displaced clock-shifted bees proves
bees use a cognitive map. In: Proc. Natl. Acad. Sci. USA 111 (2014), Nr. 24,
8949-8954. DOI: 10.1073/pnas.1408039111. — ISSN 1091-6490

73

http://dx.doi.org/10.1016/S1364-6613(00)01601-6
http://dx.doi.org/10.1016/S1364-6613(00)01601-6
http://dx.doi.org/10.1016/j.cub.2009.08.023
http://dx.doi.org/10.1098/rspb.2003.2542
http://jeb.biologists.org/content/199/1/141
http://jeb.biologists.org/content/199/1/141
http://dx.doi.org/10.1038/35079072
http://dx.doi.org/10.1016/j.cub.2011.02.039
http://dx.doi.org/10.1073/pnas.1408039111

Literaturverzeichnis

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

74

O’KEEFE, J. ; NADEL, L.: The hippocampus as a cognitive map. Clarendon
Press, 1978

McCNAUGHTON, Bruce L. ; BATTAGLIA, Francesco P. ; JENSEN, Ole ; MOSER,
Edvard I. ; MOSER, May-Britt: Path integration and the neural basis of the
‘cognitive map’. In: Nat Rev Neurosci 7 (2006), Aug, Nr. 8, 663-678. DOLI:
10.1038/nrn1932. — ISSN 1471-003X

FyuN, Marianne ; HAFTING, Torkel ; WITTER, Menno P. ; MOSER, Edvard I.
; MOSER, May-Britt: Grid cells in mice. In: Hippocampus 18 (2008), Nr. 12,
1230-1238. DOI: 10.1002/hipo.20472. — ISSN 1098-1063

CHEUNG, Allen ; COLLETT, Matthew ; COLLETT, Thomas S. ; DEWAR, Alex
; DYER, Fred ; GRAHAM, Paul ; MANGAN, Michael ; NARENDRA, Ajay ;
PHILIPPIDES, Andrew ; STURZL, Wolfgang ; WEBB, Barbara ; WYSTRACH,
Antoine ; ZEIL, Jochen: Still no convincing evidence for cognitive map use by
honeybees. In: Proc. Natl. Acad. Sci. USA 111 (2014), Nr. 24, E4396-E4397.
DOI: 10.1073/pnas.1413581111. — ISSN 1091-6490

CHEESEMAN, James F. ; MILLAR, Craig D. ; GREGGERS, Uwe ; LEHMANN,
Konstantin ; PAWLEY, Matthew D. M. ; GALLISTEL, Charles R. ; WARMAN,
Guy R. ; MENZEL, Randolf: Reply to Cheung et al.: The cognitive map hy-
pothesis remains the best interpretation of the data in honeybee navigation.
In: Proc. Natl. Acad. Sci. USA 111 (2014), Nr. 24, E4398. DOI: 10.1073/p-
nas.1415738111. — ISSN 1091-6490

WoLr, Thomas J. ; SCHMID-HEMPEL, Paul: Extra Loads and Foraging Life
Span in Honeybee Workers. In: Journal of Animal Ecology 58 (1989), Nr. 3,
943-954. DOI: 10.2307/5134. — ISSN 00218790, 13652656

Luu, Tien ; CHEUNG, Allen ; BALL, David ; SRINIVASAN, Mandyam V.: Ho-
neybee flight: a novel ‘streamlining’ response. In: Journal of Ezperimental
Biology 214 (2011), Nr. 13, S. 2215-2225. DOI: 10.1242/jeb.050310. — ISSN
0022-0949

TAYLOR, Gavin J. ; Luu, Tien ; BALL, David ; SRINIVASAN, Mandyam V.:

Vision and air flow combine to streamline flying honeybees. In: Scientific
Reports 3 (2013), Sep, 2614. DOI: 10.1038/srep02614. — ISSN 2045-2322

EVANGELISTA, C. ; KRAFT, P. ; DACKE, M. ; REINHARD, J. ; SRINIVASAN,
M. V.: The moment before touchdown: landing manoeuvres of the honeybee
Apis mellifera. In: Journal of Experimental Biology 213 (2009), Nr. 2, S. 262—
270. DOI: 10.1242/jeb.037465. — ISSN 0022-0949

BrRAMWELL, A.R.S. ; DONE, George ; BALMFORD, David: Basic mechanics
of rotor systems and helicopter flight. In: Bramwell’s Helicopter Dynamics.
Second Edition. Oxford : Butterworth-Heinemann, 2000. DOI: 10.1016/B978-
075065075-5/50004-X. — ISBN 978-0-7506-5075-5, Kapitel 1, 1-32

Pounps, P. ; MaHONY, R. ; CORKE, P.: Modelling and control of a large
quadrotor robot. In: Control Engineering Practice 18 (2010), Nr. 7, 691-699.

http://dx.doi.org/10.1038/nrn1932
http://dx.doi.org/10.1038/nrn1932
http://dx.doi.org/10.1002/hipo.20472
http://dx.doi.org/10.1073/pnas.1413581111
http://dx.doi.org/10.1073/pnas.1415738111
http://dx.doi.org/10.1073/pnas.1415738111
http://dx.doi.org/10.2307/5134
http://dx.doi.org/10.1242/jeb.050310
http://dx.doi.org/10.1038/srep02614
http://dx.doi.org/10.1242/jeb.037465
http://dx.doi.org/10.1016/B978-075065075-5/50004-X
http://dx.doi.org/10.1016/B978-075065075-5/50004-X

Literaturverzeichnis

[21]

[24]

[25]

[20]

[29]

[30]

[31]

DOI: 10.1016/j.conengprac.2010.02.008. — ISSN 0967-0661. — Special Issue on
Aerial Robotics

HoFFMANN, Gabriel M. ; HUANG, Haomiao ; WASLANDER, Steven L. ; TOM-
LIN, Claire J.: Quadrotor Helicopter Flight Dynamics and Control: Theory
and Experiment. In: Proceedings of the AIAA Guidance, Navigation and Con-
trol Conference and Exhibit. Hilton Head, South Carolina : American Institute
of Aeronautics and Astronautics, August 2007

Mixer Tabellen - Mikrokopter Wiki. http://wiki.mikrokopter.de/mkm, Ab-
ruf: 2015-12-03

CARPENTER, Michael ; BONNEY, Bill ; DADE, Stephen u.a.: APM Plan-
ner v2.9.19-rc4. http://planner2.ardupilot.com/. http://planner2.
ardupilot.com/home/credits-and-contributors/, Abruf: 2015-12-09

HAZELHURST, Jethro: APM2.x Wiring QuickStart | ArduCopter. http://
copter.ardupilot.com/wiki/connecting-the-apm2/, Abruf: 2015-12-03

Pounps, Paul ; MAHONY, Robert ; GRESHAM, Joel ; CORKE, Peter ; Ro-
BERTS, Jonathan M.: Towards dynamically-favourable quad-rotor aerial ro-
bots. In: BARNES, Nick (Hrsg.) ; AusTIN, David (Hrsg.): Australasian Con-
ference on Robotics and Automation 2004 ACRA2004. Australian National
University Canberra : Australian Robotics & Automation Association, De-
cember 2004

BAUMKER, M. ; PRZYBILLA, H.-J. ; ZURHORST, A.: Enhancements in UAV
Flight Control and Sensor Orientation. In: ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-
1/W2 (2013), 33-38. DOI: 10.5194 /isprsarchives-XL-1-W2-33-2013

SIDEA, Adriana-Gabriela ; BROGAARD, Rune Y. ; ANDERSEN, Nils A. ; RAVN,

Ole: General model and control of an n rotor helicopter. In: Journal of Physics:
Conference Series 570 (2014), Nr. 5. DOI: 10.1088/1742-6596,/570/5/052004

Kapitel Development of a Low-Cost Experimental Quadcopter Testbed using
an Arduino controller for Video Surveillance. In: TURKOGLU, Kamran ; JI,
Ankyda: American Institute of Aeronautics and Astronautics, 2015 (AIAA
SciTech)

U-BLOX: LEA-6 - wu-blor 6 GPS Modules. Version:2014. https:
//www.u-blox.com/sites/default/files/products/documents/LEA-6_
DataSheet_%28GPS.G6-HW-09004%29 . pdf, Abruf: 2015-12-09

Mouse-based Optical Flow Sensor (ADNS3080) / Ar-
duPilot. http://copter.ardupilot.com/wiki/
common-mouse-based-optical-flow-sensor-adns3080/, Abruf: 2015-
12-02

PX4FLOW Smart Camera - PX4 Autopilot Project. https://pixhawk.org/
modules/px4flow, Abruf: 2015-12-02

75

http://dx.doi.org/10.1016/j.conengprac.2010.02.008
http://wiki.mikrokopter.de/mkm
http://planner2.ardupilot.com/
http://planner2.ardupilot.com/home/credits-and-contributors/
http://planner2.ardupilot.com/home/credits-and-contributors/
http://copter.ardupilot.com/wiki/connecting-the-apm2/
http://copter.ardupilot.com/wiki/connecting-the-apm2/
http://dx.doi.org/10.5194/isprsarchives-XL-1-W2-33-2013
http://dx.doi.org/10.1088/1742-6596/570/5/052004
https://www.u-blox.com/sites/default/files/products/documents/LEA-6_DataSheet_%28GPS.G6-HW-09004%29.pdf
https://www.u-blox.com/sites/default/files/products/documents/LEA-6_DataSheet_%28GPS.G6-HW-09004%29.pdf
https://www.u-blox.com/sites/default/files/products/documents/LEA-6_DataSheet_%28GPS.G6-HW-09004%29.pdf
http://copter.ardupilot.com/wiki/common-mouse-based-optical-flow-sensor-adns3080/
http://copter.ardupilot.com/wiki/common-mouse-based-optical-flow-sensor-adns3080/
https://pixhawk.org/modules/px4flow
https://pixhawk.org/modules/px4flow

Literaturverzeichnis

76

PX/JFLOW Optical Flow Camera Board | ArduPilot. http://copter.
ardupilot.com/wiki/common-px4flow-overview/, Abruf: 2015-12-11

APM 2.5 and 2.6 Overview | ArduPilot. http://copter.ardupilot.com/
wiki/common-apm25-and-26-overview/, Abruf: 2015-12-02

Camera Gimbal with Servos | ArduPilot. http://copter.ardupilot.com/
wiki/common-camera-gimbal/, Abruf: 2015-12-02

Choosing a Ground Station | ArduCopter. http://copter.ardupilot.com/
wiki/common-choosing-a-ground-station/, Abruf: 2015-12-02

Pizhawk Autopilot - PX4 Autopilot Project. https://pixhawk.org/modules/
pixhawk, Abruf: 2015-12-02

PX4FMU Autopilot / Flight Management Unit - PXJ Autopilot Project.
https://pixhawk.org/modules/px4fmu, Abruf: 2015-12-02

PX410 Airplane/Rover Servo and 1/O Module - PX4 Autopilot Project.
https://pixhawk.org/modules/px4io, Abruf: 2015-12-02

Home - PXJ Autopilot Project. https://pixhawk.org/start, Abruf: 2015-
12-02

PX4 Firmware - PX} Autopilot Project. https://pixhawk.org/firmware/
start, Abruf: 2015-12-02

Controller boards - MultiWii. http://www.multiwii.com/wiki/index.php?
title=Controller_boards, Abruf: 2015-12-07

Hardware - MultiWii. http://www.multiwii.com/wiki/index.php?title=
Hardware, Abruf: 2015-12-07

multiwii/multiwii-firmware - GitHub. https://github.com/multiwii/
multiwii-firmware, Abruf: 2015-12-07

Flightmodes - MultiWii. http://www.multiwii.com/wiki/index.php?
title=Flightmodes, Abruf: 2015-12-07

GPS - MultiWii. http://www.multiwii.com/wiki/index.php?title=GPS,
Abruf: 2015-12-08

Multicopter Types - MultiWii. http://www.multiwii.com/wiki/index.php?
title=Multicopter_Types, Abruf: 2015-12-07

Extra features - MultiWii. http://www.multiwii.com/wiki/index.php?
title=Extra_features, Abruf: 2015-12-07

Software - MultiWii. http://wuw.multiwii.com/software, Abruf: 2015-12-
08

Mods - MultiWei. http://www.multiwii.com/wiki/index.php?title=Mods,
Abruf: 2015-12-07

http://copter.ardupilot.com/wiki/common-px4flow-overview/
http://copter.ardupilot.com/wiki/common-px4flow-overview/
http://copter.ardupilot.com/wiki/common-apm25-and-26-overview/
http://copter.ardupilot.com/wiki/common-apm25-and-26-overview/
http://copter.ardupilot.com/wiki/common-camera-gimbal/
http://copter.ardupilot.com/wiki/common-camera-gimbal/
http://copter.ardupilot.com/wiki/common-choosing-a-ground-station/
http://copter.ardupilot.com/wiki/common-choosing-a-ground-station/
https://pixhawk.org/modules/pixhawk
https://pixhawk.org/modules/pixhawk
https://pixhawk.org/modules/px4fmu
https://pixhawk.org/modules/px4io
https://pixhawk.org/start
https://pixhawk.org/firmware/start
https://pixhawk.org/firmware/start
http://www.multiwii.com/wiki/index.php?title=Controller_boards
http://www.multiwii.com/wiki/index.php?title=Controller_boards
http://www.multiwii.com/wiki/index.php?title=Hardware
http://www.multiwii.com/wiki/index.php?title=Hardware
https://github.com/multiwii/multiwii-firmware
https://github.com/multiwii/multiwii-firmware
http://www.multiwii.com/wiki/index.php?title=Flightmodes
http://www.multiwii.com/wiki/index.php?title=Flightmodes
http://www.multiwii.com/wiki/index.php?title=GPS
http://www.multiwii.com/wiki/index.php?title=Multicopter_Types
http://www.multiwii.com/wiki/index.php?title=Multicopter_Types
http://www.multiwii.com/wiki/index.php?title=Extra_features
http://www.multiwii.com/wiki/index.php?title=Extra_features
http://www.multiwii.com/software
http://www.multiwii.com/wiki/index.php?title=Mods

Literaturverzeichnis

[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]

[63]

[64]
[65]
[66]

[67]

Multiwii Serial Protocol - MultiWii. http://www.multiwii.com/wiki/
index.php?title=Multiwii_Serial_ Protocol, Abruf: 2015-12-07

MultiWii Forum - Position Hold with Optical Flow sensor - done. http://
www.multiwii.com/forum/viewtopic.php?f=7&t=1413, Abruf: 2015-12-07

FlightCtrl V2.5 - Mikrokopter Wiki. http://wiki.mikrokopter.de/
FlightCtrl ME_2 5, Abruf: 2015-12-02

FlightCtrlAnleitung - MikrokopterWiki. — http://wiki.mikrokopter.de/
FlightCtrlAnleitung, Abruf: 2015-12-02

NaviCtrl_2.1 - Mikrokopter Wiki. http://wiki.mikrokopter.de/NaviCtrl_
2.1, Abruf: 2015-12-02

MikroKopterRepository - Mikrokopter Wiki. http://wiki.mikrokopter.de/
en/MikroKopterRepository, Abruf: 2015-12-02

MK-Parameter/Mizer-SETUP - Mikrokopter Wiki. http://wiki.
mikrokopter.de/MK-Parameter/Mixer-SETUP, Abruf: 2015-12-02

MK-Parameter/Camera - Mikrokopter Wiki. http://wiki.mikrokopter.de/
MK-Parameter/Camera, Abruf: 2015-12-02

MikroKopterTool - Mikrokopter Wiki. http://wiki.mikrokopter.de/
MikroKopterTool?action=show&redirect=KopterTool, Abruf: 2015-12-02

MikroKopterTool-OSD - Mikrokopter Wiki. http://wiki.mikrokopter.de/
MikroKopterTool-0SD, Abruf: 2015-12-02

PiMote - MikrokopterWiki. http://wiki.mikrokopter.de/PiMote, Abruf:
2015-12-02

BL-Ctrl_Anleitung - MikrokopterWiki. http://wiki.mikrokopter.de/
BL-Ctrl_Anleitung, Abruf: 2015-12-02

KK2.1 V1.1951 Updated Firmware € Manual. http://www.rcgroups.com/
forums/showthread.php?t=2298292, Abruf: 2015-12-12

KK 2.1 Multi-Rotor Control Board User Guide. http://www.hobbyking.
com/hobbyking/store/uploads/1026124741X1235859X24 . pdf, Abruf: 2015-
12-12

KK2.1 & KK2.1.5 instruction manual. http://www.hobbyking.com/
hobbyking/store/uploads/161447249X30206X38.pdf, Abruf: 2015-12-12

Mavlink (developer page) - PX4 Autopilot Project. https://pixhawk.org/
dev/mavlink, Abruf: 2015-12-15

MAVLink Commands | ArduPilot Developer. http://dev.ardupilot.com/
wiki/mavlink-commands/, Abruf: 2015-12-15

MAVLink Micro Air Vehicle Communication Protocol. http:
//qgroundcontrol.org/mavlink/start, Abruf: 2015-12-15

77

http://www.multiwii.com/wiki/index.php?title=Multiwii_Serial_Protocol
http://www.multiwii.com/wiki/index.php?title=Multiwii_Serial_Protocol
http://www.multiwii.com/forum/viewtopic.php?f=7&t=1413
http://www.multiwii.com/forum/viewtopic.php?f=7&t=1413
http://wiki.mikrokopter.de/FlightCtrl_ME_2_5
http://wiki.mikrokopter.de/FlightCtrl_ME_2_5
http://wiki.mikrokopter.de/FlightCtrlAnleitung
http://wiki.mikrokopter.de/FlightCtrlAnleitung
http://wiki.mikrokopter.de/NaviCtrl_2.1
http://wiki.mikrokopter.de/NaviCtrl_2.1
http://wiki.mikrokopter.de/en/MikroKopterRepository
http://wiki.mikrokopter.de/en/MikroKopterRepository
http://wiki.mikrokopter.de/MK-Parameter/Mixer-SETUP
http://wiki.mikrokopter.de/MK-Parameter/Mixer-SETUP
http://wiki.mikrokopter.de/MK-Parameter/Camera
http://wiki.mikrokopter.de/MK-Parameter/Camera
http://wiki.mikrokopter.de/MikroKopterTool?action=show&redirect=KopterTool
http://wiki.mikrokopter.de/MikroKopterTool?action=show&redirect=KopterTool
http://wiki.mikrokopter.de/MikroKopterTool-OSD
http://wiki.mikrokopter.de/MikroKopterTool-OSD
http://wiki.mikrokopter.de/PiMote
http://wiki.mikrokopter.de/BL-Ctrl_Anleitung
http://wiki.mikrokopter.de/BL-Ctrl_Anleitung
http://www.rcgroups.com/forums/showthread.php?t=2298292
http://www.rcgroups.com/forums/showthread.php?t=2298292
http://www.hobbyking.com/hobbyking/store/uploads/1026124741X1235859X24.pdf
http://www.hobbyking.com/hobbyking/store/uploads/1026124741X1235859X24.pdf
http://www.hobbyking.com/hobbyking/store/uploads/161447249X30206X38.pdf
http://www.hobbyking.com/hobbyking/store/uploads/161447249X30206X38.pdf
https://pixhawk.org/dev/mavlink
https://pixhawk.org/dev/mavlink
http://dev.ardupilot.com/wiki/mavlink-commands/
http://dev.ardupilot.com/wiki/mavlink-commands/
http://qgroundcontrol.org/mavlink/start
http://qgroundcontrol.org/mavlink/start

Literaturverzeichnis

78

Home - QGroundControl GCS. http://qgroundcontrol.org/, Abruf: 2015-
12-15

KIirRBY, Simon: tgy — Open Source Firmware for ATmega-based Brushless
ESCs. https://github.com/sim-/tgy, Abruf: 2015-12-11

Turnigy Talon Carbon Fiber Quadcopter Frame. http://www.hobbyking.
com/hobbyking/store/uh_viewitem.asp?idproduct=22397, Abruf: 2015-
12-14

PYRAMID X580 Glass Fiber Quadcopter Frame. http://www.
pyramidmodels.com/shop/product.php/1318/pyramid_x580_glass_
fiber_quadcopter frame w_camera mount_ 585mm, Abruf: 2015-12-14

RotorBits HexCopter Kit. http://www.hobbyking.com/hobbyking/store/
uh_viewitem.asp?idproduct=51415 Abruf: 2015-12-14

HMF U580 Carbon Fiber Umbrella Folding Quadcopter Kit. http://www.
hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=77173,
Abruf: 2015-12-14

Pounbps, Paul ; MAHONY, Robert ; CORKE, Peter: Modelling and control
of a quad-rotor robot. In: Australasian Conference on Robotics and Automa-
tion 2006. Auckland, New Zealand : Australian Robotics and Automation
Association Inc., 2006

Turnigy Talon Quadcopter (V2.0) Carbon Fiber Frame 550mm. http://wuw.
hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=36427,
Abruf: 2015-12-14

PYRAMID X650F Glass Fiber Quadcopter Frame. http://www.
pyramidmodels.com/shop/product.php/1449/pyramid_x650f glass_
fiber_quadcopter_frame 550mm_folding frame_kit, Abruf: 2015-12-14

PYRAMID T650-X4-16 FibreGlass Quadcopter. http://www.
pyramidmodels.com/shop/product.php/941/pyramid_t650_x4_ 16_
fibreglass_quadcopter_650mm_dia, Abruf: 2015-12-14

Skylark M4-680 Quadcopter Frame 680mm. http://www.skylarkfpv.com/
store/index.php?route=product/product&product_id=112, Abruf: 2015-
12-14

Raspberry Pi 2 Model B. https://www.raspberrypi.org/products/
raspberry-pi-2-model-b/, Abruf: 2015-12-01

Raspberry Pi FAQs - Frequently Asked Questions. https://www.
raspberrypi.org/help/fags/#generalDimensions, Abruf: 2015-12-01

ODROID-US3 - Hardkernel. http://www.hardkernel.com/main/products/
prdt_info.php?g_code=g138745696275, Abruf: 2015-12-01

ODROID 10-Shield - Hardkernel. http://www.hardkernel.com/main/
products/prdt_info.php?g_code=G138760240354, Abruf: 2015-12-01

http://qgroundcontrol.org/
https://github.com/sim-/tgy
http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=22397
http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=22397
http://www.pyramidmodels.com/shop/product.php/1318/pyramid_x580_glass_fiber_quadcopter_frame_w_camera_mount_585mm
http://www.pyramidmodels.com/shop/product.php/1318/pyramid_x580_glass_fiber_quadcopter_frame_w_camera_mount_585mm
http://www.pyramidmodels.com/shop/product.php/1318/pyramid_x580_glass_fiber_quadcopter_frame_w_camera_mount_585mm
http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=51415
http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=51415
http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=77173
http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=77173
http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=36427
http://www.hobbyking.com/hobbyking/store/uh_viewitem.asp?idproduct=36427
http://www.pyramidmodels.com/shop/product.php/1449/pyramid_x650f_glass_fiber_quadcopter_frame_550mm_folding_frame_kit
http://www.pyramidmodels.com/shop/product.php/1449/pyramid_x650f_glass_fiber_quadcopter_frame_550mm_folding_frame_kit
http://www.pyramidmodels.com/shop/product.php/1449/pyramid_x650f_glass_fiber_quadcopter_frame_550mm_folding_frame_kit
http://www.pyramidmodels.com/shop/product.php/941/pyramid_t650_x4_16_fibreglass_quadcopter_650mm_dia
http://www.pyramidmodels.com/shop/product.php/941/pyramid_t650_x4_16_fibreglass_quadcopter_650mm_dia
http://www.pyramidmodels.com/shop/product.php/941/pyramid_t650_x4_16_fibreglass_quadcopter_650mm_dia
http://www.skylarkfpv.com/store/index.php?route=product/product&product_id=112
http://www.skylarkfpv.com/store/index.php?route=product/product&product_id=112
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/help/faqs/#generalDimensions
https://www.raspberrypi.org/help/faqs/#generalDimensions
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g138745696275
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g138745696275
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138760240354
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138760240354

Literaturverzeichnis

[83]

[84]

[85]

[36]

(98]

[99]

ISEE - IGEPv2 DMS3730. https://www.isee.biz/products/
igep-processor-boards/igepv2-dm3730, Abruf: 2015-12-01

ISEE (Hrsg.): IGEPv2 Hardware Reference Manu-
al. ISEE, https://www.isee.biz/support/downloads/item/

igepv2-hardware-reference-manual-2, Abruf: 2015-12-01

Banana Pi BPI - M3 Octa-core Computer. http://www.banana-pi.org/m3.
html, Abruf: 2015-12-01

Turnigy 5-7.5A (8~42v) HV UBEC for Lipoly. http://www.hobbyking.com/
hobbyking/store/__6320__TURNIGY_5_7_5A_8_42v_HV_UBEC_for_Lipoly.
html, Abruf: 2015-12-21

Rover | ArduPilot. http://rover.ardupilot.com/, Abruf: 2016-02-01
Plane | ArduPilot. http://plane.ardupilot.com/, Abruf: 2016-02-01

Flight Modes | ArduPilot. http://copter.ardupilot.com/wiki/
flight-modes/, Abruf: 2016-01-30
Stabilize Mode | ArduPilot. http://copter.ardupilot.com/wiki/

stabilize-mode/, Abruf: 2016-01-30

Altitude Hold Mode | ArduPilot. http://copter.ardupilot.com/wiki/
altholdmode/, Abruf: 2016-01-30

Loiter Mode | ArduPilot. http://copter.ardupilot.com/wiki/
loiter-mode/, Abruf: 2016-01-30
PosHold Mode | ArduPilot. http://copter.ardupilot.com/wiki/

poshold-mode/, Abruf: 2016-01-30

Auto Mode | ArduPilot. http://copter.ardupilot.com/wiki/auto-mode/,
Abruf: 2016-01-30

Land Mode | ArduPilot. http://copter.ardupilot.com/wiki/land-mode/,
Abruf: 2016-01-30

RTL Mode | ArduPilot. http://copter.ardupilot.com/wiki/rtl-mode/,
Abruf: 2016-01-30

ScHULTE, Klaus L. Der Propeller - das unverstandene Wesen.
Version: 2007. http://klspublishing.de/ejourns/e-Journ’,20A1-05%
20Der%20Propeller’,20das’,20unverstandene’,20Wesen.pdf, Abruf: 2015-
12-21. (Al-05)

BrANDT, John B. ; SELIG, Michael S.: Propeller Performance Data at Low
Reynolds Numbers. In: 49th AIAA Aerospace Sciences Meeting including the

New Horizons Forum and Aerospace Ezposition. (2011). DOI: 10.2514/6.2011-
1255

ALEKSANDROV, D. ; PENKOV, I.: optimal gap distance between rotors of mini
quadrotor helicopter. In: 8th International DAAAM Baltic Conference (2012).
http://innomet.ttu.ee/daaam_publications/2012/Aleksandrov.pdf

79

https://www.isee.biz/products/igep-processor-boards/igepv2-dm3730
https://www.isee.biz/products/igep-processor-boards/igepv2-dm3730
https://www.isee.biz/support/downloads/item/igepv2-hardware-reference-manual-2
https://www.isee.biz/support/downloads/item/igepv2-hardware-reference-manual-2
http://www.banana-pi.org/m3.html
http://www.banana-pi.org/m3.html
http://www.hobbyking.com/hobbyking/store/__6320__TURNIGY_5_7_5A_8_42v_HV_UBEC_for_Lipoly.html
http://www.hobbyking.com/hobbyking/store/__6320__TURNIGY_5_7_5A_8_42v_HV_UBEC_for_Lipoly.html
http://www.hobbyking.com/hobbyking/store/__6320__TURNIGY_5_7_5A_8_42v_HV_UBEC_for_Lipoly.html
http://rover.ardupilot.com/
http://plane.ardupilot.com/
http://copter.ardupilot.com/wiki/flight-modes/
http://copter.ardupilot.com/wiki/flight-modes/
http://copter.ardupilot.com/wiki/stabilize-mode/
http://copter.ardupilot.com/wiki/stabilize-mode/
http://copter.ardupilot.com/wiki/altholdmode/
http://copter.ardupilot.com/wiki/altholdmode/
http://copter.ardupilot.com/wiki/loiter-mode/
http://copter.ardupilot.com/wiki/loiter-mode/
http://copter.ardupilot.com/wiki/poshold-mode/
http://copter.ardupilot.com/wiki/poshold-mode/
http://copter.ardupilot.com/wiki/auto-mode/
http://copter.ardupilot.com/wiki/land-mode/
http://copter.ardupilot.com/wiki/rtl-mode/
http://klspublishing.de/ejourns/e-Journ%20Al-05%20Der%20Propeller%20das%20unverstandene%20Wesen.pdf
http://klspublishing.de/ejourns/e-Journ%20Al-05%20Der%20Propeller%20das%20unverstandene%20Wesen.pdf
http://dx.doi.org/10.2514/6.2011-1255
http://dx.doi.org/10.2514/6.2011-1255
http://innomet.ttu.ee/daaam_publications/2012/Aleksandrov.pdf

Literaturverzeichnis

[100]

[101]

[102]
[103]
[104]
[105]

[106]

[107]

[108]

[109]

[110]
[111]

[112]

[113]

80

Create a new MAVLink Message. http://qgroundcontrol.org/mavlink/
create_new_mavlink message, Abruf: 2015-12-23

MAVLink Data Types and Conventions. https://github.com/mavlink/
mavlink/blob/master/pymavlink/generator/C/include_v1.0/mavlink_
types.h, Abruf: 2015-12-23

MAVLink Waypoint Protocol. http://qgroundcontrol.org/mavlink/
waypoint_protocol, Abruf: 2016-01-02

Building ArduPilot for APM2.z with Make | ArduPilot. http://copter.
ardupilot.com/wiki/arducopter-parameters/, Abruf: 2016-01-02

MAVLink Parameter Protocol. http://qgroundcontrol.org/mavlink/
parameter_protocol, Abruf: 2015-12-23

FUMANoOIDS: Berlin United Framework 2014.0. http://www.fumanoids.de/
code/framework/. Version: 2014, Abruf: 2015-12-28

MELLMANN, Heinrich ; XU, Yuan ; KRAUSE, Thomas ; HOLZHAUER, Flo-
rian: NaoTH Software Architecture for an Autonomous Agent. In: Procee-
dings of SIMPAR 2010 Workshops Intl. Conf. on SIMULATION, MODE-
LING and PROGRAMMING for AUTONOMOUS ROBOTS (2010), 316
327. http://www.naoteamhumboldt.de/wp-content/papercite-data/pdf/
scpr-mellmannxuetal-10.pdf. ISBN 978-3-00-032863-3

MELLMANN, Heinrich ; SCHEUNEMANN, Marcus ; BURKHARD, Hans-
Dieter ; HAFNER, Verena: Berlin United - NaoTH 2014. (2014). http:
//fei.edu.br/rcs/2014/TeamDescriptionPapers/StandardPlatform/
bu-naoth-tdpl4-final.pdf, Abruf: 2015-12-26

FUwMANOIDS: Berlin United Code Release, 2014.0. http://www.fumanoids.
de/publications/coderelease. Version: January 2014, Abruf: 2015-12-28

HOHBERG, Simon: Interactive Key Frame Motion FEditor for Hu-
manoid Robots, Freie Universitiat Berlin, Bachelorarbeit, February
2012. https://maserati.mi.fu-berlin.de/fumanoids/wp-content/

papercite-data/pdf/hohberg2012.pdf, Abruf: 2015-12-28

ArduPilot Development Site | ArduPilot Developer. http://dev.ardupilot.
com/, Abruf: 2015-12-30

Arduino Library — Tutorial. https://www.arduino.cc/en/Hacking/
LibraryTutorial, Abruf: 2016-01-01

Lots of changes to APM development - DIY Drones. http://diydrones.com/
profiles/blogs/lots-of-changes-to-apm-development, Abruf: 2015-12-
30

History of ArduPilot | ArduPilot Developer. http://dev.ardupilot.com/
wiki/history-of-ardupilot/, Abruf: 2015-12-30

http://qgroundcontrol.org/mavlink/create_new_mavlink_message
http://qgroundcontrol.org/mavlink/create_new_mavlink_message
https://github.com/mavlink/mavlink/blob/master/pymavlink/generator/C/include_v1.0/mavlink_types.h
https://github.com/mavlink/mavlink/blob/master/pymavlink/generator/C/include_v1.0/mavlink_types.h
https://github.com/mavlink/mavlink/blob/master/pymavlink/generator/C/include_v1.0/mavlink_types.h
http://qgroundcontrol.org/mavlink/waypoint_protocol
http://qgroundcontrol.org/mavlink/waypoint_protocol
http://copter.ardupilot.com/wiki/arducopter-parameters/
http://copter.ardupilot.com/wiki/arducopter-parameters/
http://qgroundcontrol.org/mavlink/parameter_protocol
http://qgroundcontrol.org/mavlink/parameter_protocol
http://www.fumanoids.de/code/framework/
http://www.fumanoids.de/code/framework/
http://www.naoteamhumboldt.de/wp-content/papercite-data/pdf/scpr-mellmannxuetal-10.pdf
http://www.naoteamhumboldt.de/wp-content/papercite-data/pdf/scpr-mellmannxuetal-10.pdf
http://fei.edu.br/rcs/2014/TeamDescriptionPapers/StandardPlatform/bu-naoth-tdp14-final.pdf
http://fei.edu.br/rcs/2014/TeamDescriptionPapers/StandardPlatform/bu-naoth-tdp14-final.pdf
http://fei.edu.br/rcs/2014/TeamDescriptionPapers/StandardPlatform/bu-naoth-tdp14-final.pdf
http://www.fumanoids.de/publications/coderelease
http://www.fumanoids.de/publications/coderelease
https://maserati.mi.fu-berlin.de/fumanoids/wp-content/papercite-data/pdf/hohberg2012.pdf
https://maserati.mi.fu-berlin.de/fumanoids/wp-content/papercite-data/pdf/hohberg2012.pdf
http://dev.ardupilot.com/
http://dev.ardupilot.com/
https://www.arduino.cc/en/Hacking/LibraryTutorial
https://www.arduino.cc/en/Hacking/LibraryTutorial
http://diydrones.com/profiles/blogs/lots-of-changes-to-apm-development
http://diydrones.com/profiles/blogs/lots-of-changes-to-apm-development
http://dev.ardupilot.com/wiki/history-of-ardupilot/
http://dev.ardupilot.com/wiki/history-of-ardupilot/

Literaturverzeichnis

[114]

[115]
[116]

[117]

[118]

119]

[120]

[121]

[122]

[123]

[124]

[125]

Building ArduPilot for APM2.x with Make | ArduPilot Developer. http://
dev.ardupilot.com/wiki/building with_make/, Abruf: 2015-12-31

Arduino FAQ. https://www.arduino.cc/en/Main/FAQ, Abruf: 2015-12-30

Arduino Software (IDE). https://www.arduino.cc/en/Guide/Environment,
Abruf: 2015-12-31

Arduino Build Process. https://www.arduino.cc/en/Hacking/
BuildProcess, Abruf: 2015-12-30

ardupilot/common.h - diydrones/ardupilot - GitHub. https://github.com/
ArduPilot/ardupilot/blob/ArduCopter-3.2.1/1libraries/GCS_MAVLink/
include/mavlink/v1.0/common/common.h, Abruf: 2016-01-05

ardupilot/mavlink_msq_request _data_stream.h - diydrones/ardupilot
GitHub. https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.
2.1/libraries/GCS_MAVLink/include/mavlink/v1.0/common/mavlink
msg_request_data_stream.h, Abruf: 2016-01-04

KAPLAN, E. ; HEGARTY, C.: Understanding GPS: Principles and Applications.
Artech House, 2005. — ISBN 1-58053-894-0

Atmel ATmega2560. http://www.atmel.com/devices/atmega2560.aspx,
Abruf: 2016-03-04

MAVLink micro air vehicle marshalling / communication library - mavlink/-
mavlink - GitHub. https://github.com/mavlink/mavlink, Abruf: 2016-03-
07

LipPMAN, Stanley B.: Inside the C++ Object Model. Addison Wesley Publis-
hing Company, 1996. — ISBN 0-201-83454-5

ardupilot/libraries/AP_AHRS/AP_AHRS NavEKF.h - diydrones/ar-
dupilot - GitHub. https://github.com/ArduPilot/ardupilot/blob/
ArduCopter-3.2.1/1libraries/AP_AHRS/AP_AHRS NavEKF.h, Abruf: 2016-
04-04

ardupilot/libraries/AP_HAL/AP_HAL_ Boards.h - diydrones/ardupilot
GitHub. https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.
2.1/libraries/AP_HAL/AP_HAL Boards.h, Abruf: 2016-04-04

81

http://dev.ardupilot.com/wiki/building_with_make/
http://dev.ardupilot.com/wiki/building_with_make/
https://www.arduino.cc/en/Main/FAQ
https://www.arduino.cc/en/Guide/Environment
https://www.arduino.cc/en/Hacking/BuildProcess
https://www.arduino.cc/en/Hacking/BuildProcess
https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.1/libraries/GCS_MAVLink/include/mavlink/v1.0/common/common.h
https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.1/libraries/GCS_MAVLink/include/mavlink/v1.0/common/common.h
https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.1/libraries/GCS_MAVLink/include/mavlink/v1.0/common/common.h
https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.1/libraries/GCS_MAVLink/include/mavlink/v1.0/common/mavlink_msg_request_data_stream.h
https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.1/libraries/GCS_MAVLink/include/mavlink/v1.0/common/mavlink_msg_request_data_stream.h
https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.1/libraries/GCS_MAVLink/include/mavlink/v1.0/common/mavlink_msg_request_data_stream.h
http://www.atmel.com/devices/atmega2560.aspx
https://github.com/mavlink/mavlink
https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.1/libraries/AP_AHRS/AP_AHRS_NavEKF.h
https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.1/libraries/AP_AHRS/AP_AHRS_NavEKF.h
https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.1/libraries/AP_HAL/AP_HAL_Boards.h
https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.1/libraries/AP_HAL/AP_HAL_Boards.h

Nomenklatur

APM
CFK
EKF
ESC
GFK
GPIO
GPS

IDE

pPVC

UART

ArduPilotMega

Kohlenstoftfaserverstarkter Kunststoff

Erweiterter Kalman-Filter (Extended Kalman Filter)

Motorregler (Electronic Speed Control)

Glasfaserverstarkter Kunststoff

Allzweckeingabe /-ausgabe (General Purpose Input/Output)
Globales Positionsbestimmungssystem (Global Positioning System)

Integrierte Entwicklungsumgebung (Integrated Development Envi-
ronment)

Polyvinylchlorid

Serielle Schnittstelle (Universal Asynchronous Receiver /Transmitter)

83

	Inhaltsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Zusammenfassung
	1 Einleitung
	1.1 Motivation: Die Honigbiene in der Neurobiologie
	1.2 Zielsetzung: Eine fliegende Experimentierplattform
	1.2.1 Hardware
	1.2.2 Software

	2 Stand der Technik
	2.1 Manuelle Steuerung
	2.2 Flugcontroller
	2.2.1 Sensoren
	2.2.2 Gegenüberstellung gängiger Flugcontroller
	2.2.3 Bodenstation

	2.3 Antrieb
	2.3.1 Stromversorgung
	2.3.2 Motoren
	2.3.3 Motorsteuerung (ESC, electronic speed control)
	2.3.4 Propeller

	2.4 Rahmen
	2.5 Bordcomputer
	2.6 Zusammenfassung

	3 Implementierung
	3.1 Auswahl der Bordelektronik
	3.1.1 Bordcomputer
	3.1.2 Flugcontroller

	3.2 Konstruktion des Copters
	3.2.1 Schubmessung
	3.2.2 Arme
	3.2.3 Plattform
	3.2.4 Motorklemmen
	3.2.5 Antrieb
	3.2.6 Manuelle Steuerung
	3.2.7 Technische Daten

	3.3 Software
	3.3.1 MAVLink
	3.3.1.1 Protokollbeschreibung
	3.3.1.2 Codegenerierung

	3.3.2 Berlin United Framework
	3.3.2.1 Architektur
	3.3.2.2 Konfiguration
	3.3.2.3 Testumgebung zur Fehlersuche

	3.3.3 ar2clipse
	3.3.3.1 Funktionsweise

	3.3.4 Bordsoftware
	3.3.4.1 Datenaustausch zwischen den Modulmanagern
	3.3.4.2 Manipulation verschiedener Daten von MAVLink-Geräten
	3.3.4.3 MAVLink-Service
	3.3.4.4 Bereitstellung empfangener MAVLink-Pakete
	3.3.4.5 Weitere MAVLink-Module und Repräsentationen

	3.3.5 Bodenstation
	3.3.6 Konfiguration von Flugrouten und Verhalten

	3.4 Zusammenfassung

	4 Evaluierung
	4.1 Copter
	4.1.1 Rahmen
	4.1.2 Plattformdämpfung

	4.2 Flugcontroller
	4.2.1 Position halten
	4.2.2 Senderate der MAVLink-Datenströme

	4.3 Werkzeug: ar2clipse
	4.4 Bordsoftware
	4.4.1 MAVLink
	4.4.2 Integration in das Berlin United Framework
	4.4.3 Wartbarkeit

	5 Diskussion
	5.1 Flugcontroller
	5.1.1 Position halten
	5.1.2 Senderate der MAVLink-Datenströme

	5.2 Copter
	5.2.1 Plattform
	5.2.2 Antrieb

	5.3 Bordsoftware
	5.4 Bodenstation

	6 Ausblick
	6.1 Flugcontroller
	6.2 Copter
	6.2.1 Plattform

	6.3 Bordsoftware

	A Anhang
	Literaturverzeichnis
	Nomenklatur

