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Zusammenfassung

Die Honigbiene besitzt bemerkenswerte Gedächtnisleistungen und Navigationsfähig-
keiten, was sie zum idealen Modellorganismus der Hirnforschung macht. Aufgrund
ihrer geringen Größe ist es jedoch bislang nicht möglich, sie im freien Flug zu un-
tersuchen. Um sowohl die Hirnaktivität elektrophysiologisch zu analysieren als auch
das Verhalten künstlicher neuronaler Netze zu untersuchen, wurde in dieser Arbeit
mit dem Neurocopter eine fliegende Experimentierplattform geschaffen.
Das entwickelte System besteht aus einem Quadcopter, der über unterschiedliche
Sensoren, eine Kamera und einen leistungsstarken Bordcomputer verfügt. Ein auf
dem Bordrechner laufendes Framework ermöglicht den einfachen Zugriff auf die Sens-
ordaten und Kamerabilder, so dass hiermit Experimente dokumentiert und kontrol-
liert werden können. Über eine Funkverbindung können die Daten zu einer Boden-
station übertragen und dort visualisiert werden. Zur Planung der Versuche lassen
sich anhand von GPS-Koordinaten Routen festlegen, die der Copter autonom ab-
fliegt.
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1. Einleitung

Die Europäische Honigbiene (Apis mellifera) eignet sich hervorragend als Modellsys-
tem der Hirnforschung. Als Insekt ist sie einfach in Haltung und Handhabung. Trotz
ihres sehr kleinen Gehirns mit einem Volumen von nur 1mm3 mit etwa 960 000 Neu-
ronen [1] weist sie Fähigkeiten auf, die sonst nur bei höher entwickelten Lebewesen
wie Wirbeltieren zu erwarten sind [2]. So besitzt sie beispielsweise ein ausgepräg-
tes Sozialverhalten [3], woraus sich besondere Lern- und Gedächtnisleistungen erge-
ben [1]. Beim Ausschwärmen zur Nahrungssuche entfernt sich eine Biene über 10 km
von ihrem Heimatstock [4]. Nach dem Auffinden einer neuen Tracht (Futterquelle)
fliegt sie dann auf direktem Weg zurück [5] und teilt den anderen Arbeiterinnen
Richtung und Entfernung der Tracht durch einen Schwänzeltanz im Inneren des
Stocks mit [4]. Hierbei läuft die Tänzerin auf der Wabe den Hinterleib rhythmisch
hin und her bewegend ein Stück geradeaus, kehrt in einem Halbkreis zum Ausgangs-
punkt zurück, schwänzelt dann erneut die gerade Strecke, führt nun den Halbkreis
in die entgegengesetzte Richtung aus und fährt so immer wieder im Wechsel fort [4].
Die Himmelsrichtung zur Tracht wird dabei durch den Winkel der Schwänzelstrecke
relativ zur Schwerkraft und die Entfernung durch das Tanztempo angegeben [4].
Für dieses Verhalten sind gute Navigationsfähigkeiten und ein Gedächtnis über die
Futterquellen nötig [6]. Um die Luftlinie zur Tracht im Tanz angeben zu können,
summiert die Biene die bei der Suche geflogenen und durch optischen Fluss gemes-
senen [7] Teilstrecken per Pfadintegration [4] auf und erhält so den direkten Vektor
zum Ziel.

Außerdem sind Bienen in der Lage, den direkten Weg zwischen zwei bekannten
Orten durch unbekanntes Terrain zu fliegen, was sich nicht mehr allein durch das
Modell der Pfadintegration erklären lässt [8]. Eine mögliche Interpretation dieses
Phänomens ist eine kognitive Karte [8,9], in der Orte und Landmarken räumlich so
zueinander in Relation gesetzt werden, dass sie zur Selbstlokalisierung genutzt wer-
den können [10]. Ein solches Kartengedächtnis wird dem nur bei höher entwickelten
Lebewesen vorhandenen Hippocampus zugeschrieben [10, 11] und ist erst etwa bei
Ratten [10,11] und Mäusen [12] anzutreffen, weswegen diese These noch umstritten
ist [13,14]. Daher sind diese für Insekten einzigartigen Fähigkeiten der Honigbienen
umso beeindruckender und geben der Forschung noch viele Fragen auf.
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Kapitel 1 Einleitung

1.1. Motivation: Die Honigbiene in der Neurobiologie

In der Neurobiologie lassen sich die Einsatzmöglichkeiten der Honigbiene grundle-
gend in zwei Bereiche teilen: Zum einen werden in der Elektrophysiologie Hirnakti-
vitäten analysiert. Im Gegensatz dazu verfolgt die Neuroinformatik einen syntheti-
schen Ansatz, der auf künstlichen neuronalen Netzen basiert.
Die Elektrophysiologie stößt schnell an physikalische Grenzen, wenn die Hirnströ-
me im Flug untersucht werden sollen. Dies kann erforderlich sein, da ein alleiniges
Beobachten des Verhaltens und daraus gezogene Rückschlüsse auf die tatsächlichen
Vorgänge im Gehirn einen erheblichen Interpretationsspielraum lassen. Eine Biene
kann etwa 50mg und ohne größere Einschränkungen sogar nur 20mg über länge-
re Zeit tragen [15]. Folglich scheidet ein Befestigen der nötigen Sensorik und Auf-
zeichnungselektronik am Insekt selbst aus. Als mögliche Lösung kann der freie Flug
im Labor in einer virtuellen Arena aus LCD-Monitoren simuliert werden [16]. Ein
solcher Aufbau ermöglicht zwar eine hervorragende Reproduzierbarkeit des Experi-
ments, jedoch weicht er erheblich von der Realität ab und erzeugt nur einen Bruchteil
der tatsächlich auftretenden Reize. So hat etwa ein zusätzliches Anströmen des In-
sekts mit Luft zur Vortäuschung von Flugwind Einfluss auf sein Verhalten [17]. Ein
möglicher Schritt in Richtung der idealen Lösung wäre ein fliegendes Labor, in dem
die Biene allen Umwelteinflüssen ausgesetzt ist.
Genauso muss bei einer Computersimulation der Welt zur Analyse neuronaler Netze
berücksichtigt werden, dass sich diese immer von der Realität unterscheidet. Eine
biorobotische fliegende Plattform, die eine Biene sensorisch und motorisch imitiert,
kann strengere Kriterien als eine reine Simulation erfüllen und somit ergänzend zur
Überprüfung von Hypothesen eingesetzt werden.

1.2. Zielsetzung: Eine fliegende
Experimentierplattform

Wie in Abschnitt 1.1 erläutert, gibt es in der Neurobiologie mehrere Einsatzmöglich-
keiten für ein fliegendes Labor zur Erforschung von Honigbienen. Dieser Abschnitt
befasst sich mit den Anforderungen an eine solche Plattform, die hier für Hardware
und Software aufgestellt werden.

1.2.1. Hardware

Um Bienen oder das Verhalten neuronaler Netze während des Flugs zu untersu-
chen, sollten die Manövrierfähigkeit und das Flugverhalten der Insekten möglichst
naturgetreu wiedergeben werden können. Neben schnellen Richtungs- und Geschwin-
digkeitswechseln können Bienen auch punktgenau landen und auf einer Stelle schwe-
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1.2 Zielsetzung: Eine fliegende Experimentierplattform

ben [4, 18]. Diese Anforderungen können von Flugzeugen nicht erfüllt werden, wo-
durch als Fluggerät nur noch Helikopter und Multicopter zur Wahl stehen. Ers-
tere sind technisch sehr komplex: Um etwa den Hubschrauber entlang der Quer-
oder Längsachse zu neigen, muss der Einstellwinkel der einzelnen Rotorblätter zy-
klisch während eines Umlaufs des Hauptrotors variiert werden. Dies wird mechanisch
durch ein über eine Taumelscheibe angesteuertes Gestänge gelöst [19]. Dem gegen-
über zeichnet sich ein Multicopter durch den kompletten Verzicht auf mechanische
Ansteuerungen aus. Ein solches Fluggerät besitzt mehrere auf einer Ebene ange-
ordnete Propeller mit nach unten wirkendem Schub. Gesteuert wird es allein durch
Drehzahländerungen der Motoren [20]. Dieser einfache und kostengünstige Aufbau
reduziert den Wartungsaufwand und erhöht die Zuverlässigkeit [20, 21]. Somit soll
das fliegende Labor auf Basis eines Multicopters konstruiert werden.

Um Experimente verfolgen und dokumentieren zu können oder Reize für ein neuro-
nales Netz zu erzeugen, werden etliche Sensoren benötigt. Neben einem GPS-Modul
zur Positionsbestimmung sowie Lage- und Beschleunigungssensoren, soll der Copter
auch über eine Kamera verfügen. Prinzipbedingt neigt sich ein Multicopter beim
Fliegen in die entsprechende Richtung. Daher kann es nötig sein, dass eine Kamera
oder fixierte Biene gedreht werden muss, um immer im gleichen Winkel zum Boden
gehalten zu werden. Dies kann von einem Gimbal, einer elektronischen kardanischen
Aufhängung, bewerkstelligt werden. Zur Auswertung der Kamerabilder und ande-
rer versuchsspezifischer Daten bedarf es eines leistungsfähigen Bordrechners. Dieser
muss über ein Funkmodul verfügen, damit während eines Experiments etwa zusätz-
liche Steuersignale gesendet oder Statusinformationen übertragen werden können.

1.2.2. Software

Wie in Abschnitt 1.2.1 auf Seite 4 beschrieben, sollte der Multicopter über einen
leistungsstarken Bordcomputer verfügen, der zur Auswertung und Steuerung der Ex-
perimente dient. Diese müssen reproduzierbar sein, damit sich Ergebnisse verifizieren
lassen. Das lässt sich erreichen, indem der Copter die Möglichkeit bietet, vorgegebe-
ne Routen autonom anhand von GPS-Koordinaten abzufliegen und an festgelegten
Punkten oder bei anderen Ereignissen immer die gleiche Aktion auszuführen. Dabei
muss es trotzdem immer möglich sein, im Zweifelsfall händisch einzugreifen und die
Steuerung sofort zu übernehmen.

Zur Bereitstellung dieser Funktionalität wird ein Framework (Rahmenstruktur) be-
nötigt, das einen einfachen Zugriff auf die Sensordaten des Copters ermöglicht. Zu-
dem muss die Kommunikation über die Funkverbindung integriert sein, so dass auch
auf diese Daten zugegriffen werden kann.

Als Gegenstück wird eine Bodenstation-Software benötigt, mit der die empfange-
nen Daten aufbereitet und visualisiert werden können, um die laufenden Versuche
beobachten zu können. Zur Konfiguration der abzufliegenden Routen wird ebenfalls
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Kapitel 1 Einleitung

entsprechende Software benötigt, mit der es beispielsweise möglich ist, die Punkte
anhand einer virtuellen Karte vorzugeben.
Um die Auswahl weiterer für Versuche benötigter Programme nicht vorab einzu-
schränken, müssen Bodenstation und Konfigurationssoftware des Copters weitge-
hend plattformunabhängig sein, das heißt unter Microsoft Windows, Mac OS X
und Linux nutzbar sein. Als weitere wichtige Anforderung kommt die Quelloffenheit
sämtlicher verwendeter Software, insbesondere der Firmware des Flugcontrollers,
hinzu. Kommerzielle zivile Multicopter werden häufig zum Kunstflug oder der An-
fertigung von Luftaufnahmen verwendet. Der geplante Einsatzzweck als fliegendes
Labor weicht davon teils erheblich ab. Deswegen ist damit zu rechnen, dass langfristig
Änderungen an Kernkomponenten der Flugsteuerung nötig werden, um bestimmte
Versuche zu ermöglichen. So etwas ist ohne erheblichen Aufwand nur möglich, wenn
der Quelltext vollumfänglich zur Verfügung steht.
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2. Stand der Technik

Die fliegende Experimentierplattform Neurocopter soll als Multicopter konstruiert
werden. Dieses Kapitel verschafft einen Überblick der zum Zeitpunkt des Entwurfs
verfügbaren Komponenten und erläutert die allgemeine Funktionsweise und den Auf-
bau eines Multicopters.
Wie bereits in Abschnitt 1.2.1 auf Seite 4 erwähnt, wird ein Multicopter ohne zusätz-
liche bewegliche Teile allein durch Drehzahländerungen seiner Motoren gesteuert.
Um die erzeugten Drehmomente dieser auszugleichen und eine ständige Rotation
des Copters um die Hochachse zu verhindern, wird eine gerade Anzahl Motoren
verwendet, von denen sich eine Hälfte mit und die andere gegen den Uhrzeigersinn
dreht. Typische Konfigurationen verwenden vier, sechs oder acht Motoren, die an
Auslegern rund um eine zentrale Plattform auf unterschiedlichste Weise angeordnet
sind, wie in Abbildung 2.1 auf der nächsten Seite veranschaulicht wird. Es existieren
auch Lösungen, die bis zu zwölf Motoren zulassen [22]. Diese Vielfalt dient der Er-
füllung unterschiedlicher Anforderungen, wie beispielsweise eines möglichst großen
Sichtfelds für eine Kamera oder zur Erzeugung von Redundanz für den Fall eines
Motorversagens.
Der Flugcontroller nimmt vom Piloten per Fernsteuerung gesendete Befehle entge-
gen. Dabei wird der Ist-Zustand der Lage des Copters im Raum mit Hilfe verschie-
denster Sensoren bestimmt und mit dem übermittelten Soll-Zustand verglichen. Dar-
aus werden dann entsprechende Drehzahlen für die einzelnen Propeller berechnet.
Aus einem Lithium-Polymer-Akku gespeiste Motorregler erzeugen daraus dann die
Ströme zur Ansteuerung der Motoren, die die Propeller in der Regel direkt antreiben.
Der allgemeine Aufbau dieser elektronischen Komponenten wird in Abbildung 2.2
auf Seite 9 schematisch dargestellt.

2.1. Manuelle Steuerung

Zur manuellen Steuerung können herkömmliche Funkfernsteuerungen aus dem Mo-
dellbau verwendet werden. In der Regel verfügen diese über zwei Steuerknüppel, die
jeweils horizontal und vertikal bewegt werden können und so insgesamt vier Funk-
tionen kontrollieren. Zusätzlich gibt es meist noch mehrere Schalter und Drehregler
für weitere Funktionen. Die Übertragung an den Empfänger findet auf dem 2,4GHz-
Band statt und verwendet für jede Funktion einen Kanal. Abbildung 2.3 auf Seite 10
zeigt exemplarisch eine Fernbedienung und den dazugehörigen Empfänger.
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Kapitel 2 Stand der Technik

(a) +-Quadcopter (b) +-Hexacopter (c) +-Octocopter

(d) ×-Quadcopter (e) ×-Hexacopter (f) ×-Octocopter

(g) y-Hexacopter (h) koaxialer ×-Octocopter (i) y-Quadcopter

Abbildung 2.1.: Multicopter-Konfigurationen [23]
Allen Konfigurationen gemein ist die gerade Anzahl von Rotoren, von denen sich eine Hälfte mit
dem Uhrzeigersinn (grün) und die andere dagegen (blau) dreht. Die Spitze an der Plattform deutet
die Vorderseite des Copters an. Abbildungen 2.1a bis 2.1c zeigen Copter in +-Konfiguration, die
sich durch Arme entlang der Längsachse auszeichnen. Die Bezeichnung rührt vom Quadcopter, der
mit seinen vier Armen an ein + erinnert. Analog dazu zeigen die Abbildungen 2.1d bis 2.1f ×-
Konfigurationen. Die Abbildungen 2.1g und 2.1h zeigen Copter, bei denen sich an jedem Arm zwei
koaxial angeordnete Propeller befinden. Von all diesen symmetrischen Aufbauten unterscheidet
sich der in Abbildung 2.1i dargestellte Copter, bei dem die Plattform nach vorn versetzt ist. Dies
ermöglicht ein ungestörteres Sichtfeld für eine nach vorn gerichtete Kamera.

2.2. Flugcontroller

Das Flugverhalten von Multicoptern ist inhärent instabil [20,25]. Daher wird zur La-
geregelung ein Flugcontroller benötigt. Dieser soll außerdem das autonome Abfliegen
von Routen übernehmen.

Gängige Flugcontroller verfügen über eine Vielzahl von Sensoren, die zur Lagerege-
lung und Steuerung des Copters verwendet werden.

8



2.2 Flugcontroller

Abbildung 2.2.: Schematischer Aufbau eines Multicopters [24]
Herzstück des Quadcopters ist der Flugcontroller (Ardupilot Board). Steuersignale der Fernsteue-
rung werden vom Empfänger (Receiver) an den Flugcontroller geleitet und dort unter Zuhilfenahme
mehrerer interner (nicht gezeigt: Gyroskop, Accelerometer, Magnetometer, Barometer) und exter-
ner (GPS-Modul) Sensoren in Motordrehzahlen umgerechnet. Daraus erzeugen die Motorregler
(ESC ) die Ströme zum Antrieb der bürstenlosen Gleichstrommotoren (Brushless Outrunner Mo-
tor), die direkt mit den Propellern verbunden sind. Die gesamte Stromversorgung wird von einem
Lithium-Polymer-Akku (LiPo Battery) geleistet. Zusätzlich kann der Flugcontroller mit einem
Gimbal (Optional 2 Axis Gimbal) eine Kamera unabhängig von der Lage des Copters ausrichten.

2.2.1. Sensoren

Gyroskop

Die in Multicoptern verwendeten Gyroskope messen die Winkelgeschwindigkeiten
um die drei Achsen des kartesischen Koordinatensystems. Diese Werte werden vom
Flugcontroller verwendet, um die Lage des Copters zu stabilisieren [26]. Dabei wird
einem plötzlich auftretenden Kippen durch entsprechende Drehzahländerungen der
Motoren entgegengewirkt [27]. Die absolute Lage des Copters im Raum kann mit
einem Gyroskop nicht bestimmt werden [20]. Die durch Aufintegration der Mess-
werte erhaltene Schätzung weicht wegen Messungenauigkeiten, der diskretisierten
Zeitschritte und nicht zuletzt der ungenauen Repräsentation numerischer Werte im
Mikroprozessor mit der Zeit immer mehr vom tatsächlichen Wert ab [28].
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Kapitel 2 Stand der Technik

(a) Fernbedienung (b) Empfänger

Abbildung 2.3.: Funkfernbedienung und Empfänger
Turnigy 9X Fernbedienung (Abb. 2.3a): Mit den beiden Steuerknüppeln lässt sich das Flugmodell
kontrollieren. Bei einer der vielen möglichen Konfigurationen steuert der rechte Knüppel das Modell
in der Ebene, indem er es seitwärts rollt oder vor und zurück nickt. Der linke Hebel kontrolliert
über den Schub die Auf- und Abbewegungen des Modells und dreht es um die Hochachse, wenn
er seitwärts bewegt wird. Einer der Kippschalter lässt sich so konfigurieren, dass er zwischen
verschiedenen Modi eines Flugcontrollers wechseln kann.
Turnigy 9X8C-V2 Empfänger (Abb. 2.3b): Der Empfänger besitzt für jede der acht steuerbaren
Funktionen einen Anschluss, der entweder einen Servo oder Motorregler steuert, oder an einen
Flugcontroller angeschlossen werden kann.

Accelerometer

Zur Beschleunigungsmessung entlang der drei Achsen des Koordinatensystems wer-
den Accelerometer verwendet. Mit diesen Messwerten lassen sich Nick- und Roll-
winkel bestimmen, um den Copter waagerecht zu halten [26] und den Drift des
Gyroskops zu kompensieren [27]. Bei der Positionsbestimmung durch Aufintegrati-
on driftet das Ergebnis – genauso wie bei der Lagebestimmung mit einem Gyroskop
– mit der Zeit immer weiter ab.

Magnetometer

Die Lage des Copters im Raum lässt sich durch ein Magnetometer, einen 3-Achsen-
Kompass, bestimmen. Die Ausrichtung muss bekannt sein, wenn der Copter GPS-
Koordinaten anfliegen soll [26]. Neben der Stärke des Erdmagnetfelds misst das
Magnetometer allerdings auch die Felder, die etwa durch die Ströme zur Steuerung
der Motoren erzeugt werden. Diese Störungen müssen gegebenenfalls kompensiert
werden. Abbildung 2.4 auf der nächsten Seite zeigt ein Magnetometer, dass getrennt
vom Flugcontroller ausgeführt ist und so entfernt von Störquellen angebracht werden
kann.
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2.2 Flugcontroller

Abbildung 2.4.: Magnetometer
Dieses externe 3-Achsen-Magnetometer wird
mit dem Flugcontroller verbunden und kann
entfernt von Störquellen angebracht werden.

Barometer

Ein Anhaltspunkt über die Höhe des Cop-
ters lässt sich mit einem Barometer aus dem
Luftdruck über die barometrische Höhenfor-
mel bestimmen [26]. Dieser Sensor kann leicht
durchWindböen oder witterungsbedingte Luft-
druckschwankungen gestört werden, weswe-
gen die Messwerte zumindest gefiltert oder
mit denen anderer Sensoren kombiniert wer-
den sollten.

Sonar

Abbildung 2.5.: Sonar
Ein Sonar bestimmt durch Aussenden von
Ultraschallwellen die Entfernung zu Objek-
ten und kann so zur Kollisionsvermeidung
und dem Halten der Flughöhe verwendet
werden.

Ein Sonar sendet Ultraschallsignale aus, die
zurückgeworfen werden, wenn sie auf ein
Hindernis treffen. Aus der Laufzeit lässt sich
die Entfernung bestimmen. Multicopter kön-
nen dieses System zur Kollisionsvermeidung
und Höhenbestimmung nutzen [21]. Abbil-
dung 2.5 zeigt ein typisches in Multicoptern
verwendetes Sonar.

GPS

(a) Oberseite (b) Unterseite

Abbildung 2.6.: GPS-Modul
Platine mit Keramikantenne (Abb. 2.6a)
und u-blox GPS-Modul (Abb. 2.6b)

Mit einem GPS-Sensor wird über ein Netz
aus Navigationssatelliten die Position auf
der Erde bestimmt, die sich aus Breiten-
grad, Längengrad und Höhe zusammensetzt.
Außerdem können noch die Uhrzeit mikro-
sekundengenau, Geschwindigkeit und Bewe-
gungsrichtung ermittelt werden [29]. Abbil-
dung 2.6 zeigt eine Platine bestückt mit
GPS-Modul und Antenne.

Optischer-Fluss-Sensor

Bei der Bestimmung des optischen Flusses werden Verschiebungsvektoren von wie-
dererkannten Regionen in aufeinander folgenden Bildern berechnet. Bei einer nach
unten gerichteten Linse kann aus diesen Informationen zusammen mit der genau-
en Entfernung und Orientierung des Sensors zum Boden die Geschwindigkeit des
Copters bestimmt werden. Diese Technik findet beispielsweise in optischen Com-
putermäusen Anwendung. Deren Sensoren lassen sich mit einer anderen Linse in
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Multicoptern nutzen. Abbildung 2.7 zeigt einen solchen mausbasierten und einen
aufwändigeren Sensor.

(a) mausbasierter Sensor ADNS3080 [30] (b) PX4Flow [31]

Abbildung 2.7.: Sensoren zur Bestimmung des optischen Flusses
Zur Geschwindigkeitsbestimmung berechnet ein Optischer-Fluss-Sensor Verschiebungsvektoren von
wiedererkannten Regionen in aufeinander folgenden Bildern. Einfache Sensoren, wie der in Abbil-
dung 2.7a, basieren auf der Technik von optischen Computermäusen. Abbildung 2.7b zeigt ein
komplexeres Modell, das ein Gyroskop und Sonar zur Lage- und Abstandsbestimmung besitzt [31].

2.2.2. Gegenüberstellung gängiger Flugcontroller

Die Vielzahl erhältlicher Flugcontroller unterscheidet sich je nach angedachtem Ein-
satzzweck. So verfügen ausschließlich fürs manuelle Fliegen konzipierte Modelle nur
über die nötigsten Sensoren zur Stabilisierung des Copters und bieten keine Er-
weiterungsmöglichkeiten. Demgegenüber besitzen aufwendigere autonom fliegende
Modelle deutlich mehr Sensoren und Erweiterungsmöglichkeiten. Auch die Konfigu-
ration des Controllers reicht vom integrierten Display mit einigen Tastern bis hin zur
umfangreichen Software, die verschiedene Einstellungen speichern und laden kann.
Hier werden nun einige Flugcontroller anhand der in Abschnitt 1.2 auf Seite 4 ge-
stellten Anforderungen gegenübergestellt. Hardwareseitig werden hauptsächlich die
verfügbaren Sensoren verglichen. Um deren Werte während des Flugs vom gefor-
derten Bordcomputer auswerten lassen zu können, muss der Flugcontroller über
eine entsprechende Schnittstelle verfügen. Diese kann direkt als serielle Schnittstelle
(UART, universal asynchronous receiver/transmitter) oder über einen integrierten
USB-Konverter ausgeführt sein. Außerdem wird ein Augenmerk auf die verwend-
baren Motorsteuerungen gelegt. Einige Flugcontroller setzen spezielle hauseigene
Regler voraus und schließen so die Verwendung besser verfügbarer, deutlich kosten-
günstigerer Modellbau-ESCs (siehe Abschnitt 2.3.3 auf Seite 17) aus. Zudem wird
untersucht, ob es Anschlussmöglichkeiten für ein Gimbal gibt, um etwa eine Kamera
lageunabhängig vom Copter bewegen zu können. Softwareseitig wird zum einen die
Firmware des Controllers betrachtet. Hierbei werden Funktionen wie das Abfliegen
von Routen, die Ansteuerung eines Gimbals und die Anordnungsmöglichkeiten der
Motoren, wie sie bereits in Abbildung 2.1 auf Seite 8 gezeigt wurden, untersucht.
Zum anderen wird die Verfügbarkeit quelloffener plattformunabhängiger Software

12



2.2 Flugcontroller

zur allgemeinen Konfiguration des Copters und zum Programmieren von Routen
verglichen. Tabelle 2.1 zeigt die Ergebnisse.

Eigenschaften
Software Hardware
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ArduCopter [32]

APM 2.5b [33]

X C++ X X
X
[34]

X
[35]

X X
X X X X X X • •

•c

[30]

Pixhawk [36] X X X X X X • • •
PX4FMU [37, 38] X X X X X X • • •

PX4 [39, 40]
Pixhawk [36]

X
C,

X X X X X X
X X X X X X • • •

PX4FMU [37, 38] C++ X X X X X X • • •

MultiWii
MWC Crius SE

[41, 42]

X
[43] C++

X
[44,

45]

X
[46]

X
[47]

X
[48]

X
[48] -d

X
[50] X X X X X • • •e

Mikrokopter
FlightCtrl V2.5

[52–54]

X
[55] C++ X

X
[56]

X
[57]

-
[58]

-
[55]

X
[59]

X
[60] -f X X X X • - -

Steveis KK2.1
[62]

Hobbyking
KK2.1.5 [63, 64] X ASM - X X -g - X X X - - - - -

X ja / vorhanden • optional
- nein / nicht vorhanden • optional, eingeschränkt unterstützt

aeinfache und koaxiale Anordnung von 4, 6 oder 8 Motoren in + oder × Konfiguration (vgl.
Abbildung 2.1 auf Seite 8)

bwird nur von Firmwareversionen kleiner v3.3 unterstützt
cunterstützt nur den mausbasierten Sensor ADNS3080 und nicht den PX4FLOW [32]
dKonfiguration von Wegpunkten nur per Drittanbietersoftware möglich [49]
eUnterstützung nur in modifizierter Firmware von Drittanbietern [49,51]
fes können nur per I2C angesteuerte Motorsteuerungen verwendet werden [61]
gkeine Konfigurationssoftware vorhanden

Tabelle 2.1.: Flugcontroller

Gegenüberstellung verschiedener Flugcontroller. Verglichen werden Hardwareeigenschaften wie
Sensoren, Fähigkeiten der Firmware und am Boden laufender Software zur allgemeinen Konfi-
guration des Copters und zur Programmierung abzufliegender Wegpunkte.
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2.2.3. Bodenstation

Eine Bodenstationssoftware zur allgemeinen Konfiguration des Copters, Planung
von Routen und Anzeige von Flugdaten ist prinzipbedingt stark an den verwende-
ten Flugcontroller gekoppelt, da diese unterschiedliche Protokolle zur Datenüber-
tragung verwenden. Deswegen wird diesem Thema nur ein kurzer Unterabschnitt
gewidmet, der exemplarisch den Funktionsumfang einer Bodenstation eines der im
Abschnitt 2.2.2 auf Seite 12 gezeigten Flugcontrollers umreißt.

Sowohl die PX4-Firmware [65] als auch ArduCopter [66] setzen auf das offene, er-
weiterbare Protokoll MAVLink [67], was prinzipiell die Nutzung verschiedener Bo-
denstationsprogramme ermöglicht. Da sich die Flugcontroller aber in ihren Konfigu-
rationsmöglichkeiten unterscheiden, bringen beide eigene Software mit, die speziell
für sie angepasst ist. Das PX4 verwendet hierfür QGroundControl (Abbildung 2.8a)
und ArduCopter setzt das Programm APM Planner (Abbildung 2.8b) ein, welches
im Folgenden beschrieben wird.

(a) QGroundControl [68] (b) APM Planner

Abbildung 2.8.: Bodenstationssoftware
Die Programme QGroundControl (Abb. 2.8b) und APM Planner (Abb. 2.8a) kommunizieren über
das MAVLink-Protokoll mit dem Multicopter und können zur Konfiguration und Planung von
Flugrouten verwendet werden. Bei beiden wird hier eine Flugdatenansicht gezeigt, die neben der
Lage des Copters durch Kompass und künstlichen Horizont auch die aktuelle Position in einer
Landkarte anzeigt.

Bei der grundlegenden Konfiguration wird die Art des Multicopters durch Anzahl
und Positionierung der Motoren festgelegt (vgl. Abbildung 2.1 auf Seite 8) sowie
die angeschlossenen Sensoren ausgewählt und kalibriert. Daneben lässt sich auch
die Fernsteuerung einrichten. Hierbei werden die maximalen Ausschläge und Null-
stellungen der Steuerhebel bestimmt und optional weiteren Kanälen, die etwa über
Kippschalter oder Taster gesteuert sein können, Funktionen wie der Wechsel zwi-
schen verschiedenen Flugmodi zugewiesen. Sofern der Flugcontroller über eine Funk-
verbindung oder auch per Kabel mit dem Bodenstationsrechner verbunden ist, kön-
nen Fluglage und Position des Copters angezeigt werden (Abbildung 2.8b). In einer

14



2.3 Antrieb

anderen Ansicht kann der Verlauf verschiedener per MAVLink übertragener Sensor-
daten visualisiert werden (Abbildung 2.9a). Außerdem können in dieser Darstellung
im Stillstand die Logdaten des internen Speichers des Flugcontrollers übertragen
werden, so dass sie sich als Logdatei speichern oder genauso wie die MAVLink Da-
ten anzeigen lassen. Nicht zuletzt stellt APM Planner eine Landkarte zur einfa-
chen Planung von Flugrouten aus Wegpunkten bereit (Abbildung 2.9b). Für jeden
dieser Punkte lassen sich verschiedene Optionen wie die Änderung der Flughöhe,
Geschwindigkeit oder Ausrichtung des Copters festlegen. Auch können Punkte zum
automatischen Starten, Landen oder Rückkehren zum Startpunkt bestimmt werden.

(a) Sensordaten (b) Routenplanung

Abbildung 2.9.: Bodenstation APM Planner
Weitere Ansichten der Bodenstationssoftware APM Planner (Abbildung 2.8b auf Seite 14): Sens-
ordaten können visualisiert (Abb. Abbildung 2.9a) und abzufliegende Routen auf einer Landkarte
geplant werden (Abb. Abbildung 2.9b).

2.3. Antrieb

Abbildung 2.10.: Motor mit Propeller
Der Propeller ist direkt mit der Welle des bürs-
tenlosen Außenläufers verbunden, der den Strom
von einem Motorregler (ESC) bezieht.

Der Modellbau bietet besonders im Be-
reich der Flugmodelle viele teils sehr
kostengünstige Komponenten, die in
Multicoptern verwendet werden können.
Deswegen konzentriert sich dieser Ab-
schnitt besonders auf solche Teile.

Die Propeller sind in der Regel direkt
auf der Motorwelle befestigt und wer-
den ohne zusätzliche Getriebe in Rota-
tion versetzt, wie Abbildung 2.10 zeigt.
Dieser Verzicht auf zusätzliche bewegli-
che Teile verringert die Komplexität des Systems und reduziert das Gewicht.
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2.3.1. Stromversorgung

Abbildung 2.11.: Lithium-Polymer-Akku
Bei diesem Akku mit einer Ladung von 5000mAh sind
drei Zellen mit einer Nennspannung von jeweils 3,7V
in Reihe geschaltet, so dass sich eine Gesamtspannung
von 11,1V ergibt.

Zur Stromversorgung bieten sich
wegen ihrer relativ hohen Energie-
dichte Lithium-Polymer-Akkus an.
Bei gängigen Exemplaren aus dem
Modellbau sind mehrere Zellen mit
einer Nennspannung von jeweils
3,7V durch Reihen- oder Paral-
lelschaltungen verbunden. Abbil-
dung 2.11 zeigt einen Akku mit drei
in Reihe geschalteten Zellen.

2.3.2. Motoren

Als Motoren werden bürstenlose Außenläufer verwendet. Diese sind effizienter als das
Pendant mit Schleifkontakten zur Stromübertragung in die sich drehenden Spulen
des Motors. Beim bürstenlosen Motor (Abbildung 2.12a) werden die Spulen des
Stators (Abbildung 2.12b) direkt mit Drehstrom versorgt, der ein sich drehendes
magnetisches Feld erzeugt und so den mit Permanentmagneten bestückten Rotor
(Abbildung 2.12c) in Bewegung versetzt.

(a) Motor (b) Stator (c) Rotor

Abbildung 2.12.: Bürstenloser Motor
Bei diesem bürstenlosen Außenläufer (Abb. 2.12a) dreht sich der glockenförmige außen liegende
mit Permanentmagneten besetzte Rotor (Abb. 2.12c) um den im Inneren fest stehenden Stator
(Abb. 2.12b), der durch Spulen ein magnetisches Feld erzeugt.
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2.3.3. Motorsteuerung (ESC, electronic speed control)

(a) Oberseite (b) Unterseite

Abbildung 2.13.: Motorregler
Gezeigt wird ein Modellbaumotorregler, der
Ströme von bis zu 30A steuern kann. Da-
bei schaltet ein Mikroprozessor (Abb. 2.13b)
über Transistoren (Abb. 2.13a) den einge-
henden Gleichstrom (rotes und schwarzes
Kabel) pulsweise an und erzeugt so einen
dreiphasigen Wechselstrom (blaue Kabel)
zur Ansteuerung des bürstenlosen Motors.
Über die weiße Leitung des dreiadrigen Ka-
bels wird die gewünschte Drehzahl vorgege-
ben.

Um aus dem Gleichstrom der Akkus den
Drehstrom für die Motoren zu erzeugen,
werden elektronische Steuergeräte benötigt
(Abbildung 2.13). Diese besitzen einen Mi-
kroprozessor, der den eingehen Gleichstrom
durch Transistoren ein- und ausschaltet und
so den benötigten Dreiphasenwechselstrom
moduliert. Die Firmware der für Modellflug-
zeuge entwickelten ESCs verfügt oft über
zusätzliche Logik, die die Geschwindigkeits-
vorgabe weichzeichnet [20]. Dies soll sonst
entstehende starke Spitzen des Stromver-
brauchs glätten, die die Schaltelektronik
des Reglers beschädigen könnten [20]. Auch
kann der damit einhergehende Spannungs-
abfall einen Ausfall der Bordelektronik ver-
ursachen [20]. Das Weichzeichnen führt aber
auch dazu, dass ausreichend dimensionier-
te, von dieser Problematik nicht betroffene,
ESCs unnötig träge reagieren und der Cop-
ter weniger präzise gesteuert werden kann.
Um dem entgegen zu wirken, kann eine al-
ternative Firmware verwendet werden, die die Drehzahlvorgaben direkt umsetzt [69].

2.3.4. Propeller

Da sich die Motoren zum Drehmomentausgleich in unterschiedliche Richtungen dre-
hen, werden dementsprechend links- und rechtsdrehende Propeller benötigt. Ver-

(a) rechts

(b) links

(c) rechts

(d) links

Abbildung 2.14.: Propeller
Gezeigt werden jeweils ein links- und ein rechtsdrehender Propeller zwei verschiedener Varianten ei-
ner 12 × 4,5′′-Luftschraube, die sich in der Form der Blätter unterscheiden. Die beiden Ziffern geben
dabei Propellerdurchmesser und Steigung in Zoll an (Durchmesser: 305mm, Steigung: 114mm).
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fügbare Modelle besitzen zwei bis vier Rotorblätter und sind aus Kunststoff, Holz,
glas- oder kohlefaserverstärktem Kunststoff oder aus Kohlefasergewebe laminiert.
Abgesehen vom Durchmesser unterscheiden sie sich in Form und Steigung der Ro-
torblätter. Abbildung 2.14 auf Seite 17 stellt zur Veranschaulichung zwei Modelle
gleichen Durchmessers mit unterschiedlich geformten Blättern gegenüber.

2.4. Rahmen

Genau wie beim Antrieb (Abschnitt 2.3 auf Seite 15) werden aus Kostengründen nur
Multicopterrahmen aus dem Modellbau- und Hobbybereich betrachtet. Der generelle
Aufbau dieser besteht aus einer zentralen Plattform, um die herum die Arme zur
Befestigung der Motoren angeordnet sind, wie Abbildung 2.15 veranschaulicht.

(a) Turnigy Talon [70] (b) PYRAMID X580 [71] (c) RotorBits HexCopter [72]

Abbildung 2.15.: Multicopterrahmen
Übersicht einiger Multicopterrahmen aus dem Modellbau. Von der zentralen Plattform, die Akku
und Elektronik tragen soll, gehen Ausleger zur Befestigung der Motoren ab.

(a) Turnigy Talon [70] (b) HMF U580 [73] (c) RotorBits HexCopter [72]

Abbildung 2.16.: Motorbefestigungen
Am Ende der Arme der Multicopterrahmen (siehe Abbildung 2.15) sitzen die Motoren. Deren
Halterungen sind auf unterschiedliche Weise an den runden oder quadratischen Auslegern befestigt.

Für das zentrale Stück wird auf glasfaserverstärkte und kohlenstofffaserverstärkte
Platten und Kunststoffspritzgussteile (GFK bzw. CFK) zurückgegriffen. Die Ausle-
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ger sind in der Regel Aluminium-, GFK- oder CFK-Rohre mit rundem oder qua-
dratischem Querschnitt. Miteinander verbunden werden die Teile durch direkte Ver-
schraubung oder Kunststoff- und Aluminiumklemmen. Zur Befestigung der Motoren
an den Armen werden meist Klemmen verwendet (Abbildung 2.16 auf Seite 18), die
am Ende aufgesteckt oder an beliebiger Stelle geklemmt werden können. Das Aufste-
cken bringt den Nachteil mit sich, dass die Motorpositionen und somit das Verhalten
des Copters nicht variiert werden können und fest vorgegeben sind. In der Gegen-
überstellung gängiger Rahmen in Tabelle 2.2 fällt besonders das teils hohe Gewicht
auf, obwohl auf leichte Materialien wie Kohlefaser zurückgegriffen wurde. Neben
diesem Aspekt sind die meisten Rahmen so konstruiert, dass der Schwerpunkt des
Copters weit unterhalb der Rotorebene liegt. Bedingt ist dies durch die Positionie-
rung schwerer Komponenten wie Akku und Gimbal an der Unterseite der Plattform,
die in einer Ebene mit den Armen und somit unter der Rotorebene liegt. Entgegen
der Intuition ist ein tiefer Schwerpunkt dem Flugverhalten nicht zuträglich. Da die
Lageregelung von einem Flugcontroller gesteuert wird, kann ein instabiles oszillie-
rendes System in Kauf genommen werden [74]. Ein knapp unterhalb der Rotorebene
platzierter Schwerpunkt ergibt einen Copter, der unanfällig für Störungen ist und
schnell auf Steuerbefehle reagiert [74].

Rahmen Pr
op

el
le
r

Sp
an

nw
ei
te

G
ew

ich
t

Pr
op

el
le
rd
ur
ch
m
es
se
r

M
at
er
ia
lie
n

Turnigy Talon [70] 4 498mm 240 g 229mma CFK
Turnigy Talon V2 [75] 4 550mm 280 g 229mma CFK
PYRAMID X650F [76] 4 550mm 598 g 280mm GFK, Aluminium

HMF U580 [73] 4 580mm 558 g 381mm CFK, GFK
PYRAMID X580 [71] 4 585mm 418 g 280mm GFK, Aluminium

PYRAMID T650-X4-16 [77] 4 650mm 580 g 356mm GFK
Skylark M4-680 [78] 4 680mm 420 g 381mm CFK

RotorBits HexCopter [72] 6 720mm 360 g 254mm CFK, GFK
aWert stammt mangels Herstellerangabe von mit dem Rahmen kompatibel gelisteten Motoren

Tabelle 2.2.: Multicopterrahmen

Gegenüberstellung von Multicopterrahmen aus dem Modellbau anhand ihrer Eckdaten.
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2.5. Bordcomputer

Abbildung 2.17.: Einplatinencomputer
Einplatinencomputer ODROID-U3: 2 GiB Ar-
beitsspeicher, 1,7GHz 4-Kern ARM Cortex-A9
CPU, 83mm × 48mm, 48 g

Neben dem Flugcontroller, der die
grundlegende Steuerung des Copters
übernimmt, wird ein zusätzlicher Rech-
ner benötigt, der neben komplexen
Aufgaben wie Bildverarbeitung auch
die Datenübertragung zur Bodenstation
übernehmen soll. Für die Eignung als
Bordcomputer sind neben Rechenleis-
tung und Schnittstellen vor allem Grö-
ße und Gewicht entscheidend. Abbil-
dung 2.17 zeigt ein kreditkartengroßes
Modell, das einer Auswahl gängiger Ein-
platinencomputer in Tabelle 2.3 ge-
genübergestellt wird. Abmessungen und

Gewicht der Computer liegen nah beieinander, einzig Prozessor und Arbeitsspeicher
weisen sichtliche Unterschiede auf. Inwiefern diese relevant sind, wird sich erst in der
Praxis zeigen und hängt stark von den Anforderungen der Software des jeweiligen
Experiments ab.

Raspberry Pi 2 ODROID-U3 IGEPv2 Banana Pi M3
Model B [79, 80] [81,82] [83,84] [85]

CPU
Architektur Cortex-A7 Cortex-A9 Cortex-A8 Cortex-A7
Kerne 4 4 1 8
Takt 900MHz 1,7GHz 1GHz 2GHz
RAM 1 GiB 2 GiB 512 MiB 2 GiB

Gewicht 45 g 48 g 47 ga 45 g
Abmessungen 85,6mm × 56mm 83mm × 48mm 95mm × 65mm 92mm × 60mm
USB Ports 4 3 2 3
GPIO-Pins 40 36b 28c 40

anachgewogen
bnur über separates IO Shield
cexpansion connector J990

Tabelle 2.3.: Auswahl gängiger Einplatinencomputer

Die Einplatinencomputer werden anhand von Eigenschaften, die für den Bordcomputer eines Mul-
ticopters besonders relevant sind, gegenübergestellt. Neben Rechenleistung und Anschlüssen für
weitere Komponenten (USB-Ports und GPIO-Pins) spielen vor allem Größe und Gewicht eine
entscheidende Rolle.
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2.6. Zusammenfassung

In diesem Kapitel wurden gängige Flugcontroller, zugehörige Software, Einplatinen-
computer sowie Multicopterrahmen und -antrieb vorgestellt. Es hat sich gezeigt,
dass kein Komplettsystem die Anforderungen des Projekts Neurocopter vollumfäng-
lich erfüllt.
Verfügbare Flugcontroller und Konfigurationssoftware können je nach Modell unver-
ändert verwendet werden. Für die Anbindung des Controllers an den Bordcomputer
und die dortige Auswertung, Kombination mit Kamerabildern und Weiterleitung der
Flugdaten muss jedoch entsprechende Software entwickelt werden. Für den Antrieb
des Copters kann vollständig auf kostengünstige Modellbaukomponenten zurückge-
griffen werden. Einzig die betrachteten Rahmen weichen zu sehr von den Anforde-
rungen ab. Sie sind entweder unnötig schwer, haben eine sehr geringe Armlänge,
einen ungünstigen Schwerpunkt oder sind durch fest vorgegebene Motorpositionen
und andere Befestigungen zu unflexibel.
Daraus ergibt sich, dass zur Durchführung des Projekts ein Multicopterrahmen kon-
struiert wird, für dessen Antrieb Standardkomponenten verwendet werden können.
Außerdem wird eine Software entwickelt, die die Kombination von Flugcontroller,
Bordcomputer, Kamera und Bodenstation bewerkstelligt und so ein Framework für
zukünftige Experimente bereitstellt.
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3. Implementierung

Dieses Kapitel beschreibt sowohl die Konstruktion des Multicopters, als auch die
Software des Bordcomputers die zusammen als fliegendes Labor zur Erforschung
der Hirnaktivität von Honigbienen verwendet werden sollen (siehe Abschnitt 1.2 auf
Seite 4).

3.1. Auswahl der Bordelektronik

Abbildung 3.1.: Spannungswandler [86]
Spannungswandler zur Stromversorgung der Bor-
delektronik. Aus den 11,1V des Akkus werden 5V
erzeugt.

Die Bordelektronik des Copters wird
von einem Spannungswandler (Abbil-
dung 3.1) gespeist, der direkt an den
Akku, der auch die Motoren mit Strom
versorgt, angeschlossen ist.

3.1.1. Bordcomputer

Aus den in Abschnitt 2.5 auf Sei-
te 20 vorgestellten Einplatinencompu-
tern wurde das ODROID-U3 ausge-
wählt. Dieses hat zwar nicht die größte Rechenleistung, verfügt aber neben dem
Banana Pi M3 mit 2 GiB über den größten Arbeitsspeicher, hat die kleinste Pla-
tine und einen geringeren Preis als das leistungsstärkere Banana Pi M3. Für die
Funkverbindung zur Bodenstation wird ein herkömmlicher WLAN-USB-Stick ver-
wendet, der direkt in den Rechner gesteckt und mit Klebeband an der Buchse gegen
Herausfallen gesichert wird.

3.1.2. Flugcontroller

Von den in Abschnitt 2.2.2 auf Seite 12 vorgestellten Flugcontrollern scheinen das
APM 2.5, PX4FMU und Pixhawk mit der ArduCopter- oder PX4-Firmware am
besten geeignet. Dies sind die einzigen Systeme, für die eine quelloffene plattfor-
munabhängige Bodenstationssoftware existiert, mit der unter anderem Flugrouten
konfiguriert werden können.
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Da Teile der PX4-Codebasis in C verfasst sind, wurde die Entscheidung zu Gunsten
von ArduCopter getroffen. Dies ist in der Annahme begründet, dass der komplett
in C++ verfasste Quelltext wegen der erweiterten Möglichkeiten der Sprache gegen-
über C einfacher zu verstehen ist, so dass gegebenenfalls nötige Anpassungen leich-
ter durchgeführt werden können. Zudem teilt sich die ArduCopter-Firmware mit
den beiden anderen auf die gleiche Hardware setzenden Projekten ArduRover [87]
und ArduPlane [88] eine gemeinsame Codebasis. Daher wäre es prinzipiell möglich,
das für den Neurocopter entwickelte Framework auch mit fahrenden ArduRover-
Modellen zu verwenden, um beispielsweise den Verlauf geplanter Experimente vorab
in einer einfacheren Umgebung zu überprüfen.
Von den drei von der ArduCopter-Firmware unterstützen Flugcontrollern wurde
das APM 2.5 wegen des geringen Preises gewählt, da es sich abgesehen von einem
deutlich schwächeren Prozessor nicht erheblich von den anderen unterscheidet.

Sensoren

Das APM 2.5 bringt auf der Platine Gyroskop, Accelerometer, Barometer und Ma-
gnetometer mit. Letzteres wird durch ein externes ersetzt, das zur besseren Abschir-
mung gegenüber Störfeldern weiter entfernt von der restlichen Elektronik angebracht
werden kann. Außerdem werden noch ein GPS-Modul und ein Sonar angeschlossen.
Eine Beschreibung der verschiedenen Sensortypen befindet sich in Abschnitt 2.2.1
auf Seite 9.

Flugmodi

Die ArduCopter-Firmware stellt verschiedene Flugmodi bereit [89], zwischen denen
über einen zusätzlichen Kanal der Fernsteuerung gewechselt werden kann. Dazu
wird der entsprechende Ausgang des Empfängers mit dem APM 2.5 verbunden (vgl.
Abbildung 2.2 auf Seite 9), das Signaländerungen registriert und sofort den Mo-
dus ändert. Das Flugverhalten geht dabei von einem einfachen manuellen Modus,
bei dem Schub, Roll- und Nickwinkel des Copters direkt über die Steuerknüppel
vorgegeben werden [90], über das zusätzliche Halten der Höhe [91] oder auch der
Position im Raum [92,93] bis hin zum automatischen Abfliegen von vorkonfigurier-
ten Routen aus Wegpunkten [94]. Letzteres lässt sich jederzeit unterbrechen, indem
in einen anderen Modus gewechselt wird [94]. Zudem kann der Copter über weitere
Modi angewiesen werden, sofort zu landen [95] oder zuvor noch zum Startpunkt
zurückzukehren [96].

Gimbal

In der Gegenüberstellung der Flugcontroller (siehe Tabelle 2.1 auf Seite 13) wurde
bereits festgestellt, dass das APM 2.5 in der Lage ist, ein Gimbal anzusteuern und
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so eine Kamera unabhängig von der Lage des Copters auszurichten. Dazu werden
die Servos der entsprechenden Drehachsen entweder mit gesonderten speziell dafür
vorgesehenen oder auch nicht verwendeten Ausgängen der Motorsteuerungen ver-
bunden [34]. Mit der Konfigurationssoftware lassen sich dann Winkelbereiche und
Nullstellungen festlegen. Auch können Kanäle der Fernsteuerung ausgewählt werden,
um manuell einen anderen Winkel zur Horizontalen vorzugeben.

Verbindung zum Bordrechner

Zur Verbindung mit dem Bordcomputer wird ein kurzes USB-Kabel verwendet, das
auf Flugcontroller-Seite einen Micro-USB-Stecker und an der anderen einen her-
kömmlichen USB-A-Stecker besitzt. Dieser lässt sich einfach aus dem ODROID-U3
ausstecken und kann dann mithilfe eines USB-Verlängerungskabels mit einem an-
deren Computer, wie dem Bodenstationsrechner, verbunden werden, so dass ein
direkter Zugriff auf das APM 2.5 möglich ist.

3.2. Konstruktion des Copters

Dieser Abschnitt beschreibt die Konstruktion der einzelnen Komponenten, die zu-
sammen den in Abbildung 3.2 gezeigten Quadcopter ergeben.

Abbildung 3.2.: Neurocopter-3D-Modell
Gezeigt wird ein Modell des Copters. Oberhalb der Arme, die durch ein Aluminiumteil in der Mitte
starr verbunden sind, befindet sich die Bordelektronik auf mehreren Ebenen. Zuoberst befinden
sich Flugcontroller, Empfänger, Kamera und Bordrechner auf einer gedämpften Platte. Darunter
liegt der Akku. Zwischen diesem und den Armen werden die ESCs und ein Spannungswandler zur
Stromversorgung der Bordelektronik platziert.
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Wie sich in Abschnitt 2.4 auf Seite 18 herausgestellt hat, muss ein Rahmen konstru-
iert werden, der die Anforderungen des Projekts erfüllt. Dazu muss zuerst entschie-
den werden, wie viele Arme und Motoren der Multicopter besitzen soll, da dieser
Entschluss das Design grundlegend beeinflusst. Ein viermotoriger Quadcopter bietet
sich aus vielerlei Gründen an: Zum einen wird die Fertigung der Einzelteile durch
die rechtwinklige Anordnung der Arme vereinfacht. Zum anderen nimmt der Wir-
kungsgrad eines Propellers mit dessen Durchmesser zu [97], so dass ein möglichst
effizienter Multicopter den nötigen Schub durch größere, statt zusätzliche Propeller
erzeugt. Selbstverständlich hat die Formgebung der Propellerblätter auch einen er-
heblichen Einfluss auf den Wirkungsgrad [98], doch das ist für diese Entscheidung
unerheblich.
Der verwendete Flugcontroller bietet die Möglichkeit zur Ansteuerung mehrerer Ser-
vos, die ein Gimbal drehen und so die Neigung des Copters ausgleichen können (vgl.
Abschnitt 3.1.2 auf Seite 24). Die in Abschnitt 1.2.1 auf Seite 4 angedeuteten Ein-
satzmöglichkeiten für solch einen Lageausgleich sind jedoch sehr versuchsspezifisch.
Daher kann die Konstruktion erst vorgenommen werden, wenn konkretere Einsatz-
szenarien feststehen, und sie ist somit nicht Teil dieser Arbeit.

3.2.1. Schubmessung

Um einen Anhaltspunkt für die Dimensionierung des Copters zu erhalten, wurde der
Schub eines 305mm-Propellers an einem 200W-Motor bestimmt. Solch ein Antrieb

(a) Prüfstand (b) Schubkurve

Abbildung 3.3.: Schubmessung
Zur Schubmessung wurde ein 200W-Motor mit einem 305mm-Propeller an einem Hebel befestigt,
über den er auf eine Waage drückt (Abb. 3.3a). Auf diese Weise wurden bei verschiedenen Drehzah-
len der statische Schub und und die Leistungsaufnahmen gemessen (Abb. 3.3b): Der Wirkungsgrad
nimmt mit zunehmendem Schub ab.
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wird etwa in Quadcoptern verwendet, die ein Gimbal mit einem Action-Camcorder
tragen können und somit eine ähnliche Nutzlast wie der geplante Neurocopter ha-
ben. Abbildung 3.3 auf Seite 26 zeigt den prinzipiellen Aufbau der Messapparatur
und die damit ermittelte Schubkurve. Demnach beträgt der maximale Schub eines
Propellers knapp 1000 g. Um den Copter auch bei Windböen jederzeit kontrollieren
zu können, sollte der gemeinsame Schub aller Propeller mindestens das doppelte des
Gesamtgewichts betragen, was demnach unter 2000 g liegen muss. Da das Gewicht
solcher Copterrahmen bei bis zu 600 g liegt (siehe Abschnitt 2.4 auf Seite 18), scheint
der geprüfte Antrieb ausreichend für das fliegende Labor, den Neurocopter zu sein.

3.2.2. Arme

Als Material für die Arme bieten sich CFK-Rohre an. Diese sind leicht und äu-
ßerst verwindungssteif. Das Gewicht der verwendeten 16mm dicken Rohre mit einer
Wandstärke von 1mm beträgt nur 79,5 g

m . Die gezeigten erhältlichen Rahmen (Ab-
schnitt 2.4 auf Seite 18) verschrauben oder klemmen die Arme an einer zentralen
Plattform. Dieser Aufbau bringt den Nachteil mit sich, dass das Mittelstück, das an-
sonsten nur die Bordelektronik trägt, stabiler ausgelegt werden muss, um die durch
die langen Ausleger auftretenden Kräfte aufnehmen zu können, die an dieser Stel-
le durch deren Hebelwirkung am größten sind. Um dies zu umgehen, wurde ein
Aluminiumdrehteil konstruiert, in dem die Arme verklebt werden (Abbildung 3.4).
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(a) Konstruktionszeichnung (b) mit Armen verklebt

Abbildung 3.4.: Mittelstück
Ein aus Aluminium gedrehtes und gefrästes 28 g schweres Mittelstück verbindet die eingeklebten
Copterarme aus CFK-Rohr.

Die Spannweite wurde mit 900mm sehr großzügig bemessen und lässt zwischen den
305mm-Propellern einen Abstand von einen Rotordurchmesser zu. Zum einen wird
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der Copter mit zunehmender Armlänge träger, wodurch ein stabileres Flugverhal-
ten erzielt wird. Außerdem stören sich zu nah beieinander liegende Rotoren und
verringern den Wirkungsgrad des Gesamtsystems [99].

3.2.3. Plattform

Abbildung 3.5.: Plattform-3D-Modell
Schematischer Aufbau der Elektronikplattform,
die über vier Klemmen mit den Armen des Cop-
ters verbunden ist.
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Abbildung 3.6.: Plattformklemme
Die Elektronikplattform wird mit vier dieser
gefrästen Klemmen an den Armen des Cop-
ters befestigt.

Da die Arme des Quadcopters durch ein Aluminiumteil verbunden sind, muss die
Plattform lediglich die Bordelektronik tragen und kann somit aus nur 1mm dicken
CFK-Platten konstruiert werden. Wie bereits in Abschnitt 2.4 auf Seite 18 erläutert,
sollte der Schwerpunkt des Copters knapp unterhalb der Rotorebene liegen. Dazu
wird die gesamte Elektronik oberhalb der Arme auf mehreren Ebenen platziert. Diese

(a) Draufsicht (b) Seitenansicht

Abbildung 3.7.: Elektronikplattform
Auf der gedämpften Elektronikplattform befinden sich Flugcontroller und Sensoren, der Empfän-
ger der Fernsteuerung und der Bordcomputer. Auf der linken Seite ist die beweglich angebrachte
Kamera zu sehen. Die Komponenten sind so angeordnet, dass sich der Schwerpunkt in der Mitte
der Plattform befindet.
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sind zusammen mit dünnen CFK-Rohren als Abstandshalter auf Polyamidgewinde-
stangen aufgefädelt und werden so mit den Klemmen (Abbildung 3.6 auf Seite 28)
zur Befestigung an den Armen verspannt. Dieser Aufbau wird in Abbildung 3.5 auf
Seite 28 schematisch gezeigt: Direkt über den Armen werden die ESCs und ein Span-
nungswandler zur Stromversorgung der Bordelektronik angebracht. Darüber liegt der
Akku auf einer CFK-Platte, an der er mit einem Riemen befestigt wird. Zuoberst
befindet sich die restliche Elektronik samt Kamera auf einer gedämpften Platte
(Abbildung 3.7 auf Seite 28). Dadurch werden die vibrationsanfälligen Sensoren von
den Motoren entkoppelt, das Magnetometer möglichst weit von den restlichen Kom-
ponenten entfernt und das GPS mit ungestörter Sicht zum Himmel ausgerichtet.
Zur Dämpfung werden Gummipuffer verwendet, die ursprünglich zur Aufhängung
von Action-Camcordern konzipiert sind. Abbildung 3.7 auf Seite 28 zeigt die fertig
bestückte gedämpfte Elektronikplatte, an deren Vorderseite eine Kamera drehbar
angebracht ist. Dafür wurde das Kunststoffgehäuse einer PlayStation Eye-Kamera
zur Gewichtsersparnis zurechtgeschnitten und mit gefrästen Polyamidhalterungen
und einem CFK-Rohr als Achse gelenkig befestigt. Die CFK-Platte ist in diesem
Bereich durch eine auflaminierte zweite Schicht verstärkt.

3.2.4. Motorklemmen

Zur Befestigung der Motoren an den Armen wurde ein Klemmsystem konzipiert. Die
in Abbildung 3.8 auf der nächsten Seite gezeigten zweiteiligen Aluminiumklemmen
sind als Drehteile ausgeführt und wurden mit einer Fräse nachbearbeitet. Neben
den Motoren halten die Klemmen auch die Landefüße des Copters, die aus Ringen
eines PVC-Rohres gefertigt wurden. Abbildung 3.9 auf der nächsten Seite zeigt einen
montierten Motor.

3.2.5. Antrieb

Bei Motoren, ESCs und Propellern wurde wie in Abschnitt 2.3 auf Seite 15 beschrie-
ben auf Modellbaukomponenten zurückgegriffen. Als Motoren kommen bürstenlose
Außenläufer mit einer maximalen Leistungsaufnahme von 243W und Drehzahl von
880 U/min

V zum Einsatz, die die Propeller mit einem Durchmesser von 305mm an-
treiben. Zur Stromversorgung wird ein dreizelliger Lithium-Polymer-Akku mit einer
Nennspannung von 11,1V und einer Ladung von 5000mAh verwendet. Einzig die
Motorregler, die einen maximalen Strom von 30A schalten können, wurden durch
Aufspielen einer anderen Firmware modifiziert, um die in Abschnitt 2.3.3 auf Sei-
te 17 erläuterten negativen Eigenschaften von Modellbau-ESCs auszugleichen. Dazu
wurden die zur Programmierung des Mikroprozessors nötigen, auf der Oberseite der
Platine befindlichen 6 Pins über ein Flachbandkabel nach außen geführt. An dessen
Ende wurde eine kleine Buchsenleiste mit einem Rastermaß von 1,27mm gelötet, so
dass ein Programmiergerät jederzeit erneut für eine mögliche Aktualisierung ange-
schlossen werden kann.
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Abbildung 3.8.: Motorhalterung
Zur Befestigung der Motoren an den runden
CFK-Armen werden zweiteilige 10 g schwere
Klemmen aus Aluminium verwendet.

Abbildung 3.9.: Montierter Motor
Der Motor, die Klemme am Arm und der Lande-
fuß aus PVC-Rohr werden durch zwei Schrauben
zusammengehalten.

3.2.6. Manuelle Steuerung

Zur manuellen Steuerung wird die in Abschnitt 2.1 auf Seite 7 vorgestellte Funk-
fernbedienung Turnigy 9X verwendet. Dieses sehr kostengünstige Exemplar kann
neben den vier Kanälen zur Steuerung noch vier weitere an den Empfänger Turnigy
9X8C-V2 übertragen, womit mehr als ausreichend viele Zusatzfunktionen kontrol-
liert werden können.

3.2.7. Technische Daten

Abschließend werden hier noch die Eckdaten des fertig konstruierten Quadcopters
aufgelistet (Tabelle 3.1 auf der nächsten Seite). Zur Schwerpunktbestimmung wur-
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den sämtliche Komponenten einzeln gewogen und vermessen, so dass daraus der
vertikale Schwerpunkt berechnet werden konnte.

Rahmengewichta 343 g
Gewicht des Antriebs b 546 g
Gewicht der Bordelektronik c 218 g
Gesamtgewicht ohne Akku 1107 g
Gesamtgewicht mit Akku 1479 g
Schwerpunkt unter Rotorebene 26mm
maximale Spannweite 900mm
Schubd 3984 g

aincl. gedämpfter Elektronikplatte, Akkubefestigung, Motorhalterungen und Schrauben
bMotoren, Motorregler, Verkabelung, Propeller, etc.
cFlugcontroller, Sensoren, Bordcomputer, Kamera, etc.
dSumme des statischen Schubs aller vier Motoren

Tabelle 3.1.: Technische Daten

Eckdaten des Neurocopters. Der theoretische Maximalschub beträgt mehr als das doppelte des
Gesamtgewichts, so dass der Copter über genügend Leistung verfügt, um jederzeit manövrierfähig
zu sein und eine zusätzliche Nutzlast von 500 g zu tragen. Durch den knapp unter der Rotorebene
liegenden Schwerpunkt kann er schnell auf Steuerbefehle reagieren.
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3.3. Software

Nachdem in den vorherigen Abschnitten die Auswahl der Hardwarekomponenten
und die Konstruktion des Copters beschrieben wurden, widmet sich dieses Kapitel
nun der Software des Neurocopters. Dabei werden verwendete Programmbibliothe-
ken und Frameworks (Rahmenstrukturen) charakterisiert und deren Integration und
darauf aufbauende Entwicklungen veranschaulicht.
Um Programme zur Dokumentation oder Steuerung von Experimenten mit dem
fliegenden Labor entwickeln zu können, wird ein Framework bereitgestellt, das die
Kommunikation mit dem Flugcontroller und einen einfachen Zugriff auf dessen Sens-
ordaten und die Bordkamera ermöglicht. Außerdem regelt das in C++ entwickelte
Framework die Datenübertragung an die Bodenstation. C++ wurde als Sprache ge-
wählt, um die begrenzten Ressourcen des Bordrechners möglichst effizient nutzen zu
können. Als Betriebssystem kommt die vom Hersteller des ODROID-U3 (vgl. Ab-
schnitt 3.1.1 auf Seite 23) bereitgestellte Linux-Distribution Ubuntu zum Einsatz.

3.3.1. MAVLink

ArduCopter setzt auf das quelloffene erweiterbare Protokoll MAVLink zur Daten-
übertragung. Auf diese Weise kann der Flugcontroller mit der Bodenstation und
anderen Komponenten kommunizieren. Dieser Unterabschnitt beschreibt das Proto-
koll, verfügbare C- und neu entwickelte C++-Software.

3.3.1.1. Protokollbeschreibung

0 STX Präambel
1 LEN Nutzdatenlänge n

2 SEQ Sequenznummer
3 SYS Absender-System-ID
4 COMP Absender-Komponenten-ID
5 MSG Nachrichten-ID
6

PAYLOAD Nutzdaten (0 bis 255 B)
5 + n

6 + n CKA
Prüfsumme

7 + n CKB

Abbildung 3.10.: Paketstruktur [67]
Ein MAVLink-Paket ist 8 B bis 263 B groß und
enthält maximal 255 B Nutzdaten.

Ein MAVLink-Paket (Abbildung 3.10)
kann bis zu 255 B Nutzdaten enthal-
ten und verwendet nur zusätzliche 8 B
zur Erkennung von Übertragungsfeh-
lern und -verlusten, Kennzeichnung des
Pakettyps und Identifikation des Ab-
senders [67]. Die verschiedenen Paket-
typen sind in XML spezifiziert, woraus
automatisiert C-, C#- oder Python-
Programmcode zum Senden und Emp-
fangen der Daten generiert wird [100].
Die Pakete können dabei Schriftzei-
chen, Ganzzahlen und Fließkommazah-
len und Arrays dieser Datentypen ent-
halten [67,101]. Das Senden und Emp-
fangen einer Nachricht wird am Bei-
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spiel eines Heartbeat-Pakets (Auflistung 3.1), das die Betriebsbereitschaft des Sys-
tems signalisiert, erläutert.

Auflistung 3.1: Heartbeat-Paket
typedef struct __mavlink_heartbeat_t {

uint32_t custom_mode ;
uint8_t type;
uint8_t autopilot ;
uint8_t base_mode ;
uint8_t system_status ;
uint8_t mavlink_version ;

} mavlink_heartbeat_t ;

Auflistung 3.2: MAVLink-Paket
typedef struct __mavlink_message {

uint16_t checksum ;
uint8_t magic;
uint8_t len;
uint8_t seq;
uint8_t sysid;
uint8_t compid ;
uint8_t msgid;
uint64_t payload64 [

( MAVLINK_MAX_PAYLOAD_LEN
+ MAVLINK_NUM_CHECKSUM_BYTES + 7)/8];

} mavlink_message_t ;

Senden Um ein mavlink_heartbeat_t-Paket zu senden, muss zuerst ein entspre-
chendes mavlink_message_t-Paket (Auflistung 3.2) mit den gepackten Daten erzeugt
werden. Dazu wird die Funktion uint16_t mavlink_msg_heartbeat_encode_chan(...)1

verwendet, die als Eingabeparameter das Heartbeat-Paket, die Absenderadresse und
die zum Kodieren verwendete Kanalnummer erhält. Beim Kodieren werden nun die
einzelnen Komponenten des Pakets in Little-Endian-Byte-Reihenfolge in das Array
payload64 des als Ausgabeparameter übergebenen mavlink_message_t-Pakets ge-
schrieben. Anhand der Kanalnummer wird dabei auf eine Struktur zugegriffen, die
kanalspezifische Informationen wie die nächste Sequenznummer enthält. Alternativ
kann auch die Funktion uint16_t mavlink_msg_heartbeat_pack_chan(...) verwen-
det werden, der anstelle des Heartbeat-Pakets sämtliche darin enthaltenen Felder als
zusätzliche Parameter übergeben werden.
Anschließend werden die Nutzdaten aus dem mavlink_message_t-Paket mit der
Funktion uint16_t mavlink_msg_to_send_buffer(...) extrahiert und serialisiert in
einen übergebenen Puffer geschrieben. Aus diesem können sie dann über eine belie-
bige Verbindung übertragen werden.

1Die Parameter wurden zur besseren Lesbarkeit ausgelassen und durch „...“ angedeutet.
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Empfangen Zum Parsen von empfangenen Daten werden diese byteweise mit der
Funktion uint8_t mavlink_parse_char(...) ausgewertet, bis sie über einen Rückga-
bewert von 1 signalisiert, dass sich nun eine vollständige Nachricht im übergebenen
Ausgabeparameter mavlink_message_t befindet. Dabei wird, genauso wie beim Sen-
den, über einen weiteren Parameter auf den aktuellen Parsezustand des verwendeten
Kanals zugegriffen.
Nun kann über das Feld type der mavlink_message_t der Nachrichtentyp abgefragt
werden, um dann über entsprechende Funktionen auf den Inhalt der Nachricht zuzu-
greifen. Handelt es sich um ein mavlink_heartbeat_t-Paket, so kann beispielsweise
mit der Funktion uint8_t mavlink_msg_heartbeat_get_system_status(...) dessen
Feld system_status ausgelesen werden. Alternativ können auch alle Felder mit der
Funktion void mavlink_msg_heartbeat_decode(...) in ein mavlink_message_t-Paket
extrahiert werden.

Waypoint-Protokoll Das Waypoint-Protokoll dient zur Konfiguration von abzu-
fliegenden Routen aus Wegpunkten, an denen bestimmte Aktionen ausgeführt wer-
den sollen. Um die Zustände von Copter und Bodenstation konsistent zu halten, ist
das Protokoll transaktionsbasiert gestaltet, so dass im Fehlerfall der vorherige Zu-
stand der Wegpunktliste des Copter unverändert bleibt [102]. Ein Wegpunkt-Paket
(mavlink_mission_item_t) enthält neben der Empfängeradresse, Sequenznummer
und Koordinaten die an diesem Punkt auszuführende Aktion sowie vier weitere
Parameter mit aktionsspezifischer Bedeutung. Mögliche Aktionen sind beispielswei-
se das Starten oder Landen, Positionshalten, Ändern der Flughöhe, Ausrichten des
Copters in eine bestimmte Himmelsrichtung, Ansteuern eines Servos, Abwerfen einer
Nutzlast, Ausrichten eines Gimbals oder Auslösen einer Kamera.
Zur Manipulation der Liste gibt es mehrere Pakettypen, mit denen die Liste gelesen,
gelöscht oder erweitert werden kann. Auch kann der aktive Punkt über seinen Index
in der Liste bestimmt werden (mavlink_mission_current_t). Änderungen werden
dabei vom Flugcontroller mit Empfangsbestätigung (mavlink_mission_ack_t) quit-
tiert. Wenn der nächste Punkt der Liste erreicht ist, wird dies der Bodenstation
durch ein mavlink_mission_item_reached_t-Paket mitgeteilt.

Parameterprotokoll Mit dem Parameterprotokoll können verschiedenste Werte
des Flugcontrollers [103] wie etwa Parameter von PID-Reglern, maximale Geschwin-
digkeiten, die Wertebereiche der Kanäle der Funkfernsteuerung oder die Belichtungs-
zeit einer angeschlossenen Kamera konfiguriert werden.
Mit einem mavlink_param_request_list_t-Paket wird der Flugcontroller angewie-
sen, alle Parameter zu übertragen. Dazu werden mavlink_param_value_t-Pakete ver-
wendet, in denen die Gesamtzahl der Parameter und Name, Index, Typ und Wert
des jeweiligen Parameters enthalten sind. Nachdem die Liste übertragen wurde,
kann ein Parameter durch ein mavlink_param_set_t-Paket überschrieben werden,
das ihn durch seinen Index oder Namen referenziert. Einzelne Parameter können
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auch durch mavlink_param_request_read_t-Pakete erneut gelesen werden, die eben-
falls Index oder Namen zur Referenzierung verwenden. Veranschaulicht werden diese
Vorgänge noch einmal mit Sequenzdiagrammen in Abbildung 3.11.

(a) Lesen aller Parameter (b) Schreiben eines Parameters

Abbildung 3.11.: MAVLink-Parameterprotokoll [104]
Sequenzdiagramme zur Veranschaulichung des Lesens und Schreibens von Parametern eines Flug-
controllers (MAV Component) über das MAVLink-Parameterprotokoll von einer Bodenstation aus
(QGroundControl).

Data Streams Ein Datenstrom (Data Stream) setzt sich aus verschiedenen Paket-
typen zusammen, die vom Flugcontroller mit einer festgelegten Datenrate gesendet
werden. Zur Konfiguration wird ein mavlink_request_data_stream_t-Paket gesen-
det, das neben der Empfängeradresse die Datenstrom-ID, gewünschte Frequenz und
ein Flag zum Ein- und Ausschalten des Streams enthält.

3.3.1.2. Codegenerierung

Wie in Abschnitt 3.3.1.1 auf Seite 32 beschrieben, wird automatisiert C-Programm-
code zum Kodieren, Dekodieren und Zugriff auf die einzelnen Felder für die in einer
XML-Datei spezifizierten Nachrichtentypen erzeugt. Da die Programmiersprache C
keine Möglichkeiten zur Überladung von Funktionen bietet, enthalten etwa die Na-
men der Kodierungsfunktionen den entsprechenden Pakettypen zur Differenzierung.
Daraus ergibt sich der Nachteil, dass es nicht möglich ist, template-basierten Code
zu schreiben, der den Parametern entsprechend die richtige Funktion auswählt. Des-
wegen wurde der in Python verfasste C-Codegenerator so erweitert, dass zusätzliche
C++-Funktionen generiert werden.

Kodierung Die Funktion mavlink_message_t mavlink_msg_encode(...) wird für al-
le Pakettypen zum Kodieren der Nachrichten überladen. Intern ruft sie hierzu die
entsprechende C-Funktion auf, die am Beispiel des Heartbeat-Pakets folgende wäre:
uint16_t mavlink_msg_heartbeat_encode_chan(...).
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Dekodierung Da zum Dekodieren einer mavlink_message_t-Nachricht die Funkti-
on nicht einfach überladen und so anhand ihrer Parameter ausgewählt werden kann,
wird ein anderer Ansatz verfolgt. Dazu wird das Funkions-Template
template < typename MAVLINK_MSG >
MAVLINK_MSG mavlink_msg_decode ( const mavlink_message_t &);

für sämtliche Nachrichtentypen spezialisiert. Für das exemplarische Heartbeat-Paket
wird somit
template <>
mavlink_heartbeat_t mavlink_msg_decode <>(

const mavlink_message_t &);

generiert.

Hilfsfunktionen Die MAVLink-Pakettypen werden anhand eindeutiger IDs un-
terschieden, die die Struktur mavlink_message_t im Feld msgid speichert. Der C-
Codegenerator erzeugt für jeden Typen ein Makro, das die ID enthält. Durch Spe-
zialisierung des Funktions-Templates
template < typename MAVLINK_MSG >
constexpr uint8_t mavlink_message_id ();

template <>
constexpr uint8_t mavlink_message_id < mavlink_heartbeat_t >() {

return MAVLINK_MSG_ID_HEARTBEAT ;
}

kann der Wert nun auch in Template-Code verwendet werden.

Ausgabe Zur Visualisierung der MAVLink-Pakete wurde außerdem der Ausgabe-
operator für sämtliche Typen überladen:
std :: ostream & operator <<( std :: ostream &,

const mavlink_heartbeat_t &);

Dieser gibt die Namen der einzelnen Felder und deren Inhalt aus. Einige Felder
enthalten dabei Werte aus Aufzählungstypen. Da diese Zuordnung jedoch nicht in
der XML-Paketspezifikation festgehalten ist, können die Namen der numerischen
Werte nicht vollständig automatisiert ausgegeben werden. Zur Abhilfe wurde diese
Zuordnung manuell im C++-Codegenerator festgehalten. Gleiches gilt für ein einziges
Bitfeld, für dessen Ausgabe jedoch direkt manuell C++-Code geschrieben wurde.
Zudem wird eine allgemeine Variante für mavlink_message_t-Pakete generiert, die
die Headerinformationen ausgibt, das Paket der ID entsprechend dekodiert und dann
dessen Ausgabeoperator verwendet.
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3.3.2. Berlin United Framework

Das Berlin United Framework [105] ist ein modulares in C++ verfasstes Software-
paket, das zur Implementierung autonomer Agenten konzipiert wurde. Durch die
starke Modularisierung werden Wiederverwendbarkeit und Testbarkeit von Code
begünstigt [106], wodurch es sich hervorragend für das Projekt Neurocopter eignet.
Entwickelt wurde es in Zusammenarbeit der FUmanoids, dem Team humanoider
Fußballroboter der Freien Universität Berlin, und dem NaoTeam der Humboldt-
Universität zu Berlin [107] ausgehend von deren NaoTH-Framework.

3.3.2.1. Architektur

Die zugrunde liegende Struktur des Frameworks ist das Blackboard, in dem Da-
ten zusammen abgelegt werden. Im Folgenden werden die weiteren Komponenten
erläutert.

Repräsentationen Repräsentationen sind Objekte, die Daten speichern und keine
weiteren komplexen Operationen bereitstellen [106].

Blackboard Ein Blackboard fasst mehrere Repräsentationen zusammen und bildet
so eine Datenbasis, die zur Lösung komplexer Probleme herangezogen werden
kann [106].

Module Die Module arbeiten auf den Repräsentationen eines Blackboards und bein-
halten die Programmlogik. Dabei kann jeweils genau ein Modul eine Repräsen-
tation für andere Module bereitstellen und erhält dafür schreibenden Zugriff,
so dass es die Daten erzeugen kann. Diese können dann von beliebig vielen
anderen Modulen ausschließlich lesend verwendet werden [106].

Modulmanager Ein Modulmanager führt seine Module sequentiell aus [106]. Dabei
muss die Ausführungsreihenfolge so bestimmt werden, dass das eine Repräsen-
tation bereitstellende Modul ausgeführt wurde, bevor diese von anderen ver-
wendet wird [105]. Diese Abhängigkeiten der Module und Repräsentationen
lassen sich durch Kanten eines gerichteten Graphen formulieren, der azyklisch
ist, wenn eine gültige Reihenfolge existiert. Für verschiedene Funktionen gibt
es unterschiedliche Arten von Modulmanagern: So kann die Ausführung der
Module etwa durch ein Ereignis wie das Eintreffen eines neuen Kamerabildes
oder zeitgesteuert mit einer festgelegten Frequenz veranlasst werden.

Services Die Ausführung der Modulmanager sowie weitere Funktionen, die sich
nicht allein mit Modulen und Repräsentationen lösen lassen, werden als Diens-
te realisiert. Diese laufen als eigenständige Threads (Ausführungsstränge) und
sind global verfügbar. Zu ihren Aufgaben zählt etwa das Warten auf ein neues
Kamerabild und anschließendes Senden eines Signals, um die Ausführung eines
Modulmanagers zu veranlassen, oder die Verwaltung der Netzwerkkommuni-
kation [105].
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Dieser Aufbau birgt mehrere Vorteile. Durch die Modularisierung und Kapselung
der Daten in Repräsentationen wird die gemeinsame Arbeit an einem Projekt ver-
einfacht. Es bestehen keine direkten Abhängigkeiten zwischen den Modulen und
einmal berechnete Daten stehen allen zur Verfügung. Durch die sequentielle Aus-
führung der Module muss bei der Entwicklung außerdem keinerlei Rücksicht auf
Synchronisationsmechanismen für den Zugriff auf die Daten genommen werden.
Dieses Konzept eignet sich hervorragend für den Neurocopter, da sich auf diese Wei-
se in Modulen realisierte Versuche zum einen unabhängig voneinander realisieren
lassen, aber trotzdem der Zugriff auf eine gemeinsame Datenbasis möglich ist.

3.3.2.2. Konfiguration

Das Framework stellt eine Schnittstelle bereit, mit der verschiedenste Konfigurati-
onsparameter hierarchisch in Sektionen unterteilt in einer Baumstruktur verwaltet
werden können. Solch ein Parameter ist entweder eine Fließkommazahl, eine Ganz-
zahl, eine Zeichenkette oder ein auf diesen Typen basierender neuer Typ, wie viele
aus der Boost.Units-Bibliothek. Er verfügt über eine optionale Beschreibung und
einen Standardwert. Zugegriffen werden kann auf den Parameter über seinen ein-
deutigen Namen, der das entsprechende Blatt in der Baumstruktur identifiziert. Zur
Unterteilung der Sektionen werden Punkte im Namen verwendet.
Hinzugefügt werden können Konfigurationsparameter über die Klasse ConfigRegistry.
Soll beispielsweise die Parametergruppe address mit den Parametern ip und port
hinzugefügt werden, so wird dafür folgender Programmcode verwendet:
auto cfg_ip = ConfigRegistry :: registerOption <std :: string >(

" address .ip", " Standardwert ", " Beschreibung ");
auto cfg_port = ConfigRegistry :: registerOption <uint16_t >(

" address .port", 12345 , " Beschreibung ");

Ausgelesen werden kann der Parameter ip dann mit der Zeile:
std :: string ip = cfg_ip ->get ();

Alternativ kann auch über den Namen auf den Parameter zugegriffen werden:
std :: string ip =

services . getConfig (). get <std :: string >(" address .ip");

Für alle registrierten Parameter werden außerdem automatisch Kommandozeilenop-
tionen zum Setzen beim Starten des Programms erzeugt.

3.3.2.3. Testumgebung zur Fehlersuche

Zum Testen der Module stellt das Framework eine Reihe von Funktionen zur Ver-
fügung. So können Codesegmente zur Laufzeit deaktiviert, Variablen angezeigt und
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modifiziert, Statusinformationen gesendet und Kamerabilder, in die mit speziellen
Funktionen gezeichnet wurde, übertragen werden [106]. Die Klasse Debugging stellt
ähnlich wie die ConfigRegistry (vgl. Abschnitt 3.3.2.2 auf Seite 38) Funktionen be-
reit, über die bestimmte Optionen zur Analyse und Fehlerfindung registriert werden
können. Solch eine Option kann zur Laufzeit an- und ausgeschaltet werden und über-
trägt beispielsweise Zeitmessungen, Text oder Linien, die ins Kamerabild gezeichnet
werden können.
Der Zugriff von außerhalb auf diese Funktionen ist entweder direkt über telnet2 oder
spezielle grafische Software wie FUremote möglich.

FUremote FUremote [108] ist ein grafisches plattformunabhängiges erweiterungs-
fähiges Programm, das auf dem Eclipse Rich Client Platform (RCP) Framework
basiert [109]. Mit ihm kann anstelle von telnet auf Funktionen des Berlin United
Frameworks zugegriffen werden. Es bietet interaktive Ansichten zum Editieren von
Variablen, zeigt gesendete Statusinformationen und Kamerabilder an, kann Module
ein- und ausschalten und stellt viele weitere, teils Fußballroboter-spezifische, An-
sichten und Optionen bereit.

3.3.3. ar2clipse

Bei genauerer Betrachtung stellte sich heraus, dass die MAVLink-Dokumentation
sehr knapp gehalten ist. Daher wurde es an mancher Stelle nötig, den ArduCopter-
Quelltext zu lesen, um etwa den Inhalt bestimmter Pakete zu verstehen. So ent-
hält beispielsweise das mavlink_raw_imu_t-Paket die Accelerometer-, Gyroskop- und
Magnetometerwerte, deren Einheiten jedoch nicht angegeben sind. Auch ist an kei-
ner Stelle festhalten, aus welchen Pakettypen sich die MAVLink-Datenströme (data
streams, vgl. Abschnitt 3.3.1.1 auf Seite 35) zusammensetzen.
Der ArduCopter-Code wurde ursprünglich für das APM1 mit der Arduino IDE
(Integrierte Entwicklungsumgebung) entwickelt [110], die nur die nötigsten Funktio-
nen bereitstellt und weder eine syntaktische noch semantische Analyse des Quell-
texts beherrscht [111]. Dann wurde zu Gunsten der Unterstützung weiterer Hard-
wareplattformen, insbesondere des PX4 [112], in der Software eine Schicht zur Ab-
straktion der Hardware hinzugefügt [113]. Diese verwendet nicht mehr die Arduino-
Laufzeitbibliothek, wodurch die Kompatibilität mit der Arduino IDE aufgegeben
wurde [110]. Stattdessen wird nun auf das Build-Management-Tool make [114] oder
eine modifizierte Variante der Arduino IDE [110] zurückgegriffen.
Trotzdem wird weiterhin am Arduino-Erstellungsprozess (build process) festgehal-
ten, der einen eigenen C++-Dialekt verwendet, der einen Zwischenschritt mit auto-
matisierter Codeerzeugung benötigt, bevor der Quelltext von einem regulären C++-
Compiler verarbeitet werden kann [115]. Dabei werden die Arduino-Sketch-Dateien

2telnet ist ein Programm, das das TELNET-Protokoll zur interaktiven zeichenorientierten Kom-
munikation über TCP-Verbindungen nutzt.
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[116] zu einer einzigen großen Datei zusammengefügt, #include-Direktiven eingefügt
und Funktionsprototypen erzeugt. Außerdem werden dem Linker die Verzeichnisse
der verwendeten Arduino-Bibliotheken einzeln als Suchpfade übergeben [117]. Dies
ist nötig, da eine Arduino-Bibliothek aus einem Verzeichnis besteht, in dem sich ei-
ne gleichnamige Header-Datei und Quelltextdateien befinden [111]. Zum Verwenden
der Bibliothek wird aber nur die Header-Datei ohne das vorangestellte gleichnamige
Verzeichnis in der #include-Direktive angegeben [111].

Durch diesen sehr eigenen Prozess ist es nicht möglich, den Quelltext in einer vollwer-
tigen Entwicklungsumgebungen wie Eclipse zu untersuchen, da deren semantische
Codeanalyse am Arduino-Dialekt scheitert.

Zur Lösung dieser Probleme wurde das Python-Programm ar2clipse entwickelt, das
die Einstellungen eines Eclipse-Projekts anpasst, Dateien durch symbolische Ver-
knüpfungen einbindet und ein Minimum an Quelltext generiert.

3.3.3.1. Funktionsweise

Das Kommandozeilenprogramm setzt ein mit dem AVR Eclipse Plug-in erzeugtes
Eclipse CDT -Projekt mit einigen manuell vorgenommenen Grundeinstellungen vor-
aus und modifiziert dieses dann so, dass der ArduCopter-Code bearbeitet und kom-
piliert werden kann. Eingestellt werden müssen zum alleinigen Bearbeiten lediglich
der AVR-Prozessortyp des APM und einige wenige Makros mit vom Quelltext ver-
wendeten Konstanten. Soll der Code auch kompiliert werden, so müssen zusätzlich
noch die Compiler- und Linkerparameter angegeben werden. Nach dieser Konfigu-
ration führt das Skript bei jedem Aufruf die im Folgenden beschriebenen Schritte
aus, um das Projekt anzupassen:

• Um die große C++-Datei zu erhalten, die aus den zusammengefügten Arduino-
Sketch-Dateien und Funktionsprototypen besteht, wird der make-Prozess des
ArduCopter-Projekts angestoßen.

• Alle Bibliotheksunterverzeichnisse des ArduCopter-Projekts werden dem Eclipse-
Projekt durch symbolische Verknüpfungen auf Dateisystemebene hinzugefügt.

• Genauso werden alle Sketch-Dateien verknüpft.

• In der großen C++-Datei wird der Inhalt sämtlicher Sketch-Dateien durch
#include-Direktiven der entsprechenden Verknüpfungen auf diese Dateien er-
setzt. Dies ist der einzige generierte Code, der dem Eclipse-Projekt hinzugefügt
wird.

• Nun werden die Projekteinstellungen bearbeitet, indem alle verwendeten Bi-
bliotheksverzeichnisse zu den Suchpfaden hinzugefügt werden.

• Außerdem werden die nicht verwendeten Bibliotheken und eventuelle Code-
Beispiele der Bibliotheken in den Projekteinstellungen exkludiert.
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Bearbeitung der Eclipse-Projekteinstellungen Die Einstellungen eines Eclipse
CDT -Projekts werden in der XML-Datei .cproject im Projektverzeichnis festge-
halten. Zum Bearbeiten wird das Python-Modul xml.etree.ElementTree verwen-
det, mit dem auf die Elemente der Baumstruktur des Dokuments zugegriffen werden
kann. Dabei wurden für die wichtigsten Knoten, auf denen mehrere Operationen nö-
tig sind, Python-Klassen zur Abstraktion verwendet, die die zahlreichen Funktionen
kapseln.

Ein Projekt kann über mehrere Konfigurationen (<cconfiguration>) wie etwa Debug
oder Release verfügen, die die Einstellungen für unterschiedliche Erstellungsprozesse
verwalten. Eine Konfigurationen verfügt wiederum über Toolchains (<toolChain>),
die jeweils die einzelnen Werkzeuge (<tool>) wie Compiler, Linker und Assembler
für einen bestimmten Erstellungsprozess bestimmen.

Um die Suchpfade wie in Abschnitt 3.3.3.1 auf Seite 40 beschriebenen anzupassen,
wird bei jeder Konfigurationen des manuell erstellen Projekts in der AVR-GCC Toolchain
in den Werkzeugen AVR Assembler, AVR Compiler und AVR C++ Compiler der Kno-
ten <option name="includePath"> entsprechend modifiziert oder auch erstellt, soll-
te er nicht bereits existieren. Die zu exkludierenden Verzeichnisse werden hingegen
direkt in den Konfigurationen als Kind des <sourceEntries> Knotens angegeben:
<entry excluding="..."/>.

3.3.4. Bordsoftware

Nachdem in den vorangegangenen Unterabschnitten 3.3.1, 3.3.2 und 3.3.3 verwen-
dete, erweiterte und eigens entwickelte Werkzeuge vorgestellt wurden, befasst sich
dieser Unterabschnitt nun mit der Implementierung der Bordsoftware des Neuro-
copters, die versucht, die in Abschnitt 1.2.2 auf Seite 5 gestellten Anforderungen
umzusetzen. Dabei geht es in erster Linie um die Bereitstellung eines Frameworks,
das den Zugriff auf die Sensordaten des Flugcontrollers ermöglicht und die Kom-
munikation mit der Bodenstation regelt, um so eine Umgebung zur Durchführung
und Beobachtung von Experimenten rund um die Erforschung von Honigbienen zu
schaffen.

Als Basis der Bordsoftware wird das Berlin United Framework (vgl. Abschnitt 3.3.2
auf Seite 37) mit zwei Modulmanagern verwendet. Einer davon dient der Verarbei-
tung von Kamerabildern und stößt die Ausführung seiner Module beim Eintreffen
eines neuen Bildes an. Der andere Modulmanager ist hingegen zeitlich gesteuert
und dient der Verarbeitung sämtlicher MAVLink-Pakete. Diese werden kontinuier-
lich von einem im Hintergrund laufenden Service empfangen und bis zur Ausführung
der Module in einem Puffer zwischengespeichert.
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3.3.4.1. Datenaustausch zwischen den Modulmanagern

Da die beiden Modulmanager nebenläufig ausgeführt werden, ist ein direkter Zu-
griff auf die Repräsentationen des Blackboards des jeweils anderen Managers ohne
Synchronisationsmechanismen nicht möglich. Dies kann jedoch nötig sein, wenn bei-
spielsweise zur Bildverarbeitung die Lage des Copters herangezogen werden soll. Um
den Zugriff dennoch zu ermöglichen, wird jedem Manager hierfür ein weiteres Mo-
dul hinzugefügt und mit dem Berlin United Framework ein neues Event registriert,
das zu deren Kommunikation verwendet wird. Dabei löst das Modul im MAVLink-
Modulmanager das Event aus, das einen Zeiger auf die benötigten Daten enthält
und synchron verarbeitet wird. Um darauf reagieren zu können, implementiert das
Modul im anderen Manager eine zusätzliche Schnittstelle. In deren Rückruffunktion
(callback function) werden die Daten dann kopiert und vorerst im Modul zwischen-
gespeichert, um anschließend bei seiner nächsten Ausführung in die von ihm be-
reitgestellte Repräsentation kopiert zu werden, auf die die anderen Module regulär
zugreifen können.

3.3.4.2. Manipulation verschiedener Daten von MAVLink-Geräten

Viele Operationen müssen für alle angeschlossenen, per MAVLink kommunizieren-
den Geräte gleichermaßen ausgeführt werden. Um Codeduplikate zu minimieren
und das Entfernen oder Hinzufügen eines neuen Geräts so einfach wie möglich zu
gestalten, wurde die template-basierte Struktur device_data konzipiert, die mehrere
Instanzen einer Klasse enthält und beliebige Operationen darauf ausführen kann:
template < typename T>
struct device_data {

T gnd;
struct copter_t {

T apm;
T px4flow ;
template < typename F, typename ... U>
void exec(const F &f, U&... u);

} copter ;
template < typename F, typename ... U>
void exec(const F &f, U&... u);

}

Derzeit sind Verbindungen mit einer Bodenstation (gnd) und auf dem Copter selbst
mit dem Flugcontroller (apm) und einem Sensor zur Bestimmung des optischen Flus-
ses (px4flow) vorgesehen. Um eine Operation für jedes dieser drei Geräte auszu-
führen, wird die Methode exec verwendet, die als Parameter einen Funktor und
beliebig viele device_data-Objekte erhält. Der Funktor wird dann für jedes der
drei MAVLink-Geräte mit dem Gerät selbst und den entsprechenden Feldern aus
den weiteren Parametern aufgerufen. Für die Bodenstation wird dementsprechend
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f(this->gnd, u.gnd...); ausgeführt. Sollte eine Operation nur für die Geräte auf
dem Copter ausgeführt werden, kann die Methode exec des geschachtelten Objekts
copter_t verwendet werden.

3.3.4.3. MAVLink-Service

Der MAVLink-Service läuft im Hintergrund und empfängt kontinuierlich die Nach-
richten aller angeschlossenen MAVLink-Geräten.

Abstraktion des Übertragungskanals Da MAVLink-Pakete über beliebige Kanä-
le wie serielle Schnittstellen oder TCP-Verbindungen übertragen werden können,
wurde die abstrakte Klasse abstract_read_write mit Schnittstellen zum Lesen und
Schreiben verwendet, von der die konkreten Implementierungen erben, um die ver-
schiedenen Übertragungsmöglichkeiten zu abstrahieren. Diese Struktur wird in Ab-
bildung 3.12 in vereinfachter Weise dargestellt.

Abbildung 3.12.: Klassendiagramm der abstrahierten Übertragungsmöglichkeiten
Zur Abstraktion der Übertragung von MAVLink-Paketen wird von der abstrakten Klasse
abstract_read_write geerbt, so dass TCP-Verbindungen (tcp_server und tcp_client), UDP-
Übertragungen (udp_connection) und serielle Schnittstellen (terminal) gleichermaßen genutzt wer-
den können. Die Klasse dummy kann als Platzhalter verwendet werden, wenn keine Verbindung
verwendet werden soll.

Senden und Empfangen von MAVLink-Paketen In Abschnitt 3.3.1.1 auf Seite 32
wurde bereits erläutert, dass zum Senden und Empfangen von MAVLink-Paketen
den entsprechenden Funktionen eine Kanalnummer übergeben werden muss, mit der
auf Variablen wie die aktuelle Sequenznummer oder den Parsezustand des Kanals
zugegriffen wird. Diese Funktionalität wurde in der Klasse mavlink_send_reveive
abstrahiert, die ein abstract_read_write-Objekt kapselt und so mit einer festgeleg-
ten Kanalnummer Funktionen zum Senden und Empfangen bereitstellt. Zum Senden
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wird eine template-basierte Methode verwendet, die auf die automatisch generier-
ten Sendefunktionen zurückgreift (vgl. Abschnitt 3.3.1.2 auf Seite 35). Beim Parsen
einer eingehenden Nachricht müssen die Daten solange byteweise einer MAVLink-
Funktion übergeben werden, bis ein vollständiges Paket erkannt wurde. Dies ist
durch eine Schleife realisiert worden, die vom abstract_read_write-Objekt liest.
Da die Methode zum Empfangen folglich solange blockiert, bis eine komplette Nach-
richt erhalten wurde, wird dieser Vorgang nebenläufig ausgeführt. Dies geschieht in
der Klasse mavlink_channel, die intern das zuvor beschriebene mavlink_send_reveive-
Objekt verwendet. Die erhaltenen Nachrichten werden zusammen mit ihrem Emp-
fangszeitpunkt solange in einem std::vector zwischenspeichert, bis sie über die Me-
thode std::vector<timestamped_mavlink_message_t> get_received_messages() ab-
geholt werden. Über eine im Berlin United Framework registrierte Debug-Option
können die erhaltenen Nachrichtentypen optional angezeigt werden. Außerdem stellt
die Klasse eine Methode zur Verfügung, die überprüft, ob sich unter den aktuell er-
haltenen Nachrichten ein Heartbeat-Paket befindet. Dies kann verwendet werden,
um zu warten, bis ein Gerät betriebsbereit ist. Zu sendende Nachrichten werden
direkt an das mavlink_send_reveive-Objekt weitergereicht.

Der eigentliche Service Durch die Kapselung der gesamten benötigten Funktiona-
lität (vgl. Abschnitt 3.3.4.3 auf Seite 43) besteht die eigentliche Aufgabe des Dienstes
mavlink_communication nur noch in der Erzeugung von mavlink_channel-Objekten
für die verbundenen Geräte. Zur Verwaltung der verschiedenen Verbindungen wird
ein device_data<std::unique_ptr<mavlink_channel>>-Objekt verwendet (vgl. Ab-
schnitt 3.3.4.2 auf Seite 42).
Um die Verbindungsarten der einzelnen Geräte frei konfigurieren zu können, wur-
de für jeden Verbindungstyp eine Klasse konzipiert, die im Berlin United Frame-
work entsprechende Konfigurationsparameter (vgl. Abschnitt 3.3.2.2 auf Seite 38)
in einer Sektion einträgt. Diese Klassen werden wiederum in der Klasse connection
zusammengefasst, die zusätzlich einen Konfigurationsparameter für den verwende-
ten Verbindungstyp enthält. Anhand dessen kann dann die entsprechende Klasse
instanziiert und über die gemeinsame Schnittstelle abstract_read_write zurückge-
geben werden.
Da diese Verbindungsoptionen für jedes der MAVLink-Geräte benötigt werden, wird
auf die template-basierte Struktur device_data<connection> zur Zusammenfassung
zurückgegriffen.

3.3.4.4. Bereitstellung empfangener MAVLink-Pakete

Für den Zugriff auf die Sensordaten und andere Statusinformationen des Flugcon-
trollers ist die MAVLink-Kommunikation die zentrale Komponente. Daher müssen
die mithilfe des MAVLink-Services (vgl. Abschnitt 3.3.4.3 auf Seite 43) empfangenen
Nachrichten allen Modulen in geeigneter Form zur Verfügung gestellt werden.
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Repräsentation Die Repräsentation verwaltet alle MAVLink-Nachrichten, die seit
der letzten Ausführung des Modul-Managers empfangen wurden. Dabei wird wie-
der auf die template-basierte Struktur device_data zurückgegriffen, die für jedes
MAVLink-Gerät ein eigenes mavlink_message_container-Objekt enthält, das nun
näher erläutert wird. Zum einen enthält es die vom MAVLink-Service erzeugte Liste
(std::vector<timestamped_mavlink_message_t>), in der sich die Nachrichten zeit-
lich sortiert zusammen mit ihren Empfangszeitstempeln befinden. Außerdem wird
ein assoziatives Datenfeld (std::map) angelegt, in dem die Nachrichten nach ihren
IDs abgelegt werden. Die gespeicherten Werte setzen sich dabei aus je zwei Listen
(std::vector) zusammen. Eine davon referenziert lediglich die kodierten Nachrich-
ten in der Liste aller Nachrichten, während die andere die dekodierten Nachrichten,
wie etwa das mavlink_heartbeat_t-Paket, enthält. Hierbei wird die Lazy Evalua-
tion-Auswertungsstrategie verfolgt: Die Dekodierung wird bis zum ersten Zugriff auf
die Liste verzögert, die bis dahin leer ist. Dieser Vorgang findet in einer template-
basierten Methode statt, die den korrekten Rückgabetyp hat, so dass das Typsystem
von C++ beim Zugriff nicht untergraben werden muss. Dies wird nur innerhalb der
Methode mit einem einzigen static_cast getan, um die Listen verschiedener Typen
zusammen in dem assoziativen Datenfeld speichern zu können.
Durch die Lazy Evaluation-Auswertungsstrategie ist es außerdem ohne zusätzlichen
Aufwand möglich festzustellen, für welche MAVLink-Pakettypen auf die dekodierten
Nachrichten zugegriffen wurde. Dafür müssen nur die Längen der beiden Listen des
Pakettyps im Datenfeld verglichen werden. Dadurch ist es beispielsweise möglich
auf einfache Weise festzustellen, ob ein angeschlossenes MAVLink-Gerät etwa nach
einem Softwareupdate neue Nachrichtentypen versendet.

Modul Das Modul zur Bereitstellung der empfangenen Nachrichten kann nun we-
gen der Verwendung der Struktur device_data sowohl im MAVLink-Service als auch
in der Repräsentation auf deren Methode exec zugreifen, um die Nachrichten aller
MAVLink-Geräte zu aktualisieren:
this -> getreceived_mavlink_messages (). exec(

[]( mavlink_message_container &lhs ,
std :: unique_ptr < mavlink_channel > &rhs)

{ lhs. update (* rhs ); },
services . getMavlink_communication (). get_channels ()

);

Dabei wird die Methode update jedes mavlink_message_container-Objekts mit dem
entsprechenden mavlink_channel-Objekt aufgerufen.

3.3.4.5. Weitere MAVLink-Module und Repräsentationen

Betriebsbereitschaft (Heartbeat) Das beispielhaft schon oft herangezogeneHeart-
beat-Paket signalisiert die Betriebsbereitschaft eines MAVLink-Geräts. Die Boden-

45



Kapitel 3 Implementierung

stationssoftware APM Planner (vgl. Abschnitt 2.2.3 auf Seite 14) fügt beispielsweise
ein Gerät automatisch zur Ansicht hinzu, sobald ein Heartbeat-Paket von ihm emp-
fangen wurde. Sollte es dann wieder für eine bestimmte Zeitspanne ausbleiben, wird
dies signalisiert.
Zum Senden dieser Pakete wird ein Modul verwendet, das auf die Repräsentation
der empfangenen Nachrichten des Flugcontrollers zugreift und jeweils das aktuellste
Heartbeat-Paket an die Bodenstation weiterleitet.

Data Streams Ein MAVLink-Data-Stream (vgl. Abschnitt 3.3.1.1 auf Seite 35)
setzt sich mehreren Pakettypen zusammen, die kontinuierlich gesendet werden. Für
einige Streams sind die enthalten Pakete zwar spezifiziert, bei anderen werden sie
aber frei von der Implementierung des Flugcontrollers bestimmt [118]. An dieser
Stelle wurden die Typen mangels Dokumentation per Codeanalyse mit ar2clipse be-
stimmt, wobei sich herausstellte, dass auch die eigentlich vorgegebenen Typen von
der Spezifikation abweichen. Dabei fiel außerdem auf, dass der Wert zur Bestimmung
der Senderate im mavlink_request_data_stream_t-Paket vom ArduCopter-Code an-
ders als erwartet interpretiert wird. Die Dokumentation des req_message_rate ge-
nannten Parameters besagt, dass er das Intervall zwischen zwei Übertragungen an-
gibt: „The requested interval between two messages of this type“ [119]. Stattdessen
wird der Wert vom ArduCopter-Code aber als Frequenz in Hertz interpretiert.
Um den Zugriff auf die Pakete typsicher zu gestalten, wurde für die Implementierung
der Repräsentation zur Zusammenfassung der Typen eines Streams das Klassen-
Template std::tuple gewählt, das eine feste Anzahl verschiedener Typen zusam-
menlegt. Für den Strom einer einzelnen Nachricht wird die template-basierte Klasse
template<typename TYPE> class message_stream verwendet. Diese kann aus einem
mavlink_message_container-Objekt, der Repräsentation der erhaltenen MAVLink-
Pakete (vgl. Abschnitt 3.3.4.4 auf Seite 44), die Liste der entsprechenden Pakete
auswählen und daraus die durchschnittliche Nachrichtenrate bestimmen. Außerdem
können diese Pakete über ein mavlink_channel-Objekt, das das Senden und Emp-
fangen von Nachrichten kapselt (vgl. Abschnitt 3.3.4.3 auf Seite 43), weitergeleitet
werden.

Auflistung 3.3: Datenstrom aus mehreren MAVLink-Pakettypen
typedef data_stream <

MAV_DATA_STREAM_RAW_SENSORS ,
mavlink_raw_imu_t ,
mavlink_scaled_pressure_t ,
mavlink_sensor_offsets_t

> apm_mavlink_data_stream_raw_sensors ;

Die einzelnen Nachrichtenströme werden nun mit dem Klassen-Template
template<enum MAV_DATA_STREAM ID, typename... TYPES> class data_stream un-
ter Verwendung des bereits erwähnten Klassen-Templates std::tuple zu einem Da-
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tenstrom zusammengefasst. Auflistung 3.3 zeigt dies exemplarisch für einen Daten-
strom. Hier werden außerdem die gewünschte Datenrate und der Aktivierungszu-
stand des Streams gespeichert. Über Objektmethoden kann die Frequenz geändert
und abgefragt werden. Dabei stehen Minimum, Maximum und Durchschnitt der
einzelnen Nachrichtenströme zur Verfügung. Um die Methoden der einzelnen Nach-
richtenströme zum Weiterleiten und Ermitteln der Rate sinnvoll nutzen zu können,
werden hierfür Funktionen bereitgestellt, die auf jedem Element des intern verwen-
deten std::tuple-Objekts arbeiten. Für den Zugriff auf die einzelnen Tupelelemente
anhand ihres Typs wird eine zur Kompilierzeit auswertbare Funktion verwendet, die
den entsprechenden Index bestimmt, über den dann auf den Tupel zugegriffen wer-
den kann:

template < typename T>
constexpr std :: size_t get_index_of () {

return 0;
}
template < typename T, typename HEAD , typename ... TAIL >
constexpr std :: size_t get_index_of () {

return std :: is_same <T, HEAD >:: value
? 0
: 1 + get_index_of <T, TAIL ... >();

}

Dabei werden die Template-Parameter HEAD, TAIL... rekursiv bis zum ersten Auf-
treffen des Typen T durchsucht, dessen Index dann zurückgegeben wird.

Sämtliche Data Streams werden mit einem weiteren variadischen Klassen-Template
zusammenfasst. Dadurch kann eine Operation gemeinsam auf allen Datenströmen
ausgeführt werden, die diese wiederum an all ihren Nachrichtenströmen vornehmen.
Auf diese Weise können die Datenraten aktualisiert, Stream-Anforderungen bear-
beitet und entsprechende Pakete weitergeleitet werden.

Durch diese aufwändige Repräsentation beschränken sich die Aufgaben des Data-
Stream-Moduls lediglich auf den Aufruf von Methoden, denen andere Repräsenta-
tionen übergeben werden, so dass etwa auf die erhaltenen MAVLink-Nachrichten
zugegriffen werden kann. Auf diese Weise werden Datenströme aktiviert, deren Rate
geändert und Anfragen der Bodenstation beantwortet.

Parameterprotokoll UmKonfigurationsparameter des mit dem Bordcomputer ver-
bundenen Flugcontrollers von der Bodenstation aus auslesen zu können, wurde das
MAVLink-Parameterprotokoll (vgl. Abschnitt 3.3.1.1 auf Seite 34) implementiert.
Alternativ wäre es auch möglich gewesen, sämtliche Pakete des Protokolls direkt an
den Flugcontroller weiterzuleiten. Dieser Ansatz wurde jedoch nicht gewählt, da es
so beispielsweise möglich wäre, Einstellungen im Flugcontroller vorzunehmen, die
den Anforderungen von Modulen der Bordsoftware widersprechen. So ist es etwa
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möglich, Datenströme abzuschalten, da deren Datenrate direkt über einen Konfigu-
rationsparameter zugänglich ist. Außerdem ist die Implementierung ohnehin nötig,
sobald die Bordsoftware Parameter lesen oder sogar schreiben soll.
Die vorgenommene Implementierung fordert die Parameter aller MAVLink-Geräte
an und speichert sie mit der Struktur device_data in entsprechenden param_map-
Repräsentationen. Anfragen der Bodenstation werden dann mit diesen gepuffer-
ten Werten beantwortet, so dass die MAVLink-Geräte entlastet werden. Die Klasse
param_map legt die Parameter in einem assoziativen Datenfeld (std::map) ab, so dass
sie über ihren Namen zugänglich sind. Zusätzlich wird eine Liste (std::vector) mit
Zeigern auf diese Werte verwaltet, so dass auch ein Zugriff über den Index möglich
ist.

Abbildung 3.13.: Zustandsdiagramm zur Anforderung der Parameter
Dieses Zustandsdiagramm zeigt den allgemeinen Ablauf zur Anforderung der Parameterliste eines
MAVLink-Geräts. Solange noch nicht alle Parameter erhalten wurden, werden alle oder einzelne
fehlende angefordert.

Das vom Manager regelmäßig ausgeführte Parameterprotokollmodul fordert über
entsprechende Methoden der Repräsentation zuerst alle Parameter an. Über Time-
outs geregelt werden solange entweder erneut alle oder einzelne fehlende Parameter
angefordert, bis die gesamte Liste erhalten wurde. Dies wird im zugehörigen Zu-
standsdiagramm in Abbildung 3.13 veranschaulicht. Außerdem behandelt das Modul
die Parameteranfragen der Bodenstation, sobald sämtliche Parameter des Flugcon-
trollers verfügbar sind. Dabei wird sowohl auf einzelne namentlich oder per Index
angefragte Parameter als auch auf die Anforderung der gesamten Liste reagiert.
Letztere wird nicht auf einmal, sondern parameterweise mit jeder Ausführung des
Moduls übertragen, um dessen Ausführungszeit konstant zu halten.
Um sicherzustellen, dass das Modul die Parameter gemäß der Implementierung des
ArduCopter-Codes anfragt, wurde dieser unter Zuhilfenahme von ar2clipse analy-
siert. Dabei zeigte sich, dass das Feld param_value des zur Übertragung genutzten
mavlink_param_value_t-Pakets nicht der Dokumentation entsprechend genutzt wird.
Eigentlich sollten die vier Byte des float-Werts dem Feld param_type entsprechend
interpretiert werden, da sie auch zur Übertragung von Nicht-Fließkommazahlen ge-
nutzt werden. Stattdessen wird der zu übertragende Wert in eine Fließkommazahl
konvertiert, wodurch er sich ändern und an Genauigkeit verlieren kann. Dies spielt
im Allgemeinen keine große Rolle, da die meisten übertragenen ganzzahligen Wer-
te eher klein sind und somit verlustfrei in eine Fließkommazahl und wieder zurück
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konvertiert werden können. Dennoch muss diese vom Protokoll abweichende Art der
Übertragung der Gegenseite bekannt sein, da sonst falsche Werte gesendet werden
würden. Aus diesem Grund stellte sich ArduCopter auch als inkompatibel zur Bo-
denstation QGroundControl (vgl. Abschnitt 2.2.3 auf Seite 14) heraus, da diese das
Protokoll gemäß der Spezifikation implementiert.

3.3.5. Bodenstation

Als Bodenstationssoftware werden die MAVLink-Bodenstation APM Planner (siehe
Abschnitt 2.2.3 auf Seite 14) und FUremote des Berlin United Frameworks (siehe
Abschnitt 3.3.2.3 auf Seite 39) zusammen eingesetzt. APM Planner eignet sich gut
zur Anzeige der weitergeleiteten Parameter und Datenströme des Flugcontrollers
und zur Konfiguration des Copters, da es über die reine MAVLink-Kommunikation
hinaus speziell auf den ArduCopter-Code abgestimmt ist und eigene Menüs für
die einzelnen Konfigurationsoptionen bietet. Außerdem wurde die von der Spezi-
fikation abweichende Implementierung einiger MAVLink-Protokollbestandteile des
ArduCopter-Codes in APM Planner gleichermaßen umgesetzt, so dass keine Kompa-
tibilitätsprobleme wie mit anderen Bodenstationen bestehen (vgl. Abschnitt 3.3.4.5
auf Seite 47).

Modulspezifische Einstellungen und Datenübertragungen werden hingegen geson-
dert mit FUremote vorgenommen, da eine Integration der beiden Programme sehr
aufwändig erscheint und keine erheblichen Vorteile birgt.

3.3.6. Konfiguration von Flugrouten und Verhalten

Um eine bessere Reproduzierbarkeit der Experimente zu gewährleisten, wurde ge-
fordert, dass der Neurocopter die Möglichkeit bietet, vorkonfigurierte Routen abzu-
fliegen und dabei an festgelegten Punkten bestimmte Aktionen ausführt (vgl. Ab-
schnitt 1.2.2 auf Seite 5). Zur Planung der Routen wird die Bodenstationssoftware
APM Planner verwendet (vgl. Abschnitt 3.3.5), die über das MAVLink-Waypoint-
Protokoll (vgl. Abschnitt 3.3.1.1 auf Seite 34) mit dem Flugcontroller kommuniziert
und so eine Liste von Wegpunkten überträgt. Einfache Aktionen wie Flugmanö-
ver und die Ausrichtung des Gimbals können dabei zusammen mit den Punkten
in der Bodenstation konfiguriert werden. Darüber hinausgehendes Verhalten kann
realisiert werden, indem das experimentspezifische Modul (vgl. Abschnitt 3.3.2.1
auf Seite 37) das Erreichen eines Wegpunkts durch den Empfang der entsprechen-
den mavlink_mission_item_reached_t-Nachricht vom Flugcontroller erkennt (vgl.
Abschnitt 3.3.1.1 auf Seite 34) und dann die gewünschte Funktionalität ausführt.
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3.4. Zusammenfassung

In diesem Kapitel wurden die Konstruktion des Neurocopters, die Auswahl von Flug-
controller und Bordcomputer und die Entwicklung der Bordsoftware beschrieben.

Hardware Der als Quadcopter konzipierte Rahmen wurde vollständig aus CFK-
Rohren und -Platten und Aluminium-Dreh- und -Frästeilen konstruiert. Dadurch ist
ein sehr robuster und dennoch leichter Rahmen entstanden, der die Bordelektronik
zur Steuerung des Copters und Durchführung von Experimenten auf einer gedämpf-
ten Plattform trägt. Als Flugcontroller wurde das APM 2.5 ausgewählt, das mit
dem Bordcomputer ODROID-U3 verbunden ist, der über ein zusätzliches Funkmo-
dul zur Kommunikation mit einer Bodenstation verfügt. Für den Antrieb wurden
kostengünstige Propeller, Motoren, Motorregler und Akkus aus dem Modellbau ver-
wendet.

Software Die entwickelte Bordsoftware stellt ein Framework zur Verfügung, mit
dem Softwaremodule ausgeführt und auf die Kamera und Sensordaten des Flug-
controllers zugegriffen werden können. Zur Verwaltung und Ausführung der Module
wird das Berlin United Framework verwendet. Der zentrale Bestandteil der ent-
wickelten Software ist die Kommunikation über das MAVLink-Protokoll, das von
Flugcontroller und Bodenstation zur Datenübertragung verwendet wird. Vom Flug-
controller werden dabei Sensordaten und Konfigurationsparameter angefordert, so
dass sie den Modulen zur Verfügung gestellt oder an die Bodenstation weitergesendet
werden können. Zur Umsetzung wurden dabei mit dem Berlin United Framework
Module zur Anforderung und Aufbereitung der Daten und Repräsentationen für
deren Bereitstellung entwickelt. Zur teilweise nötigen Analyse des Flugcontroller-
quelltexts wurde das eigens entwickelte Werkzeug ar2clipse verwendet, durch das es
möglich wurde, die semantische Quelltextanalyse der IDE Eclipse zu verwenden.
Die Bodenstation zur Visualisierung der Flugdaten und des Experimentierverlaufs
setzt sich aus zwei getrennten Komponenten zusammen. Zum einen wird die Boden-
stationssoftware APM Planner des Flugcontrollers und zum anderen das Konfigu-
rationswerkzeug FUremote des Berlin United Frameworks verwendet.
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Nachdem im vorherigen Kapitel die Konstruktion des Neurocopters unter Verwen-
dung von Modellbaukomponenten und die Implementierung der Bordsoftware auf
Basis des Berlin United Frameworks beschrieben wurde, befasst sich dieses nun mit
der Evaluierung des Systems.

4.1. Copter

Für den Neurocopter wurde ein Rahmen konstruiert, da die erhältlichen Modelle un-
nötig schwer erscheinen, einen ungünstigen Schwerpunkt besitzen und im Bereich der
Elektronikplattform nicht unverändert für dieses Projekt verwendet werden können,
da angepasste Befestigungsmöglichkeiten für den Flugcontroller und zusätzlichen
Bordrechner geschaffen werden müssten. Zudem verfügt keiner der Rahmen über
eine Vibrationsdämpfung der Bordelektronik.

4.1.1. Rahmen

Der entwickelte Copter wird von vier 304mm großen Propellern angetrieben. Ver-
fügbare Rahmen, die ähnliche Rotorgrößen zulassen, weisen ein Gewicht von 418 g
bis 598 g auf (vgl. Tabelle 2.2 auf Seite 19). Damit ist die 343 g schwere Konstruk-
tion um 17,9% bis 42,6% leichter. Unter Berücksichtigung des Gewichts der 28 g
schweren gedämpften Elektronikplatte des Neurocopters, die in ähnlicher Weise für
die anderen Modelle ebenso hätte konstruiert werden müssen, vergrößert sich die
Gewichtsersparnis auf 23,1% bis 45,2%. Durch ein zusätzliches Kürzen der Arme
des Neurocopters auf die gleiche Länge der verglichenen Rahmen würde sich der
Vorteil auf 27,3% bis 49,7% erhöhen.

4.1.2. Plattformdämpfung

Die gesamte Bordelektronik des Copters ist auf einer gedämpften CFK-Platte ange-
bracht, um die empfindlichen Sensoren des Flugcontrollers von den Vibrationen der
Motoren zu entkoppeln, die diese auf den Rahmen übertragen (vgl. Abschnitt 3.2.3
auf Seite 28). Um die Wirksamkeit dieser Konstruktion zu überprüfen, wurden Sens-
ordaten im Schwebeflug mit und ohne Dämpfung mittels der Logging-Funktionalität
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des APM mit annähernd 50Hz aufgezeichnet. Dabei wurde zur Erhebung der un-
gedämpften Daten die Elektronikplattform direkt mit dem Rahmen verschraubt.
Die Ergebnisse dieser Messungen werden in Abbildung 4.1 gegenübergestellt. Der
deutlich stärkere Ausschlag in y-Richtung bei ungedämpfter Plattform ist auf de-
ren asymmetrischen Aufbau zurückzuführen. Dies wurde in einem zweiten Versuch
bestätigt, bei dem der Flugcontroller um 90◦ rotiert nun größeren Vibrationen in
x-Richtung ausgesetzt war. In der stärker gestörten y-Richtung führt die Plattform-
dämpfung zu einer Verringerung der Standardabweichung der Messwerte um den
Faktor 12,4, in x- und z-Richtung hingegen um 6,2 beziehungsweise 4,4.

(a) Elektronikplattform direkt mit dem Rahmen verbunden

(b) gedämpfte Elektronikplattform

Abbildung 4.1.: Beschleunigungssensordaten im Schwebeflug
Vergleich der Beschleunigungssensordaten im Schwebeflug mit ungedämpfter und gedämpfter Elek-
tronikplattform.

52
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4.2. Flugcontroller

Zur Steuerung des Copters kommt der Flugcontroller APM 2.5 zum Einsatz, dessen
Funktionsweise in diesem Abschnitt untersucht wird.

4.2.1. Position halten

Die Firmware des Flugcontrollers bietet einen Modus zum Halten der aktuellen
Postion. Dabei werden GPS- und andere Sensordaten zur Abschätzung der aktuellen
Position herangezogen, um ein Abdriften zu erkennen und dem entgegenzuwirken.
Dieser Unterabschnitt beschreibt die Auswertung des Systems.

4.2.1.1. GPS-Genauigkeit

Abbildung 4.2.: Positionsdaten eines unbewegten GPS-Empfängers
Zeitlich korrelierte Messwerte des mit dem APM verbundenen u-blox GPS-Moduls. Angegeben ist
die horizontale Abweichung der einzelnen Messwerte zu deren Mittelwert. Die Werte bewegen sich
dabei in Ost-West-Richtung in einem Bereich von 11,8m und in Nord-Süd-Richtung von 17,6m.
Dabei beträgt der mittlere Abstand zum Erwartungswert 3,6m und der maximale 13m.
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Da die Positionsbestimmung nicht allein durch Aufintegration der Accelerometer-
werte (vgl. Abschnitt 2.2.1 auf Seite 10) durchgeführt werden kann, müssen ver-
lässlichere absolute Positionsdaten in die Schätzung einbezogen werden. Die Genau-
igkeit des dazu verwendeten u-blox LEA-6 GPS-Moduls [29] wird hier anhand von
9700 Messwerten eines unbewegten Empfängers untersucht, die über einen Zeitraum
von 35 Minuten mit 4,5Hz aufgezeichnet wurden. Dafür wurde ein Modul für das
Berlin United Framework (vgl. Abschnitt 3.3.2.1 auf Seite 37) entwickelt, das den
entsprechenden MAVLink-Data-Stream (vgl. Abschnitt 3.3.1.1 auf Seite 35) vom
APM anfordert und in einer Logdatei des Bordrechners speichert. Dabei beträgt
die Auflösung der übermittelten Breitengrade immer etwa 1,1 cm, während die der
Längengrade ortsabhängig auch feiner sein kann. Die so bestimmten Werte werden
in Abbildung 4.2 auf Seite 53 visualisiert. Dazu ist die horizontale Abweichung der
einzelnen Messwerte vom Erwartungswert aufgetragen. Auffällig ist dabei die starke
zeitliche Korrelation der einzelnen Punkte, die in der systembedingten Art der ver-
schiedenen Fehlerquellen des GPS begründet ist [120]. Während der Abstand zweier
aufeinanderfolgender Messwerte maximal 14,5 cm und im Mittel 1,9 cm beträgt, ist
die Abweichung zum Erwartungswert mit maximal 13m und im Mittel 3,6m um
mehrere Größenordnungen höher. Daraus ergibt sich, dass die GPS-Daten mangels
ausreichender Genauigkeit nicht allein zur absoluten Positionsbestimmung heran-
gezogen werden können und mit anderen Werten in geeigneter Weise kombiniert
werden müssen.

4.2.1.2. Visuelle Positionsbestimmung

(a) Graustufenbild (b) Binärbild (c) Dilatation (d) Erosion

Abbildung 4.3.: Optische Positionsbestimmung des Copters
Zur Positionsbestimmung wurde der Copter mit einer nach oben gerichteten Kamera gefilmt
(Abb. 4.3a). In dem mit einem konstanten Schwellwert erzeugten Binärbild (Abb. 4.3b) werden
zunächst kleinere Löcher durch Dilatation geschlossen (Abb. 4.3c). Anschließend können die schlan-
ken Arme des Copters durch Erosion entfernt werden, so dass nur noch der Kern der Plattform
übrig bleibt (Abb. 4.3d). Dessen Schwerpunkt wird als Approximation für die Position des Copters
verwendet.

Um die Abweichung des fliegenden Copters von der zu haltenden Position zu be-
stimmen, wurde er im Schwebeflug in einer Höhe von 2,6m von einer auf dem Boden
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befindlichen nach oben gerichteten Kamera mit 30 Bildern pro Sekunde gefilmt. Aus
den Videodaten ließ sich dann die Position bildweise mittels einfacher Bildverarbei-
tungstechniken unter Verwendung der C++-Programmbibliothek OpenCV extrahie-
ren. Dieser Vorgang wird in Abbildung 4.3 auf Seite 54 anhand eines Einzelbildes
veranschaulicht. Die Auflösung der so bestimmten Positionsdaten ergibt sich aus der
Flughöhe des Copters und der Bildgröße der Kamera und beträgt etwa 1,7mm pro
Pixel. Der so ermittelte Positionsverlauf ist in Abbildung 4.4 visualisiert und zeigt,
dass sich der Copter in einem etwa 800mm × 740mm großen Bereich bewegt. Zwi-
schen zwei aufeinanderfolgenden Einzelbildern driftet der Copter dabei im Mittel
um 3mm und maximal um 9mm.

Abbildung 4.4.: Positionsdaten des schwebenden Copters
Gezeigt ist der horizontale Positionsverlauf des für 85 s auf der Stelle schwebenden Copters. Bei
einer mittleren Abweichung von 270mm vom Erwartungswert und einer maximalen von 479mm
bewegt er sich um 800mm in Ost-West-Richtung und um 740mm in Nord-Süd-Richtung.

4.2.1.3. Fazit

Unter Berücksichtigung der unterschiedlichen Aufnahmeraten der GPS-Positionsdaten
und der visuellen Positionsbestimmung des fliegenden Copters zeigt sich, dass der
Flugcontroller trotz zusätzlicher Sensoren wie Accelerometer und Gyroskop die Po-
sition nicht genauer halten kann, als es unter alleiniger Verwendung des GPS zu
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erwarten wäre. Dessen Werte unterscheiden sich pro Sekunde im Mittel um 8,8 cm,
die des fliegenden Copters um 8,7 cm.

4.2.2. Senderate der MAVLink-Datenströme

Die ArduCopter-Firmware des Flugcontrollers kann auf Anfrage verschiedene Daten-
ströme aus MAVLink-Paketen (vgl. Abschnitt 3.3.1.1 auf Seite 35) mit Sensordaten
und anderen Statusinformationen des Flugcontrollers über dessen serielle Schnitt-
stelle aussenden. Zur Analyse der Senderaten wurde ein Modul für das Berlin United
Framework (vgl. Abschnitt 3.3.2.1 auf Seite 37) geschrieben, das die Empfangszeit-
punkte der Pakete aufzeichnet. Das fürs Senden verantwortliche Codesegment der
ArduCopter-Firmware wird mit 50Hz ausgeführt und darf eine festgelegte maxima-
le Verarbeitungsdauer nicht überschreiten. Die zur Verfügung stehende Rechenzeit
wird dabei nicht gleichmäßig auf alle angeforderten Pakettypen verteilt. Stattdessen
arbeitet der Code die Nachrichten bei jeder Ausführung solange in einer festgeleg-
ten Reihenfolge ab, bis der Zeitschlitz aufgebraucht ist. Wegen der schwachen, mit
16MHz getakteten, 8-bit AVR ATmega2560 CPU [121] des APM 2.5, die es nicht
schafft, alle ausstehenden Pakete im aktuellen Zeitschlitz zu senden, und der Bevor-
zugung bestimmter Nachrichten kann es dazu kommen, dass andere überhaupt nicht
übertragen werden. Auch wird das zur Verfügung stehende Zeitfenster durch wei-
tere Faktoren beeinflusst: Während das Aktivieren der Logging-Funktion des APM
die Pakete nur um wenige Millisekunden verzögert und so die Senderate um 0,5Hz
verlangsamt, haben die Flugmodi des Copters einen größeren Einfluss. Werden alle
verfügbaren Streams mit 10Hz angefordert, so kann der sich nicht im Flugmodus
befindliche gesicherte Controller alle Pakete mit 8Hz senden. Ein Wechsel in den
Modus zur manuellen Steuerung verringert die mittlere Rate auf 6,2Hz, wobei die
niedrig priorisierten Nachrichten auf bis zu 4Hz abfallen.

4.3. Werkzeug: ar2clipse

Zur Codeanalyse der ArduCopter-Firmware wurde das Programm ar2clipse (vgl.
Abschnitt 3.3.3 auf Seite 39) entwickelt, um die semantische Analyse der Entwick-
lungsumgebung Eclipse nutzen zu können. Insbesondere bei der Implementierung
der MAVLink-Datenströme (vgl. Abschnitt 3.3.4.5 auf Seite 46) und des Parameter-
protokolls (vgl. Abschnitt 3.3.4.5 auf Seite 47) zeigte sich, wie nötig dieses Hilfsmittel
für eine korrekte Umsetzung ist.
Durch die fast ausschließliche Verwendung von Verknüpfungen zur Einbindung der
Quelltextdateien ins Eclipse-Projekt können die Originaldateien auch direkt aus der
Entwicklungsumgebung heraus bearbeitet werden. Da zur Organisation des Quell-
texts der Firmware die Versionsverwaltungssoftware Git verwendet wird, können
etwaige Korrekturen mit dieser direkt dem ArduCopter-Projekt zugänglich gemacht
werden.
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Der Python-Code zur Bearbeitung der Eclipse-Projektdatei ist nicht speziell für die-
sen Anwendungsfall entwickelt, sondern sehr allgemein gehalten, so dass sich weitere
Konfigurationsmöglichkeiten von Projektdateien leicht ergänzen lassen. So wäre es
beispielsweise möglich, die im derzeitigen Arbeitsablauf noch einmalig manuell vor-
genommenen Einstellungen ebenso zu automatisieren.

4.4. Bordsoftware

Die Bordsoftware des Neurocopters wurde auf Basis des Berlin United Frameworks
(vgl. Abschnitt 3.3.2 auf Seite 37) entwickelt. Das so geschaffene Programmiergerüst
soll einfache Zugriffsmöglichkeiten auf die Sensordaten des Flugcontrollers und die
Bordkamera des Copters bereitstellen sowie die Funkkommunikation zu einer Bo-
denstation ermöglichen. In diesem Abschnitt wird das so entstandene Framework
des Neurocopters evaluiert.

4.4.1. MAVLink

Der Großteil der entwickelten Software dient der MAVLink-Kommunikation des
Bordcomputers mit dem Flugcontroller und der Bodenstation sowie der Aufberei-
tung der empfangenen Pakete für die weitere Verwendung in Modulen der Bordsoft-
ware. Dieser Unterabschnitt befasst sich mit der Auswertung dieser Komponenten.

4.4.1.1. Codegenerierung

Auf dem C-Codegenerator der MAVLink-Bibliothek [122] aufbauend wird zur ein-
facheren Verwendung innerhalb der Bordsoftware automatisiert C++-Code zur Ver-
arbeitung der MAVLink-Pakete erzeugt (vgl. Abschnitt 3.3.1.2 auf Seite 35). Die
Erweiterung des bestehenden Generators wurde dabei minimalinvasiv gehandhabt,
um mögliche zukünftige Aktualisierungen des Generators so einfach wie möglich
zu gestalten: Es werden lediglich zwei aufeinanderfolgende Zeilen in einer Funktion
hinzugefügt, die den C++-Generator aufrufen.

Generierte Funktionen Die generierten überladenen und template-basierten Funk-
tionen zum Kodieren und Dekodieren von MAVLink-Nachrichten ermöglichen es,
generischen Code zur Verarbeitung der Pakete zu schreiben. Demonstriert wird dies
in der template-basierten Repräsentation mavlink_message_container zur Bereit-
stellung der empfangenen Pakete in dekodierter Form (vgl. Abschnitt 3.3.4.4 auf
Seite 44). Beide Funktionsklassen verwenden im Gegensatz zu den durch sie gekap-
selten C-Funktionen keine Ausgabeparameter, sondern nutzen den Rückgabewert
der Funktion. Auf diese Weise wird vermieden, dass für die Ausgabe uninitialisierte
Objekte erzeugt werden müssen, die erst durch die Übergabe an die Funktion in
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einen definierten Zustand versetzt werden. Der übersetzte Maschinencode ist dabei
trotz der Größe der zurückgegebenen Objekte nicht weniger effizient. Dies ist in
der für C++-Compiler als obligatorisch zu betrachtenden NRV-Optimierung (Named
Return Value optimization) [123] bedingt.

Aktualisierung Die Codegenerierung muss nach einer Aktualisierung der verwen-
deten MAVLink-Bibliothek einmalig ausgeführt werden. Anpassungen im bestehen-
den, die generierten Funktionen verwendenden Quelltext sind danach im Regelfall
nicht nötig. Ausnahmen bilden lediglich Änderungen in der Semantik bereits exis-
tierender MAVLink-Pakete, die nun neu interpretiert werden müssen. Ein Beispiel
hierfür ist das Hinzufügen eines neuen Pakets zu einem MAVLink-Datenstrom (vgl.
Abschnitt 3.3.1.1 auf Seite 35), das folglich bei dessen Verarbeitung berücksichtigt
werden muss. Dies wird in den Abschnitten 4.4.1.2 und 4.4.1.3 noch im Detail er-
läutert.

4.4.1.2. MAVLink-Kommunikation

Wie in Abschnitt 3.3.4.3 auf Seite 43 beschrieben, werden empfangene MAVLink-
Nachrichten optional über eine Debug-Option des Berlin United Frameworks ausge-
geben. Auf diese Weise konnte die Kommunikation mit anderen MAVLink-Geräten
wie dem Flugcontroller und der Bodenstation beobachtet und überprüft werden.
Änderungen im Kommunikationsverhalten des Flugcontrollers können schnell er-
kannt werden, da die Repräsentation zur Bereitstellung empfangener MAVLink-
Pakete die Nachrichtentypen auflisten kann, die nicht dekodiert worden sind (vgl.
Abschnitt 3.3.4.4 auf Seite 44). Dies gilt insbesondere für neu hinzugekommene Pake-
te, die dementsprechend noch nicht verarbeitet und somit angezeigt werden. Auf die-
se Weise wurde festgestellt, dass demMAVLink-Datenstrom MAV_DATA_STREAM_EXTRA3
der Pakettyp mavlink_rangefinder_t nachträglich in einer neueren Firmwareversion
hinzugefügt worden ist.

4.4.1.3. MAVLink-Datenströme

Zur Anforderung und Bereitstellung der MAVLink-Datenströme des Flugcontrollers
wurden eine template-basierte Repräsentation und ein entsprechendes Modul ent-
wickelt (vgl. Abschnitt 3.3.4.5 auf Seite 46). Das Hauptaugenmerk wurde dabei auf
eine möglichst einfache, nicht-redundante Konfiguration der Datenströme gelegt.

Erweiterbarkeit Die Konfiguration der Pakete eines Datenstroms findet an einer
einzigen Stelle im Quelltext statt. So muss etwa ein neu hinzugekommenes Paket
nur dort eingetragen werden und steht ohne weitere Anpassungen über die Re-
präsentation der Datenströme zur Verfügung. In Abschnitt 4.4.1.2 wurde bereits
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angedeutet, dass ein MAVLink-Datenstrom bei einem Softwareupdate des Flug-
controllers verändert wurde. Auflistung 4.1 zeigt die farblich hervorgehobene nö-
tige Anpassung in der Datenstromdefinition zur Auswertung des neu hinzugefügten
mavlink_rangefinder_t-Pakets.

Auflistung 4.1: Datenstrom-Anpassung für ein neues MAVLink-Paket
typedef data_stream <

MAV_DATA_STREAM_EXTRA3 ,
mavlink_ahrs_t ,
mavlink_hwstatus_t ,
mavlink_system_time_t ,
mavlink_rangefinder_t

> apm_mavlink_data_stream_extra3 ;

Funktionstest Zur Überprüfung der Funktionsweise des Moduls zur Anforderung
der Datenströme wurden gezielt Pakete verworfen. Auf diese Weise konnte sicher-
gestellt werden, dass Datenstromanforderungen an den Flugcontroller nach Ablauf
eines Timeouts erneut gesendet werden.

4.4.1.4. MAVLink-Parameterprotokoll

Für den lesenden Zugriff auf die Konfigurationsparameter des Flugcontrollers wurde
das MAVLink-Parameterprotokoll (vgl. Abschnitt 3.3.4.5 auf Seite 47) implemen-
tiert. Um die Funktionsweise gemäß des Zustandsdiagramms in Abbildung 3.13 auf
Seite 48 zu verifizieren, wurde der Quelltext zu Testzwecken durch Präprozessordi-
rektiven modifiziert. So werden zum einen die Zustandsübergänge durch Debug-
Ausgaben angezeigt, um Zustandswechsel nachvollziehen zu können. Um dabei auch
das Auslösen des Timeouts zur Neuanforderung einzelner Pakete testen zu können,
wurden einzelne Pakete vor der Verarbeitung durch das Modul mehrfach unter-
drückt. So wurde auch eine den Flugcontroller nicht erreichende Wiederanforderung
simuliert. Auf die Weise wurde die Korrektheit der Implementierung bestätigt.

Genauso wurden Parameteranfragen von der Bodenstation zurückgehalten oder nicht
beantwortet, um diesen Teil der Implementierung erfolgreich zu überprüfen.

4.4.2. Integration in das Berlin United Framework

Das Berlin United Framework (vgl. Abschnitt 3.3.2 auf Seite 37) wurde als Basis
der Neurocopter-Bordsoftware ausgewählt. Grund hierfür ist sein modularer Aufbau,
der Abhängigkeiten reduziert und viele nützliche Debug-Optionen beinhaltet, was
ein einfaches verteiltes Arbeiten begünstigt.
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Sämtliche bereitgestellten Funktionen der Bordsoftware wurden mit den Mitteln des
Frameworks entwickelt, so dass keinerlei Anpassungen nötig waren: Ein Service rea-
lisiert den Empfang aller eingehenden MAVLink-Nachrichten. Diese Daten werden
dann von Modulen verarbeitet und in Repräsentationen abgelegt. Die Bilder der
Bordkamera werden ebenfalls über eine Repräsentation verfügbar gemacht. Darauf
aufbauend können experimentspezifische Module entwickelt werden.

4.4.3. Wartbarkeit

Zur Versionsverwaltung des Neurocopter-Frameworks wird die Software Git verwen-
det. Dabei sind sowohl das Berlin United Framework (vgl. Abschnitt 3.3.2 auf Sei-
te 37) als auch die MAVLink-Bibliothek als Untermodule eingebunden und können
so auf einfache Weise durch die Ausführung entsprechender Skripte aktuell gehalten
werden. Anschließend muss lediglich wie bereits in Abschnitt 4.4.1.1 auf Seite 58 be-
schrieben der MAVLink-C++-Codegenerator ausgeführt werden, um die Funktionen
zur Verarbeitung der MAVLink-Pakete zu erzeugen.
Zusammenfassend ergibt sich also eine sehr einfach zu bedienende Integration der
externen Bibliotheken, so dass diese aktuell gehalten werden können, um etwa Feh-
lerkorrekturen und Erweiterungen zeitnah verwenden zu können.

4.4.3.1. Hinzufügen weiterer MAVLink-Geräte

Die derzeitige Bordsoftware sieht neben der Bodenstation zwei per MAVLink ange-
schlossene Geräte vor: Den Flugcontroller und den PX4Flow-Sensor zur Bestimmung
des optischen Flusses (vgl. Abbildung 2.7b auf Seite 12). Sollen weitere Geräte hin-
zugefügt werden, so reicht es, in der template-basierten Struktur device_data (vgl.
Abschnitt 3.3.4.2 auf Seite 42) einen Eintrag für sie anzulegen, um sämtliche imple-
mentierte Funktionen wie etwa den Empfang von MAVLink-Nachrichten und deren
Organisation in einer Repräsentation oder den Zugriff auf die mit dem Parameter-
protokoll empfangenen Parameter zu nutzen.
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Mit dem Neurocopter soll eine fliegende Experimentierplattform zur Erforschung
der Hirnaktivität von Honigbienen geschaffen werden. Der Quadcopter verfügt über
einen leistungsstarken Bordcomputer, der mit dem Flugcontroller und einer am Cop-
ter befindlichen Kamera verbunden ist. Über ein bereitgestelltes Framework kann
von der Bordsoftware auf die Sensordaten des Flugcontrollers und die Kamerabilder
zugegriffen werden. Außerdem stellt es einen Übertragungskanal zu einer Bodensta-
tionssoftware bereit, mit der die Empfangenen Daten während des Fluges visualisiert
und Experimente gesteuert werden können. Das entwickelte System wird im Folgen-
den diskutiert.

5.1. Flugcontroller

Als Flugcontroller kommt das APM 2.5 mit der ArduCopter Firmware zum Ein-
satz (vgl. Abschnitt 3.1.2 auf Seite 23). Es wurde aus Kostengründen trotz seiner
schwachen 8-bit CPU mit 16MHz wegen der sonst vergleichbaren Eigenschaften dem
leistungsstärkeren PX4FMU vorgezogen. So kann es etwa vorprogrammierte Routen
aus Wegpunkten abfliegen, ein Gimbal ansteuern und seine Sensordaten über eine
serielle Schnittstelle zur Verfügung stellen.

5.1.1. Position halten

Bei der Überprüfung des Flugmodus zum Halten der aktuellen Position stellte sich
heraus, dass der Flugcontroller trotz zusätzlicher Sensoren keine Verbesserung der
Genauigkeit gegenüber der reinen GPS-Daten erzielen kann (vgl. Abschnitt 4.2.1.3
auf Seite 55). Selbst in einem kleinen Zeitfenster von 85 s weicht der Copter im Mit-
tel um 27 cm und maximal um fast 50 cm von der zu haltenden Position ab. Dies
genügt nicht der Präzision einer Biene, die das nur wenige Zentimeter große Flugloch
des Bienenstocks zielsicher anfliegen kann. Inwiefern sich die Ungenauigkeit auf Ex-
perimente auswirkt, bei denen etwa Routen mit bekannten Landmarken abgeflogen
werden sollen, lässt sich derzeitig jedoch nicht beurteilen.
Bei der anschließenden Codeanalyse des ArduCopter-Quelltexts mittels ar2clipse
(vgl. Abschnitt 3.3.3 auf Seite 39) zeigte sich, dass Techniken zur Verbesserung der
Positionsschätzung wie der erweiterte Kalman-Filter (EKF) zwar im Code vorhan-
den sind, jedoch leistungsschwachen Flugcontrollern wie dem verwendeten APM 2.5
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nicht zur Verfügung stehen und erst mit Prozessoren ab einer Taktrate von 150MHz
genutzt werden können [124,125]. Eine mögliche Verbesserung durch den Einsatz des
vom APM 2.5 unterstützten mausbasierten Sensors ADNS3080 zur Bestimmung des
optischen Flusses (vgl. Abbildung 2.7a auf Seite 12) wurde mangels eines Sensors
nicht untersucht und bleibt weiterführenden Arbeiten überlassen.

5.1.2. Senderate der MAVLink-Datenströme

Die Senderate der MAVLink-Datenströme kann je nach angeforderten Strömen,
Flugmodus und Pakettyp auf bis zu 4Hz abfallen, was der leistungsschwachen CPU
des Flugcontrollers zuzuschreiben ist (vgl. Abschnitt 4.2.2 auf Seite 56). Der GPS-
Sensor liefert seine Positionsdaten mit 5Hz. Insofern wird das Auslesen dieses Sen-
sors durch die geringe Senderate nicht beeinträchtigt. Accelerometer und Gyroskop
können allerdings um Größenordnungen häufiger abgetastet werden. Daher musste
etwa bei der Evaluierung der Vibrationsdämpfung (vgl. Abschnitt 4.1.2 auf Sei-
te 51) zur Aufzeichnung der Beschleunigungssensordaten auf die interne Logging-
Funktionalität des APM 2.5 zurückgegriffen werden, um die Daten mit annähernd
50Hz zu erheben. Inwiefern sich diese Einschränkung auf bienenspezifische Experi-
mente auswirkt, lässt sich derzeitig mangels genauerer Anforderungen nicht beur-
teilen.

5.2. Copter

Mit dem Rahmen des Neurocopter ist eine Konstruktion gelungen, die erheblich
leichter als andere erhältliche Modelle ist (vgl. Abschnitt 4.1.1 auf Seite 51). Meh-
rere Abstürze bei Testflügen haben gezeigt, dass diese Gewichtsersparnis nicht zu
Lasten der Stabilität geht. Beispielsweise hat ein durch einen Pilotenfehler verursach-
ter ungebremster Fall aus etwa 6m Höhe auf Betonboden alle Rotoren des Copters
zerstört und eine Motorwelle verbogen, wohingegen der Rahmen keinerlei Schaden
genommen hat. Im Gegensatz dazu verbiegen die bei einigen Modellbaurahmen ver-
wendeten dünnwandigen Aluminiumausleger bereits beim Aufsetzen des Arms auf
den Boden bei einer unsauberen Landung.
Nicht bedacht wurden bei der Konstruktion allerdings unsachgemäße Montagearbei-
ten am Copter durch dessen Anwender. In einer ersten Version waren beispielsweise
die Unterteile der Motorklemmen (vgl. Abbildung 3.9 auf Seite 30) zur Gewichtser-
sparnis aus Polyamid gefertigt. Diese sind durch ein zu festes Anziehen der Schrau-
ben gebrochen und wurden durch die nun verwendeten Nachbauten aus Aluminium
ersetzt.
Ebenso muss bedacht werden, dass aufgrund des kompletten Eigenbaus durch Ab-
stürze oder fehlerhafte Anwendung beschädigte oder zerstörte Komponenten neu
konstruiert werden müssen und nicht nachgekauft werden können. Dieser Punkt
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muss aber nicht zum Nachteil ausgelegt werden: Zum einen kann, die entsprechenden
Werkzeuge und Fachkunde vorausgesetzt, mit dem Neubau unmittelbar begonnen
werden, so dass sich die Reparaturzeit gegenüber einer Bestellung der Komponen-
ten sogar verkürzen kann. Zum anderen hat sich die Konstruktion als sehr Robust
erwiesen, so dass derartige Reparaturen als unwahrscheinlich einzustufen sind.

5.2.1. Plattform

Aufgrund der durchgehenden Arme des Rahmens konnte die Plattform sehr leicht
konstruiert werden, da sie nur die Bordelektronik tragen muss. Dieser Aufbau er-
laubt es beispielsweise, auf einfache Weise die Plattform durch eine andere nicht im
Zentrum des Rahmens liegende zu ersetzen. So kann der Schwerpunkt des Copters
verlagert werden, um etwa das Gewicht eines einseitigen Auslegers auszugleichen,
der für ein Experiment benötigt wird.
Die Elektronikplatte ist zur Vibrationsdämpfung über Gummipuffer mit der rest-
lichen Plattform verbunden. Dieses System erlaubt es, die gesamte Elektronik auf
eine etwaige andere Plattform zu übertragen.
Die Dimensionierung der konstruierten Plattform wurde anhand der Größe des Ak-
kus und der restlichen verwendeten Bordelektronik vorgenommen. Daraus ergibt
sich eine rechteckige, längliche, nicht-quadratische Grundfläche. Wenn der Neuro-
copter in +-Konfiguration statt der aktuellen ×-Konfiguration (vgl. Abbildung 2.1
auf Seite 8) verwendet werden soll, ist die Plattform nicht mehr symmetrisch zu der
neuen um 45◦ rotierten Quer- und Längsachse des Copters. Dies gilt insbesondere
auch für die Anordnung der Gummidämpfer der Elektronikplattform, die die Rest-
vibrationen nun nicht mehr gleichmäßig entlang der Achsen übertragen. Ob und in
welchem Ausmaß dies messbar ist, gilt es noch zu überprüfen. Diese Frage müsste
jedoch bei einer quadratischen Plattform erst gar nicht gestellt werden, weswegen
die minimale Dimensionierung der Plattform nicht optimal ist.
Zudem lässt die kleine Elektronikplatte, die so bestückt ist, dass ihr Schwerpunkt
mittig der Dämpfer ist, keinen Spielraum zur Montage einer zusätzlichen Kamera.
Dies ist nicht Teil der Projektanforderungen (vgl. Abschnitt 1.2.1 auf Seite 4); jedoch
ist denkbar, dass eine zweite Kamera zur Erzeugung stereoskopischer Aufnahmen in
Experimenten mit neuronalen Netzen benötigt wird.

5.2.2. Antrieb

Der Antrieb des Neurocopters setzt auf vier kompakte, leichte, bürstenlose Moto-
ren, die die 305mm großen Propeller antreiben. Wie der Schubmessungsversuch
zur Dimensionierung des Copters gezeigt hat (vgl. Abschnitt 3.2.1 auf Seite 26),
nimmt der Wirkungsgrad des Systems mit zunehmendem Schub ab. Außerdem ist
bekannt, dass die Effizienz von Propellern mit deren Durchmesser zunimmt (vgl.
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Abschnitt 3.2 auf Seite 25). Von daher ist der derzeitige Antrieb in Bezug auf ei-
ne möglichst lange Flugzeit nicht optimal. Andererseits weisen kleine Propeller ein
geringeres Trägheitsmoment auf, wodurch Drehzahländerungen schneller wirksam
werden und der Copter agiler wird. Der Neurocopter weist jedoch kein zu träges
Flugverhalten auf, weswegen das Antriebskonzept in Hinblick auf eine Maximierung
der Flugzeit überdacht werden sollte.

5.3. Bordsoftware

Die Bordsoftware des Neurocopters basiert auf dem Berlin United Framework und
ermöglicht den Zugriff auf die Sensordaten des Flugcontrollers APM 2.5 sowie auf
die Bilder der Bordkamera PlayStation Eye.
Die entwickelten Programmteile dienen hauptsächlich der MAVLink-Kommunikation
mit dem Flugcontroller, der Bodenstation und anderen MAVLink-Geräten. Der
Funktionsumfang entspricht somit einem Teil der Funktionalität der Bodenstati-
onssoftware APM Planner des Flugcontrollers. Das Framework wurde jedoch auch
nicht mit dem Anspruch entwickelt, die Möglichkeiten einer Bodenstation komplett
nachzubilden. Die bereitgestellten und nicht vorhandenen Funktionen werden im
Folgenden diskutiert.

Parameterprotokoll Die Implementierung des Parameterprotokolls erlaubt nur den
lesenden Zugriff auf die Konfigurationsparameter des Flugcontrollers. Auf diese Wei-
se kann die Bodenstation so auf die Parameter zugreifen, als wäre sie direkt mit
dem Flugcontroller verbunden. Der schreibende Zugriff wurde jedoch nicht imple-
mentiert, da dies weit über die gestellte Anforderung des Lesens der Sensordaten
hinausgeht (vgl. Abschnitt 1.2.2 auf Seite 5). Ferner sind Änderungen der Para-
meter nur während der grundlegenden Konfiguration des Flugcontrollers nötig, so
dass die hierzu nötige direkte Verbindung keine nennenswerte Beeinträchtigung im
allgemeinen Arbeitsablauf darstellt.

MAVLink-Datenströme Über das Bereitstellen von Datenströmen ermöglicht der
Flugcontroller den Zugriff auf seine Sensordaten und andere Statusinformationen.
Mit der Bordsoftware können die Datenströme angefordert werden. Der Bodensta-
tion wird ebenfalls der Zugriff ermöglicht, wobei ihr jedoch untersagt ist, geringere
Datenraten zu setzen, als sie von der Bordsoftware festgelegt sind. Diese Einschrän-
kung musste vorgenommen werden, um zu verhindern, dass für Experimente nötige
Datenströme durch die Bodenstation negativ verändert werden.

Waypoint-Protokoll Das MAVLink-Waypoint-Protokoll wird zur Konfiguration
von Flugrouten verwendet (vgl. Abschnitt 3.3.1.1 auf Seite 34). Es wurde jedoch
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nicht implementiert, so dass der Bodenstation-Rechner zur Übertragung direkt mit
dem Flugcontroller verbunden werden muss (vgl. Abschnitt 3.1.2 auf Seite 25). Diese
Einschränkung wurde zu Gunsten der Implementierung der Verwaltung der Daten-
ströme und des Parameterprotokolls in Kauf genommen, da diese Funktionen für
die grundlegende Anbindung der Bodenstation unabdingbar sind.

Weitere MAVLink-Pakete Die Bordsoftware leitet keine MAVLink-Pakete direkt
zwischen den MAVLink-Geräten weiter. Dafür ist immer ein Modul nötig, das aufs
entsprechende Paket reagiert und es verarbeitet oder explizit weiterleitet. Diese Ent-
scheidung erzwingt, dass die Kommunikation zwischen den Geräten genau bekannt
sein muss, so dass die benötigten Abläufe implementiert werden können. Dieses Ver-
fahren ist aufwändig, stellt aber sicher, dass etwaige Protokolländerungen schneller
auffallen.

5.4. Bodenstation

Die Bodenstationssoftware des Neurocopters setzt sich aus zwei getrennten Program-
men zusammen (vgl. Abschnitt 3.3.5 auf Seite 49). Zur Konfiguration des Flugcon-
trollers und zur Anzeige dessen von Sensordaten wird die zugehörige Software APM
Planner verwendet. Weitere experimentspezifische Daten können über FUremote des
Berlin United Frameworks bearbeitet und angezeigt werden. Diese Teilung bringt
keine erheblichen Nachteile mit sich. Beide Programme erkennen von der Bordsoft-
ware beim Start automatisch gesendete Daten und zeigen den Copter an. Während
der Arbeit mit der Software muss zwischen Programmen statt Programmfenstern
oder Ansichten gewechselt werden. Der Mehraufwand in der Anwendung liegt folg-
lich beim Start zweier Programme und deren getrennter Pflege.
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6. Ausblick

Im Rahmen dieser Arbeit wurde mit dem Neurocopter eine Basis für Experimente
zur Erforschung von Honigbienen während des Fluges geschaffen. Inwieweit die kon-
zipierte Plattform unverändert verwendet werden kann, wird sich erst im Verlauf
zukünftiger Versuche zeigen.
Nun liegt es an weiterführenden Arbeiten, auf den hier gewonnenen Erkenntnissen
und dem konstruierten Copter aufbauend die Experimentierplattform zu perfektio-
nieren. Dabei besteht in einigen Punkten Optimierungspotential, was im Folgenden
beschrieben wird.

6.1. Flugcontroller

Der verwendete Flugcontroller APM 2.5 hat sich als unzureichend erwiesen (vgl.
Abschnitt 5.1 auf Seite 61), was im wesentlichen auf dessen leistungsschwachen
Mikroprozessor zurückzuführen ist. Folglich sollte zukünftig auf einen schnelleren
Controller wie den PX4FMU (vgl. Abschnitt 2.2.2 auf Seite 12) gesetzt werden. Zu
erwarten sind zum einen eine deutlich höhere Senderate der MAVLink-Datenströme
und zum anderen ein besseres Halten der Flugposition. Letzteres wird durch meh-
rere Aspekte beeinflusst: Der schnellere Prozessor kann aufwändigere Verfahren zur
Positionsabschätzung wie den erweiterten Kalman-Filter einsetzen. Außerdem kann
der PX4FLOW-Sensor zur Bestimmung des optischen Flusses verwendet werden,
um die Schätzung weiter zu verbessern. Nicht zuletzt wird dieser Controller auch
von der neusten ArduCopter-Firmware unterstützt, die weitere Verbesserungen mit
sich bringen kann und stetig weiterentwickelt wird.
Diese aufgeführten Schritte sollten iterativ ausgeführt werden, um die ausschlagge-
benden Faktoren genau bestimmen und die einzelnen Phasen vergleichen zu können.

6.2. Copter

Um die Flugdauer zu maximieren, können größere, langsamer drehende 356mm-
oder 381mm-Propeller statt der derzeitig verwendeten 305mm-Rotoren eingesetzt
werden. Für diesen Umbau werden allerdings auch entsprechende Motoren niedri-
gerer Drehzahl benötigt. Hier bietet es sich an, leicht überdimensionierte, schwerere
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Modelle in Betracht zu ziehen, die im Schwebeflug einen besseren Wirkungsgrad als
ausreichend ausgelegte Modelle besitzen und so ihr Mehrgewicht durch eine gerin-
gere Leistungsaufnahme trotz des nötigen zusätzlichen Schubs kompensieren.

6.2.1. Plattform

Die rechteckige gedämpfte Elektronikplatte des Copters ist sehr knapp dimensio-
niert und bietet keine Möglichkeiten zur Unterbringung weiterer Komponenten (vgl.
Abschnitt 5.1 auf Seite 61). Dies gilt insbesondere für eine zusätzliche zweite Kame-
ra. Sollte sich im Verlauf der Experimente ein Bedarf hierfür herausstellen, so bietet
sich eine Neugestaltung der gesamten Plattform an. Zur Befestigung am Rahmen
kann weiterhin auf die vorhandenen Klemmen und Abstandhalter zurückgegriffen
werden, so dass lediglich neu dimensionierte CFK-Platten gefertigt werden müssen.
Dabei kann die Konstruktion auch derartig gestaltet werden, dass die Elektronik-
platte mehrere Aufnahmen für die Gummidämpfer besitzt, um eine um 45◦ rotierte
Montage für die Verwendung in der +-Konfiguration des Copters zu ermöglichen.

6.3. Bordsoftware

Neben neuen experimentspezifischen Anforderungen an die Bordsoftware existieren
auch allgemeine Erweiterungen, von denen alle Versuche profitieren können. Dabei
geht es in erster Linie um nicht implementierte Teile des MAVLink-Protokolls. Zum
einen kann die Implementierung des Parameterprotokolls so erweitert werden, dass
auch ein schreibender Zugriff auf die Werte möglich ist. Dabei ist abzuwägen, ob
Änderungen im Flug generell oder partiell untersagt werden sollten. Zum anderen
erscheint eine Implementierung des MAVLink-Waypoint-Protokolls nützlich, da so
die Routenplanung auch über die drahtlose Verbindung von der Bodenstation über
den Bordrechner an den Flugcontroller erfolgen kann.
Eine weitere mögliche Erweiterung liegt in der Steuerung des Copters durch die
Bordsoftware. Dies kann entweder durch die Vorgabe von Bewegungen entlang der
Achsen durch das mavlink_manual_control_t-Paket ähnlich einer Fernsteuerung oder
abstrakter durch Angabe von GPS-Koordinaten geschehen. Letzteres Verfahren greift
auf das Waypoint-Protokoll zurück. Dabei wird ein mavlink_mission_item_t-Paket
verwendet, das das Kommando MAV_CMD_OVERRIDE_GOTO enthält. Dieses gibt über
den Wert MAV_GOTO_HOLD_AT_SPECIFIED_POSITION die Zielposition an, die der Cop-
ter anfliegt, um dort zu verharren, bis weitere Befehle folgen.
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A. Anhang

Die beiliegende DVD enthält den im Rahmen dieser Arbeit entstandenen Quelltext
sowie die zur Auswertung erhobenen Daten. Die Struktur des Datenträgers wird
durch die Abbildungen A.1 bis A.3 auf den Seiten 69–71 beschrieben.

/
ar2clipse/ .................Programm, das die Bearbeitung des

ArduCopter-Quelltexts mit der IDE Eclipse
ermöglicht (vgl. Abschnitt 3.3.3 auf Seite 39)

daten/......................Im Rahmen dieser Arbeit erhobene Daten (sie-
he Abbildung A.2 auf der nächsten Seite)

Neurocopter.pdf............Digitale Fassung: „Neurocopter - Eine fliegen-
de Experimentierplattform zur Erforschung
der Hirnaktivität von Honigbienen“

neurocopteronboard/.......Bordsoftware (siehe Abbildung A.3 auf Sei-
te 71)

Abbildung A.1.: Wurzelverzeichnis
Struktur des Wurzelverzeichnisses der beigelegten DVD. Enthalten sind der im Rahmen dieser
Arbeit entstandene Quelltext und erhobene Daten, sowie eine digitale Fassung dieser Arbeit.
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daten/
apm-logs/

vibrationsdaempfung/...mit der integrierten Logging-Funktionalität
des Flugcontrollers erstellte Accelerometerda-
ten und deren Auswertung

gps-logs/...................per MAVLink-Datenstrom aufgezeichnete
GPS-Positionsdaten und deren Auswertung

schubmessung/..............Ergebnisse der Schubmessung (vgl. Ab-
schnitt 3.2.1 auf Seite 26)

schwerpunkt/...............Schwerpunktberechnungen des Copters und
der Plattform und dazu verwendete Gewicht-
stabellen der einzelnen Bauteile

tracking-video/............Video der visuellen Positionsbestimmung
und C++-Auswertungsprogramm (vgl. Ab-
schnitt 4.2.1.2 auf Seite 54)

Abbildung A.2.: Datenverzeichnis
Struktur des Datenverzeichnisses, das Messwerte und deren Auswertungen beinhaltet.
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neurocopteronboard/...............Bordsoftware

berlinunited/..................Berlin United Framework (vgl. Ab-
schnitt 3.3.2 auf Seite 37)

src/
berlinunited_extensions/ ..Hilfsfunktionen zur einfacheren Verwen-

dung einiger Bestandteile des Berlin Uni-
ted Frameworks

communication...............Klassen zur Abstraktion des Übertra-
gungskanals (vgl. Abschnitt 3.3.4.3 auf
Seite 43)

libs.........................generierter MAVLink-Code, MAVLink-
Hilfsfunktionen, allgemeine Hilfsfunktio-
nen, Klassen zur nebenläufigen Program-
mierung

modules......................Module zur Verabeitung der MAVLink-
Pakete

representations.............von den Modulen verwendete Repräsenta-
tionen

services.....................Dienst zum Empfangen der MAVLink-
Nachrichten (vgl. Abschnitt 3.3.4.3 auf
Seite 43)

tools/
mavlink_generator/......MAVLink-Codegenerator (vgl. Ab-

schnitt 3.3.1.2 auf Seite 35)
...

...
...

Abbildung A.3.: Neurocopter-Verzeichnis
Allgemeine Verzeichnisstruktur des Quelltexts der Bordsoftware. Auslassungen sind durch „...“
markiert.
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Nomenklatur

APM ArduPilotMega

CFK Kohlenstofffaserverstärkter Kunststoff

EKF Erweiterter Kalman-Filter (Extended Kalman Filter)

ESC Motorregler (Electronic Speed Control)

GFK Glasfaserverstärkter Kunststoff

GPIO Allzweckeingabe/-ausgabe (General Purpose Input/Output)

GPS Globales Positionsbestimmungssystem (Global Positioning System)

IDE Integrierte Entwicklungsumgebung (Integrated Development Envi-
ronment)

PVC Polyvinylchlorid

UART Serielle Schnittstelle (Universal Asynchronous Receiver/Transmitter)
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