
Freie Universität Berlin
Bachelor Thesis at The Department of Mathematics and Computer Science

Dahlem Center for Machine Learning and Robotics

Traffic Sign Detection and Classification for
Autonomous Driving

Bashar Suleiman
Student ID: 5342743

bashas99@zedat.fu-berlin.de

Advisors: Prof. Dr. Daniel Göhring and Nicolai Steinke
Examiner: Prof. Dr. Daniel Göhring

Second Examiner: Prof. Dr. Tim Landgraf

Berlin, August 15, 2022

mailto:bashas99@zedat.fu-berlin.de


Abstract

The field of Autonomous Driving has witnessed rapid improvement and in-
novation in recent years. This has been driven to a large degree by the major ad-
vances in Machine Learning and Object Detection of the previous decade. Deep
Neural Networks enable the vehicle to find solutions to the myriad of complex
and interconnected tasks associated with Autonomous Driving. One such essen-
tial task is the reliable detection and classification of traffic signs, which is also
significant for advanced driver assistance systems.

This thesis will focus on a new approach utilizing the current state-of-the-art
object detection algorithms trained on public datasets. The proposed system
combines YOLOv7 with a custom classifier trained on the German Traffic Signs
dataset. The results are evaluated on the GTSDB dataset and fisheye footage
recorded by the robotic laboratory’s prototype car. The final full system achieves
high results in most metrics, scoring 99.0 on Recall, Precision, and mAP on the
GTSDB test dataset. But it’s limited by the number of traffic sign types the classi-
fier can recognize.

2



Contents

1 Introduction 7

2 Fundamentals 8
2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Object Detection Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.2 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.3 F1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.4 Intersection over Union . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.5 Average Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Non-Maximum Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Evolution of YOLO 13
3.1 YOLOv1 [28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 YOLOv2 [26] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 YOLOv3 [27] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 YOLOv4 [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Scaled YOLOv4 [34] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 YOLOR [36] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 YOLOv7 [35] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Creating the System 18
4.1 Proposed System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Classification Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Classification Dataset [10] . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Classification Model Design . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 Classification Model Evaluation . . . . . . . . . . . . . . . . . . . 23

4.3 Detection Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 Detection Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Detection Models Training and Results . . . . . . . . . . . . . . . 26

4.4 Composing the Full System . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Full System Evaluation 28
5.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Efficiency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Comparison to Existing Models . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Analysis on Test Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusion and Future Work 34

4



A Appendix 37
A.1 YOLO Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2 GTSDB and GTSRB List of classes . . . . . . . . . . . . . . . . . . . . . . 37

5



6



1. Introduction

1 Introduction

The field of Autonomous Driving has been subject to a revolution in both academia
and industry in recent years. We have witnessed self-driving cars migrate from labora-
tories to public roads, and even enter the mainstream as ever more automobile brands
integrate auto-pilot systems into their products. This has been driven to a large degree
by the rapid advances and innovations in Artificial Intelligence and Computer Vision
during the previous decade, which were triggered by the proliferation of innovative
neural networks following the outstanding results of AlexNet at the ImageNet 2012
competition. Since then, Deep Neural Networks (NN) have come to match or even
surpass human performance at certain tasks. We have concurrently witnessed com-
putational power continue to increase in accordance with Moore’s Law, allowing ever
larger networks to be developed. With these advancements in mind, the goal of this
study is to explore the possibility of designing a Traffic Sign detection and recognition
system based on state-of-the-art Deep Neural Network algorithms.

Traffic Signs are among the most ubiquitous features of any streetscape. They en-
code vital information that enables drivers to navigate safely and efficiently, and are
crucial to maintaining orderly traffic flow. In the absence of reliable and prevalent
infrastructure to digitally communicate this information to cars, Traffic Sign detec-
tion and recognition through camera footage becomes a fundamental task for both
Autonomous Driving and Advanced Driver Assistance Systems. Despite it being a
trivial task for humans, finding a solution tailored for Autonomous Vehicles presents
complex challenges.

We begin by defining three essential criteria for a viable system: real-time speed
(30 frames per second), moderate hardware cost, and high accuracy. The latter pair
of conditions are challenging, since Neural Networks trend towards deeper models
to achieve higher accuracy. But an autonomous vehicle is constrained by the limited
on-board hardware, which is shared with several other essential software modules.
The system is therefore optimized to be compatible with the prototype autonomous
vehicle designed by the Free University’s Autonomos Lab, which is equipped with a
fisheye front-camera (1280x800 resolution).

There are multiple potential approaches to detecting Traffic Signs, such as color
segmentation, shape segmentation, and deep learning. While color segmentation
methods are computationally inexpensive and fast, their real-world reliability is di-
minished by their sensitivity to various factors such as weather conditions, time of the
day, as well as reflection, age and condition of the signs [30]. Shape segmentation is
more robust, but suffers similar challenges as its color-based counterpart when faced
with damaged, partially obscured, blurred, or distorted traffic signs [30]. The last fac-
tor is particularly problematic given the inherit distortion in fish-eye cameras. Neural
Networks are capable of learning generalized representations of objects, but can only
be as good as the data they train on. Therefore the focus of this thesis lies exclusively
on deep learning approaches to the traffic sign recognition problem.

7



2. Fundamentals

To train an accurate model capable of adapting to real-world variance, a large and
varied dataset is required. The available public Traffic Sign datasets fall under either
the detection or classification categories. Detection datasets contain images that each
include multiple traffic signs and their respective bounding box coordinates. Classi-
fication datasets meanwhile contain small images of just the traffic signs, each with
a class label. The proposed system is composed of a detector and a classifier each
trained on a separate dataset. The final classification model is a custom deep version
of LeNet5 [19] trained on the GTSRB dataset [10], while the final detection model is
YOLOv7-W6 [35] trained on GTSDB [10] and Woodscape [33] datasets. Section 4.1
presents a flowchart of the proposed system. Sections 2 and 3 provide a review of
related concepts to the system. Sections 4.2 and 4.3 will explain the process behind
the choice of the model architectures and datasets, and will the training steps. Finally,
a thorough evaluation of the full system is performed both quantitatively and quali-
tatively in section 5.

2 Fundamentals

2.1 Supervised Learning

Supervised Learning is a machine learning method for statistically analyzing labeled
training datasets to approximate a mapping function between the dataset’s inputs
and outputs. Elements of the training dataset are pairs composed of an exemplary
input (commonly represented as feature vectors) and a desired output (label). The
input and output should share some real-world relation. The goal of a Supervised
Learning algorithm is to capture this relation in order to infer a model that fits the
training dataset. The model should ideally be capable of generalizing the relation
represented in the training dataset in order to correctly map unseen data points (of
the same class as the training inputs) to the expected label. A Loss Function, which
calculates the error margin between the model’s predictions and ground-truth labels,
is used to evaluate the model’s performance on unseen data.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs), also known as Deep Feedforward Networks or
Multilayer-Perceptrons, are an example of a supervised learning algorithm. ANNs
seek to approximate the mapping function represented by the training dataset. The
mapping is defined as y=f(x; θ), and the goal of the network is to learn the values of
the parameters θ that result in the best function approximation. [11] ANNs are com-
posed of multiple layers of nodes (artificial neurons). The first layer is the input layer,
the final layer is the output layer, and all layers in-between are called hidden layers. A
node is connected to other nodes by weighted connections. Each node passes the sum
of its weighted inputs through a non-linear function, and then forwards the output to
connected nodes in the next layer. [22]

The process of estimating the mapping function is called learning, and is most

8



2.3 Convolutional Neural Networks

Figure 1: Example of a fully connected neural network. Image Source: [22]

commonly performed by some gradient descent algorithm. The two basic operations
of the learning process are Feedforward and Backpropagation. Feedforward: When
presented with some input (usually in the form of a tensor or vector), it passes all
layers through their weighted connections and activation functions until it finally
produces an output. Backpropagation: The output is then evaluated by some Loss
Function, which computes an error value for the network’s output. The Loss Func-
tion’s gradient is then computed with respect to each weight by the partial derivation
chain rule. The gradient is backpropagated one layer at at time from the last layer,
updating the weights and biases at each layer it passes. The two operations are usu-
ally iterated many times. [22]

A Fully-Connected Network (FCNs) is an ANN in which each node is connected
to every node in the next layer. The input must therefore be a vector of constant
size, which makes it an inflexible model for image related tasks due to the loss of
spatial information. FCNs also have many unnecessary weighted connections, which
increases both the training and inference costs. To address these issues, another type
of neural networks is usually used for image related tasks, the convolutional neural
network.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special type of ANNs that excel at im-
age processing and maintaining spatial information. CNNs usually consist of three
types of layers, namely convolutional, pooling, and fully-connected layers. The con-
volutional layer aims to learn feature representations of the inputs, and is composed
of several convolution kernels which are used to compute different feature maps [13].
This is conceptually done by convolving the learned kernels over a layer’s input in a
sliding window fashion. But in practice this process is replaced with more efficient
operations such as multiplication with a Toeplitz matrix. The convolutions return
high activation values when certain patterns (features) are detected, frequently with

9



2. Fundamentals

ReLU (Rectified Linear Units) serving as the activation function. The parameters of
convolutional filters are learned through backpropagation.

Pooling layers aim to gradually reduce the dimensionality of the representation,
and thus further reduce the number of parameters and the computational complexity
of the model [23]. The fully-connected layer is usually placed at the end of a CNN
to perform regression. However some CNNs such as YOLOv3 [27] are fully convolu-
tional, which allows a network to be invariant to input size.

Figure 2: Convolutional Neural Network architecture example (LeNet5). Image
Source: [13]

To mitigate the inefficiencies of fully-connected networks, every neuron in a con-
volutional layer is only connected to small region of the input. The dimensionality of
this region is commonly referred to as the receptive field size of the neuron [23]. For
example, the first layer of LeNet5 [19] uses a 5x5 kernel with an output depth of 6,
resulting only in 180 trainable parameters.

The output of a convolutional layer will have a depth equal to the number filters,
and a width and height of [(WK+2P)/S]+1 and [(HK+2P)/S]+1 where W and H are
the input width and height, K is the kernel size, P is the padding, and S is the stride.
Stride denotes the step width of the kernel, while padding increases the width and
height dimensions of an input by wrapping it with additional cells (initialized as 0 or
randomly).

2.4 Transfer Learning

Transfer learning is a supervised learning technique that reuses parts of a previously
trained model on a new network tasked for a different but similar problem. For
example, the pretrained weights of a model trained for detecting general objects can
be finetuned for detecting traffic signs. The pretrained model can already extract the
features describing a street image, so the finetuning process needs to only learn to
differentiate between a traffic sign and background. This spares the new model from
having to learn everything from scratch.

2.5 Object Detection

Object Detection is a subfield of Computer Vision and can be defined as the task
of detecting all instances of visual objects of certain classes in an image [8]. The

10



2.6 Object Detection Metrics

field began with traditional algorithms such as Scale Invariant Feature Transform
(1999), Viola Jones (2001), Histogram of Oriented Gradients (2006), and Deformable
Part Model (2008). But following the introduction of the Region-based Convolutional
Neural Network (RCNN) in 2014 [3], Deep Neural Networks have come to dominate
the field. Neural Network based object detection models are categorized either as one-
stage or two-stage detectors. In two-stage object detectors (e.g. RCNN, SPPNet, Mask-
RCNN), the approximate object regions are proposed using deep features before these
features are used for the classification as well as bounding box regression for the object
candidate. One-stage detectors (e.g. YOLO, SSD, RetinaNet) predict bounding boxes
over the images without the region proposal step [8].

2.6 Object Detection Metrics

2.6.1 Confusion Matrix

To create a confusion matrix, four attributes are needed:
True Positives (TP): Predicted object matches a groundtruth sample.
False Positives (FP): Predicted object is not in groundtruth.
True Negatives (TN): No prediction is made, and there is no sample in groundtruth.
False Negatives (FN): A sample exists in the groundtruth, but was not predicted by
the model.

In the context of object detection, a prediction is considered correct if its IoU
and confidence are over certain thresholds. A confusion matrix helps visualize the
cases in which the model fails. In the example table Fig.??, the x-axis represents the
groundtruth and the y-axis represents the model’s predictions. Ideally, the diagonal
should have high numbers and everywhere else should be zeroes. In the example
table the imaginary model mistakes a stop sign for a turn right sign twice, and a turn
right sign with a stop sign once.

Stop Sign 1 0 32
Speed Limit 30 0 42 0

Turn Right 19 0 2
Turn Right Speed Limit 30 Stop Sign

Table 1: Exemplary confusion matrix.

2.6.2 Precision and Recall

Precision is the ratio between the correctly classified positive samples to the total
number of samples classified as Positive. In short, Precision tells us how often the
detector is correct when it makes predictions. For example, if a model detects 5
traffics sings, three of which are actually in the image, the precision is 3/5.

Precision =
TP

TP + FP

11



2. Fundamentals

Recall is the ratio between the correctly classified positive samples to the total
number of groundtruth samples. Recall tells us whether the model predicted every
time that a groundtruth sample was present. For example, if a model detects 3 out of
4 traffic signs in an image, the recall is 3/4.

Recall =
TP

TP + FN

2.6.3 F1 Score

The F1-score combines precision and recall into a single metric by taking their har-
monic mean. A higher F1-score signifies that precision and recall are high, while a
lower F1-score signifies a low or imbalanced precision and recall (or lower precision
and recall).

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ (TP + FP + FN)

2.6.4 Intersection over Union

IoU is a metric used in object detection to compare a predicted bounding box (P)
with the groundtruth bounding box (B). It is measured as area of overlap over area of
union:

IoU =
P ∩ B
P ∪ B

IoU represents how well the predicted bounding box fits the object. An IoU thresh-
old is usually chosen, under which a bounding box is no longer considered a correct
prediction of an object. The higher the IoU, the better the bounding box represents
the detected object.

2.6.5 Average Precision

AP is a metric represents the area under the Recall-Precision curve at different con-
fidence thresholds. An object detector is considered good if the precision and recall
are not impacted by different confidence thresholds, and if the precision does not de-
crease as recall increases. While an integral can be used to measure the area under
the curve, in practice the VOC interpolation method is used to measure an approxi-
mation. This is done by calculating the interpolated precisions at 11 recall levels: [0,
0.1, 0.2, . . . , 1], and then taking the average of their sum:

AP = ∑
r=[0,0.1,...,1]

Pinterpolated(r)

Mean Average Precision (mAP) is the average of the APs of each class. Since we
will be using a single class for our detector, AP and mAP can be used interchangeably.
It should be noted that the CoCo metric differs slightly from VOC’s. First, the AP
metric uses a uses 101-point interpolated AP instead of VOC’s 11. It also introduces
the mAP@[.5:.95], which averages the mAPs at different IoU threshold levels from 0.5
to 0.95 with a step size of 0.05.

12



2.7 Non-Maximum Suppression

2.7 Non-Maximum Suppression

Most object detection algorithms generate multiple bounding boxes for a single ob-
ject. It’s therefore necessary to be able to select a single bounding box per object. To
do this, Non-Maximum Suppression (NMS) is used to select the best bounding box
for each object and to discard the rest.

The algorithm is simple, its inputs are the set of proposed bounding boxes, their
corresponding confidence scores, and a threshold. The proposal with the highest
confidence is selected and inserted into the output set, and is then compared with all
the other proposals. If their IoU is higher than the specified threshold, the proposal
is removed from the set. This process is repeated until no boxes remain in the input
set. [18]

3 Evolution of YOLO

You Only Look Once (YOLO) is a one-stage object detection algorithm introduced by
Joseph Redmon in 2015, and further developed by Alexey Bochkovskiy after YOLOv3.
It was the first object detection model to achieve real-time speed while maintaining
an average precision comparable to that of Fast-RCNN. YOLOv7 is the center-piece
of the proposed Traffic Sign Detection system.

Since each version builds on its predecessor, it would be difficult to understand
YOLOv7’s architecture without historical context. Therefore, a comprehensive review
of YOLO’s evolution is presented while trying to remain as concise as possible. It
should be noted that YOLOv5/v6 were released by different authors, and aren’t con-
nected to YOLOv7’s branch of development.

3.1 YOLOv1 [28]

YOLO reframes object detection as a single regression problem. A single convolu-
tional network inputted with an image simultaneously predicts multiple bounding
boxes and class probabilities for those boxes. The detection network has 24 convolu-
tional layers followed by 2 fully connected layers. (Fig.3)

The input image is divided into an S × S grid. If the center of an object falls into
a grid cell, that grid cell is responsible for detecting that object. Each grid cell pre-
dicts B bounding boxes, and each bounding box consists of 5 predictions: x, y, width,
height, and confidence (defined as Pr(obj) * IOU). The (x,y) coordinates define the ob-
ject’s center coordinates relative to their grid cell, so their values always fall between 0
and 1. The width and height values are normalized by the image’s width and height
to also keep their value between 0 and 1. Along with bounding boxes, a grid cell
contains a single set of C conditional class probabilities Pr(class_i|obj), with C being
the number of classes. Predictions with confidence lower than a certain threshold
are ignored, and then Non-Maximum Supression is performed to eliminate duplicate

13



3. Evolution of YOLO

bounding boxes.

Figure 3: YOLOv1 network architecture [28]. The final layer in the network produces
a tensor of dimensions SxSx((B*5)+C) with S=7, B=2, and C=10.

YOLO achieved 63.4 mAP and 45 FPS on the Pascal VOC dataset, making it the
most accurate real-time detector at the time, but it was less accurate than Fast-RCNN
at 70.0 mAP.

3.2 YOLOv2 [26]

YOLOv2 builds on YOLO to increase accuracy while maintaining speed. The clas-
sification network Darknet-19 (Appendix Fig. 14) is used as a backbone for feature
extraction, and is pretrained on the ImageNet-1000 dataset at 224x224 resolution. The
classifier is then finetuned at resolution 416x416 to adjust to detection input resolu-
tion. To transform the classifier into a detector, the last convolutional layer is removed
and instead three 1024x3×3 convolutional layers are added followed by a final 1 × 1
convolutional layer with the number of outputs needed for detection. Each bounding
box now has its own set of class probabilities, so the output will be a tensor of shape
SxSx(B*(5+C)). Note that the detection head is now fully convolutional with no fully-
connected layers.

To further improve accuracy, batch normalization is added to every convolutional
layers. Anchor Boxes are also introduced, but are only used in calculating the bound-
ing box’ width and height. The object center coordinates are still directly predicted
in relation to their grid cell, with no influence from the anchor boxes. To find good
Anchor Box priors, the authors run k-means clustering on the training set bounding
boxes with k=5, but replace euclidean distance with d(box, centroid) = 1 −IOU(box,
centroid).

YOLOv2 also uses fine-grained features from earlier layers with higher resolution
features to help detect small objects. Instead of making predictions on the final 13x13
feature maps like YOLO, a passthrough layer is added to a previous layer to bring

14



3.3 YOLOv3 [27]

features at 26x26 resolution. Each 26x26 feature map is transformed to a stack of four
13x13 resolution features, and are then concatenated with the low resolution features
from the final layer.

The fully convolutional architecture also makes the network invariant towards
input dimensions. The network downsamples by a factor of 32, therefore every 10
batches a new multiple of 32 from the set: {320, 352, ..., 608} is chosen as input size.
This forces the network to learn to predict well across a variety of input dimensions.

3.3 YOLOv3 [27]

YOLOv3 adds a few changes to YOLOv2 to improve performance. Most importantly,
they replace Darknet-19 with the much deeper Darknet-53 as a backbone.

Figure 4: Darknet-53 network architecture [27]

Additionally, they now perform predictions on 3 scales each with 3 anchors. The
features of the final layer with a resolution of 13x13 are upsampled by a factor of 2
and are concatenated with features from a layer with resolution 26x26. These features
are in turn upsampled by a factor of 2 and concatenated with feature from a layer of
resolution 52x52. This method allows us to get more meaningful semantic information
from the upsampled features and finer-grained information from the earlier feature
maps. Detections are performed on the feature maps of all 3 scales, and the results
are filtered through non-maximum suppression.

3.4 YOLOv4 [7]

YOLOv4 reframes the network as 3 modules: backbone, neck, and head. The back-
bone is a classification network that is repurposed to extract features, the neck col-
lects feature maps from different layers and aggregates them to enhance the recep-
tive field, and the head is the part of the network actually responsible for detection.

15



3. Evolution of YOLO

CSPDarknet-53 is chosen as the new backbone, which integrates Cross Stage Partial
(CSP) connections [2] to the Darknet-53 network used in YOLOv3. Spatial Pyramid
Pooling, a Path Aggregate Network, and a Spatial Attention Module are used for the
neck. The YOLOv3 head is still used for detection, but "Mish" is now used as the main
activation function and DIoU-Non-Maximum-Suppression is used to filter bounding
boxes.

YOLOv4 also introduces many new techniques to improve training, called "Bag of
Freebies" because they don’t affect inference time. For training the classifier backbone,
Mosaic and CutMix are used for data augmentation, as well as Label Smoothing and
DropBlock for regularization. For training the detection network, many techniques
were added to the Bag of Freebies: CIoU-loss, Cross-Iteration mini Batch Normaliza-
tion (CmBN), DropBlock regularization, Mosaic data augmentation, Self-Adversarial
Training, eliminating grid sensitivity, using multiple anchors for a single ground truth,
cosine annealing scheduler, optimal hyperparameters, and random training shapes.

3.5 Scaled YOLOv4 [34]

Cross Stage Partial connections [2] are used to enhance the architecture of YOLOv4
creating YOLOv4-CSP. This model is then scaled up and down to create different
versions of different sizes, from smallest to largest: YOLOv4 P4, P5, and P6. Scaled
up models are more accurate but have less inference speed, while scaled down models
are faster but less accurate.

3.6 YOLOR [36]

YOLOR (You Only Learn One Representation) combines Explicit and Implicit knowl-
edge into a unified model. The authors define Explicit Knowledge as knowledge that
directly corresponds to an observation (e.g. input). Implicit Knowledge has nothing
to do with observation or input, and can be viewed as accumulated general knowl-
edge about a task. Explicit Knowledge can be modelled by a normal neural network,
the authors use YOLOv4-CSP as the explicit model. Implicit Knowledge meanwhile
is a constant set of latent code that is applied directly on the next layer, but isn’t con-
nected to any previous layers. To integrate Implicit Knowledge, the Unified Model
is proposed: y = fΘ(x) ∗ gϕ(z) where x is the observation, Θ is the parameters of the
neural network fΘ, z is the implicit knowledge latent code, gϕ is a task specific op-
eration that selects relevant implicit knowledge, and ⋆ is some operator (addition or
multiplication). Implicit Knowledge can be modelled as a vector, a neural network, or
a matrix. The values of the implicit model are learned through backpropagation, and
their initial values are sampled from a Gaussian Distribution if no prior knowledge
exists.

The authors propose and test three usecases for Implicit Knowledge, all of which
improve YOLOv4-CSP’s mAP. The first is feature alignment in Feature Pyramid Net-
works (FPN). Implicit Knowledge latent code is added to the feature map of each FPN
layer, which helps align the positions of large and small objects at the different scales

16



3.7 YOLOv7 [35]

of the pyramid. The second usecase is the refinement of the network’s predictions.
Multiplying a separate set of latent code with the network’s predictions improves their
accuracy. This is because the latent code can learn the patterns of each anchor box
during training. The third usecase improves the network’s performance on multiple
tasks. Since we use YOLOR for a single task only, this usecase won’t be reviewed.

3.7 YOLOv7 [35]

YOLOv7 builds on YOLOR by introducing two "Trainable Bag of Freebies (BoF)". The
first BoF method is Module-Level Re-parameterization. It involves replacing some
convolutional layers with computational blocks that aid learning during training, that
are then collapsed back into a single convolutional layer during inference. For ex-
ample, the 3x3 convolutional layers in CSPDarknet-53 blocks can be replaced with a
computational block. The output of this block is the sum of the outputs of the origi-
nal 3x3 convolution, a 1x1 convolution, and an identity connection each followed by
batch normalization. Adding this block was found to improve gradient backpropaga-
tion during training, but increases the inference cost. Therefore, the three operations
are then merged into a single 3x3 convolutional layer for inference. This is done by
summing the weights and biases of the three layers and integrating the mean and
variance from their batch normalization layers. It should be noted that the iden-
tity connection is only used if no other skip connection already points to the block’s
output. Module-level re-parameterization is also used to merge Implicit knowledge
operations from YOLOR with convolutional layers. Implicit Knowledge can be sim-
plified to a vector and then combined with the bias and weight of the previous or
subsequent convolutional layer.

The second BoF method is adding a second detection head to the middle of the
network. The detection head at the end of the network is still responsible for all
predictions, and is called the "Lead Head". The new detection head at the middle is
called the "Auxiliary Head", and is meant to help backpropagate detection-loss gra-
dients to the shallow layers. To achieve this, a "Label Assigner" compares the Lead
Head’s prediction with the ground truth to generate soft labels. The Label Assigner
then passes soft Fine-Labels (all classes) to the Lead Head, and soft Coarse-Labels
(only superclasses) to the Auxiliary Head. The Auxiliary Head is stripped from the
network after training.

A couple of architectural changes are also introduced, such as integrating "Efficient
Layer Aggregation" (ELAN), which replaces Cross Stage Partial connections at several
positions of the system. The ELAN blocks (Appendix Fig. 15) increase efficiency by
shortening the longest path gradients need to travel. Another architectural change
is the "Compound Model Scaling" approach, in which model width and depth are
scaled in coherence. The new scaling approach delivers better performance than the
methods used for Scaled-YOLOv4.

17



4. Creating the System

4 Creating the System

4.1 Proposed System Architecture

First, a ROS node subscribes to the frontcamera topic and recieves 1280x800 images.
The images are passed on to the detection module, which detects bounding box pa-
rameters for all Traffic Signs in the image. There will be several bounding boxes per
traffic sign, so non-maximum suppression is used to filter the overlapping boxes. The
traffic sign inside the bounding box will be cropped, resized to 32x32, and passed on
to the classifier. The classifier will assign the each traffic sign one of 43 labels, and
pass it back to the detector. The detector can then forward the label and bounding
box coordinates back to the ROS node for publishing.

Figure 5: Flowchart of the proposed system architecture

4.2 Classification Module

4.2.1 Classification Dataset [10]

There are several options for the classification dataset, the table below (Table ??) lists
some popular European traffic sign datasets. GTSRB stands out as the best choice
for having the most samples and no foreign traffic signs. Additionally, GTSRB has
a complementary detection dataset (GTSDB) that is annotated with the same class
labels, making it very practical for the development of a combined detection and
classification system.

The German Traffic Sign Recognition Benchmark (GTSRB) dataset contains 43
classes of traffic signs and over 50,000 images with one traffic sign each. A list of
all the classes and their numerical labels can be found in the Appendix. The dataset
is divided between 39,209 training images and 12,630 test images. Image sizes vary
between 15x15 to 250x250 pixels and contain a border of 10 % around the actual traffic
sign (at least 5 pixels).

18



4.2 Classification Module

Dataset Country Images Classes Source

GTSRB Germany 50000+ 43 [10]
BTSC Belgium 4591 62 [6]
DITS Italy 8000+ 58 [16]

Table 2: Three potential classification training datasets.

GTSRB images come in various and diverse lighting conditions and forms. The 43
classes cover the most important and frequent traffic signs. A notable exception is the
"No Stopping" traffic sign, which isn’t present in the dataset. The images also aren’t
distributed equally across the classes, the following image illustrates the dataset dis-
tribution by classes:

Figure 6: GTSRB training dataset distribution by class.

All images were transformed from the original PPM format to PNG, then resized
to 32x32 to give us a constant training size. A dataloader python program extracts
labels from an associated CSV file then transforms all images to tensors and matches
them with the appropriate label. The dataset is saved as two PTH files used for train-
ing and testing.

4.2.2 Classification Model Design

To establish a baseline, custom PyTorch implementations of LeNet5 [19] and ResNet18
[15] were trained after processing the dataset. The goal was to compare the perfor-
mance of a small network against a relatively large network. The training was done
with 1e-3 learning rate, 50 epochs, and 256 batch-size. Adam and StepLR were used
as optimizer and scheduler, and Cross Entropy Loss was used as the criterion. All
tests were performed on an Nvidia RTX-3080 Laptop GPU.

The results make it immediately apparent that complex models are not the way
forward for this task. LeNet5 is one of the smallest and oldest convolutional neural
networks ever designed, but is nevertheless able to hold its ground against ResNet18
despite being smaller by a factor of 172 times (parameter-wise). LeNet5 was originally
designed for 32x32 images [19], which is the reason it was chosen as a baseline and

19



4. Creating the System

Model Training Acc Test Acc Parameters Speed (Batch 1) Size

LeNet5 100.000 93.74505 (11840/12630) 64,811 0.447ms 0.37MB
ResNet18 99.997 96.650 (12207/12630) 11,198,763 3.911ms 44.44MB

Table 3: LeNet5 and ResNet18 results.

helps explain its high performance. In fact, several successful traffic sign classification
models were trained on LeNet5 variants [12]. The results present an opportunity to
design a fast and near-perfect classifier.

To achieve that, a custom network heavily inspired by LeNet5 called CustomTS
was designed for this task. The design strategy was to increase the network depth
(both in filters and layers) and to integrate modern best-practices (LeNet5 is decades
old). To increase depth, a third convolutional block was added. Since the input di-
mensions are so small, using maxpool with stride=2 quickly reduces the feature map
dimensions to 1x1, thus all strides are removed. The optimal kernel sizes and output
filters were determined by trial and error. The best results were obtained from the
configuration of kernel sizes 5x5->3x3->3x3 and output filters (96, 96*2, 96*3).

Additionally, BatchNorm2d was added to every convolutional block and Dropout
was added to linear layers. The activation function used by LeNet5 is Tanh(), which
is somewhat outdated and prone to the vanishing gradients problem. It was therefore
replaced with the more robust Mish() [21], which avoids the problem due to being
unbounded from above but bounded from below. Mish() also has the favorable fea-
tures of being self-regularized and continuously differentiable, and has been reported
to increase accuracy compared to ReLU [21].

Mish(x) = x ∗ tanh(ln(1 + ex))

The following table illustrates the changes in architecture:

20



4.2 Classification Module

CustomTS LeNet5

Conv2d(in=3, out=96, kernel=5) Conv2d(in=3, out=6, kernel= 5)
Mish() -> MaxPool2d(k=2) -> BatchNorm2d Tanh() -> MaxPool2d(k=2, stride=2)

Conv2d(in=96, out=192, kernel=3) Conv2d(in=6, out=16, kernel=5)
Mish() -> MaxPool2d(k=2) -> BatchNorm2d Tanh() -> MaxPool2d(k=2, stride=2)

Conv2d(in=192, out=288, kernel=3) -
Mish() -> MaxPool2d(k=2) -> BatchNorm2d -

Dropout(0.6) -
Linear(1152, 400) -

Mish() -

Dropout(0.5) -
Linear(400,120) Linear(400, 120)

Mish() Tanh()

Linear(120,43) Linear(120, 84) -> Tanh() -> Linear(120, 43)
Mish() Tanh()

CustomTS is still a relatively lightweight network, but is nevertheless able to beat
ResNet18 by a decent margin at test accuracy:

Model Training Acc Test Acc Parameters Speed (Batch 1) Size

CustomTS 99.354 97.846 (12358/12630) 1,187,003 0.8ms 6.61MB
LeNet5 100.000 93.74505 (11840/12630) 64,811 0.441ms 0.37MB

ResNet18 99.997 96.650 (12207/12630) 11,198,763 3.911ms 44.44MB

To improve accuracy even further, a spatial transformer is integrated and the
model is retrained on normalized and heavily augmented data.

1) Spatial Transformers

The network that won the original GTSRB competetion was "CNN with 3 Spatial
Transformers" by the team DeepKnowledge Seville [9][10]. They were able to achieve
99.71 test accuracy on GTSRB through the use of Spatial Transformers. We will there-
fore explore the concept of STNs and integrate it to CustomTS.

Spatial Transformers (STN) [17] are a popular way to increase spatial invariance of
a model against transformations such as translation, scaling, rotation, cropping. This
is achieved by adaptively transforming their input into the expected pose, leading to
better classification performance. The appropriate transformation is applied depend-
ing on the input’s deviation from the expected pose. The prediction of the appropriate
transformation is produced by a neural network called the localisation network that
learns its parameters through backpropagation [31].

21



4. Creating the System

STN is composed of three modules: the localisation network, the grid generator,
and the sampler. Of these three, only the localisation network has trainable param-
eters. The generator and sampler are normal functions that aren’t affected by back-
propagation. [17]

Figure 7: Architecture of a spatial transformer. Source: [17]

The PyTorch implementation of the localisation network is composed of two con-
volutional layers and two fully-connected layers [1]. It performs a regression on the
input image to produce parameters θ that encode the type of transformation required
to transform the input into the expected pose.

The grid generator applies an inverse transformation Tθ(G) on the input using the
parameters obtained from the localisation network to calculate the corrected images.
The outputs of the grid generator will mostly be undefined on the output image plane,
so the sampler applies bilinear interpolation to find defined points for each output of
the grid generator. [17]

Adding a spatial transformer to the start of CustomTS immediately improves ac-
curacy. The results are summarized in the table in the next section.

2) Data Augmentation

For the final training run, intensive data augmentation was applied. First, the
mean and standard deviation of the training dataset are calculated to normalize all
training and test images. Next, the training dataset size is increased 10-fold by ap-
plying zoom, random noise, hue jitter, contrast jitter, saturation jitter, brightness jitter,
random rotation, random shear, random perspective, and random translation.

Model Test Acc Parameters Speed (Batch 1) Size

CustomTS (CTS) 97.846 (12358/12630) 1,187,003 0.8ms 6.61MB
TSN + CTS 98.693 (12465/12630) 1,195,547 1.3ms 6.71MB

Aug + TSN + CTS 99.588 (12578/12630) 1,195,547 1.3ms 6.71MB

22



4.3 Detection Module

4.2.3 Classification Model Evaluation

The final model of CustomTS achieves near-perfect scores in all metrics: 99.58828%
test accuracy, 99.58844% weighted F1 score, 99.59786% weighted Precision, and 99.58828%
weighted Recall. A normalized confusion matrix for all 43 classes can be found in the
Appendix: Fig.16. To visualize the rare cases in which misclassification occurs without
the oversized 43-class matrix, all labels were clustered into 4 superclasses: mandatory
(red rim), prohibitory (blue background), danger, and other. The GTSRB class-list in
the Appendix lists the superclass of each class. The following normalized confusion
matrix is for these 4 superclasses.

Figure 8: Normalized confusion matrix of the CustomTS with 4 superclasses.

If CustomTS was in the original GTSRB competition, it would have won second
place, displacing the current 2nd place holder (Committee of CNNs by team IDSIA:
99.46% test acc) [10]. The current state-of-the-art model on GTSRB is a Deep Inception
Based CNN [32] and it achieves 99.81% in test accuracy, but at the cost of having over
10 million parameters, 10 times more than CustomTS. With just 1.3ms processing
speed, CustomTS is appropriate for use as the system’s classifier.

4.3 Detection Module

To choose a suitable detector for the detection module, a review of available models
is first necessary. Most existing Traffic Sign Detection (TSD) models use variations
of popular and mainstream object detection algorithms such as RCNNs [4], SSD [4],
or YOLOv3 [29]. But in the last few years, many new state-of-the-art models have
pushed the boundary in both accuracy and speed, which presents new opportunities
for TSD. Detection models are evaluated by their mean Average Precision (mAP). Pa-
persWithCode maintains a leaderboard ranking of popular Object Detection models

23



4. Creating the System

based on their mAP score on the CoCo dataset [24].

The most notable recent advancement is the SWIN Transformer [20], specifically
the large SWIN-L variant. The current 17 highest ranked algorithms in the Paper-
withcode leaderboard all integrate SWIN-L into their backbone for their version with
highest mAP. While SWIN-L’s outstanding performance is tempting, its enormous
size and number of operations (197 million parameters and 1470 GFLOPS) [20] makes
systems using it as a backbone impractical for autonomous driving applications. We
therefore exclude all models that integrate SWIN-L into their architecture. After limit-
ing the search to models capable of real-time performance, YOLOR [36] and YOLOv7
[35] emerge to be the two models with the highest Average Precision while still being
capable of real-time inference speed on 1280x1280 images.

YOLOR and YOLOv7 each have multiple versions based on the scale they use.
These scales range progressively from smallest to largest: P6 - W6 - E6 - D6. The fol-
lowing list illustrates the wide gap in FPS between YOLOR/v7 and other models of
comparable AP. All following test results are extracted from [35], and were performed
on Nvidia V100 and batchsize 1.

Model Image Size FPS Parameters AP val

YOLOR-CSP 640 106 52.9M 50.8
YOLOR P6 1280 76 37.2M 53.5
YOLOR W6 1280 66 79.8G 54.8
YOLOR E6 1280 45 115.8M 55.7

YOLOv7 640 161 36.9M 51.2
YOLOv7 W6 1280 84 70.4M 54.6
YOLOv7 E6 1280 56 97.2M 55.9
YOLOv7 D6 1280 44 154.7M 56.3

SWIN-B (C-M-RCNN) 1333 11.6 145.0M 51.9
Dual SWIN-L 1600 1.5 453M 59.1

EfficientDet-D7x 1536 6.5 77.0M 54.4
ViT-Adapter-B - 4.4 122.0M 50.8

YOLOv5-X6 1280 38 140.7M 55

While YOLOR E6 and YOLOv7 D6 appear to be appropriate, it should be high-
lighted that the Nvidia V100 is an AI specialized GPU that is vastly superior to a
general purpose GPU one would expect in an autonomous vehicle. Therefore it’s un-
likely that models with less than 60 FPS on V100 would be able to achieve adequate
FPS on a normal GPU. I also exclude the smaller models YOLOR-CSP and YOLOv7,
which were optimized for detection at input size 640x640. Therefore all tests were fo-
cused on YOLOR-P6, YOLOR-W6, and YOLOv7-W6 which offer a good compromise
between cost and performance.

24



4.3 Detection Module

4.3.1 Detection Datasets

1) German Traffic Signs Detection Benchmark Dataset [10]

The German Traffic Sign Detection Benchmark (GTSDB) dataset is a very popular
benchmarks for training and evaluating traffic sign detection models. It contains 600
training images and 300 test images of size 1360x800. All images are taken from traf-
fic, and include up to 6 traffic signs. 140 images from the dataset contain no traffic
signs. The images include a variety of weather conditions and times of day, but no
night photos. Since GTSDB is the detection counterpart of the GTSRB classification
dataset, the same 43 class labels are used.

To prepare the dataset for training, all images are first resized to 1280x800 (the
input dimensions of the proposed system). Bounding box parameters are then pro-
cessed to realign with the new image dimensions. Next, the bounding box parameters
are transformed from the VOC format [x top-left, y top-left, x bottom-right, y bottom-
right] to the yolo format [x center, y center, width, height]. Finally, all class labels are
set to 0. Since the proposed system has a separate classifier, the detector should focus
only on finding traffic signs.

GTSDB will be the main dataset for training and evaluating the different detection
models we have. But by setting all class labels to 0 and focusing solely on finding the
traffic signs, it becomes possible to mix different datasets.

2) Valeo Woodscape Dataset [33]

This dataset is only intended for augmenting GTSDB with 156 new training im-
ages. Woodscape is a fisheye-lens traffic dataset designed to promote training neural
networks directly on fisheye-lens images rather than using rectification methods. It’s
used to familiarize the detection module with fisheye-lens images. The bounding-box
version of the dataset contains 8234 images of size 1280x966 from 4 cameras and 7
classes.

The first processing step is eliminating all images that don’t include a traffic sign,
which leaves 1800 images. Since we’re only interested in images from the front-
camera, the side- and back-camera images are discarded, leaving only 650 images.
These images are then resized to 1280x800, their bounding boxes parameters are re-
aligned and converted to the yolo-format, and all class labels are set to 0.

There are still some issues with the remaining images. The Woodscape definition
of what constitutes a "Traffic Sign" seems somewhat loose. For example, sometimes
direction signs are labeled as traffic signs (see Figure: 9). Many of these signs are
barely readable and don’t hold any relevant information to traffic. Additionally, the
back-side of traffic signs are sometimes annotated, despite holding no information.
There are also several duplicate images.

Images that are inappropriate to the proposed system are therefore discarded,

25



4. Creating the System

Figure 9: Some problematic samples from the Valeo Woodscape dataset.

leaving only 156 images.

3) Custom FU Berlin Evaluation Dataset

Since the prototype vehicle is equipped with a fisheye lens camera, GTSDB doesn’t
perfectly reflect the environment the detector is intended for. To have an objective
metric of how well the detector performs on fisheye images, I extracted and labeled
100 images with traffic signs from bagfiles recorded during the test drives. The ex-
tracted images are from 17 unique locations at different timepoints. As before, the
parameters are in yolo format and all traffic sign labels are set to 0.

4.3.2 Detection Models Training and Results

Training and testing was done using the official configuration files and code from
the authors [25]. The configuration files of YOLOR-P6 and -W6 had to be slightly
adjusted to function on single-class detection. The augmentation methods used are
geometric translations, shear, flipping (left-right), saturation/hue random shifting,
scaling, and mixup. Each model was trained twice for 300 epochs with batch-size 8.
The following results are from the best epochs of the best runs. It should be noted that
the speed column refers only to inference speed. Non-Maximum Suppression (NMS)
takes between 1.2 and 1.5 ms on top of the inference time. All tests were performed
on an Nvidia RTX-3080 Laptop GPU with IoU threshold 0.5 and confidence threshold
0.001.

Model Precision Recall mAP@.5 Speed (batch 1) (batch 32) # Operations

YOLOR-P6 75.2 97.0 97.7 33.8 ms 16.3 ms 80.3 GFLOPS
YOLOR-W6 60.0 98.1 97.7 35.3 ms 19.5 ms 112.1 GFLOPS
YOLOv7-W6 97.5 96.1 98.4 19.8 ms 14.7 ms 88.7 GFLOPS

All three models achieve very high recall and inference speed. If we account for
NMS by taking the observed upper-limit of 1.5 ms, the theoretical FPS is 28, 27, and
47 for YOLOR-P6, YOLOR-W6 and YOLOv7-W6 respectively. It should be noted that
the FPS will decrease in the final evaluation due to the classification module, pre-
processing, and miscellaneous operations. We also notice that the YOLOR models

26



4.3 Detection Module

don’t perform very well on precision, falling 20-35% short of YOLOv7. The signif-
icant improvement in precision and inference speed warrants the 2% drop in recall,
YOLOv7-W6 is therefore picked as the main detector from this point on.

To push the performance of YOLOv7-W6 even further, three experiments are per-
formed. The next 3 subsections will review the experiments and their results.

1) Adjusting the Loss Function

For the first experiment, some changes were made to the loss function. The final
loss values in YOLO are the weighted sum of the box, objectness, and class losses.
Objectness can be understood as the model’s confidence that an object’s center falls
within a certain grid cell. Binary Cross Entropy is used to calculate both the class
and objectness losses, while the mean of the Complete-IoU is used to calculate box
loss. After some inspection, I noticed that the weight for the box loss (1.0) is higher
than the weight for objectness loss (0.7). This is likely because the CoCo mAP met-
ric is evaluated over several IoU thresholds, and needs to achieve 95% overlap for
predictions to even be considered a True Positives at the final threshold. This could
lead to accumulated small bounding box loss gradients overpowering objectness loss
gradients, even when the boxes fit the objects well enough.

Since the proposed system benefits more by increasing unique object detections
than by having perfect bounding boxes, the weight of the objectness loss was in-
creased to (1.0). The weight for class loss is set to (0.3), but this will have negligible
effect since only a single class is used. Training YOLOv7-W6 for 300 epochs with the
adjusted loss function lead to a 0.9% increase in recall and 0.6% increase in mAP.

2) Finetuning Pretrained Weights

For the next experiment, YOLOv7-W6 was loaded with weights pretrained on the
CoCo dataset (download source: [25]) and finetuned for 100 epoch with the upgraded
loss function (1.0 weight for objectness loss). This approach yielded the best results
so far. The resulting model will be referred to as "V7Best":

Model Precision Recall mAP@.5

Baseline 97.5 96.1 98.4
(1.0) ObjLoss 98.3 (+0.8) 97.0 (+0.9) 99.0 (+0.6)

V7Best 98.9 (+1.4) 99.2 (+3.1) 99.5 (+1.1)

3) Finetuning on Fisheye Images

Detecting Traffic Signs from fisheye-lens images is more difficult due to the dis-
tortion that occurs on the sides. In order to familiarize the model with that type of
distortion, the pretrained weights from the previous section were finetuned with the
same settings for 100 epochs on a hybrid training dataset containing all the training

27



5. Full System Evaluation

images from GTSDB and 156 handpicked images from the Valeo Woodscape dataset.

The resulting model performs slightly worse on the GTSDB test dataset, but yields
significantly better results on the custom FU-Berlin testing dataset. The resulting
model will be referred to as "V7Fisheye". The comparison table reveals that familiar-
izing the model with fisheye images resulted in a 10.3% mAP increase on the custom
test dataset. For the final table results, the confidence threshold was raised to 0.15 for
enhanced precision.

Class Test Dataset Precision Recall mAP@.5

V7Best GTSDB Test 98.9% 99.2% 99.6%
V7Fisheye GTSDB Test 98.3% 98.1% 99.5

V7Best FU-Berlin Test 84.3% 84.3% 82.2%
V7Fisheye FU-Berlin Test 90.2% 93.1% 92.5%

4.4 Composing the Full System

With the trained detector and classifier ready for deployment, they’re combined into
a single system. Two versions of the full system will be evaluated, "V7BestFS" and
"V7FisheyeFS". The detector finds bounding boxes of traffic signs in an input image,
crops the boxes, then resizes the cropped traffic signs to size 32x32. The resized crops
are then normalized and inputted into the classifier. The classifier returns the traffic
sign label, and the final result is a list of shape [x1,y1,x2,y2,class].

5 Full System Evaluation

5.1 Performance Evaluation

Until now, the detection models were evaluated with all class labels set to 0. But
to evaluate the full system, the fully-labeled GTSDB test dataset is now used. The
custom FU-Berlin dataset can’t be used for full system evaluation because most im-
ages include the "No Stopping" Traffic Sign, which isn’t included in the classification
dataset. Instead, detection result images will be presented at the end of this section.
the F1 graphs recommend 0.75-0.8 confidence for best precision-recall balance. All
following test results were obtained with confidence threshold 0.75. The table below
illustrates the final results. See Appendix Fig: ?? and Fig: 18 for the Precision, Recall,
F1, and PR graphs of each system.

Model Precision Recall mAP@.5 mAP@.5:.95

V7BestFS 0.99 0.99 0.99 0.828
V7FisheyeFS 0.971 0.938 0.935 0.791

Table 4: Full System performance on all 43 classes of GTSDB.

28



5.2 Efficiency Evaluation

The custom classifier demonstrates excellent performance. The mAP barely drops
by changing from single-class detection to 43-class detection. The complete confusion
matrices of both runs Fig: 10 and Fig: 11 reveal that V7BestFS made only a single
classification error, while V7FisheyeFS made two. The confusion matrices also reveals
a major problem in the system, the classifier will always confidently predict a traf-
fic sign even when presented with a false positive by the detector. Even though the
precision and recall are quite high, a false positive being interpreted as a traffic sign
could lead to critical situation in autonomous driving. V7BestFS had 4 false positives
and 4 false negatives, while V7FisheyeFS had 5 false positives and 8 false negatives.

This problem of confident classification of false negatives is likely to be even worse
in real-world tests, because the detector will detect many types of traffic signs that the
classifier isn’t familiar with. But the classifier will still confidently classify a traffic sign
it never trained on. This issue is explorer further in the final subsection.

5.2 Efficiency Evaluation

The system’s speed is dependent on the application, since I/O can be the largest bot-
tleneck to performance. The measured total run time for the system was 25.7 ms
per 1280x1280 image. This is broken down to 20.2ms for detection, 2.7 ms for clas-
sification (including cropping, resizing, and normalization), 1.2 for non-maximum
suppression, and 1.6 ms for miscellaneous operations. With 25.7 ms processing time
the system should theoretically be easily capable of 30 FPS processing, but due to
image I/O bottlenecks the highest observed speed was 27 FPS.

5.3 Comparison to Existing Models

The full system is very competitive when compared to the existing models. To the best
of my knowledge, the best opensource detection model for GTSDB is Faster R-CNN
Inception Resnet V2 by Alvaro Arcos-Garcia et al. [5] which achieved 95.77% mAP
at 2.26 FPS. As for the state-of-the-art traffic sign detection model, Hamed Aghdam
et al. [14] reported the highest known mAP of 99.8% on GTSDB with over 30 FPS.
Another interesting comparison is a YOLOv3 implementation heavily customized for
GTSDB by Yawar Rehman et al. [29] which achieved 93.09%.

It should be noted, all the aforementioned results were calculated only on the 4
superclasses (mandatory, prohibotory, danger, and other) while our system detects
and classifies all 43. Despite this handicap, V7BestFS outperforms most known the
best opensource implementation by scoring 99.0% on Recall, Precision, and mAP. To
the best of my knowledge, the state-of-the-art implementation by Adgham et al. is
the only real-time neural network that outperforms V7BestFS on GTSDB.

29



5. Full System Evaluation

Figure 10: V7BestFS confusion matrix on all 43 classes.

30



5.3 Comparison to Existing Models

Figure 11: V7FisheyeFS confusion matrix on all 43 classes.

31



5. Full System Evaluation

5.4 Analysis on Test Images

The final evaluation will be reviewing detection results of the system on fisheye-lens
images from the custom FU-Berlin test dataset and night photos from the Italian
Traffic Signs Dataset (DITS) [16]. Failure cases will be displayed and reviewed. The
following detections were produced by V7FisheyeFS with confidence threshold 0.15.

Figure 12: Sample images from the custom FU Berlin dataset.

Training V7FisheyeFS on fisheye-lens images paysoff, and the system is capable of
detecting even small traffic signs on the extreme ends of the image (see 6th image).
But every time the system in confronted with a "No Stopping" traffic sign, a random
class is assigned. Additionally, a STOP sign is classified as give way in the 3rd image.

32



5.4 Analysis on Test Images

Figure 13: Sample images from DITS.

33



References

The system manages decent results on night photos considering it was never
trained on them. It doesn’t fail to detect any traffic signs, but the unique light in-
tensities in dark environment lead to some false positives. One interesting failure of
the system is the detection of a car’s tail-light as a traffic sign in the 4th image. The
limited number of traffic signs the classifier is capable of labeling is also on display in
the 4th image, where the go-left-or-right sign is labeled go left.

6 Conclusion and Future Work

The final full system is promising and manages to achieve the three criteria estab-
lished in the introduction. It is capable of real time processing (30 FPS) excluding
I/O, is moderate in size, and has high recall and accuracy. It achieves highly com-
petitive scores on GTSDB, and holds its ground when confronted with images in
environments it wasn’t trained on. The results confirm YOLOv7-W6’s potential at
traffic sign detection. But the limited number of traffic signs the classifier can recog-
nize represents a critical flaw for the system if it were to be deployed for real-world
use. Moreover, the classifier will confidently classify false positives by the detector as
some traffic sign.

A future point of interest should be training the classifier to recognize more traffic
sign classes (especially the "No Stopping" traffic sign). A new traffic sign classification
dataset will need to be produced to this end, as none of the current public traffic sign
classification datasets have an adequate number of traffic sign classes. Training the
classifier on random background crops from traffic image would also help the classi-
fier recognize the cases in which the detector makes a mistake.

Another approach that could improve performance is integrating past predictions
into the system’s confidence of the current prediction. This can be done using a
Kalman Filter. By calculating the expected position of the traffic sign as an offset by
velocity, the consistency of the system’s predicitons can be improved. It would also
allow the system to determine whether a detected traffic sign is new or was available
in previous frames.

References

[1] url: https://pytorch.org/tutorials/intermediate/spatial_transformer_
tutorial.html.

[2] Chien-Yao Wang et al. CSPNet: A New Backbone that can Enhance Learning Capabil-
ity of CNN. 2020. url: https://openaccess.thecvf.com/content_CVPRW_2020/
papers/w28/Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_
Capability_of_CVPRW_2020_paper.pdf.

[3] Ross Girshick et al. Rich feature hierarchies for accurate object detection and semantic
segmentation. 2014. url: https://arxiv.org/pdf/1311.2524.pdf.

34

https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html
https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w28/Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_Capability_of_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w28/Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_Capability_of_CVPRW_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w28/Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_Capability_of_CVPRW_2020_paper.pdf
https://arxiv.org/pdf/1311.2524.pdf


References

[4] Álvaro Arcos-García, Juan Alvarez-Garcia, and Luis Soria Morillo. “Evaluation
of Deep Neural Networks for traffic sign detection systems”. In: Neurocomputing
316 (Aug. 2018). doi: 10.1016/j.neucom.2018.08.009.

[5] Álvaro Arcos-García, Juan Alvarez-Garcia, and Luis Soria Morillo. “Evaluation
of Deep Neural Networks for traffic sign detection systems”. In: Neurocomputing
316 (Aug. 2018). doi: 10.1016/j.neucom.2018.08.009.

[6] Belgian Traffic Signs Classification Dataset. url: https://btsd.ethz.ch/shareddata/.

[7] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4:
Optimal Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934. url:
https://arxiv.org/abs/2004.10934.

[8] Gaudenz Boesch. Object Detection in 2022: The Definitive Guide. 2022. url: https:
//viso.ai/deep-learning/object-detection/.

[9] Deep neural network for traffic sign recognition systems: An analysis of spatial trans-
formers and stochastic optimisation methods. url: https://www.sciencedirect.
com/science/article/abs/pii/S0893608018300054?via%5C%3Dihub.

[10] German Traffic Signs Benchmark by INI. url: https://benchmark.ini.rub.de/
index.html.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://
www.deeplearningbook.org. MIT Press, 2016.

[12] Andrii Gozhulovskyi. Classification of Traffic Signs with LeNet-5 CNN. 2022. url:
https : / / towardsdatascience . com / classification - of - traffic - signs -
with-lenet-5-cnn-cb861289bd62.

[13] Jiuxiang Gu et al. Recent Advances in Convolutional Neural Networks. 2015. arXiv:
1512.07108. url: http://arxiv.org/abs/1512.07108.

[14] Hamed Habibi Aghdam, Elnaz Jahani Heravi, and Domenec Puig. “A practical
approach for detection and classification of traffic signs using Convolutional
Neural Networks”. In: Robotics and Autonomous Systems 84 (2016), pp. 97–112.
issn: 0921-8890. doi: https://doi.org/10.1016/j.robot.2016.07.003. url:
https://www.sciencedirect.com/science/article/pii/S092188901530316X.

[15] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.
03385. url: http://arxiv.org/abs/1512.03385.

[16] Italian Traffic Signs Dataset. url: http://www.diag.uniroma1.it//~bloisi/ds/
dits.html.

[17] Max Jaderberg et al. Spatial Transformer Networks. 2015. arXiv: 1506.02025. url:
http://arxiv.org/abs/1506.02025.

[18] Sambasivarao. K. Non-maximum Suppression (NMS). url: https://towardsdatascience.
com/non-maximum-suppression-nms-93ce178e177c.

[19] et al. Kaiming He Xiangyu Zhang. Deep Residual Learning for Image Recognition.
2015. url: https://arxiv.org/pdf/1512.03385.pdf.

[20] Ze Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Win-
dows. 2021. arXiv: 2103.14030. url: https://arxiv.org/abs/2103.14030.

35

https://doi.org/10.1016/j.neucom.2018.08.009
https://doi.org/10.1016/j.neucom.2018.08.009
https://btsd.ethz.ch/shareddata/
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://viso.ai/deep-learning/object-detection/
https://viso.ai/deep-learning/object-detection/
https://www.sciencedirect.com/science/article/abs/pii/S0893608018300054?via%5C%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0893608018300054?via%5C%3Dihub
https://benchmark.ini.rub.de/index.html
https://benchmark.ini.rub.de/index.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://towardsdatascience.com/classification-of-traffic-signs-with-lenet-5-cnn-cb861289bd62
https://towardsdatascience.com/classification-of-traffic-signs-with-lenet-5-cnn-cb861289bd62
https://arxiv.org/abs/1512.07108
http://arxiv.org/abs/1512.07108
https://doi.org/https://doi.org/10.1016/j.robot.2016.07.003
https://www.sciencedirect.com/science/article/pii/S092188901530316X
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://www.diag.uniroma1.it//~bloisi/ds/dits.html
http://www.diag.uniroma1.it//~bloisi/ds/dits.html
https://arxiv.org/abs/1506.02025
http://arxiv.org/abs/1506.02025
https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c
https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030


References

[21] Mish: A Self Regularized Non-Monotonic Activation Function. 2020. url: https:
//www.bmvc2020-conference.com/assets/papers/0928.pdf.

[22] Michael Nielsen. Neural Networks and Deep Learning. http://neuralnetworksanddeeplearning.
com/index.html. 2019.

[23] Keiron O’Shea and Ryan Nash. “An Introduction to Convolutional Neural Net-
works”. In: CoRR abs/1511.08458 (2015). url: http://arxiv.org/abs/1511.
08458.

[24] Object Detection on COCO test-dev. 2022. url: https://paperswithcode.com/
sota/object-detection-on-coco.

[25] Official YOLOv7 Training Code and CoCo Weights. url: https://github.com/
WongKinYiu/yolov7.

[26] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. 2016. arXiv:
1612.08242. url: http://arxiv.org/abs/1612.08242.

[27] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018.
arXiv: 1804.02767. url: http://arxiv.org/abs/1804.02767.

[28] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.
2015. arXiv: 1506.02640. url: http://arxiv.org/abs/1506.02640.

[29] Yawar Rehman, Hafsa Amanullah, and et al. Saqib Bhatti. “Detection of Small
Size Traffic Signs Using Regressive Anchor Box Selection and DBL Layer Tweak-
ing in YOLOv3”. In: Applied Sciences 11.23 (2021). issn: 2076-3417. doi: 10.3390/
app112311555. url: https://www.mdpi.com/2076-3417/11/23/11555.

[30] et al. Safat B. Wali Majid Abdullah. Vision-Based Traffic Sign Detection and Recog-
nition Systems: Current Trends and Challenges. 2019. url: https://www.mdpi.com/
1424-8220/19/9/2093/htm#B17-sensors-19-02093.

[31] Spatial Transformer Networks A Self-Contained Introduction. url: https://towardsdatascience.
com/spatial-transformer-networks-b743c0d112be.

[32] Traffic Sign Classification Using Deep Inception Based Convolutional Networks. 2016.
url: https://arxiv.org/abs/1511.02992.

[33] Valeo Woodscape. url: https://woodscape.valeo.com/download.

[34] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-YOLOv4:
Scaling Cross Stage Partial Network. 2020. arXiv: 2011 . 08036. url: https : / /
arxiv.org/abs/2011.08036.

[35] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. 2022.
doi: 10.48550/ARXIV.2207.02696. url: https://arxiv.org/abs/2207.02696.

[36] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. You Only Learn One
Representation: Unified Network for Multiple Tasks. 2021. arXiv: 2105.04206. url:
https://arxiv.org/abs/2105.04206.

36

https://www.bmvc2020-conference.com/assets/papers/0928.pdf
https://www.bmvc2020-conference.com/assets/papers/0928.pdf
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://github.com/WongKinYiu/yolov7
https://github.com/WongKinYiu/yolov7
https://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://doi.org/10.3390/app112311555
https://doi.org/10.3390/app112311555
https://www.mdpi.com/2076-3417/11/23/11555
https://www.mdpi.com/1424-8220/19/9/2093/htm#B17-sensors-19-02093
https://www.mdpi.com/1424-8220/19/9/2093/htm#B17-sensors-19-02093
https://towardsdatascience.com/spatial-transformer-networks-b743c0d112be
https://towardsdatascience.com/spatial-transformer-networks-b743c0d112be
https://arxiv.org/abs/1511.02992
https://woodscape.valeo.com/download
https://arxiv.org/abs/2011.08036
https://arxiv.org/abs/2011.08036
https://arxiv.org/abs/2011.08036
https://doi.org/10.48550/ARXIV.2207.02696
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/2105.04206
https://arxiv.org/abs/2105.04206


A. Appendix

A Appendix

A.1 YOLO Figures

Figure 14: Architecture of Darknet-19, YOLOv2’s backbone. Image Source [26]

Figure 15: ELAN and Extended ELAN blocks architecture. E-ELAN is only used in
YOLOv7-E6E. Image Source [35]

A.2 GTSDB and GTSRB List of classes

GTSRB and GTSDB full list of classes:

0 = speed limit 20 (prohibitory) - 1 = speed limit 30 (prohibitory) - 2 = speed limit
50 (prohibitory) - 3 = speed limit 60 (prohibitory) - 4 = speed limit 70 (prohibitory) -
5 = speed limit 80 (prohibitory) - 6 = restriction ends 80 (other) - 7 = speed limit 100
(prohibitory) - 8 = speed limit 120 (prohibitory) - 9 = no overtaking (prohibitory) - 10
= no overtaking (trucks) (prohibitory) - 11 = priority at next intersection (danger) -
12 = priority road (other) - 13 = give way (other) - 14 = stop (other) - 15 = no traffic
both ways (prohibitory) - 16 = no trucks (prohibitory) - 17 = no entry (other) - 18 =
danger (danger) - 19 = bend left (danger) - 20 = bend right (danger) - 21 = bend (dan-
ger) - 22 = uneven road (danger) - 23 = slippery road (danger) - 24 = road narrows
(danger) - 25 = construction (danger) - 26 = traffic signal (danger) - 27 = pedestrian

37



A. Appendix

crossing (danger) - 28 = school crossing (danger) - 29 = cycles crossing (danger) -
30 = snow (danger) - 31 = animals (danger) - 32 = restriction ends (other) - 33 = go
right (mandatory) - 34 = go left (mandatory) - 35 = go straight (mandatory) - 36 =
go right or straight (mandatory) - 37 = go left or straight (mandatory) - 38 = keep
right (mandatory) - 39 = keep left (mandatory) - 40 = roundabout (mandatory) - 41 =
restriction ends (overtaking) (other) - 42 = restriction ends (overtaking (trucks)) (other)

Figure 16: Confusion matrix of the CustomTS classifier with all 43 classes.

38



A.2 GTSDB and GTSRB List of classes

Figure 17: Precision, Recall, F1, and PR graphs of V7BestFS.

39



A. Appendix

Figure 18: Precision, Recall, F1, and PR graphs of V7FisheyeFS.

40


	Introduction
	Fundamentals
	Supervised Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Transfer Learning
	Object Detection
	Object Detection Metrics
	Confusion Matrix
	Precision and Recall
	F1 Score
	Intersection over Union
	Average Precision

	Non-Maximum Suppression

	Evolution of YOLO
	YOLOv1 yolo
	YOLOv2 yolov2
	YOLOv3 yolov3
	YOLOv4 yolov4
	Scaled YOLOv4 scaledyolov4
	YOLOR yolor
	YOLOv7 yolov7

	Creating the System
	Proposed System Architecture
	Classification Module
	Classification Dataset ini
	Classification Model Design
	Classification Model Evaluation

	Detection Module
	Detection Datasets
	Detection Models Training and Results

	Composing the Full System

	Full System Evaluation
	Performance Evaluation
	Efficiency Evaluation
	Comparison to Existing Models
	Analysis on Test Images

	Conclusion and Future Work
	Appendix
	YOLO Figures
	GTSDB and GTSRB List of classes


