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Abstract

Computer vision plays an essential role in the perceiving surrounding environ-
ment in the field of autonomous driving. One of the main focuses of this field
is the reliable detection and classification of tra�c signs, to be able to abide
by tra�c laws and provide a safe autonomous product.

For this detection and classification, many machine learning based approaches
exist. In this thesis, a self-supervised method for training a vision transformer,
a recent deep learning architecture, called “self-distillation with no labels” is
discussed and evaluated on the German Tra�c-sign Recognition Benchmark
dataset. Moreover, the method is evaluated using a small dataset from a
prototype vehicle at the Dahlem Center for Machine Learning. In total 3
models are evaluated. A model pretrained on ImageNet1K, a model further
trained on the GTSRB dataset using the weights of the first model, and a
model trained from-scratch exclusively on the GTSRB dataset.

With these models a k-NN classification on the GTSRB dataset containing
43 classes is performed, producing precision and recall averages of 88.61%
and 84.06% for the first model respectively. The second model output bet-
ter precision and recall averages of 97.77% and 96.37%. The third model
achieved comparatively worse with precision and recall averages of 77.91% and
72.46%.
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1 Introduction

Autonomous vehicles have been receiving a significant amount of investment
recently. Many aspects surrounding autonomous driving are the subject of
constant research. One of the main goals of advanced driver assistance systems
(ADAS) is to increase road safety, whether by providing systems that intervene
in dangerous situations, or by producing systems that provide comfort to a
driver by assuming driving responsibilities in, for example, certain cases of
severe weather. In order to provide a robust autonomous solution, several
problems need to be solved reliably. This will enable autonomous driving to
become a mainstream task and widespread service. One important aspect is
adherence to tra�c laws, which is mainly imposed by tra�c signs present on
the roads. Thus, it is essential for ADAS to be able to detect and interpret
tra�c signs in a real-time manner and adjust driving behaviour accordingly.
This is typically handled by computer vision applications.

Many solutions to this problem have existed for a while, and most common
are detection methods based on color- or shape-segmentation. Furthermore,
convolutional neural networks (CNN) are often employed for both detection
and classification of tra�c signs. Since the introduction of transformers for
natural language processing and their apparent successful impact on this ap-
plication, many studies have proposed and presented adaptions of this concept
for application in computer vision tasks. While convolutional neural networks
are currently the go-to system for the vision-based research area, a number of
di↵erent implementations of vision transformers have delivered equally good re-
sults, sometimes exceeding those of CNNs in tasks such as image classification.
One downside is that transformer-based models require much more training
data to allow them to be compared to CNNs; however, some improved imple-
mentations have increased e�ciency with relatively smaller training datasets.
Nonetheless, processing large training datasets can be cumbersome. By uti-
lizing self-supervised learning approaches, the e↵ort required to annotate and
prepare large amounts of data for training can be greatly reduced.

This thesis is structured as follows: Chapter 2 briefly discusses related work in
vision transformers and and tra�c-sign detection and classification. In Chap-
ter 3, a background on machine learning types, algorithms, and applications
is presented. The structure of the dataset used, and adjustments made to it
are discussed in Chapter 4. Chapter 5 explains the self-supervised method
“self-distillation with no labels” (DINO) employed in this thesis.The di↵erent
models trained with the DINO method are described in Chapter 6, and the
experiments are presented.
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2 Related Work

This section presents examples of a few related research projects into vision
transformers, and a range of studies utilizing the GTSRB dataset for tra�c-
sign detection and classification will be discussed.

Kolesnikov et al. [1] introduced the vision transformer (ViT) architecture
by adapting the original transformer architecture with minimal adjustments
as described in Section 3.1.3. Although this showed good results, it required
pretraining on very large datasets such as the proprietary JFT-300M dataset[1],
since use of smaller datasets did not deliver promising results. Many studies
have aimed to optimize this aspect. One example is the work proposed by
Touvron et al. [2] where they use knowledge distillation of a pretrained teacher
model that is a CNN to transfer knowledge to the student transformer model
via attention. This approach enabled the model to deliver a top-1 accuracy of
83.1% on the ImageNet benchmark by training the transformer on ImageNet1K
[3], which contains 1.2 million images.

Li et al. [4] present an e�cient self-supervised ViT (EsViT), a multi-stage ViT
architecture where tokens are merged along the stages which reduces complex-
ity at the cost of not being able to capture detailed relations between image
sections. To circumvent this issue, they introduce a novel region-matching
pretraining task, allowing the model to restore detailed relations between im-
age regions. This approach achieves 81.3% on the ImageNet linear evalua-
tion.

Many studies research tra�c-sign detection and classification systems with
varying approaches. These are commonly color- and shape-based approaches.
Moutarde et al. [5] present a two-stage process and utilize a shape-based detec-
tion method to detect circular and rectangular tra�c signs, while employing a
neural network for character recognition and classification, after filtering digit
characters from the tra�c sign. Their system therefore avoids the e↵ects of
color inconsistencies and lighting conditions. They employ Hough transforma-
tion for circular shape detection and a specially designed method for the edge
detection of rectangular shapes. They achieved 90% successful detection and
a 99% classification success rate.

Color-based approaches are implemented widely due to the nature of tra�c
signs in general, which have striking features such as bright concentrated colors.
In [6], the researchers propose a segmentation method by adaptively adjusting
the color threshold. The threshold is dynamically chosen via a cumulative
distribution function on the histogram. They also seek solutions to illumination
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disruptions by using a normalization method which reduces extreme brightness
in image backgrounds and they designed a detection algorithm to detect the
symmetry of tra�c signs relying on statistical hypothesis testing. This study
achieves a detection accuracy of 94% on the GTSDB [7] dataset.

Other tra�c-sign detection and classification approaches rely on machine learn-
ing as well. Aghdam et al. [8] present a lightweight convolutional neural net-
work for for tra�c-sign detection which incorporates dilated convolutions to
employ a sliding window detection method. They also use an additional CNN
for the classification task, achieving an average precision of 99.89% in detecting
signs and 99.55% in classification on the GTSRB dataset [9].
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3 Background

In this section, the fundamentals of this thesis will be explained. This first
subsection starts with the explanation of the di↵erent machine learning types,
followed by a description of the transformers and the vision transformers which
are based on the transformer. In the next subsection, the results as well as
approaches from previous studies will be briefly presented.

3.1 Artificial Intelligence and Machine Learning

In recent years, artificial intelligence has become the basis of many research
fields, and it is applied in many areas. By utilizing statistical methods, clas-
sification and prediction tasks can be developed to produce accurate results.
There is a wide variety of application areas where artificial intelligence is be-
ing actively utilized, such as in medical, economic, or industrial fields. This
section will investigate the basic concepts of artificial intelligence and machine
learning (ML) and provide the essential information for this thesis.

3.1.1 Types of Machine Learning

Over the years, many approaches for creating machine learning systems have
been developed. One of the ways the di↵erent types of machine learning can
be distinguished is according to the process by which the training of a model
is performed and the amount of supervision required [10].

Teaching a model includes adjusting the weights of the model’s components.
Through changes in the weights of neurons during the training process, a neural
network—for example—acquires knowledge on a specific area. The network
learns from a curated and processed set of examples; the higher the quality
of these examples, the higher rate of learning achieved by the network. These
examples comprise what is known as the training data [11].

There are several di↵erent methods to train a model. These can be di↵er-
entiated based on how the dataset is processed and how the training is run.
Figure 3.1 gives an overview on ML methods and algorithms.

In reinforcement machine learning, the focus is on learning from the past
experiences. A type of reward is given to the program for a correct result.
This is followed by a kind of motivation to increase this beneficial outcome.
Reinforcement learning is mainly used in robotics [11].
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Figure 3.1: A brief overview of some machine learning types and common algo-
rithms [12]

Unsupervised machine learning works without an already known partitioning
of the input data, i.e., the output data remain unknown to the model. In
this process, the model recognizes structures in the data and transforms them
into actionable information. An important method of unsupervised learning is
clustering. In clustering, those data that have similarities are grouped together
[11].

Unlike in unsupervised machine learning, in supervised machine learning both
the input data and the output data are known. The model in supervised
machine learning is trained to produce a desired output with input data. This
involves linking the known input data to the targeted output data to form
a general rule. When new data are input to the model, this rule should be
employed to generate new outputs [11].The desired output is referred to as
labels [10].

The two important methods of supervised learning are classification and regres-
sion. Both are predictive models with which predictions about the future can
be made. Regression allows predictions about continuous values. The di↵er-
ence between classification and clustering (unsupervised machine learning) is
that in clustering, classes are created by identifying similarities in the data and
grouping them together. In classification, the classes are already known, and
similarities are searched for in the data set, and the data that have similarities
are assigned to an already known class [11].

Semi-Supervised machine learning falls between the supervised and unsuper-
vised ML. The main concept of semi-supervised learning is that the data are
partially labeled. Despite the partial labeling, the data can be used to create
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accurate models for various applications. This method can be appealing be-
cause partial preparation of training data is a time-saving measure [10].

Self-supervised machine learning is a machine learning process where the
model trains itself. The goal here is to learn one part of the input based
on a di↵erent part of the input. This involves identifying the hidden part of
the input from each non-hidden part of the input. In self-supervised learning,
the data are not labeled. The labels are automatically generated during the
process. So, with this process, the unsupervised problem is converted into
a supervised problem. It is necessary to set the learning objectives properly
at the beginning of the process to be able to use the significant amount of
unlabeled data and acquire the monitoring from the data [13].

3.1.2 Transformers

In the past, natural language processing (NLP) mainly relied on recurrent
neural networks (RNNs). NLP is applied in various tasks such as translation,
sentiment analysis, and speech recognition. The transformer model is a re-
cently conceived deep learning architecture which was introduced in 2017 by a
research group led by Google [14]. Figure 3.2 illustrates the entire transformer
model architecture.

Transformers are tasked with solving problems concerning sequence transduc-
tion, i.e., converting an input sequence into an output sequence. In a sentence,
word dependencies play a vital role in the semantic meaning that the sentence
is trying to deliver. This is mostly achieved by using RNNs [15].

However, one of the main drawbacks of RNNs is the sequential operation.
During the encoding stage, the words of a sentence pass through encoders
based on their position in the sentence. Each encoder generates a state that
is forwarded to the next encoder. The state resulting from the last encoder is
then forwarded to a decoder which outputs the translation of the first word and
the following state, which is in turn forwarded to the next decoder [15].

This mechanism allows for dependencies between the states to emerge. Thus,
hindering parallel operation and negatively a↵ecting training performance.
While there have been some improvements, this constraint is still present
[14].

With transformers, the constraints of sequential processing are resolved. Much
like RNNs, the transformer architecture utilizes encoders and decoders. Fig-
ure 3.3 shows the structure of an encoder or decoder layer in a transformer. The
contrast is that it allows the input sequences to be forwarded in parallel. All
words are passed simultaneously, and all their embeddings are also calculated
simultaneously. As previously mentioned, a word’s is vital to its meaning, so
an additional positional encoding vector, which has information on distances

6



Figure 3.2: The architecture of the transformer model. Words are converted into
embeddings, and positional information is attached to them. In parallel,
they flow through encoder sub-layers on the left, and resulting states
are used as input to the decoder. The decoder has similar sub-layers
with an additional multi-head attention layer. At the output of the
decoder on the right, a linear transformation occurs, and a softmax is
applied, converting output into predicted probabilities [14].

between words, is added to the word’s input embedding beforehand. The result
is a word-embedding with positional information [14].

Encoder: The word-embeddings pass through the encoder block as vectors.
The entire block contains six identical layers (encoders), and each one consists
of a multi-head self-attention sublayer and a fully connected feed-forward sub-
layer. After each sublayer, normalization is applied. Word-embeddings pass
through the attention sublayer followed by the feed-forward sublayer, which
generates an output that is forwarded to the next encoder layer [14].

Decoder: The decoder block has the same number of layers (decoders) as the
encoder block, with the addition of a third multi-head self-attention sublayer
that is applied over the output of the encoder block. The self-attention layer
in the decoder applies masking, together with o↵setting output embeddings by
one position to prevent positions from laying attention on consequent positions.
Similarly, all layers are connected and after each one, normalization occurs
[14].
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Figure 3.3: One layer of a transformer encoder containing a self-attention layer and
a fully connected feed-forward network. A decoder layer has the same
structure, with an additional multi-head attention layer [16, 14].

Attention: By mapping a set of key-value pairs and a query to an output, the
attention function is generated. The output, key-value pairs and the query
are represented as vectors for each word-embedding. By summing the weights
of the values, the output is calculated, and these weights are outputted by
a function which takes the query and its corresponding key as an input. It
calculates the dot product of the query vector with all other key vectors, then
each product is divided by the square root of the key vectors’ dimension. This
value is chosen to derive stable gradients. After division, a softmax is used to
normalize the values. After this operation, these softmax values are multiplied
by the value vectors, and the value vectors are summed to provide the self-
attention layer as an output for a word [14, 16].

Put simply, self-attention relates di↵erent positions of an input sequence with
each other and a score in order to compute a representation of the sequence.
While processing a word, this process forms dependencies to the other words
to build a form of understanding.

3.1.3 Vision Transformers (ViTs)

Given the promising results of the transformer model architecture in the field
of natural language processing in areas such as computation e�ciency and
scalability, it was adapted to be applied in computer vision. CNN architec-
tures had previously dominated computer vision. Vision transformer (ViT)
architecture was introduced in 2020 by Google researchers with the intention
for it to be utilized on a large scale [1]. The left side of Figure 3.4 portrays
the vision transformer architecture, while the right side presents a layer of a
transformer encoder.

The application of transformers to images requires adaption, however. Images
contain a lot more information and data than text, and the main unit of opera-
tion is the pixel. Thus, applying the self-attention mechanism pixel-wise with-
out adjustments prevents realistic utilization of the transformer architecture,
as it is extremely costly to compute attention between each pixel [1].
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Figure 3.4: The architecture of a vision transformer. An image is divided into
patches of identical size. Patches are then linearly projected, after
which a positional encoding is attached. A learnable class token (CLS
token) is prepended which the MLP Head uses for classification. This
is then used as input to the encoder [1].

The ViT introduced follows the original transformer architecture, which is
represented in Figure 3.2, from [14] as much as possible, while adapting the
method for images. 2D images are divided into equally sized patches; these
patches are handled sequentially. Patches have a resolution of (P, P ); this
results in a total number of patches of N = Height ⇥Width/P ⇥ P , which
represents the length of the input sequence, in a similar manner to the length of
a sentence. Similarly, patches represent words in a sentence. Using a trainable
linear projection, patches are converted to patch-embedding vectors. Further-
more, a learnable class-token embedding is then prepended to the sequence of
patch embeddings. This token contains global information of the entire image
and is employed to predict the class of the input. This is fed into the encoder,
and only its state at the output of the encoder is forwarded to a multi-layer
perceptron head for classification [1]. To preserve the positional integrity of
the patches relative to the original image, positional embeddings are added to
the patch embeddings. These help to encode distances between feature. The
resulting embeddings represent the input to the encoder.
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4 Dataset

This chapter will present the structure of the dataset used. Furthermore,
Section 4.3 contains a description of the adaptations that were performed on
the dataset.

4.1 Overview

For self-supervised model training, a suitable dataset is required. In the past
few years, many datasets containing di↵erent tra�c-sign scenes from around
the world have been prepared and provided for creating and training machine
learning detection and recognition models [17]. For this study, the most rel-
evant dataset which was chosen is the German tra�c-sign recognition bench-
mark (GTSRB) dataset [9].

Provided by the Institut Für Neuroinformatik at Ruhr-Universität Bochum,
this publicly available dataset was created to be utilized in a benchmarking
competition for detection and recognition models. As this dataset mainly
consists of tra�c signs on German roads, it was deemed the best-fit for training
this vision transformer model.

4.2 Structure

This dataset is divided by it’s authors into a training set and a testing set. In
total more than 50,000 images are provided for training and testing. The train-
ing set contains a total of 39,209 images in Portable Pixmap format (PPM);
this represents about 80% of the entire dataset. These images are divided into
43 directories, and each directory represents a single class. The tra�c-sign
classes are displayed in Figure 4.1. The order of the images corresponds to the
class index. The first image at the top on the left side (speed limit 20 km/h)
represents the class zero. A mapping of the class IDs to the di↵erent tra�c
signs can be found in Table 7.1 in the Appendix [9].

The training images were created by extracting frames from recorded videos
taken while passing by a sign. Each class directory contains multiple tracks of
a tra�c-sign instance, and each track is a sequence of 30 images of one physical
tra�c sign. Images include a 10% border around the sign, and this border is
from the actual environment the image was captured from. As the images were
collected while driving on roads, there are many variations to the appearance
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Figure 4.1: The 43 tra�c-sign classes [9].

of the signs, e.g., the visibility and clarity of the signs are sometimes a↵ected
by lighting conditions, weather conditions, and motion blur as well as certain
obscuring factors such as tree branches [9].

The classes can be interpreted into categories based on their purpose, i.e.,
speed, prohibitory, mandatory, de-restriction and danger signs. Image dimen-
sions vary between 15⇥15 px and 250⇥250 px, and they are RGB color images.
While the dataset provides a CSV file for each class containing annotations,
e.g., image dimensions and ROIs (regions of interest), these were irrelevant for
this thesis. The number of images varies between classes [9]. Figure 4.2 depicts
the distribution of images before the split.

Figure 4.2: Class distribution of the GTSRB training set before the split.

Image files are named as follows: xxxxx yyyyy.ppm. The first part is the track
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number (xxxxx) and the second part is the sequence number of the frame.

In order to use this dataset for training the model with DINO, certain adjust-
ments to it were required.

4.3 Adjustments to the Dataset

Only the training dataset from [9] was considered. Thus, the total number
of images in the dataset used in this work is 39,209. To train the model
using DINO, 80% of the images in the training set had to be compiled into
one directory, without maintaining the class-folder structure. This posed a
challenge due to the duplicate image file names.

Renaming approximately 39,000 images manually was not feasible, so this was
solved by creating a python script. This script would take the path of the
classes directories and iterate over each class directory. Within each directory,
the script iterated over every image and prepended the class number to the
image name. In this way, all the images received a unique filename with an
indication of to which class they belonged.

To copy the images out of the class directories and into the main training
directory, another simple python script was used. All the remaining images in
the training set were used to test the model. To insert this test dataset—which
is 20% of the training set—into the k-NN classifier, it had to be split into
two folders, each containing 50% of the test images, i.e., 10% of the training
set.
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5 Self-Distillation with no Labels (DINO)

5.1 Overview

In this thesis, the focus is on the method presented by researchers at Meta AI
and their application of the vision transformer architecture [18]. Their research
proposes a self-supervised learning method called self-distillation with no labels
(DINO). This is used to train a vision transformer.

Knowledge Distillation: The knowledge distillation technique from [19] used
for training DINO is di↵erent. In other implementations, training a smaller
network designated as the student relies on a network previously trained on
labeled data designated as the teacher that is also larger than the student
network. While training, knowledge is transferred from the teacher-network to
the student-network. The goal is to train the student-network to match the
teacher-network’s output. DINO builds on the approach in [2]: however, with
DINO, the teacher network is constructed during training and is built from
past versions of the student-network [18].

Teacher and Student: The researchers’ strategy involves using two networks
with an identical architecture, e.g., a vision transformer, one designated as a
student g✓s, and the other as a teacher g✓t. However, both have di↵erent sets
of parameters ✓s and ✓t. Both networks are initialized with the same weights.
During training, only the student is updated with a stochastic gradient descent
and the parameters of the teacher are updated by the student by employing
an exponential moving average (EMA) on the student weights, where the up-
date rule is ✓t � �✓t+ (1� �)✓s, and where � follows a cosine schedule while
training. A feature vector of dimension K is what both networks output. This
is normalised using a temperature softmax over the entire feature dimension
to produce the probability distributions Ps, Pt. Sharpness of the distributions
is controlled by the temperature parameters ⌧s > 0 and ⌧t > 0 for both net-
works. Distributions are matched between the student and the teacher by
minimizing the cross-entropy loss with reference to the student’s parameters.
To ensure only the student’s gradient is updated, a stop-gradient is applied at
the teacher’s output [18]. Figure 5.1 summarizes the functionality of DINO.

Avoiding collapse: With self-supervised learning, it is essential to prevent the
model from collapsing, and avoid mapping inputs to a trivial output. While
this has been achieved previously with various methods, such as through con-
trastive loss [20] and batch normalization [21], the authors [18] relied exclu-
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Figure 5.1: Operation concept of DINO. Two di↵erent random views of an image
are fed into both the student and teacher networks having the same
architecture with di↵ering parameters. Only on the teacher’s output
centering occurs. Feature outputs of dimension K of both networks
are normalized using a temperature softmax to obtain probability dis-
tributions P1 and P2. Distributions are matched by minimizing the
cross-entropy loss. By applying a stop-gradient on the teacher, gradi-
ents are updated only via the student. The parameters of the teacher
are adapted by applying an exponential moving average of the student
parameters. [18].

sively on performing two operations during training, i.e., centering and sharp-
ening of the teacher outputs. Sharpening and centering play contrasting roles.
While sharpening encourages the domination of one dimension and prevents
collapse to a uniform distribution, centering a↵ects these aspects in an oppo-
site manner by preventing one dimension from dominating and encouraging
a uniform distribution. Together with updating the EMA, these operations
prevent model collapse [18].

Multi Cropping and Augmentation: Images in the dataset are processed such
that a set of views containing two distinguishable representations of the image,
i.e., crops, is generated. Researchers can apply a multi-crop strategy as in
[22]. The aim of this is to adapt the cross-entropy loss minimization to self-
supervised learning.

Each set of views of an input image contains two global crops, each covers at
least 50% of the image. Global crops may overlap, and they provide a general
representation of the original image. The views also contain a sequence of
smaller patches called local crops which provide a more local representation of
the image. Local crops cover between 5% and 50% of the image. These could
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overlap as well, and the number of local crops to be generated for training can
be modified. The student network receives both global and local crops, whereas
the teacher network only receives global crops in order to promote “local-to-
global” correlation of the extracted features. The views are passed through an
augmentation process similar to [21]. Augmentations include random rotation,
color adjustments such as solarization, and the application of Gaussian blurring
[18].
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6 Experiments

This section focuses on the di↵erent experiments, and the di↵erent models that
were trained are described. The k-NN classifier results are also presented for
these di↵erent models.

6.1 Trained Models

6.1.1 Pretrained Model

Overview

This is the model provided by the researchers from Meta AI. The dataset used
to train this model is ImageNet1K [3]. This dataset contains 1,000 classes and
more than 1.2 million training images, 50 thousand validation images, and 100
thousand test images. There are around 600 to 3,000 images per class in the
training set, 50 images per class in the validation set, and 100 images in the
test set.

This model’s architecture is a small vision transformer (ViT-S/8), meaning it
has 384 feature dimensions, 6 multi-attention heads, and 21 million parameters.
It was trained without any labels. Training was run on 64 GPUs distributed
on 8 machines, with 8 GPUs per machine. It was run for 800 epochs. The
model has a patch resolution of 8⇥8 px and batch size per GPU of 16, totaling
1024 images per batch. While a ViT-S/16 with a patch size of 16 ⇥ 16 px is
also provided, the model with the smaller patch size was chosen, given that
it delivers better performance [18].The dimension of the output K is 65536.
The teacher temperature parameter ⌧t is set to 0.04 and is linearly increased
during the first 30 Epochs to 0.07, while the student temperature ⌧s is set to
0.1 through the entire training. Learning rate is also increased during the first
10 epochs following a linear scaling rule [23] lr = 0.0005 ⇤ batch size/256;
afterwards, the learning rate is decreased using a cosine schedule [24]. Weight
decay also follows a cosine schedule, starting at 0.04 and ending with 0.4. For
this training, multi-cropping was employed by setting the number of local crops
to 10, while global crops remained at a default count of 2. The global crops
scale ranged from 40% to 100% of the original image. The local crops scale
ranged from 5% to 40%. Global crops were set to a resolution of 224 ⇥ 224
and local crops to a resolution of 96⇥ 96 [18].

The optimizer used for training is adamw [25], which is an improvement of the
optimization algorithm adam [26] achieved by applying enhancements to the
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loss function’s optimization steps and decoupling weight decay.

Attention Visualization

By utilizing the provided visualize_attention.py utility [18], a visualization
of the self-attention of the CLS token on the attention heads from the last layer
can be generated. Each head focuses on a di↵erent region or object in the
image, be it a character boundary or an object within the image. This makes
it possible to observe which regions and objects of an image are weighted most
heavily for the model, with areas of higher attention being brighter and areas
of lower attention being darker.

Self-attention maps in Figure 6.1 through Figure 6.4 were checked against sev-
eral example images from the GTSRB dataset. These images were not used
for training the model. It was noticed how DINO“views” di↵erent aspects of a
sign and segments objects. The leftmost picture is the input image for which
a self-attention visualization is generated, while the rightmost picture depicts
a mean representation of all six generated heads. This was generated by con-
verting the six attention images to arrays containing image RGB values of each
pixel and compiling them into one array. On this array, the NumPy function
numpy.mean() is applied; this calculates the mean RGB array representation,
that is then converted back to an image using the PIL.Image.fromarray()
function.

The images represent di↵erent tra�c-sign shapes, colors, and contents, where
it can also specifically be seen that the hexagonal boundaries of Figure 6.2 are
outlined, as well as the triangular shape of Figure 6.3. In Figure 6.4, the focus
on the arrow object is present in all heads, but for example, head 0 relates to
the disfigurement with the sticker, where head 1 relates more to the area in
the background of the image and the tra�c-sign pole.

6.1.2 Post-trained Model

Overview

This section discusses whether further training of the pretrained DINO model
on the GTSRB dataset yields better results for application of ViTs on tra�c-
sign images.

It was possible to take the last checkpoint from the pretrained model, which
was trained on ImageNet1K for 800 epochs, and train it further on more than
31 thousand images from the GTSRB training dataset. As mentioned in Chap-
ter 4, these images amount to 80% of the GTSRB training dataset. All images
were provided in a single folder with no labels as input.

The model was trained for 50 epochs on a machine in the Dahlem Center
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Figure 6.1: Input image, generated attention heads, and a mean representation of
a speed-limit-80 sign – pretrained model.

Figure 6.2: Input image, generated attention heads, and a mean representation of
a stop sign – pretrained model.

Figure 6.3: Input image, generated attention heads, and a mean representation of
a danger sign – pretrained model.

Figure 6.4: Input image, generated attention heads, and a mean representation of
a keep-left sign – pretrained model.

for Machine Learning and Robotics (DCMLR). The machine had two Nvidia
GeForce GTX 1080 Ti GPUs, both having 11 GB of GDDR5X RAM. The
GPUs ran CUDA Version 11.8. Training this model for 50 epochs took two
days and 14 hours.

The parameters for training this model were identical to those for the pre-
trained model, as we trained and adjusted the weights that had been saved.
The one di↵erence was that the teacher temperature was increased in the
first ten epochs from 0.04 to 0.07. Moreover, due to the hardware limitations
in comparison with the pretrained model, the largest possible batch size per
GPU without exceeding memory capacity was six images. The same optimizer,
adamw, was used for training.

18



Attention Visualization

For the same set of example images of tra�c signs, the self-attention maps
were visualized to compare how the di↵erent models notice the characteristics
of the images. Given that this model was trained further on tra�c-sign images,
a few di↵erences were noted.

It is noticeable in Figure 6.6 compared to Figure 6.2 that there is increased
focus on the sign in the di↵erent heads. Most heads focus on the outline of
the sign, as well as the STOP text within the sign. In head 0, the entire sign
shape, text, and color are captured, while the cut out of the blue sign below it
and the features in the background of the image are ignored in Figure 6.6 in
contrast to Figure 6.2.

Similarly, it can be observed in Figure 6.7 that this model focuses more on the
sign than on other objects, specifically the top part of the white sign below
it. When head 5 from Figure 6.7 is compared with Figure 6.3, it can be noted
that there is no focus on the sign below, in contrast to the same image in the
previous model where some attention is dedicated to the boundaries of the sign
below in all heads.

6.1.3 From-scratch Model

Overview

This model was trained solely using the GTSRB training dataset, i.e., 80% of
the training set.

The training was run for 50 epochs on the same machine mentioned previously,
with two GTX 1080 Ti GPUs and a total of 22GB of memory. The duration
of the training was two days 18 hours and 45 minutes.

This model also has a ViT-S architecture resulting in an output dimension K
of 65536 with the same resolution of 8⇥ 8 px. The number of local crops is set
to eight local crops plus two global crops, with the identical global and local
crop scales to those of the previous models of (0.4, 1.0) for global crops and
(0.05, 0.4) for local crops. The teacher temperature parameter is increased in
the first 20 epochs from 0.04 to 0.07. Similar to all models, the learning rate
is increased in the first ten epochs, and weight decay is updated via a cosine
schedule starting from 0.04 and ending at 0.4.

Attention Visualization

As in the previous section, the self-attention maps of the same set of images,
generated by using the weights of the third model, are analyzed.

In these examples, a sharper attention can be noted in Figure 6.9 through
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Figure 6.5: Input image, generated attention heads, and a mean representation of
a speed-limit-80 sign – post-trained model.

Figure 6.6: Input image, generated attention heads, and a mean representation of
a stop sign – post-trained model.

Figure 6.7: Input image, generated attention heads, and a mean representation of
a danger sign – post-trained model.

Figure 6.8: Input image, generated attention heads, and a mean representation of
a keep-left sign – post-trained model.

Figure 6.12. The model focuses on finer details of the images; for example, in
Figure 6.10 it can be noted that head 4 focuses on the shadow e↵ect of the input
image. Furthermore, a sharp focus can be seen to be paid to the triangular
shape of the danger sign in Figure 6.11 in almost all heads, in particular in
head 2, where the color changes occur, and in head 4, where the entirety of
the red outline of the danger sign can be seen.

Similar observations can be made regarding Figure 6.9, where the circular
shape, as well as the text and the changes in color are outlined more than in
the previous two models. Presumably, this is due to the fact that this model
had not seen any di↵erent objects or colors other than ones that are present
in tra�c signs.
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Figure 6.9: Input image, generated attention heads, and a mean representation of
a speed-limit-80 sign – from-scratch model.

Figure 6.10: Input image, generated attention heads, and a mean representation of
a stop sign – from-scratch model.

Figure 6.11: Input image, generated attention heads, and a mean representation of
a danger sign – from-scratch model.

Figure 6.12: Input image, generated attention heads, and a mean representation of
a keep-left sign – from-scratch model.

6.2 k-NN Evaluation

One of the main assumptions by the authors of DINO is that the ViT models
trained with DINO and self-supervision provide a good level of performance
in classification tasks, specifically with a nearest-neighbors classifier.

The input for the k-NN classifier had to be structured in a certain way. It
required two folders, train and val, to be fed into the classifier. Within each
folder, there was a set of subfolders containing images representing the di↵erent
classes. The training dataset of the GTSRB had this structure. As mentioned
in Chapter 4, an 80/20% split of the images was performed. The 20% was
subsequently also split in half and 10% of the images were put in the train
folder, and the rest 10% were put in the val folder. In the following section,
images in the val folder will be referred to as test images, and images in the
train folder will be referred to as train images.

The provided classifier eval_knn.py [18] receives the frozen weights from the
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trained model and runs them through a feature extraction pipeline, where the
images are loaded via a data loader for each set. This returns two feature
tensors for each dataset: (3921,384) for the test images, and (3290,384) for
the train images. Both feature tensors are then normalized. Furthermore, two
tensors containing train and test labels are also derived from the subfolder
structure; these represent the classes.

After feature extraction, both train and test feature tensors, along with their
respective labels, are fed through the classification function. The classification
function calculates the dot product of the test features and the train features
and retrieves the top k similar train images for each test image along with
their indices by sorting in descending order and fetching the top k elements.
The retrieved distances of nearest neighbors are transformed by dividing by
the temperature parameter ⌧ = 0.07 per default and applying the exponential
function e

x. Probabilities of predicted classes for each test image are retrieved
and sorted. Indices of the highest probabilities are also retrieved and saved
in a tensor which is named predictions and which will represent classes with
highest probabilities. Finally, an equality check is performed on the predictions
tensor against a tensor containing the actual classes of the test images in order
to calculate the percentage of correctly predicted classes. The classification
function iterates over batches of images, where the batch size is 1% of the
total number of 3,921 test images; this is rounded down to 39 images per
iteration.

Due to the fact that the classifier only outputs the percentage of correct class
predictions from the frozen features, some adjustments were applied. In order
to match the train images to the test images and map their similarity score, the
feature extraction pipeline was adjusted to also extract the full list of images
from the data loader and pass them forward to the classification function. For
each batch, the relevant images, labels, and similarities were extracted from
the tensors and comprised into lists. In order to collect this information for
all images over the batches, a simple function was implemented that took the
tensors as an input. These were transferred from the GPU to the CPU and then
converted into a NumPy array; then, the contents of the array were appended
to the respective list aggregating all the information. Another function was
implemented to extract pairs of test image and train image, and their similarity
score, along with the actual class and the predicted class of the test image
from the above-mentioned lists, and these were exported to a CSV file. Due
to resource restrictions, it was not possible to extract all 3, 921⇥ 3, 920 as the
resulting matrix would have contained 3,920 entries for each of the 3,921 test
images, resulting in a total number of over 15 million entries in the output file,
which exceeds the machine’s resource capacity, i.e., the 32GB RAM available
on the machine. So, the entries of the output file were capped to 100 test
images ⇥ 100 train images. Furthermore, for each of the 3,921 test images,
the top ten similar train images were also exported. Similarly, this CSV file
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Model Macro Average Precision Macro Average Recall
Pre-trained model 88.61% 84.06%
Post-trained model 97.77% 96.37%
From-scratch model 77.19% 72.46%

Table 6.1: Summary of precision and recall values for the di↵erent models when
classifying GTSRB dataset.

also contained image paths, actual classes, and predicted classes of test images,
along with the similarity scores and the actual classes of the train images.

6.2.1 k-NN Evaluation on GTSRB Images

k-NN Evaluation – Pretrained DINO Model

Running the k-NN classifier with the weights of the pretrained model yields a
top-1 accuracy in the high eighties. The classifier produces accuracies for 10,
20, 100, and 200 nearest neighbors.

Retrieving the ten nearest neighbors, the classifier is able to produce top-1
correct class predictions for 88.39% of the 3,921 of the test images. For the
20 nearest neighbors, it is able to correctly predict images classes for 88.22%
of the images. For retrieving the 100 and 200 nearest neighbors, the model
achieves top-1 correct class predictions for 86.78% and 86.30% of the 3,921 test
images, respectively.

Due to the fact that the dataset is unbalanced, this above-mentioned metric
does not give a clear picture on the e�ciency of this classification accuracy.
Thus, the precision and recall of all classes and a macro average of these
values was calculated. Precision resembles the percentage of elements that were
actually positively classified out of all elements that the classifier considered
correct. Recall on the other hand represents the percentage of actual correct
elements that were classified correctly [27]. Precision and recall are given by
the following equations:

precision =
true positives

true positives+ false positives
(6.1)

recall =
true positives

true positives+ false negatives
(6.2)

The 43 ⇥ 43 confusion matrix is calculated by utilising the function confu-
sion_matrix(targets, predictions) provided by the sklearn.metrics li-
brary and subsequently the macro average precision and recall values are com-
puted from this matrix [28]. Table 6.1 summarizes precision and recall values

23



for all models when using the GTSRB dataset. Overall this model produced
an average precision of 88.61% and a recall of 84.06%.

The following are example images, and their top five nearest neighbors. In all
figures, the test image and to its right the five train images can be seen. Each
train image’s corresponding similarity score is displayed above it as well, and
class IDs are displayed in parentheses. It is noticeable from these examples
that the classifier can make correct predictions for almost all examples, with
the exception of Figure 6.16, where the fourth and fifth nearest neighbors are
actually a di↵erent tra�c-sign class, namely a keep-right sign. However, this
is very similar to the original class, a keep-left sign.

Figure 6.13: Top 5 nearest neighbors of a speed-limit-80 sign – pretrained model.

Figure 6.14: Top 5 nearest neighbors of a stop sign – pretrained model.

Figure 6.15: Top 5 nearest neighbors of a danger sign – pretrained model.

Figure 6.16: Top 5 nearest neighbors of a keep-left sign – pretrained model.

k-NN Evaluation – Post-trained DINO Model

Running the classifier with the frozen weights of the post-trained model with
the GTSRB dataset returns significantly better results in comparison with
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the previous model. For the top ten and top 20 nearest neighbors, the top-1
prediction was correct in 98.01% of the cases, while for the 100 and 200 nearest
neighbors, the model made correct predictions in 97.85% and 97.80% of the
cases.

This model produced an average precision of 97.77% and an average recall of
96.37%.

The same set of images and their 5 nearest neighbors can be observed in
Figure 6.17 through Figure 6.20 the same set of images and their 5 nearest
neighbors. Notably, the similarities are overall higher in comparison with those
of the pretrained model. The same observation in Figure 6.20 can be made
as was the case in Figure 6.16, where the model retrieved the fourth and fifth
most similar images that belonged to a di↵erent class, however with a higher
confidence level.

Figure 6.17: Top 5 nearest neighbors of a speed-limit-80 sign – post-trained model.

Figure 6.18: Top 5 nearest neighbors of a stop sign – post-trained model.

Figure 6.19: Top 5 nearest neighbors of a danger sign – post-trained model.

Figure 6.20: Top 5 nearest neighbors of a keep-left sign – post-trained model.
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k-NN Evaluation – From-scratch DINO Model

When using the weights of the model which was trained exclusively with the
GTSRB dataset, the classifier produces results that are inferior to those of
both prior models. For the ten nearest neighbors, the top-1 prediction was
correct 77.30% of the time, while for the 20 nearest neighbors it predicted the
correct classes in 76.91% of the cases. Considering the 100 and 200 nearest
neighbors, the model provided correct predictions 76.61% of the time in both
cases.

This model preformed the worst among the previous models outputting an
average precision of 77.19% and an average recall of 72.46%.

This low accuracy compared to the previous models can be seen in the figures.
The model is able to retrieve the most similar image that is of the same class
in Figure 6.21 with a high accuracy; however, the next four instances are of
other classes. Noticeably, the di↵erence between the similarity score of the
most similar image and the other four is significant. It is worth mentioning
that overall, regardless of the tra�c-sign class, the images display very similar
characteristics with regards to color, brightness, and elements such as trees in
the background.

A similar observation can be made in Figure 6.23, where the model classifies
the second nearest neighbor as a danger sign with relatively high accuracy,
although it is of a di↵erent class, i.e., a no-trucks sign; however, the image has
comparable characteristics.

6.2.2 Evaluation on MiG Front-Camera Images

Further analysis has been performed on images from the front camera of the
made-in-Germany (MiG) prototype autonomous vehicle at the DCMLR. A
small set of images were used as input for the classifier. The images were
extracted as frames from video previously recorded while driving the car. The
frames in general contain tra�c scenery in Berlin.

In order to extract tra�c signs from the still frames of wide-angle tra�c scenes,
the implementation of YOLOv7 [29] as part of a bachelor thesis at the DCMLR
[30] was employed. In total, 217 cropped images of tra�c signs were selected.
Images were split, and 126 images were placed in train and 91 images in val
folders, while trying to prevent very similar images appearing in both folders;
this may have arisen due to the fact that most of the tra�c signs had been
cropped from consecutive frames. Images were then separated into subfolders
based on classes corresponding to class IDs, similar to the GTSRB dataset,
to retain the classifier’s input structure and for uniformity purposes. Sample
images that were chosen from the MiG front camera belong to the classes 1,
12, 17, 35, 38 and a miscellaneous class which contained random objects other
than tra�c signs, e.g. a vehicle wheel and a manhole cover.
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Figure 6.21: Top 5 nearest neighbors of a speed-limit-80 sign – from-scratch model.

Figure 6.22: Top 5 nearest neighbors of a stop sign – from-scratch model.

Figure 6.23: Top 5 nearest neighbors of a danger sign – from-scratch model.

Figure 6.24: Top 5 nearest neighbors of a keep-left sign – from-scratch model.

Attention Visualization: For a few sample images, the attention maps were
generated.

With the previously acquired knowledge that the pretrained model on Ima-
geNet1K has, it appears that it struggles to distinguish the features of the
tra�c signs, as we can see in Figure 6.26, while it can barely focus on the
features of the no-entry sign in Figure 6.25.

Using the weights of the post-trained model, it can be noted that more atten-
tion is placed on the tra�c-sign features overall in the heads. This observation
can be made based on Figure 6.27. However, Figure 6.28 demonstrates that
the model fails to provide appropriate attention to the tra�c-sign characteris-
tics.

Applying the weights of the from-scratch model to generate the attention maps,
it can be seen that in most heads the model focuses on the outline of the
characters and the shape of the tra�c sign more in comparison to the previous
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two models. This may be because it had only been trained on such instances of
tra�c signs. However, in other heads it struggles to provide a logical placement
of focus on the features of the tra�c sign and focuses either on or around
shadows and color discrepancies, as can be seen in head 0 and head 4 in
Figure 6.30.

Figure 6.25: Input image, generated attention heads, and a mean representation of
a no-entry sign – pretrained model - DCMLR.

Figure 6.26: Input image, generated attention heads, and a mean representation of
a go-straight sign – pretrained model - DCMLR.

Figure 6.27: Input image, generated attention heads, and a mean representation of
a no-entry sign – post-trained model – DCMLR.

Figure 6.28: Input image, generated attention heads, and a mean representation of
a go-straight sign – post-trained model – DCMLR.

k-NN Classification: As described in Section 6.2, features were extracted using
the weights of all three models separately, and the classification was executed.
For this classification, the five and ten nearest neighbors were inspected, i.e.,
k = 5 and k = 10.

Running the classification on the images yielded a top-1 accuracy of 86.81% and
85.71% for 5 and 10 NN respectively, when using the weights of the pretrained
model. The post-trained model’s weights delivered a top-1 accuracy of 86.81%
for 5 NN and 87.91% for 10 NN. The worst performance in classifying these
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Figure 6.29: Input image, generated attention heads, and a mean representation of
a no-entry sign – from-scratch model – DCMLR.

Figure 6.30: Input image, generated attention heads, and a mean representation of
a go-straight sign – from-scratch model – DCMLR.

Model Macro Average Precision Macro Average Recall
Pre-trained model 88.32% 83.84%
Post-trained model 90.78% 85.89%
From-scratch model 72.41% 63.47%

Table 6.2: Summary of precision and recall values for the di↵erent models when
classifying the DCMLR test set.

images is observed with the weights of the model trained from scratch, where
it achieves a top-1 accuracy of 63.73% for k = 5 and 64.83% for k = 10.

Considering the precision and recall averages computed on the DCMLR images,
a similar trend was observed with regards to which model performed better.
Additionally it is noted here too, that the model trained from scratch produced
the worst performance achieving an average precision of 72.41% and an average
recall of 63.47%. The other two models provided a similar observation to the
classification on the GTSRB dataset, where the pretrained model produced an
average precision of 88.32% and a recall of 83.84% compared with the slightly
better values produced by the post-trained model, scoring an average precision
of 90.78% and an average recall of 85.89%. Table 6.2 summarizes the values
for the three models.

The retrieved five nearest neighbors of two tra�c-sign instances were exam-
ined. For all models, the same image was analyzed, together with which top
5 NN that particular model retrieved when running a classification on the im-
ages with the weights of the pretrained model. In both examples, this model is
able to retrieve the top-5 nearest neighbors which actually belong to the class
of the input image which is a priority road sign. In Figure 6.31, it gives the
first two images have a high similarity score, which is not surprising given that
these images are frames from the same sequence, while the next three have a
substantially lower score due to their di↵erent backgrounds. The post-trained
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Figure 6.31: Top 5 nearest neighbors of a priority road sign – pretrained model –
DCMLR.

Figure 6.32: Top 5 nearest neighbors of a no-entry sign – pretrained model –
DCMLR.

model performs similarly in both examples seen in Figure 6.33 and Figure 6.34,
both when classifying the instances as well as when scoring them. The from-
scratch model provides similar results in the example shown in Figure 6.35.
However, it fails to classify the nearest neighbors of the example image in Fig-
ure 6.36 correctly, classifying only one image correctly—with a weak similarity
in this instance.

Figure 6.33: Top 5 nearest neighbors of a priority road sign – post-trained model
– DCMLR.

Figure 6.34: Top 5 nearest neighbors of a no-entry sign – post-trained model –
DCMLR
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Figure 6.35: Top 5 nearest neighbors of a priority road sign – from-scratch model
– DCMLR.

Figure 6.36: Top 5 nearest neighbors of a no-entry sign – from-scratch model –
DCMLR
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7 Conclusion and Outlook

Transformers have gained popularity in recent years and proved to deliver
good results in natural language processing. This led researchers to adapt
them for computer vision fields, most notably with the vision transformer
from Kolesnikov et al. [1].

In this thesis the self-supervised method “self-distillation with no labels” for
training a vision transformer was explained. It was evaluated using the Ger-
man tra�c-sign recognition benchmark dataset, as well as a smaller dataset
extracted from front-camera images of the Made in Germany autonomous ve-
hicle prototype at the Dahlem Center for Machine Learning. A simple k-NN
classifier was used to run classification experiments. Overall, three models were
evaluated. The first model was a pretrained model provided by the researchers
[22] and was trained on the ImageNet1K dataset containing approximately 1.2
million images. The second model was in essence the first model, but trained
further for 50 epochs with the GTSRB training dataset, after some adjust-
ments were made on its structure. The third model was solely trained on the
GTSRB dataset for 50 epochs. All models were trained in a self-supervised
manner, without the provision of labels or annotations.

Overall, the models were able to provide decent results with regards to the
classification of tra�c signs. On the GTSRB dataset, we noticed that the
second post-trained model performed best with an average precision of 97.77%
and an average recall of 96.37%. In comparison the first pretrained model
produced an average precision and recall of 88.61% and 84.06% respectively.
Notably, the third from-scratch trained model performed worst of all with
a precision average of 77.19% and a recall average of 72.46%. This further
emphasizes the observation that ViTs rely on large-sized datasets to provide
good results, when compared to CNNs. On the DCMLR dataset, the same
trend was observed, with post-trained model outperforming the other two,
achieving an average precision of 90.78% and recall of 85.89%. The first model
produced an average precision and recall of 88.32% and 83.84% respectively
and the third output the least values with a 72.41% average precision and a
63.47% average recall over all classes.

For achieving better results, some improvements can be suggested for the fu-
ture. One aspect that can be improved is the adjustment and fine-tuning of
training parameters. During the training of the post-trained model and the
from-scratch model, most parameter values from the default trained model
were used. These were optimized for the ImageNet1K dataset. Although the
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models produced good results, one can look further into fine-tuning the pa-
rameters for tra�c sign datasets. An additional recommendation is to increase
the training time. All models with the exception of the pretrained model were
only trained for 50 epochs on medium performance GPUs, where each training
process lasted at least two and a half days. Furthermore, a more balanced
dataset could equalize precision and accuracy over the di↵erent classes.
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Appendix

Class ID Tra�c sign Category
0 speed limit 20 prohibitory
1 speed limit 30 prohibitory
2 speed limit 50 prohibitory
3 speed limit 60 prohibitory
4 speed limit 70 prohibitory
5 speed limit 80 prohibitory
6 restriction ends 80 other
7 speed limit 100 prohibitory
8 speed limit 120 prohibitory
9 no overtaking prohibitory
10 no overtaking (trucks) prohibitory
11 priority at next intersection danger
12 priority road other
13 give way other
14 stop other
15 no tra�c both ways prohibitory
16 no trucks prohibitory
17 no entry other
18 danger danger
19 bend left danger
20 bend right danger
21 bend danger
22 uneven road danger
23 slippery road danger
24 road narrows danger
25 construction danger
26 tra�c signal danger
27 pedestrian crossing danger
28 school crossing danger
29 cycles crossing danger
30 snow danger
31 animals danger
32 restriction ends other
33 go right mandatory
34 go left mandatory

a



Class ID Tra�c sign Category
35 go straight mandatory
36 go right or straight mandatory
37 go left or straight mandatory
38 keep right mandatory
39 keep left mandatory
40 roundabout mandatory
41 restriction ends (overtaking) other
42 restriction ends (overtaking (trucks)) other

Table 7.1: Class IDs and corresponding tra�c signs as well as the category – GT-
SRB dataset [9].
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