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Abstract

Observation of the food exchange behaviour of honey bees, trophallaxis, has been
laborious in the past. In this work I created a classifier to detect trophallaxis as
a part the BeesBook system that aims to automate detection of bee behavior in
general. Based on labeled data I created a dataset of images showing trophallaxis
and trained a convolutional neural network to classify images. I show that using
more than one frame to classify trophallaxis yields a better score than using a
single image. The network reaches an F1 score of 0.89 for detecting trophallaxis
which is an improvement over existing methods.
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1. Introduction

1 Introduction

The food exchange behavior, trophallaxis, of honey bees is a focal interaction for
various research. During trophallaxis, the donor bee opens the mandibles and exposes
nectar to the receiver, and liquid food gets transferred from the mouth of one bee to
another (Frisch, 1967). By observing trophallaxis, researchers can study the social
networks of the bees and understand transmission routes of pathogens within the
colony (Naug, 2008).

Figure 1: Two bees performing trophallaxis. The image is part of the training data
but does not have any preprocessing except the first cropping step and contrast ad-
justment with CLAHE (see section 2.3). See figure 3 for examples of preprocessed
images.

Trophallaxis is also used by the bees to exchange information about the food stores
in the colony. This information gets distributed across the colony by trophallactic
contacts and regulates important processes like the egg laying of the queen, and the
decisions about what food needs to be collected. Information is not only in the food
itself, but also in the behavior of the bees during trophallaxis. The willingness of the
recipient hints at how difficult it is to store the food in the given moment. The foragers
receive this signal and decrease or increase nectar foraging (Crailsheim, 1998). There
is also some information in the rate with which a bee unloads nectar to a receiving
bee. This rate with which a receiver unloads the food to the next receiver is positively
correlated with the rate at which she received it. In this way information about the
quantity of food is transmitted along with the food itself (Goyret and Farina, 2005).
The transfer delay, the time until two bees start the trophallaxis is another signal that
carries information about the food source. It has been shown that differences in flow
rate at the food source influence transfer delay. Transfer delay also varies during the
day, being shortest in the morning (Farina and Núñez, 1992).

Biologists have used manual methods for analyzing bee interactions in the past,
but these are very time consuming. De Marco and Farina (2001) have studied how
changes in food source profitability can influence bee behavior during trophallaxis.
Due to a manual process they were only able to observe one bee per day and only 17
bees in total. By automating the process it becomes possible to observe more bees for
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Figure 2: The image on the left shows the tags on the bees’ thoraxes. Shown on the
right is an example of a tag annotated with the bit values shown as numbers. A ring
of 12 segments identifies the bee with a 12 bit number. The center consists of two half
circles, where the white half marks the front of the bee.

a longer time.
Blut et al. (2017) describe a system which enables automated detection of bee be-

havior. They obtained continuous information on position and orientation by marking
bees with 2D bar codes. They tracked 100 newly emerged worker bees for two days
and trained a machine learning system on manually labeled behavior classes. The
system used a frame rate of 4 frames per second. The training data consists of social
per-frame features, which describe each individual’s state in each frame in relation to
its nearest nest mates, for example distance, orientation and speed towards another
bee. Their classifier was used to classify four different behaviors – antennation, beg-
ging, offering and trophallaxis – as a single class. This combined class was defined by
the common features of head to head rotation and antennal contact.

They found that the median duration of the trophallaxis behaviors was 8 seconds,
with a minimum of 5 and a maximum of 30.5 seconds. Since the durations of the
other behaviors were much shorter, they tested if the four different behaviors could
be classified based on their durations. When setting a duration threshold to 5 seconds
they were able to classify 100% of the labeled trophallaxis behaviors, but the false
positive rate was 28%.

Gernat et al. (2018) created an automatic monitoring system for analyzing honey
bee interactions and social networks. They tagged the bees with a custom matrix
bar code attached to the thoraxes. Custom computer vision algorithms were used
to determine position, shape and orientation of the bees. They were detecting inter-
actions by checking if the bees’ heads were connected by a shape that resembles a
proboscis (tongue) or an antenna. A frame rate of one frame per second was used.
As a preprocessing step they used spatiotemporal information. They used a dataset
of 39,863 images, with 1,045 images showing trophallaxis to tune the parameters of
their algorithms. A second dataset for evaluation was created by randomly choosing
100 triplets of successive whole-hive images, and extracting all pairs of bees, that are
in possible positions for trophallaxis (Gernat et al., 2018, Supporting Information).
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1. Introduction

The data used in this work was collected in 2016 during an experiment of the
BeesBook project. The BeesBook system can track all individuals of a honey bee
colony by using tags. The circular, curved tags are attached to the thorax. The tags are
used to identify the bees, as well as getting the current orientation, see figure 2. The
system features 4 high resolution cameras with a resolution of 4000 by 3000 px each
and a frame rate of 3 fps. Additionally high frequency images with lower resolution
are available. (Wario et al., 2015)

Berg (2018) created a filter to find possible occurrences of trophallaxis in the data
of the BeesBook project. This filter works based on the information about the bees
that was extracted before, such as position and orientation of each bee. He applied
his filter to the data to get pairs of bees, that may have performed trophallaxis. He
then manually reviewed the resulting data to evaluate his filter, and to create the
labeled dataset that has been used in this work. His filter operates on tracks, where
a track describes a series of detections of a single bee. A track stores the bee’s ID, as
well as timestamps and the IDs of the corresponding frames. The filter is based on
multiple criteria: minimum and maximum distance between the bees, relative rotation
and duration. After generating the tracks, the filter looks at two tracks at a time and
performs checks based on the criteria.

• The two tracks need to overlap for an adjustable minimum duration.

• The bees need to have a specified range of distance from each other.

• The angle of the bees has to be in a range that the bees are facing each other.

If the second and third check pass for at least the specified minimum duration, the
track combination may belong to two bees performing trophallaxis.

The goal of this work is to create a component for a system for automatic detection
of trophallaxis. I used the data collected by the BeesBook project that has been pre-
filtered by Berg (2018) to train a convolutional neural network to detect trophallaxis
in images.
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2. Implementation

2 Implementation

2.1 Generating training data

The training data is based on the labeled data generated by Berg (2018). Each entry
in the dataset is an event that includes two bee IDs, a list of frame IDs, a label that
indicates if there is trophallaxis happening in the frame, and a start and end index of
the observed trophallaxis. His filter (see page 3) has few false negatives, but many
false positives. That makes it ideal as a preprocessing step to make manual labeling
faster, by discarding interactions that are very unlikely to be trophallaxis. By keeping
the false negatives low it minimizes the bias of ignoring some kinds of trophallaxis,
e.g. with unusual angles. Minimizing this bias is crucial, because the same bias would
be inherited by any network that is trained on the resulting data.

Figure 3: Shown are different head angles of bees during trophallaxis. Each image
is fully preprocessed, so the left bee is rotated that its tag is directed horizontally
towards the right edge. The examples show that the bees can rotate their heads and
perform trophallaxis in angled positions. The crop area needs to be big enough to
include all possible angles. Since the data only provides position and orientation of
the tag, but not of the head, it is not easily possible to crop a smaller rectangle directly
around the heads. As these are preprocessed images the tags are digitally masked to
avoid overfitting. The contrast of the images has been adjusted with CLAHE (see
section 2.3).

Berg (2018) applied the filter that he developed to the raw image data over a period
of two hours and manually labeled the results. There are 2007 events that were labeled
as human decidable. Unlabeled events and 59 events that were labeled as not human
decidable were not used. Due to the amount of data collected in the BeesBook project,
the image data is stored in video files for compression. The library bb_backend, that
is part of the BeesBook system, provides an API to request images based on the frame
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2.2 Frames directly before and after trophallaxis

ID. The meta data, including the positions and orientations is stored in a PostgreSQL
database. The final image size that gets fed into the network is 128 by 128 px. This
size is enough to show both heads during trophallaxis in most cases. See figure 3.

I created python scripts that bring the images in the desired format. After an
image is received by the API, it needs to be cropped around the two bees that are
involved, to save hard disk space, by not saving the full image. Requesting all images
takes multiple days to complete. A second step includes all preprocessing that is too
slow to do in real time. The images get rotated and then cropped to 160 by 160 px to
leave room for augmentation, to keep them as small as possible to make reading them
from disk fast. The remaining processing steps are done in real time during training.

The markers of the bees are cropped out in most cases, but since they can appear at
least partially in the images, they were masked with a gray circle to prevent overfitting
by learning the tags. See figure 3.

Since for each image in the dataset the previous and next frames are known, it is
possible to use that information during training. The network can judge each image
by looking also at n frames before and after. To make it possible to include n frames
before the first frame in the event, and n frames after the last frame, I created a python
script that adds the missing frame IDs to the events as padding. The padding frames
have no label and can not be used directly as center frames. See figure 4.

The position and orientation is not known for all frames, because the tag decoder
can not decode the tags of every bee in every frame, e.g. when it is concealed. In these
cases I used interpolation to fill the gaps.

2.2 Frames directly before and after trophallaxis

Each event that shows trophallaxis in some frames can have some frames that are
labeled as not trophallaxis. These frames appear directly before the beginning and
after the end of the interaction. This happened when the filter of Berg (2018) was
detecting a trophallaxis event correctly, but was wrong about the precise start or end
time. As the threshold is also difficult to set by a human observer and the images
directly before and after the threshold look very similar, I was evaluating to ignore
these frames and to exclude them from the training data. Excluding these frames
improved performance significantly (see table 1).

2.3 CLAHE

Contrast limited adaptive histogram equalization (CLAHE) is a method to enhance
contrast in images (Pizer et al., 1987).

As images of the dataset that have been processed with CLAHE are easier for
humans to classify, and it normalizes contrast and lighting between the images, I
applied it to the images to see if it improves the performance of the trained network.

2.4 Augmentation

Since the dataset was small it was important to augment the data to avoid overfitting.
To augment the dataset three methods were used.
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Figure 4: Each square in this figure represents a frame. The letter in each square
stands for the label, that indicates if the frame shows trophallaxis. Possible values are
Y for yes, N for no and U for unknown. All the frames in an event are labeled, with
either yes or no. The padding frames have not been manually labeled and therefore
have the unknown label. In the case A the frame with index 1 is the center frame.
The number of channels is 3, so the frame before and after also get passed as data to
the network, but only the label of the center frame is passed to the network. In case
B the padding frames are necessary, because the frame before the center frame is not
part of the original event. Since only the label of the center frame is used, it does not
matter that the padding has an unknown label, but this also means, that the padding
frames can not be center frames.
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2.5 Convolutional Neural Network

The images show the bees from the top, so images of trophallaxis in any rotation
are possible. If the training data would show more images of trophallaxis in a certain
rotation, the network may learn this and may overfit. By making the rotation con-
sistent across the dataset this problem can be avoided. To normalize the rotation, I
rotated the image in a way that one bee is always looking to the right. After that I
cropped the image, placing this bee at the left side of the image. Depending on which
bee is chosen to be in a fixed position, a very different looking image is created. This
led to the idea to choose the bee randomly and use this as an augmentation method,
see figure 5.

Figure 5: The figure shows two times the same image of two bees during trophallaxis.
The white squares show the areas of the image, that will be used for training. The
arrow inside each square indicates the side that will be the top after rotation. The
arrows outside of the squares point at the tag of the bee that will then be in the fixed
position at the left. Note that not only the rotation differs, but that the squares are not
overlapping completely, therefore showing different parts of background, especially
in the corners. The second bee, that appears in the right side of the rotated image will
appear in the first case at the top right, in the second case in the bottom right.

After rotating the image to fix one bee at the left edge of the image, some padding
is left around the image to leave room for further augmentation. By randomly rotating
the image around it’s center, overfitting can be reduced further. Another method that
was used is random cropping. Instead of cropping the padding in the last step to a
square around the center, the crop center is moved randomly by a few pixels.

The two rotations were performed as a preprocessing step as it takes too long to
do it in real time, and it only doubles the required disk space. The random rotations
and crops were done in real time during training.

2.5 Convolutional Neural Network

The convolutional neural network consists of 5 convolutional layers. After each con-
volutional layer, max pooling is applied. After the second, third and forth layer, batch
norm is applied as well. See figure 6. ReLU is used as the activation function (see
Glorot et al., 2011). The network was implemented in PyTorch. The gray scale images
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2. Implementation

get passed to the network in the same way as multiple channels of a color image.
The number of channels is adjustable, to test the effect of the number of channels on
the performance of the classifier. Initially I evaluated using existing models that are
implemented as part of PyTorch. I trained the PyTorch implementation of ResNet (see
He et al., 2015), with a small change to make it work with the 128 by 128 input size.
Training with different network sizes showed, that the smallest network performed
best. Since smaller networks are also faster to train and thus allow faster experimen-
tation, I wanted to find the smallest network that still performs as good or better as
the smallest ResNet. Experimentation showed, that networks with less parameters
performed better. Initially I tried using a fully connected layer as the last layer, but
this was again increasing the number of parameters. As a result, the F1 score on the
training set was close to 1, but the score on the test set was much lower. Removing the
fully connected layer resulted in a better test score, a lower training score and faster
training.

10 Channels

Conv + 
ReLU

layer

16 Channels

32 Channels

Conv + ReLU layer Max pooling + 
batch norm

Conv + ReLU 
layerMax pooling + 

batch norm
Max pooling 
+ batch norm

48 Channels

Max

pooling

Conv + ReLU 
layer

Max pooling

2 Channels

Conv + 

ReLU

Figure 6: Network architecture. The convolutional neural network uses five convo-
lutional layers, batch norm, and max pooling. ReLU is used as activation function.

2.6 Training

For training the network, the data was split into a training set and a test set, keeping
all frames of each event in either the training data or the test data, to avoid having very
similar frames in both sets. The events were split randomly with 80% of the events
going into the training data. Cross validation was used with ten different splits. Each
training was run for 50 epochs. Cross entropy loss was used as loss function and
Adam (see Kingma and Ba, 2014) was used as the optimizer. Training took around 18
minutes on average per training run on an Nvidia TITAN Xp, when using 3 channels.
Increasing the number of channels increases the training time.
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3 Evaluation

3.1 Results

As only 7% of the events are labeled as trophallaxis, judging the result by the ac-
curacy is not useful, as the accuracy can be very high, even if all frames were clas-
sified as not trophallaxis. Because of this the F1 score was used as a metric, with
F1 = 2 · precision · recall

precision + recall (see table 5 for accuracy and other performance metrics).
The network was repeatedly trained in cross validation runs of 10 trainings each.

Table 1 shows the effect of using the negative frames around a trophallaxis event.
Using the frames before and after trophallaxis clearly impacts the performance neg-
atively. Because of this these frames were not used. In table 2 the positive effect of
the two rotations (see figure 5) is shown. The effect of contrast normalization with
CLAHE is shown in table 3. CLAHE did not improve performance when using 17
channels, but did improve the score when using only 3 channels.

Figure 7 shows how increasing the number of channels affects the performance
of the network. Increasing the number of channels improves the performance sig-
nificantly, but comes at a cost of increased training time. The most significant im-
provement is obtained when increasing the number of channels from one channel to
three. When increasing the number of channels beyond 3 channels, the score slowly
increases further.

Figure 8 and figure 9 show the effects of random crops and random rotations.
The effect of random rotations and random crops is so small, that it is not noticeable
because of the random variations of the score between training runs. In table 4 the
effect of combining the augmentation methods with varying parameters is shown.
When combining the most promising values for rotations and crops there is a small
improvement for 3 channels, but the score for 17 channels is worse with the same
values. This is likely due to variation between runs and the effect of random crops
and random rotations is negligible. Table 5 shows the best results that were achieved.

drop frames F1 score standard deviation

no 0.7651 0.0693
yes 0.8284 0.0397

Table 1: Average F1 scores and standard deviations of cross validated training runs.
Augmentation was used, with random rotations at 20 degrees and random crops at 8
pixels, 3 channels were used.
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3. Evaluation

selected bee F1 score standard deviation

always first bee 0.8028 0.0410
random 0.8284 0.0397

Table 2: Selecting the bee that is rotated to the left randomly compared to always
selecting the same bee. See figure 5 for details. Average F1 scores and standard
deviations of cross validated training runs. Augmentation was used, with random
rotations at 20 degrees and random crops at 8 pixels, 3 channels were used.

CLAHE channels F1 score standard deviation

no 3 0.8284 0.0397
yes 3 0.8463 0.0346
no 17 0.8852 0.0159
yes 17 0.8793 0.0252

Table 3: Effect of contrast normalization with CLAHE on the F1 score. Augmenta-
tion was used, with random rotations at 20 degrees and random crops at 8 pixels, 3
channels were used.

Figure 7: Effect of the number of channels on the F1 score. Each score is the average
of 10 cross validation runs. Augmentation was used, with random rotations at 20
degrees and random crops at 8 pixels.
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3.1 Results

Figure 8: Effect of the random crops on the F1 score. Each score is the average of 10
cross validation runs. Random rotations were turned off. The center of the crop area
was randomly moved by a few pixels in any direction.

Figure 9: Effect of the random rotations on the F1 score. Each score is the average of
10 cross validation runs. Random crops were turned off. The image was randomly
rotated with increasing maximum angle.
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3. Evaluation

random rotation angle random crop pixels channels F1 score standard deviation

20 8 3 0.8284 0.0397
0 0 3 0.8441 0.0199
2 1 3 0.8595 0.0264
0 0 17 0.8852 0.0159
2 1 17 0.8697 0.0342

Table 4: Effect of the augmentation on the F1 score. Each score is the average of 10
cross validation runs.

performance metric 3 channels 17 channels

F1 score 0.8441 0.8852
Accuracy 0.9705 0.9775
Sensitivity 0.8999 0.9129
Specificity 0.9771 0.9840
Positive predictive value 0.7968 0.8611
Negative predictive value 0.9902 0.9910

Table 5: Performance of the final network with 3 channels (faster training) and 17
channels (better performance). Random crops and random rotations were not used.
CLAHE was applied to the images when training with 3 channels. Frames before and
after trophallaxis were dropped.

3.2 Failure cases

Figure 10 shows frames from the test set, that get incorrectly classified as not trophal-
laxis after training the network with 3 channels. For each example only the center
frame is shown, without the frame before and after. In frames d and e, the bees per-
forming trophallaxis are not visible due to another bee walking over them. These
frames should be removed from the data set, as it is not possible to know if there are
bees performing trophallaxis or not.

Frame l shows an unusual angle as the right bee is rotated in a way, that it is
visible from the side. This is a case that will hopefully be improved by labeling more
data, as there is currently no other event in the training data that shows a rotation like
this. More data will hopefully make the training data more diverse.

Figure 11 shows the 16 false positives with the highest confidence. In the majority
of the false positives the bees are in a position in which trophallaxis is possible. A
human observer may classify some of them as trophallaxis, if the frames before and
after are not known. The reason that these frames are not labeled as trophallaxis
is most likely that the contact was not long enough. These cases may get correctly
classified by increasing the number of channels, which would explain the better score
when using more input images (see figure 7).

Frames a and j in figure 11 are from the same event and show the bees in a position,
in which trophallaxis is clearly not possible, as the right bee has stuck its head inside
the comb. Only judging by the position and orientation of the bees’ tags, trophallaxis
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3.3 Comparison with prior classifiers

may be possible, which explains why the frame was considered trophallaxis by the
spatiotemporal filter of Berg (2018). The network could have learned the position of
the tags, but it is unlikely that this influences the classification significantly, as the
false negatives in figure 10 show tags in very similar positions. Another possibility
is that the network learned the reflection that is present in both images as a white
dot. These reflections may have appeared in trophallaxis frames. If this is really the
problem in these frames, it would be solved as well by labeling more data, as this
would introduce more frames with this kind of reflections into the data set, both
showing and not showing trophallaxis. This way the network can no longer overfit
on these random details.

3.3 Comparison with prior classifiers

Berg (2018) trained a random forest based on his data reaching an F1 score of 0.4038.
Blut et al. (2017) did not try to detect trophallaxis directly, but did detection of en-
counter behaviors, including antennation, begging, offering and trophallaxis com-
bined as one class. They achieved an F1 score of 0.7593 and showed that they can
filter out non-trophallaxis encounters with a filter based on duration. When setting
the threshold on ≥ 5 seconds, no trophallaxis encounters in their data get filtered out,
but the false positive rate is 28%. Combining their detection method with this filter
could be used to automatically detect trophallaxis, but the F1 score will be lower than
0.7593. Gernat et al. (2018) used spatiotemporal information as a filter in a similar way
as the filter of Berg (2018) was used for this work. Interestingly the score of Berg (2018)
and the score of the classifier, that uses only spatiotemporal information by Gernat
et al. (2018) are very similar. They both used a similar approach but on different data.
Table 6 shows that my results are an improvement over existing methods.

Classification method F1 score

Random forest on trajectories (Berg, 2018) 0.4038
Only spatiotemporal information (Gernat et al., 2018) 0.4048
Spatiotemporal information, computer vision (Gernat et al., 2018) 0.6407
(Blut et al., 2017) 0.7593
Convolutional neural network, image data, 3 channels (mine) 0.8441
Convolutional neural network, image data, 17 channels (mine) 0.8852

Table 6: Comparison to previous classifiers. The F1 score of Blut et al. was calculated
by using the confusion matrix in (Blut et al., 2017, table 2). The F1 score of Gernat et al.
was calculated by using the performance measures in (Gernat et al., 2018, Supporting
Information, table S3).

3.4 Application on other data

From the unlabeled data collected by the BeesBook project, a separate dataset was cre-
ated without the filter described by Berg (2018). A more relaxed filter was used, that
only filtered by proximity. That way many frames that show two bees in angles where
trophallaxis is not possible were included, and therefore much more false positives.
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(a) confidence: 0.9951 (b) confidence: 0.9943 (c) confidence: 0.9923 (d) confidence: 0.9882

(e) confidence: 0.9877 (f) confidence: 0.9793 (g) confidence: 0.9758 (h) confidence: 0.9727

(i) confidence: 0.9642 (j) confidence: 0.9130 (k) confidence: 0.9065 (l) confidence: 0.8853

(m) confidence: 0.8775 (n) confidence: 0.8528 (o) confidence: 0.8444 (p) confidence: 0.8077

Figure 10: False negatives with highest confidence. Confidence was calculated by
applying the softmax function to the output of the network and then using the value
of the not trophallaxis class. Total number of false negatives was 27. The network was
trained with 3 channels, random rotations at 20 degrees and random crops at 8 pixels
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3.4 Application on other data

(a) confidence: 0.9999 (b) confidence: 0.9973 (c) confidence: 0.9948 (d) confidence: 0.9928

(e) confidence: 0.9913 (f) confidence: 0.9912 (g) confidence: 0.9846 (h) confidence: 0.9837

(i) confidence: 0.9830 (j) confidence: 0.9799 (k) confidence: 0.9793 (l) confidence: 0.9786

(m) confidence: 0.9782 (n) confidence: 0.9769 (o) confidence: 0.9737 (p) confidence: 0.9701

Figure 11: False positives with highest confidence. Confidence was calculated by
applying the softmax function to the output of the network and then using the value
of the trophallaxis class. Total number of false positives was 106. The network was
trained with 3 channels, random rotations at 20 degrees and random crops at 8 pixels
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3. Evaluation

The network was applied to around 17000 frames of this dataset, but only 19 frames
were classified as trophallaxis by the network, and only 2 of them were true posi-
tives. This shows that the network that was trained on data that was filtered with the
method of Berg (2018), only works well on data that has been filtered in the same way.
When sorting the images by the confidence with which the network classified them
as not trophallaxis, it is clear that the images with low confidence have more similarity
with trophallaxis than the ones with high confidence. It is not known how many cases
of trophallaxis are in this dataset. The network that was used was not the final model
and it is possible that the final version would perform better. Only 3 channels were
used. An increased number of channels could increase performance, but training and
generating the images would take longer.

16



4. Discussion

4 Discussion

It was shown that it is possible to get reasonable results for detection of trophallaxis
with little labeled data. Using sequences of images instead of using single images im-
proved the performance significantly. The results are clearly an improvement over the
previous automatic classification method based on trajectories, as well as over existing
solutions using custom computer vision algorithms. However it seems that more data
would further improve the results. As there is a lot of data available from the Bees-
Book project, that can be filtered easily with the filter of Berg (2018), it is possible to
label more data in the future. When more labeled data is available it may be possible
to increase the network size, and likely improve the results further. To create more
labeled data it may be useful to use active learning, specifically uncertainty sampling,
which is useful in situations, where unlabeled data is abundant and labeling is time-
consuming (see Settles, 2009). For this the trained network gets applied to unlabeled
data and then only the images with the lowest confidence get labeled. Since it was
shown that using image sequences can improve the performance over using single
frames, it may be interesting to explore network architectures that are better suited
for video classification by using e.g. 3d convolutions.

As the labeled data by Berg (2018) includes information about which bees is donor
and which is receiver, it may be possible to train a network to predict this, reusing the
same image dataset and augmentation methods of this work.
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