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Zusammenfassung

Freie Logik erweitert Logik um den Aspekt der Nichtexistenz von Objekten und
schafft Raum fiir Undefiniertheit. Logische Schlussfolgerungen iiber solche nicht-
klassischen Logiken konnen tiber unkonventionelle Einbettungen in die klassische
Logik hoherer Stufe gezogen werden. Automatische Beweiser fiir hoherstufige
Logik setzen auf die TPTP-Sprache THE, eine standardisierte Kodierung fiir
Formeln der Logik hoherer Stufe. In dieser Arbeit wurde eine TPTP-konforme
Kodierung fiir die nicht-klassische freie Logik entworfen sowie die Einbettung von
freier Logik in Logik héherer Stufe diskutiert und eine automatisierte Ubersetzung
von frejer Logik in die Logik hoherer Stufe implementiert. Ziel der Arbeit war es,
die native Formulierung von Formeln der freien Logik zu erméglichen, fiir deren
Auswertung aber trotzdem auf die Fertigkeiten von namhaften hoherstufigen
Theorembeweisern wie Leo-II(I) ausgewichen wird.

Die Effektivitit der Ubersetzung wurde anhand beispielhafter Formalisierungen
untersucht. Ansatzpunkt dafiir bildete das kategorientheoretische Buch Catego-
ries, Allegories von Freyd und Scedrov (1990).
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Abstract

Free logic extends logic by including the aspect of non-existence of objects
and creates space for undefinedness. Reasoning about such non-classical logics
can be done using unconventional embeddings in classical higher-order logic.
Automated theorem provers for higher-order logic rely on the TPTP language
THE, a standardized encoding for formulae of higher-order logic. In this thesis,
a TPTP compliant encoding will be formulated for non-classical free logic, the
embedding of free logic in higher-order logic will be discussed and an automated
translation of free logic into higher-order logic will be implemented. The goal
of this thesis was to enable native formulation of free logic formulae — for their
evaluation, however, the capabilities of notable higher-order theorem provers
such as Leo-II(I) were used.

The effectiveness of the translation was investigated based on exemplary forma-
lizations. The starting point was the category theory book Categories, Allegories
by Freyd und Scedrov (1990).
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1 Einleitung

Gibt es Dinge, die es nicht gibt? Fragt man Willard Van Quine, dann ist das keineswegs
der Fall. Es gibt nichts, das es nicht gibt. Es gibt alles. Klassische Logik gibt Undefiniertheit
keinen Namen, schlief3t diese sogar kategorisch aus. Da Undefiniertheit und Nichtexistenz
aber sehr wohl iibergeordnete Rollen in diversen Theorien spielen (vgl. Kapitel 1.1) reichen
klassische automatische Theorembeweiser (automated theorem prover, ATP), Werkzeuge fiir
die automatische Herleitung und Verifikation von logischen Formeln, nicht aus, um eben jene
zu verifizieren. In dieser Arbeit soll sich der automatischen Deduktion von freier Logik auf
Basis von hoherstufigen Theorembeweisern angenédhert werden.

1.1 Anwendungsgebiete der freien Logik

Freie Logik findet Anwendung in den Theorien der definiten Kennzeichnungen, in Sprachen,
die partielle Definiertheit und nicht-strikte Funktionen erlauben, in fiktionaler Logik, in den
Theorien der Pradikation, in Programmiersprachen als Abbildung von Fehlerzustinden und
in der Mengenlehre (vgl. Lambert 1991; Lambert 2001; Nolt 2002). Da sich die freie Logik
in der Vergangenheit bereits als niitzliches Instrument zur Uberpriifung der Konsistenz
mathematischer Theorien erwiesen hat (vgl. Benzmotiller und Scott 2016b) sei an dieser Stelle
insbesondere ihre Anwendung in der Kategorientheorie und in der projektiven Geometrie
hervorgehoben.

1.2 Motivation

Aufgrund der vielfiltigen Einsatzmoglichkeiten ist eine native Unterstiitzung der freien Lo-
gik durch automatische Theorembeweiser, die in naher Vergangenheit nicht zuletzt durch
ontologische Gottesbeweise grofSe Erfolge verbuchen konnten (vgl. Benzmiiller und Wolt-
zenlogel Paleo 2015a; Benzmiiller und Woltzenlogel Paleo 2016), erstrebenswert. Formeln
der freien Logik sollen intuitiv, aber standardisiert eingegeben werden konnen und so auf
ihre Konsistenz iberpriift werden konnen. Statt auf einen eigenstindigen Theorembeweiser
fir die freie Logik zu setzen, wird eine Einbettung nach Benzmdiller (2013) vorgezogen. Mit
einer solchen Einbettung kann man auf die fortgeschrittenen Fertigkeiten von klassischen
hoherstufigen Theorembeweisern ausweichen, ohne auf in der freien Logik natiirliche Sprach-
konstrukte verzichten zu miissen. Eine auf einer Ubersetzung beruhende Schnittstelle mit
standardisierter Ein- und Ausgabe hat den Vorteil, dass die dem der Ubersetzung anschlief3en-
den Beweisschritt zu Grunde liegende Implementierung unabhingig von der Ubersetzung
selbst ist. Im Folgenden soll deshalb eine automatisierte Ubersetzung von freier Logik in die
Logik hoherer Stufe realisiert werden. Dazu wird neben den theoretischen Grundlagen die
Einbettung von freier Logik in Logik hoherer Stufe im Detail erortert sowie eine Umsetzung
implementiert und letztendlich auch angewendet.






2 Logik hoherer Stufe

Typentheorien konkretisieren die Ansédtze von Logiken hoherer Stufe (higher-order logic,
HOL). Im Folgenden soll die auf Church (1940) zuriickgehende einfache Typentheorie (simple
type theory, STT), basierend auf dem einfach typisierten A-Kalkiil, aufgegriffen werden.

2.1 Syntax

Die Syntax der einfachen Typentheorie orientiert sich am A-Kalkil und definiert sich tiber
einfach typisierte Terme, sogenannte Ausdriicke. Typen wiederum definieren sich tiber eine
Menge von Basistypen und dem Typkonstruktor —. Zu den Basistypen zdhlen o fiir den
Propositionstyp und ¢ als Typ fiir die Doméne der Individuen. Der Vollstindigkeit halber sei
erwidhnt, dass es in der Logik hoherer Stufe keinerlei Einschrankungen im Hinblick auf die
Definition von weiteren Basistypen gibt (Benzmiiller und Miller 2014), in dieser Arbeit aber,
aus Griinden der Ubersichtlichkeit, Churchs Beispiel gefolgt und sich auf die zuvor genannten
beschrankt wird. Die Erweiterung der folgenden Definitionen auf eine méachtigere Menge von
Basistypen ist trivial.

Definition 1. Die Menge der einfachen Typausdriicke T besteht aus den Basistypen o und ¢
und weiterhin aus Funktionstypen mit einem Doméanentyp @ und einem Kodoménentyp 3:

= 1]o](a=p).

Der Operator — ist rechtsassoziativ. Das heifst, werden Klammern ausgespart, dann ist, mit
aq, 0, a5 €T, (0 = (g — a3)) dquivalent zu a; — g — as.

Definition 2. Terme der Logik hoherer Stufe sind durch folgende Grammatik gegeben:

Sﬂt = Gy | Xa | (Sa—>,3ta)/8 ’ (>‘Xo¢'sﬁ>a—>ﬂ | <(:a—>a—>o Sa) toz)o | <_'o—>o So)o ’
<<v0—>o—>oso> to)o ‘ (v(a—m)—m()‘Xa‘so))o ’ (l’(a—m)—)a()‘on‘so))a

mita, € T.

Konventionell sind Konstanten mit Klein- und Variablen mit Grofsbuchstaben bezeichnet. Der
Typ eines jeden Terms wird als Subskript angegeben und ausgelassen, wenn er als irrelevant
oder, zum Beispiel durch eine Bindung, als offensichtlich angesehen wird. X, ist eine Menge
von Konstanten des Typs «, V,, gibt die unendliche Menge aller Variablen des Typs « an.
c,, ist eine syntaktische Variable, die tiber X, iteriert, wahrend X, € V,,. Terme des Typs o
werden Formeln genannt. Die logischen Konstanten _L fiir Falsum und T ftr Verum sind wie
folgt definiert:



2.1 Syntax

Y(AX,. X)

AX, X = 20X, . X
mita € T.

Fur jeden bindren Operator op kann statt auf seine Préfix-Notation (op s, ) t, auch auf
die Infix-Notation s, op t, ausgewichen werden. Durch die Negation, Disjunktion und
Allquantifizierung lassen sich ergdnzend weitere logische Verkniipfungen beschreiben:

A ossomso = AS,. At,. —(—s V)

3 = ASyo- V(AX,,. m8X)

a—0)—o

mita € T.

Die Kennzeichnung ¢(AX.s) ist optional und gibt dasjenige eindeutige X wieder, fur das s
gilt. Fur die Kennzeichnung sowie fir V(AX.s) kann auf die kompaktere Bindernotation
zuriickgegriffen werden: {V, 1}(X.s). Im Kontext der Arbeit wird Gleichheit als primitiv
angenommen, kann aber auch alternativ durch die Leibniz-Gleichheit intendiert werden (vgl.
Benzmiiller, Brown und Kohlhase 2004):

L = \X,.\Y,.VP, ,,.PX— PY

—a—a—o
mita € T.

Ein if-then-else-Operator definiert sich mittels Kennzeichnung nach Backes (2010) wie folgt:

ite = AS, AX AY (A2, (sANX=2)V (msNY=2))

o—a—a—Q

mita € T.

Definition 3. Eine Variable X, ist gebunden in einem Term s, mit & € T, wenn sie mindestens
einmal gebunden in s, vorkommt. X, ist frei in s, wenn die Variable nicht gebunden ist.
Ein Term ohne freie Variablen wird geschlossen genannt.

Definition 4. Die Substitution einer Variablen X, durch einen Term ¢, in einem Term s,
wobei a € T, wird mit s [t/ X] angegeben.

Bei einer Substitution miissen gebundene Variablen gegebenenfalls umbenannt werden, damit
niemals eine freie Variable in einem Substitut nach einer Ersetzung gebunden wird. Man
spricht dann von a-Konversion. a-, 8- und n-Konversion sind wie gewohnt definiert:



2.2 Semantik

AX.s = AY.(s[Y/X]) mitYnicht-freiin s (a)
(AX.s)t = s[t/X] (B)
AX. (s X) = s mit X nicht-frei in s. (n)

2.2 Semantik

Die Semantik von Logik hoherer Stufe ordnet deren syntaktischen Strukturen eine formale
Bedeutung zu. Dazu werden aussagenlogischen Ausdriicken Wahrheitswerte zugewiesen,
indem diese in Modellen interpretiert werden. Der Modellbegriff wird zunachst anhand der
Definition eines Rahmens eingefiihrt und mit dem Begrift der Variablenzuweisung ergénzt,
um anschliefSend die Auswertungsfunktion fiir den Wert eines Terms zu erldutern. Sofern
nicht anders angegeben sind o, 5 € T.

Definition 5. Ein Rahmen D ist eine Menge { D_ } bestehend aus nicht-leeren Mengen D_ mit
7 € T, sodass D, frei wihlbar, D, = {wahr, falsch} und D,, ,; Mengen von Funktionen
sind, die D,, auf D abbilden.

Definition 6. Ein Modell ist ein Tupel M = ( D, I ) mit einem Rahmen D und einer Menge
von Interpretationsfunktionen I = {I,} .+ mit I, als Abbildung, die jeder Konstanten p,,
ein Objekt aus D, zuordnet.

Definition 7. Eine Funktion g, : V, — D, ist eine Variablenzuweisung, die Variablen des
Typs « auf Objekte in D, abbildet. Die Variablenzuweisung g entspricht der Menge {g,, } et
g[d/X .| mitd € D, ist bis auf die auf d abgebildete Variable X, identisch zu g:

gld/ X, ](X,) =d und g[d/ X |(Y,)=9(Y,) € D, furalleY, # X.

Definition 8. In einem Standardmodell ist eine jede Domane D,, , 5 definiert als die Menge
{flf: D, — Dg}.In einem Henkin-Modell beschrénkt sich diese Domine auf eine endliche
Teilmenge der moglicherweise unendlichen Gesamtmenge: D, ,5 € { f|f: D, — Dg}.
Die Michtigkeit der eingeschrankten Menge ist frei wihlbar, solange die Auswertungsfunktion
fiir die Werte von Termen der Logik hoherer Stufe total bleibt.

Logik hoherer Stufe mit Henkin-Semantik ist, im Gegensatz zur Standardsemantik mit ihren
iberabzdhlbaren Modellen, widerspruchsfrei und vollstindig (Henkin 1950; Benzmidiller,
Brown et al. 2004).

Der Wert || s, ||*9 eines Terms s, in einem Modell M unter der Variablenzuweisung g ist
ein Element d € D, und wird folgendermafSen ausgewertet:



2.2 Semantik

[l eq ¥ = I(c,)
| X 1M = g(X,)
| (saspta)s 19 1 5amsp 119 (I 2o (1709

| (AX - 85)qp [|M9 die Funktion f von D,, nach Dy, sodass

fd) = || sz ||M9d/X] figralle d € D,
1 (Zasaso Sa)ta)o ' i= wahr genaudann, wenn || s, [[*9 = ||, [|[*
1| (moso 80)o ||M9 = wahr genaudann, wenn || s, [|*9 = falsch
1 ((VyorsoS0) to)o |11 := wahr genau dann, wenn || s, ||*'9 = wahr oder
I, [[*79 = wahr
1 (¥ (ams0)=0 (A X o+ 86))0 |M:9 := wahr genau dann, wenn fiir alle d € D, gilt:
| s, ||[M9d/Xa]l = wahr
1 (tassosa (A Xa- 50))q [M9 = d € Dy, sodass || s, |99 %e] = wahr und
fir alle d’ € D, gilt:
wenn || s, ||[M914/Xal = wahr, dannistd = d

mita, € T.

Definition 9. Eine Formel s, gilt in einem Modell M unter der Variablenzuweisung g genau
dann, wenn ||s, || = wahr und man schreibt M, g F s,. Eine Formel s,, ist giiltig in M,
symbolisiert durch M F s,, genau dann, wenn M, g F s, fiir alle Variablenzuweisungen g
erfillt ist. Eine Formel s ist genau dann (allgemein-)giiltig, geschrieben F s, wenn M F s,
fiir alle M erfallt ist.

Definition 10. Sei ¢ eine Menge von Formeln der Logik hoherer Stufe, dann gilt F ¢ genau
dann, wenn F s, flr alle s, € ¢ erfillt ist.

Definition 11. Sei ¢ eine Menge von Formeln der Logik hoherer Stufe. Eine Formel s, ist
genau dann eine logische Konsequenz von ¢, geschrieben ¢ F s, wenn fiir jedes Modell M
erfullt ist, dass, wenn M F ¢, dann muss auch M F s, gelten.



3 Freie Logik

Der Begriff der freien Logik (free logic) wurde von Lambert (1960) geprégt, als er damit eine
Logik, die frei von jeglichen Existenzannahmen ist, beschrieb. Konkret bedeutet das, dass
in der freien Logik die Quantifizierung iiber eine Doméne D, in ihrer urspriinglichen Form
beibehalten wird, Terme aber Objekte aufierhalb der Doméane D, denotieren kénnen oder gar
nicht definiert sein miissen. So lassen sich Aussagen iiber Objekte wie ,Golum® oder ,die grofite
Primzahl” treffen. Da klassische, fregeanische Logik annimmt, dass jeder Term ein (existentes)
Objekt in D, bezeichnet, gilt freie Logik gemeinhin als nicht-klassisch (Nolt 2014). Dieser
allgemeine Begriff von freier Logik wurde von verschiedenen Autoren interpretiert und formal
dargestellt. Um die Syntax und Semantik von freier Logik hoherer Stufe herauszuarbeiten,
wird in dieser Arbeit primédr auf die Definition der freien Logik der ersten Stufe von Scott
(1991) bzw. Benzmiiller und Scott (2016a) zuriickgegriffen, jedoch im spéteren Verlauf auch
auf differente Auspragungen und Varianten von freier Logik eingegangen.

Scotts Konzept von freier Logik unterscheidet eine Doméne D, und eine wohldefinierte
Unterdoméne E,. Die Doméne D, enthilt alle moglicherweise nicht-existenten Objekte,
wihrend E, die Menge der tatsdchlich existenten Objekte erfasst. Quantifizierungen beziehen
sich per definitionem auf die Doméne E_,. Undefiniertheit wird durch ein eindeutiges Objekt
*x, € D, & E,, wie in Abbildung 1 illustriert, représentiert.

D : nicht-existente Objekte

*

E : existente Objekte

Abb. 1: Grafische Darstellung einer Doméane und ihrer Unterdoméane

3.1 Syntax

Bis auf die Grammatik von Termen, die um zwei Konstanten erweitert wird, entspricht die
Syntax von freier Logik der unter Kapitel 2.1 vorgestellten Syntax der Logik hoherer Stufe.



3.2 Semantik

Die induktive Definition von Termen lautet nun wie folgt:

Definition 12. Terme der freien Logik sind durch folgende Grammatik gegeben:

S7t = Cy ‘ Xa ‘ v ‘ (E’aﬁo a)o ‘ ( aﬂﬁ toz)ﬁ | ()‘Xa‘ Sﬁ)aﬁﬁ ‘
((:a—>a—>o a) a)o | ( 0—o0 o)o | ((vo—m—)oso) to)o |
(v(a—m)—)o()‘X So ) ’ ( (y—o0) —>fy()‘X7' So))7

mit o, 8,7 € T und v # o.

Wie der initialen Darstellung aus Kapitel 3 zu entnehmen ist, bildet die Konstante x die
Undefiniertheit von Objekten ab. E ist ein Pradikat zur Uberpriifung von Existenz, das als
primitiv angenommen oder aber auch durch

FEl's = Jt.t=s

mit einem iiber die Doméne der existenten Objekte quantifizierenden 3 definiert werden kann
(vgl. Lambert 2001: 264 ff). Die Kennzeichnung gibt dasjenige eindeutige Objekt zuriick, das
eine bestimmte Bedingung erfiillt. Gibt es ein solches Objekt nicht, dann ist die Kennzeichnung
undefiniert. Die Einschrankung von x und der Kennzeichnung auf Typen ungleich dem
Propositionstyp ist ein Seiteneffekt der auf Undefiniertheit verzichtenden Doméne D, (siehe
dazu auch die Erlduterungen zur Semantik von freier Logik in Kapitel 3.2) und nimmt der
Logik nichts von ihrer Expressivitit.

3.2 Semantik

Die Semantik der freien Logik unterscheidet sich je nach Art, wie singuldre Terme, die ein nicht-
existentes Objekt enthalten, ausgewertet werden. Hierfiir gibt es drei Herangehensweisen: die
positive, negative oder neutrale Semantik. Bevor auf die einzelnen Semantiken eingegangen
werden kann, muss zunéchst die Definition eines Modells wie folgt abgewandelt werden:

Definition 13. Ein Rahmen D ist eine Menge { D_} bestehend aus nicht-leeren Mengen D_
mit 7 € 7, sodass D, frei wahlbar, D, = {wahr, falsch} und D,,_, 5 Mengen von Funktionen
sind, die D, auf D abbilden. Jeder Menge D, mit 7 # o wird das undefinierte Objekt *,
zugeordnet.

Definition 14. Ein Unterrahmen F ist eine Menge { £} bestehend aus nicht-leeren Mengen
E_mit T e T, wobei jede Menge E_ eine Untermenge von D ist. Weiterhin gilt D, = E,.

Definition 15. Ein Modell ist ein Tripel M = ( D, E, I ) mit einem Rahmen D, einem Unter-
rahmen F und einer Menge von Interpretationsfunktionen I = {1}, .+ mit I, als Abbildung,
die jeder Konstanten p,, ein Objekt aus D, zuordnet.

Die iibrigen Definitionen der Semantik der Logik hoherer Stufe (vgl. Kapitel 2.2) behalten



3.2 Semantik

ihre Giiltigkeit.

3.2.1 Positive Semantik

In der positiven Semantik, von welcher Scott in seiner Schrift von 1991 ausgeht, kénnen
singuldre Terme des Typs o, die ein nicht-existentes Objekt enthalten, wahr sein, auch wenn
diese Objekte nicht im Zusammenhang mit dem Existenzpréadikat verwendet werden. Der
Wert || s, || eines Terms der positiven freien Logik wird wie folgt ermittelt:

| eq [IM9 = 1(c,)

| *y (|79 =,

| Xq |9 = g(X,)

|| (B!, 50)0 |[M9 := wahr genau dann, wenn || s, ||*9 € E,

| (Saspta)s 1M

H <)‘Xo¢ Sb’)a—)ﬁ HM,g

| (Facsasso Sa) tado |[M9

|| <_\O*>O SO)O ||M’g

1 (=000 50) To)o 1M

H (v(a—m)—m()‘Xa‘ So))o ||M,g ;

1 50 M09 (1] £ 1179

die Funktion f von D, nach Dg, sodass
fd) = || sz ||M94/Xa] figralled € D, !

wahr genau dann, wenn || s, [|*9 = || ¢, ||M9
wahr genau dann, wenn || s, ||*9 = falsch

wahr genau dann, wenn || s, || = wahr,

o 1M

dannistauch ||t 9 = wahr

wahr genau dann, wenn fiir alle e € F, gilt:

s, P40l = wahr
(ec€ E, wenn || s, |[*9%] = wahr und
furalle ' € E, gilt:
1 (WX 50)), M9 o= 4 wenn || s, ||/ = wahr,
danniste’ = e
( %,y sonst

mit , 8,7 € T und v # o.

Es sei angemerkt, dass die Auswertungsfunktion durch die Einfithrung eines fixen undefinier-
ten Objekts, dargestellt durch *, total bleibt (Nolt 2002). Die Funktion um die Evaluierung
von || (¢(p—0)—0(AXo- 56))0 ||M:9 zu erweitern ist trivial, allerdings im Rahmen dieser Arbeit
nicht von Belang.

I Mégliche bzw. erzwungene Interaktionen von Undefiniertheit iiber die Typhierarchien hinweg sind noch zu
untersuchen.



3.2 Semantik

3.2.2 Negative Semantik

In der negativen freien Logik (vgl. Burge 1974) werden alle singuldren Formeln mit nicht-
existenten Objekten unabhédngig von der Verwendung eines Existenzprédikats bedingungslos
zu falsch ausgewertet. Hierzu zahlt insbesondere auch die Identitét. Die Auswertungsfunktion
aus Kapitel 3.2.1 dndert sich an folgenden zentralen Stellen, damit der Wert || s,, || eines
Terms der negativen freien Logik ermittelt werden kann:

(1] 5esy M9 (1] to [I*9)  wenn || s, |9,
| (Sasy tady 119 = 9 | ta 1" € E,
%, sonst
(1l Sao M9 (12 [|79)  wenn || s, [|*9,
| (Saota)o 119 = | to [|M9 € E,
 falsch sonst
| (Fasaso o) ta)o I*9 == wahr genaudann, wenn || s,, [|*9 = ||, [|*9

und wenn || s, [[*9, || ¢, |[*"9 € E,

mita € T und 7y # o.

Die hier vorgestellte Semantik der negativen freien Logik beruht auf einer strikten Variante der
Applikation. Alternativ kann sich Striktheit auch nur auf die Argumente von Applikationen
beziehen.

Wihrend Formeln wie (AX . (X, = X4)0)aso *a)o bzw. Einhorn = Einhorn in po-
sitiver freier Logik jeweils zu wahr ausgewertet werden konnen, sind diese in freier Logik
mit negativer Semantik unabdingbar falsch und damit unerfiillbar. In der Beispieldoméne

Abb. 2: Beispieldoméane des Typs ¢ mit drei Objekten

aus Abbildung 2 wiirde die Identitdtsfunktion f: X, — X, das Objekt a auf sich selbst
und durch die Neudefinition der Gleichheit die Objekte b und x auf *, abbilden. Auch
| AX. f(X)b]|M9 = || f(b) ||™9 wird dann zu falsch ausgewertet.
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3.3 Variationen

3.2.3 Neutrale Semantik

In der neutralen Semantik erhalten alle singulédren Formeln, die nicht der Form E! s, entspre-
chen, einen unbestimmten Wahrheitswert, sie werden wahrheitswertfrei. Hier unterscheidet
man zwischen zwei Typen: die gewdhnliche neutrale Semantik, bei der die Wahrheitswerte
von Termen direkt auf der Basis von den wertfreien Termen ausgewertet werden und die
Supervaluationen, bei denen die Werte auf Basis der tibrigen Terme berechnet werden, deren
Wahrheitswerte auf wahr oder falsch gesetzt werden, indem man temporér davon ausgeht,
dass die Objekte existent statt nicht-existent sind und damit auch nicht wahrheitswertfrei
sein koénnen.

Eine neutrale Semantik ist insofern einfach gehalten, als dass singuldre Terme eindeutig
wertfrei oder nicht wertfrei sind. Je komplexer die Terme werden, desto schwieriger wird
auch die Auswertung. Bei einem beliebigen wahrheitswertfreien Term ist dessen Negation
ebenfalls ohne Wahrheitswert, aber wie steht es um Implikationen? Ist eine Implikation
s, — t, mit s, wahr und ¢, wahrheitswertfrei falsch oder ebenfalls wahrheitswertfrei? Auch
unabhiéngig von solchen Entscheidungen sind viele Formeln, die in der klassischen Logik und
auch in freier Logik giiltig sind, dies nicht mehr in der freien Logik mit neutraler Semantik.
Die Formel —(s, A —s,) ist, wenn s, wahrheitswertfrei ist, ebenso wahrheitswertfrei und
somit nicht valide. Eine Logik mit vorwiegend wahrheitswertfreien Termen wiirde in einer
sehr schwachen Logik resultieren oder den Begriff einer schwachen Giiltigkeit vorraussetzen
(Lehmann 2001).

Die Supervaluationssemantik wurde erstmals von van Fraassen (1966) vorgestellt und spater
von Bencivenga (1986) weiter verfolgt. Bencivenga versucht in der von ihm vorgestellten
Semantik die primédren Eigenschaften von Objekten unabhéngig von deren Existenz einzube-
ziehen und so die wesentlichen Probleme der einfachen neutralen freien Logik zu tiberwinden.
Fiir weiterfithrende Erlauterungen und eine formale Ausarbeitung einer neutralen Semantik
mit Supervaluationen fiir die freie Logik erster Stufe sei auf die genannten Quellen verwiesen.

3.3 Variationen

In der Literatur sind von Russell? bis heute diverse Abwandlungen der freien Logik — Morscher
und Simons (2001) sprechen sogar von einer ganzen Logikfamilie — zu finden, von denen die
wichtigsten kurz benannt und zusammengefasst werden sollen.

3.3.1 Meinongianische Logik

~Wer paradoxe Ausdrucksweisen liebt, konnte [...] ganz wohl sagen: es gibt Gegenstande, von
denen gilt, daf$ es dergleichen Gegenstidnde nicht gibt“ (Meinong 1904: 9). Die klassische,
fregeanische Logik postuliert, dass es nichts gibt, was es nicht gibt. Alexius Meinong ist einer
der bekanntesten Vertreter fiir eine gegensitzliche Meinung, namlich die, dass sehr wohl Dinge
existieren, die nicht existieren, und Namensgeber fiir die damit assoziierte meinongianische
Logik. Sie teilt mit der freien Logik die Motivation, den Begriff der Nichtexistenz einfangen
zu wollen. In der eigentlichen freien Logik miissen Objekte schlicht nicht denotieren, ein

2 Bertrand Russell (1920: 167 ff.) schlug in seinen Ausfithrungen zu Introduction to Mathematical Philosophy
einen ersten Ansatz in Richtung inklusiver Logik vor.
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3.3 Variationen

Umstand, der mit einer partiellen Auswertungsfunktion einhergeht. Nichtexistenz kann aber
auch durch ein ,Etwas” aufSerhalb der Doméne ausgedriickt werden, ein ,Etwas®, welches nicht
iber die (klassischen) Quantoren erreicht werden kann. Eine solche Auswertungsfunktion
wire total, greift allerdings tiber die Grenzen der Doméne der existenten Objekte hinaus
(Schweizer 2015). Dies gibt genau den Ansatz von Meinongs (1904) Schrift iber Existenz und
Subsistenz wieder. Meinongs Idee war fiir viele Freilogiker Inspiration fiir ein zweiteiliges
Domaénenkonzept: eine innere Doméne fiir die existenten (£,) und eine zweite, duflere
Domiéne, die die existenten und nicht-existenten Objekte erfasst (D), ergénzt durch ein
weiteres Paar von Quantoren, die zusitzlich, neben den klassischen Quantoren, tber die
existenten und nicht-existenten Objekte iterieren. Einige Autoren gehen sogar so weit, dass
die innere Domiéne E_, keine Teilmenge von D, sein muss, sondern dass es sich bei den
beiden um zwei disjunkte Mengen handelt (Nolt 2014). Obwohl die Dual-Doménen-Semantik
mit ihrer moglichen Quantifizierung tiber die dufSere Doméne kontrovers diskutiert wird
und ihr sogar die Eigenschaften einer freien Logik abgesprochen werden (vgl. Pasniczek
2001), wird sie in Scotts Definition und somit auch in dieser Arbeit zur Vereinfachung einer
Automatisierung als implizit angenommen.

3.3.2 Inklusive Logik

Klassische Logik verlangt, dass alle Objekte Teil einer quantifizierbaren Doméne D, sind,
ebenso wie die Tatsache, dass diese Doméne D, nicht-leer ist. Freie Logik, D, als eine zu
einer dufleren (nicht-leeren) Doméane unterschiedlichen inneren Doméne E, interpretierend,
widerspricht der ersten Annahme. Inklusive Logik (oder auch inklusive bzw. universelle
freie Logik)® geht noch einen Schritt weiter und widerspricht beiden (Quine 1954). Der
Modellbegriff wird leicht abgedndert: Statt wie in Kapitel 3.2 den Unterrahmen iiber nicht-
leere Mengen E._ mit 7 € T zu definieren, kdnnen diese Untermengen in der inklusiven
Logik moglicherweise leer sein. Wahrend jede inklusive Logik im Allgemeinen frei ist, muss
nicht jede freie Logik inklusiv sein. Inklusivitdt nimmt der freien Logik die letzte implizite
Existenzannahme: In der klassischen Logik gilt VX. s F 3X. s, in der inklusiven Logik ist man
frei von einer solchen Inferenz.
Existenzquantifizierte Formeln wie

31X, X=X
JX,.sX = sX

sind wahr in einer nicht-leeren Doméne und somit auch wahr in klassischer und freier Logik.
In der inklusiven Logik sind diese aber aufgrund der moglicherweise leeren Doméne E,
nicht allgemeingiiltig. Im Gegenzug sind Allquantifizierungen in der leeren Doméne uneinge-
schrankt giiltig, sodass in der inklusiven Logik auch kontroverse Formeln — beispielsweise
VX. X A —X — wahr sein konnen. Zudem werden in der klassischen und freien Logik allge-
meingiltige Formeln wie (VX. s) — s mit X nicht-frei in s ungiltig in der inklusiven Logik,

3 Inklusive Logik existiert auch als eigenstindiger, von der freien Logik losgeloster Begriff. In dieser Arbeit wird
er synonym zu inklusiver freier Logik verwendet.
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3.3 Variationen

womit auch die Moglichkeiten fir Quantorenverschiebungen eingeschrankt werden. Die
folgende Aquivalenz ist nicht allgemeingiiltig in der inklusiven Logik:

(VX,. (sAt)) <> (s ANVX,.t) mit X nicht-freiin s

Trotzdem ist die inklusive Logik weit verbreitet unter Freilogikern, die diese Eigenschaften
fir sich nutzen konnen (Nolt 2002).

3.3.3 Kripke-Semantik

Auch die Mogliche-Welten-Semantik, insbesondere in Kombination mit der Identitét tiber
mehrere Welten hinweg, beriihrt den Existenzbegriff: Objekte existieren nicht nur in einer
Welt, sondern in einer Menge von zueinander in Relation stehenden Welten. Um solche
Modalititen abzubilden, konstruiert die Semantik von Kripke (1963) einen Rahmen, der aus
einer Menge K von sogenannten Welten mit jeweils variierenden Doméanen und einer binédren
Zuganglichkeitsrelation R C K x K besteht, die diese verbindet (vgl. Abbildung 3). Logiken

N
NS

Abb. 3: Grafische Darstellung eines Kripke-Rahmens

mit Kripke-Semantik, insbesondere die Modallogik, tendieren dazu, frei zu sein. Nach Garson
(1991) ist der Gebrauch von freier Logik flir eine addquate semantische Behandlung von
quantifizierter Modallogik sogar unumgénglich. Das ist der Tatsache geschuldet, dass Objekte
in einer oder mehreren Welten existieren konnen, in anderen Welten aber nicht zwangslaufig
auch existieren miissen. Zum Beispiel kann ein Objekt ,Johann Wolfgang von Goethe® in
einigen Welten, in der Temporallogik beispielsweise in der Vergangenheit, existieren, in der
Gegenwart und in allen zukiinftigen Zeitepochen indessen nicht.
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4 Einbettung von freier Logik in Logik hoherer Stufe

Wihrend in den vorhergehenden Kapiteln Syntax und Semantik der beiden an der Ubersetzung
beteiligten Logiken definiert wurden, wird nun die semantische Einbettung der freien Logik
in die Logik hoherer Stufe beschrieben und deren Kodierung betrachtet.

4.1 Semantische Einbettung

Die im Folgenden gezeigte semantische Einbettung orientiert sich formal an der von Benzmiil-
ler und Woltzenlogel Paleo (2015b) vorgestellten Einbettung von Modallogik in die Logik
hoherer Stufe, die sich wiederum auf die Techniken von Gabbay (1996) stiitzt. Grundlage
fiir die in dieser Arbeit vorgestellte Einbettung bildet der Ansatz von Benzmiiller und Scott
(2016a), welcher die Einbettung von positiver freier Logik in Isabelle/HOL* behandelt.

Freie Logik wird in die Logik hoherer Stufe eingebettet, indem ein Pradikat eingefithrt wird,
das die Existenz von Objekten tiberpriift und so die Unterdoméne der existenten Objekte einer
Domaine D, abbildet. Der Allquantor und der Existenzquantor iterieren unter Verwendung
dieses Existenzpradikats tiber die Doméne der existenten Objekte, tiber E,. Die Kennzeich-
nung gibt ein Objekt aus E_, oder, falls ein solches Objekt nicht existiert, ein undefiniertes
Objekt aus der Doméne D, \ E, zurlick. Somit sind — ausgehend von den Erlduterungen
aus den Kapiteln 2 und 3 — die logischen Verkniipfungen der positiven freien Logik wie folgt
in die Logik hoherer Stufe eingebettet:

;\04)0 = )\SO' _‘S
oo = AS, At,. s —t
e = AX NY X =Y
v(a%)% = As, . V(AX,,. B/ X — sX)
Haso)sa = ASqo-ite(IAX,. EIX AN sX AV(AY,. (EIYAsX) = (X =Y))))
(L(AX,. BI X A sX))
*

«

mit E! als Existenzpridikat und x, als Konstante, die die Undefiniertheit in der Doméne D,
symbolisiert. Die verbleibenden logischen Verkniipfungen kénnen wie iiblich abhdngig von
-, = und V definiert werden:

“ Bei Isabelle/HOL handelt es sich um eine interaktive Beweisumgebung fiir die Logik hoherer Stufe (vgl.
Nipkow, Paulson und Wenzel 2002).
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4.2 Kodierung der Einbettung

Voo = A8, M. (Fs) >t
Apsoso = Ay At,. (58 V t)
S oo = ASG A (8 A (t58)
él(aﬁo)ﬁo = )‘Sa%o‘ ;'V()\Xa. ;'SX>

Anhand dieser Einbettung kénnen Probleme der freien Logik so erweitert und umschrieben
werden, dass sie vollstandig in der Syntax der Logik hoherer Stufe ausgedriickt werden konnen.
Nachdem ein Problem der freien Logik in ein dquivalentes Problem der Logik hoherer Stufe
konvertiert wurde, kann dieses an einen hoherstufigen Theorembeweiser weitergegeben
werden, der das Problem auf seine Konsistenz hin tiberpriift. Das Ergebnis kann schlussendlich
zum urspriinglichen Problem zuriickprogagiert werden.

Fiir die Automatisierung der Ubersetzung von freier Logik in Logik héherer Stufe muss die
Einbettung zunichst in ein maschinenlesbares Format gebracht werden.

4.2 Kodierung der Einbettung

Um die zuvor gezeigte Einbettung in ein praxisnahes Format zu tiberfiihren, wird die Einbet-
tung in TPTP-konforme logische Formeln tibersetzt. Dazu soll zunéchst initial das TPTP-
Projekt und die TPI-Sprache vorgestellt sowie auf das THF-Format, das TPTP-Sprachpendant
zur Logik hoherer Stufe, und auf eine Adaption dessen fiir die freie Logik eingegangen wer-
den. Zudem wird eine Ergénzung der TPI-Sprache vorgeschlagen, mit welcher spezifische
Parameter fir die Einbettung von freier Logik festgesetzt werden konnen.

4.2.1 TPTP

Die 2009 erstmals veroffentlichte Bibliothek der Tausend Probleme fiir Theorembeweiser
(Thousands of Problems for Theorem Provers, TPTP) sieht sich als eine Infrastruktur, aufgebaut,
um die Entwicklung, Forschung und Lehre von automatischen Theorembeweisern voranzu-
treiben (Sutcliffe 2009). Die Infrastruktur umfasst die Probleme selbst, die TPTP-Sprache,
die Bibliothek der Tausend Lésungen von Theorembeweisern (Thousands of Solutions from
Theorem Provers, TSTP) und weitere mit den Bibliotheken verkniiptfe Tools sowie den jahrlich
stattfindenden CADE-Wettbewerb fiir automatische Theorembeweissysteme (CADE ATP
System Competition, CASC).

In den Anfangen, um 1993, wurde zunédchst nur die konjunktive Normalform (clause normal
form, CNF) als Untersprache der Logik erster Stufe unterstiitzt und 1997 mit FOF, einer Form
fiir die (vollstandige) Logik erster Stufe, komplettiert. 2008 wurde THE, eine typisierte Form
von Logik hoherer Stufe, entwickelt, der auch eine typisierte Form von Logik erster Stufe,
genannt TFF, folgte. Die THF-Probleme, die in der TPTP enthalten sind, sind grof3tenteils in
THO geschrieben, einem minimalen, aber ausreichend ausdrucksstarken Kernteil von THE, der

> Alle Komponenten der Infrastruktur sind frei verfiigbar und zu finden unter http: //www. tptp.org.
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4.2 Kodierung der Einbettung

auf Churchs einfach typisiertes A\-Kalkiil zuriickzufiihren ist. Daneben steht die polymorphe
Form TH1 zur Verfiigung (vgl. Kaliszyk, Sutcliffe und Rabe 2016).

Die TPTP-Sprachfamilie ist menschenlesbar, leicht parsebar, flexibel und beliebig erweiter-
bar, wodurch sie als ein effizientes Werkzeug fiir das Schreiben von Problemen und deren
Losungen gilt. Sie findet breite Anwendung im Bereich des automatischen Theorembeweisens
und bildet auch die Grundlage fiir die Umsetzung der Einbettung, die im Rahmen dieser
Arbeit erarbeitet wurde. Im Folgenden wird kurz auf die Sprachkonstrukte TPI und THF
eingegangen. Eine vollstindige Beschreibung der Syntax kann zum Beispiel in der Uber-
sicht von Sutcliffe und Benzmdiller (2010) nachgeschlagen oder unter http://www. tptp.org
eingesehen werden.

4.2.2 TPI

Die Sprache fir TPTP-Prozessanweisungen (TPTP Process Instruction, TPI) kodiert Kontroll-
befehle an automatische Theorembeweiser, mit welchen logische Formeln aktiv beeinflusst
werden konnen. Eine Eingabe in TPI sieht beispielsweise wie folgt aufgebaut aus:

tpi(name, command, command details, [source, [useful-info]]).

Eingaben in TPI konnen direkt an Theorembeweiser weitergegeben oder durch externe Pro-
gramme gelesen werden, die letztendlich selbst Theorembeweiser aufrufen. Solche Systeme,
die TPl interpretieren kdnnen, werden TPI-Systeme genannt. Dateien, die an TPI-Systeme wei-
tergegeben werden, konnen logische Formeln und Befehle gleichermafSen enthalten: Formeln
werden ausgewertet, Befehle ausgefiihrt.

Die aus der Umsetzung der Einbettung resultierende Anwendung interpretiert fiir die
Ubersetzung relevante TPI-Befehle. Da ein solcher Befehl in solch einer Form noch nicht
existiert, wird dem Beispiel von Wisniewski, Steen und Benzmdiiller (2016) folgend eine
Erweiterung der TPI-Sprache um nachfolgendes Konstrukt vorgeschlagen:

tpi(l, set_logic, free('$E' = 'Sempty', '$choice' = '$yes', 'S$ite' = 'Syes')).
respektive
tpi(l, set_logic, free('$E' = 'S$non_empty', '$choice' = '$no', 'Site' = '$no')).

Durch den Parameter $E kann zwischen einer freien Logik ($E = $non-empty) oder einer
inklusiven freien Logik ($E = $empty) gewidhlt werden. Da die Einbettung die Kennzeichnung
berticksichtigt und fiir diese Opertoreneinbettung spezielle THF-Sprachkonstrukte notwen-
dig sind (vgl. dazu Kapitel 4.2.3), die nicht von jedem Theorembeweiser unterstiitzt werden,
soll festgelegt werden konnen, ob diese Sprachkonstrukte in der Einbettung Verwendung
finden sollen oder ob auf eine alternative Einbettung iiber Axiomatisierungen zurtickgegriffen
werden soll. Die betroffenen Sprachkonstrukte — der choice-Operator @+ und der if-then-
else-Operator $ite — konnen {iber die Parameter $choice und $ite jeweils mit $yes oder
$no aktiviert bzw. deaktiviert werden. Die Reihenfolge der Schliisselworter spielt keine Rolle,
jedoch mussen alle drei iber den TPI-Befehl festgelegt werden. Die Anwendung wird stan-
dardmaéflig von der Belegung $non-empty/$yes/Syes ausgehen, sodass der TPI-Befehl auch
weggelassen werden kann.
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4.2 Kodierung der Einbettung

4.2.3 THF und HFF

Bevor die Einbettung im Detail erldutert werden kann, wird zunéchst die Syntax von THF und
HFFE, eine eigens entworfene Anpassung von THF, die den Anspriichen der freien Logik gerecht
wird, aufgezeigt. Die Semantik von THF entspricht der Logik hoherer Stufe mit Henkin-
Semantik und einem choice-Operator, einer Konstanten, die dasjenige Objekt zuriickgibt,
welches eine bestimmte Bedingung erfiillt (Sutcliffe und Benzmiiller 2010). Das folgende
Beispiel fiir die Struktur einer THF-Formel, das die Vereinigung definiert, ist dem Papier von
Sutcliffe und Benzmiiller (2010) entnommen:

thf(union, definition,
(union = (A [X: $i > $o,Y: $i > $o,U: $i]1 : ((X@U) | (Y@U))))
).

Der Angabe des Bezeichners und des Formeltyps (im Beispiel: definition) folgt die Formel
selbst. Neben logischen Verkniipfungen wie -, &, |, => und <=> fir -, A, V, = und > wird
die A\-Abstraktion mit dem Symbol " und die Applikation mit @ angegeben. ! bezeichnet die
Allquantifizierung tiber bestimmte typisierte Variablen, ? den Existenzquantor. Fiir ndhere
Informationen zu der Verwendung dieser Sprachelemente sei wieder auf die bereits erwahnten
Quellen in Bezug auf TPTP verwiesen.

HFF, eine Form fiir freie Logik hoherer Stufe, benannt nach der in Wisniewski et al. (2016)
eingefithrten Konvention, iibernimmt alle Eigenschaften von THF und fiigt dessen Sprachspek-
trum weitere Konstanten dhnlich $true und $false hinzu, sodass diese nativ und ohne eine
vorherige Definition genutzt werden kénnen. Die Definitionen werden bei der Ubersetzung
von HFF nach THF nachgeliefert. Fiir die freie Logik werden Konstanten fiir das Existenz-
pradikat und %, benétigt, sowie ein Satz zusétzlicher Quantoren. Das Existenzpradikat wird
durch $e repriasentiert und wie folgt angewendet:

hff(eq, definition,
(eq= (™ [X: $i, Y: $i]
((se@s$ieE@X)&(Se@S$i@Y)&(X=Y))))
).

$e erhilt zwei Parameter, von denen der erste der Variablentyp ist, auf den das Pradikat
angewendet wird (im Beispiel: $1i). Als zweites Argument wird die Variable selbst iibergeben.
Das Undefiniertheit reprisentierende Symbol x, wird durch die Konstante $star umgesetzt,
welche als Argument ebenfalls ihren Doméanentyp erhalt und im folgenden Beispiel zusammen
mit der Kennzeichnung THE angewendet wird:

hff(lem, conjecture, ( THE [X: $i] : ( X = ( $star @ $i ) ) ) ).

Die Funktionsweise von THE dhnelt der Funktionsweise des choice-Operators @+ aus THF.
Die Quantoren bleiben erhalten, iterieren in ihrer urspriinglichen Form allerdings nur iiber
die Domane der existenten Objekte:

hff(lem, conjecture, ( ! [X: $i] : ($e @ $i @ X ) ) ).
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4.2 Kodierung der Einbettung

Fiir eine Iteration iiber die Gesamtdomadne, iiber die existenten und nicht-existenten Objekte,
wird !+ bzw. ?+ vorgeschlagen:

hff(lem, conjecture,
(M [Xe $i] ¢ ((Se@si@X) | (~(%Se@S$i@X))))
).

Die syntaktische Unterscheidung dieser beiden Quantorenpaare wurde aufgrund der be-
schrankten Popularitdt der Dual-Doménen-Semantik so gewahlt, wie zuvor beschrieben. Die
Idee von freier Logik griindet auf der Existenz einer einzelnen Domaéne, der Doméne E,,.
Objekte konnen auflerhalb oder innerhalb dieser liegen. Um der allgemeinen Auffassung
von freier Logik so nah wie mdglich zu kommen, werden fiir die Quantifizierung tiber die
Doméne E,, weiterhin die primédren Quantoren ! und ? eingesetzt und !+ bzw. 2+ nur bei
Bedarf herangezogen.

4.2.4 Einbettung von HFF in THF

Um eine Ubersetzung von HFF in THF zu ermdglichen, miissen die unter Kapitel 4.2.3
vorgestellten freie Logik-spezifischen Konstanten in THF definiert werden. Zudem miissen
die in den Formeln verwendeten HFF-Konstanten so angepasst werden, dass sie mit der
Syntax von THF und den Definitionen konform gehen. Die nachfolgende Einbettung wurde
beispielhaft fiir Objekte des Typs $1 skizziert, dieser kann aber durch beliebige Typkonstrukte
ausgetauscht werden.

Die Domine E_, wird, wie bereits aus der semantischen Einbettung hervorging, durch ein
Existenzpradikat dargestellt. Dieses wird wie folgt definiert:

thf(freelogic_existence_type, type, ( eE: ( $1 > $o ) ) ).

Jede Kombination $e @ $1, die in der HFF-Eingabedatei verwendet wird, wird in das Pradikat
eE iibersetzt. Die Domine F_, wird durch folgendes Axiom nicht-leer gesetzt und ausgelassen,
wenn eine inklusive Logik gewiinscht ist:

thf(freelogic_nonemptyE_axiom, axiom, ( ? [X: $i] : (eE@ X ) ) ).

Die Konstante $star @ $1 wird als THF-Konstante star anhand folgender Typdefinition
eingebettet:

thf(freelogic_star_type, type, ( star: $i ) ).

thf(freelogic_star_axiom, axiom, ( ~ ( eE @ star ) ) ).

Aufgrund der Prasumtion, dass die dufSere Doméne nur nicht-leer sein kann, wird star als
Teil der Doméne D, deklariert. Die Einbettung des Allquantors wird ebenfalls tiber das
Existenzprédikat als Wéchter erreicht:
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4.2 Kodierung der Einbettung

thf(freelogic_forall_type, type, ( fforall: ( ( $i > $o ) > So ) ) ).

thf(freelogic_forall, definition,
( fforall =

(A [Phi: $i > So] ¢ ! [X:$i] + ( (eE@X ) => (Phi@X))))

Eine Ubersetzung von ! im Sinne von HFF in ein dquivalentes THF-Konstrukt erfordert
eine \-Abstraktion und eine Applikation, damit die Neudefinition des Allquantors von den

Theorembeweisern verarbeitet werden kann. Eines der Beispiele aus Kapitel 4.2.3 tibersetzt
sich dann wie folgt:

hff(lem, conjecture, ( ! [X: $i] : ($Se@S$i@X ) ) ).

thf(lem, conjecture, ( fforall @ A [X: $i] : (eE @ X ) ) ).

Hierbei ist es wichtig zu erwihnen, dass in der Ubersetzung dem : zwingend Klammern
folgen miissen, um die Norm der THF-Syntax zu erfiillen. Die Ersetzung des Existenzquantors
erfolgt dquivalent. Dieser wird, wie tiblich, abhdngig vom Allquantor definiert:

thf(freelogic_exists_type, type, ( fexists: ( ( $1i > $0o ) > $0 ) ) ).
thf(freelogic_exists, definition,

( fexists =
( A [Phi: $i > $0] : ~ ( fforall @ » [X: $i] ¢ (~ (Phi@X) ) )))

Das neue Quantorenpaar !+ und ?+ iteriert ohne Zuhilfenahme des Existenzpradikats tiber
die Gesamtdoméne D, und wird damit durch ! und ? in ihrer eigentlichen Funktion ersetzt.
Fiir die Einbettung der Kennzeichnung werden die Operatoren $1ite und @+ verwendet:

thf(ffthat_type, type, ( i: ( ( $i > $0o ) > $i ) ) ).

thf(ffthat, definition,

(1i-=
( ~ [Phi: $i > $o] :
( $ite
@ (7 [X: $i] :
( (eE@X)
& ( Phi @ X )
& (' [Y: $i]

((C(CeE@Y )& (Phi@Y))=>(Y=X)))))
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4.2 Kodierung der Einbettung

@ ( @® [X : $1]
((eE@X )& (Phi@X)))
@ star ) ) )

Sofern $ite und @+ vermieden werden sollen, wird folgende alternative Einbettung auf der
Grundlage von axiomatisierten Definitionen fiir choice- und if-then-else-Operatoren nach
Backes (2010) und Backes und Brown (2011) gewéhlt:

thf(the_type, type, ( the: ( $i > $o ) > $i ) ).

thf(the, axiom,
(! [P: %1 > S0, A: $i]
(CP@A) = ( (! [X:si]:
((Pe@X) =>(X

= A
=> (Pe@(the@P))

) ) )
) ) )

thf(if_type, type, ( if: $0 > $i > $i > $i ) ).

thf(if, axiom,

( if =
( A [P: $o]
(A [X: $i]
(A LY: $i]

( the @ ( ~ [Z: $i] :
(C(CP)Y=>(Z2=X))
& (C(~(P)Y)=>(CZ=Y)))))))))

thf(if_axl, axiom,
(! [P:$%0] ¢+ ( (P =3%true ) | (P =¢sfalse ) ) ) ).

thf(if_ax2_1,axiom,
(0 [X: $i,Y: $i] ¢ ( (if @ $false@ X @Y ) =Y))).

thf(if_ax2_2,axiom,
(!} [X: $i,Y: $i] ¢ ( (if @ S$true@ X @Y ) =X)) ).

thf(freelogic_fthat_type, type, ( i: ( $i > $o ) > $i ) ).

® Der choice-Operator @+ gibt per Definition ein Objekt wieder, das eine bestimmte Bedingung erfiillt. Dieses
Objekt muss nicht eindeutig sein. Fiir die Einbettung der Kennzeichnung ist Eindeutigkeit aber unablassig. In
dieser Kodierung wird dies durch die Pramisse gewéhrleistet, dass es sich bei allen Objekte in der Doméne,
die die Bedingung ebenfalls erfiillen, um dasselbe Objekt handelt.
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4.2 Kodierung der Einbettung

thf(freelogic_fthat, definition,

(1=
( ~ [Phi: $1 > $o] :
( if
@ (2 [X: $i] :
( (eE@X)
& ( Phi @ X )
& (! [Y: $i]
(((eE@Y) & (Phi@y))
= (Y=X)))))

@ ( the @ ( * [X: $i] :
((eE@X ) & (Phi@X))))
@ star ) ) )

Soll nur einer der beiden vordefinierten Operatoren umgangen werden, dann wird eine
Mischform der zwei Einbettungsalternativen gewéhlt. Jedoch sollte die Verwendung von $ite
und @+ bevorzugt werden, wenn der Zieltheorembeweiser die Moglichkeit dazu bietet, da die
interne Behandlung der Operatoren im Allgemeinen als effektiver angesehen werden kann als
die Verarbeitung von Axiomen.

Wie der formalen Einbettung aus Kapitel 4.1 zu entnehmen ist dndert sich die semantische
Bedeutung der logischen Verkniipfungen —, — und = fiir die positive freie Logik nicht,
weswegen auf eine Kodierung dieser verzichtet wird. Eine Ubersetzung ist in diesem Sinne
nicht notwendig. Die Einbettung ist in ihrer Vollstindigkeit auch als Anhang hinterlegt.
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5 Umsetzung der Einbettung

Der Entwurf einer Einbettung ist nur der erste Schritt zu einer Ubersetzung von freier Logik
in Logik hoherer Stufe. Die Einbettung wird nun in einen Gesamtkontext eingebunden und
die Automatisierung der Ubersetzung umfassend beschrieben.

5.1 Leo-lll

Leo-III ist ein sich zum aktuellen Zeitpunkt in Entwicklung befindlicher ,state-of-the-art”
Theorembeweiser fiir die Logik hoherer Stufe und der Nachfolger des Leo-1I-Beweisers
(Benzmiiller, Theiss, Paulson und Fietzke 2008). Leo-III basiert auf Konzepten wie geordneter
Paramodulation/Superposition und setzt im Gegensatz zu seinem Vorgénger auf ein poly-
morphes Typsystem (Wisniewski, Steen und Benzmiller 2015). Zudem wird grof3er Wert auf
die Integrierbarkeit von semantischen Einbettungen nach Benzmiiller (2013) gelegt, um sich
dem logischen Schliefien von nicht-klassischen Logiken aufbauend auf der Machtigkeit von
gewohnlichen hoherstufigen Beweisern anndhern zu kénnen.

Die vorliegende Arbeit wurde im Kontext von diesem Projekt initiiert, um einen ersten
Schritt in Richtung der Unterstiitzung fiir nicht-klassische Logiken zu gehen. Da Leo-III in der
funktionalen, objektorientierten Sprache Scala geschrieben wird, erfolgte die Implementierung
der Umsetzung ebenfalls in Scala. Die zum Zeitpunkt der Implementierung aktuelle Version
von Scala trug die Versionsnummer 2.11.7.

5.2 Implementierung

Die Ubersetzung der einzelnen HFF-spezifischen Elemente wurde bereits in Kapitel 4.2.4
im Detail betrachtet. Im Folgenden wird die Anwendung beschrieben, die diese Elemente
anhand einer differenzierten Syntaxanalyse lokalisiert und deren Ubersetzung durchfiihrt.
Die Anwendung erhilt eine beliebige Eingabedatei, idealerweise eine .p- oder .tpi-Datei,
die alle Arten von TPTP-konformen Anweisungen inklusive HFF-Formeln enthalten kann.
Fiir die resultierende Ausgabedatei werden die identifizierten HFF-Anweisungen iibersetzt
sowie addquate TPI-Anweisungen interpretiert. Die ibrigen Anweisungen werden bis auf
minimale Modifikationen an den Pfaden von inkludierten Eingabedateien unveréndert in
die Ausgabedatei tibernommen. Das Diagramm in Abbildung 4 veranschaulicht den exakten
Ablauf der Anwendung.

Fir die Verarbeitung der Eingabe wird die Eingabedatei zuerst in separate Anweisungen
segmentiert, um aufgrund der syntaktischen Unabhéngigkeit dieser die Option einer paralleli-
siert durchgefithrten Ubersetzung aller Einzelanweisungen offen zu halten. Als Trennsymbol
dient der Punkt, der Abschluss einer jeden nicht-leeren Anweisung. Punkte in Kommentaren
und Zahlen sowie Punkte zwischen einfachen Anfithrungszeichen werden tibersprungen.
Kommentare unmittelbar vor einer Anweisung werden syntaktisch zu dieser gezahlt. Die
letzte Anweisung muss nicht mit einem Punkt abschliefien. In diesem Fall handelt es sich
um eine leere Anweisung, die nur typografischen WeifSraum oder Kommentare umfasst.
Im Anschluss wird jede Anweisung fiir sich analysiert. Hierfiir wurden sechs verschiedene
Parser entworfen, einer fiir jede Art von TPTP-Anweisung, die in der Eingabe enthalten sein
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5.2 Implementierung

kann. Diese werden nacheinander durchlaufen bis einer die Anweisung erfolgreich analysiert
hat (vgl. Abbildung 5) und einen entsprechenden Riickgabewert fiir die Weiterverarbeitung
zurilickliefert. Wenn keiner der Parser die Anweisung verifizieren konnte, dann ist die An-
weisung fehlerhaft und der Benutzer erhdlt unter Angabe einer Zeilen- und Spaltennummer
sowie der stattdessen erwarteten Eingabe die Fehlermeldung des Parsers, der die Eingabe am
weitesten vergleichen konnte, angezeigt.

Jeder der sechs Parser analysiert auf der Basis von PEG (parsing expression grammar), einer
leichtgewichtigen Alternative zu kontextfreien Grammatiken, die Backtracking unterstiitzt.
Ein solcher Parser operiert in der Regel direkt auf der Eingabezeichenfolge und verzichtet auf
eine vorherige lexikalische Analyse. Fiir die Implementierung dieser Parser wurde auf Parserge-
neratoren gesetzt, wofiir die Bibliothek Parboiled2 (Doenitz und Myltsev 2013) herangezogen
wurde. Diese wurde den Parserkombinatoren von Scala vorgezogen, da der Funktionsumfang
der Bibliothek insbesondere im Hinblick auf die Flexibilitdt der domanenspezifischen Sprache
mehr iiberzeugen konnte. Zudem setzt Parboiled2 zur Steigerung der Leistungféhigkeit auf
effizientere Strukturen sowie Scala Macros (vgl. Béguet und Jonnalagedda 2014; Kur$, Vrany,
Ghafari, Lungu und Nierstrasz 2016) und vergleicht damit die Performance seiner zur Kompi-
lierzeit generierten Parser mit der von handgeschriebenen Parsern. Der Aufruf eines solchen
Parsers und das Abfangen seiner Ergebnisse wird wie folgt durchgefiihrt:

parser.Statement_HFF.run() match {
case Success(result) =>
return result
case Failure(new_parseError: ParseError) =>
handleParseError
case Failure(new_parseError) =>
debug("unexpected error during parsing run")

Die Entscheidung fiir die Aufteilung der Syntaxanalyse auf verschiedene Parser ermdoglicht
die Anbindung externer Parser, um so zum Beispiel auch THF oder andere Logiksprachen
direkt aus der Anwendung heraus analysieren zu kénnen ohne an die bereits bestehenden
Parser gebunden zu sein. Die Parser bleiben tibersichtlich und kénnen einfach erganzt oder
ausgetauscht werden.

Die Grammatik, die dem Parser fiir HFF-Anweisungen zu Grunde liegt, lautet wie folgt:

statement ti= "hff" "(" <Hid> "," <formula_type> "," <formula>
u)u non
id . [a-z] [a-zA-Z0-9_]x | [0-9]+
formula_type ::= "axiom" | "conjecture" | "definition"| "lemma"
formula 1= "(" <formula>? ")" <formula>?
| "' <formula>? "'" <formula>?

| <definitions>
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5.2 Implementierung

| "eE_" <formula>?

| "$e" "@" "$"? [a-zA-Z0-9]+ "@" <formula>
| "star_" <formula>?

| "$star" "@" "s$"? [a-zA-Z0-9]+ <formula>
| <quantifier_outerdomain>

| <quantifier_innerdomain>

| <description>

| ALO)'".] <formula>?

comment S """ AL\n] "\n"

definitions = "[" variable_definition ( ","
variable_definition )x "]" ":" <formula>

quantifier_outerdomain ::= ( "!+" | "2+" ) "[" variable_definition
( "," variable_definition )x "]" ":" <formula>

quantifier_innerdomain ::= ( "!" | "?" ) "[" variable_definition
variables_1l1ist

description ::= "THE" "[" variable_definition variables_list

variables_1list ::= "," variable_definition variables_list | "]" ":"
<formula>

variable_definition ::= A[:,[].]+ ":" <type>

type 1i= (" <type> ")" <type>? | A[L()[]:,.]+ <type>?

Token sind mit Anfithrungszeichen markiert, weiterfiihrende Regeln mit spitzen Klammern
und regulédre Ausdriicke sind in eckige Klammern gesetzt. Die in der Notation verwendete
Syntax fir regulare Ausdriicke entspricht dem allgemeinen Standard. Die Grammatik wur-
de leicht adaptiert, um ihre Lesbarkeit zu vereinfachen. Zum Beispiel konnen an diversen
Stellen Leerraum und Kommentare eingesetzt werden, die hier der Ubersichtlichkeit halber
ausgelassen wurden. Die Grammatik konzentriert sich darauf, Quantoren und Konstanten der
freien Logik zu finden und deren syntaktische Verwendung, insbesondere die zugehorigen
Variablendefinitonen und Applikationen, auf ihre Korrektheit zu tiberpriifen. Sollte eine der
Definitionen, die in der anschlieSenden Ubersetzung hinzugefiigt werden, bereits in der
eigentlichen Eingabe definiert worden sein, so werden diese ebenfalls aufgespiirt und umbe-
nannt. Zusétzlich werden zusammengehoérende Klammern und einfache Anfiihrungszeichen
erkannt und gepriift. Bis auf einige wenige Ausnahmen wie die grundlegende Struktur von
TPTP-konformen Anweisungen und die Syntaxregeln fiir Bezeichner wurde die exakte Syntax
von TPTP aufler Acht gelassen, da deren Beachtung nicht zwingend fiir die Ubersetzung
notwendig ist. Die syntaktische Korrektheit der Eingabe wird wihrend dem der Ubersetzung
obligatorisch nachstehenden Beweisvorgang sichergestellt, sodass die Ubersetzung nur als
eine Art Vorverarbeitungsschritt anzusehen ist. Ein Ausschnitt des Parboiled2-Parsers, der
diese Grammatik erkennen kann, sieht wie folgt aus:

def Statement_HFF: RulelString = rule {
clearSB ~ quiet( W ) ~ HFF_Language.named("hff") ~
quiet( W ) ~ leftParenthesis.named("left parenthesis") ~
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5.2 Implementierung

quiet( W ) ~ ID ~ quiet( W ) ~ comma ~ quiet( W ) ~
FormulaType ~ quiet( W ) ~ comma ~ quiet( W ) ~
Formula.named("formula") ~ ( comma ~ Annotation ).? ~
rightParenthesis.named("right parenthesis") ~ quiet( W ) ~
dot ~ EOI ~ push(sb.toString) }

def comma: Rule® = rule { CharPredicate(',') ~ appendSB(",") }

def VariableDefinition(quantifier: String): Rule® = rule {
( noneOf(":,.").+ ).named("variable name") ~ ( colon ~
( capture( Type ) ~> { (var_type: String) =>
{ appendSB( handleFoundVarType (quantifier, var_type) ) } } |
fail("type") ) | fail("colon") ) }

Neben altbekannten Operatoren — . + fiir sich mindestens einmal wiederholende und . ? fiir
optionale Regeln — und der Regelkonkatenation durch Tilden unterstiitzt Parboiled2s domé-
nenspezifische Sprache auch weitere niitzliche Parseraktionen: Beispielsweise gibt . named
den Namen der Regel an, der im Fehlerfall ausgegeben wird und quiet sorgt gegenteilig dafiir,
dass die Regel im Verborgenen bleibt. Mit fail kann ein mogliches Backtracking des Parsers
verhindert werden, indem die Anwendung der Regel im Falle einer missgliickten Uberein-
stimmung fehlschlagt und damit den Parsevorgang beendet. capture fingt die Analyse der
darunterliegenden Regel auf und stellt sie zur Weiterverarbeitung durch ~> zur Verfiigung.
In dem gezeigten Parserauschnitt wird die Erkennung des Typs in einer Variablendefinition
mitgeschnitten und der Typ dann anhand der Methode handleFoundVarType ausgewertet.
SB ist eine Erweiterung des Parboiled2-Parsers mit der direkt wéahrend dem Parsevorgang eine
Zeichenkette zusammengesetzt werden kann. Fiir die Ubersetzung wird dies so genutzt, dass
ein gelesener Buchstabe oder eine gelesene Zeichenkombination sofort wieder an die Ausga-
bezeichenkette angehdngt wird. Wenn dabei eine der HFF-spezifischen Regeln ausgeldst wird,
dann wird nicht die gleiche Zeichenkette an die Ausgabezeichenkette angefiigt, welche auch
gelesen wurde, sondern deren korrespondierende Ubersetzung in THE. Solche sB-Methoden
sind im oberen Beispiel kursiv markiert, befinden sich aber grofitenteils in untergeordneten
Regeln. Sofern eine Anweisung komplett von dem Parser gelesen werden konnte wird die
tibersetzte Eingabezeichenfolge zuriickgegeben, die vervollstindigt durch eine Einbettung an
die Ausgabedatei angefiigt werden kann.

Da sich die Einbettung nicht auf einen Variablentyp im Speziellen beschrénken soll, sondern
die Operatoren und Konstanten fiir alle Typen, die in der Eingabedatei Verwendung gefunden
haben, eingebettet werden sollen, wird bei der Syntaxanalyse der Typ jeder gelesenen Varia-
blendefinition verarbeitet, indem er mit den Daten der bisher verwerteten Typen verglichen
wird. Sofern der Typ noch nicht zusammen mit diesem Operator verwendet wurde, dann
wird er den Daten hinzugefiigt. Hierbei wird jeder Typ mit einem bestimmten globalen Index
identifiziert, der bei der Ersetzung der Zeichenkette Beachtung findet. Das Konstrukt $e
@ $1 @ ersetzt sich so zum Beispiel zu eE_1 @ wihrend das Konstrukt $e @ ($i>%$0) @ zu
eE_2 @ ersetzt wird, wobei der Typ $i intern den Index eins erhélt und $i>$o0 den Index

27



5.2 Implementierung

zwei. Eine hypothetische Allquantifizierung ! [X:$i>$0] wird dann in der selben Ausgabeda-
tei zu (fforall_2 @ A[X:$i>$0] ... ) ersetzt.” Zu diesem Zweck wurde die Einbettung
bereits so vorbereitet, dass nach Beendigung der Syntaxanalyse aller Anweisungen jeder
Einbettungsteil wiederholt zu der Gesamteinbettung hinzugefiigt werden kann, abhiangig
von den Typen, die fiir genau diesen Einbettungspart gefunden wurden. Die sich ergebende
Einbettung enthilt somit nur exakt die Definitionen, die tatsichlich auch benétigt werden.®
So wird die Einbettung schlank gehalten und die Theorembeweiser miissen nicht mehr Input
verarbeiten als notwendig. Bei der Zusammensetzung der Einbettung werden die einzelnen
Teile abhéngig von bestimmten Parameter gewahlt (vgl. Kapitel 4.2.4). Die TPI-Anweisung,
die in Kapitel 4.2.2 speziell fiir die freie Logik vorgeschlagen wurde und die die Parameter
fiir die Einbettung kontrolliert, wird anhand folgender Grammatik und zugehorigem Parser
ausgelesen:

statements. = "tpi" "(" <id> "," "set_logic" "," "free"
"(" <parameters> ")" m)m v v
id 1= [a-z] [a-zA-Z0-9_]1* | [0-9]+
parameters = <e> "," ( <choice> "," <ite> | <ite> "," <choice> )
| <choice> "," ( <e> "," <ite> | <ite> "," <e> )
| <ite> "," ( <e> "," <choice> | <choice> "," <e> )
e 1= "' <para_e> "'" "=" "'l <yalue_e> "'"
choice HHE "'" <para_choice> "'" "=" "'" <yalue_yes_no> "'"
ite HHE "'" <para_ite> "''™ "=" "!'" <value_yes_no> "'"
value_e 1= "Sempty" | "S$non_empty"
value_yes_no ::= "Syes" | "$no"
para_e 1= "SE"
para_choice ::= "Schoice"
para_ite 1= "$ite"

Wie bereits erwdahnt wird die Eingabe aller drei Parameter verlangt, jedoch wére eine Anpas-
sung kein Problem, sollten zukiinftig im Kontext von TPTP Standardwerte vorgesehen sein.
Der Parser gibt eine Liste der ausgelesenen Parameter zuriick sowie eine Liste der gefundenen
Leerzeilen und Kommentare. Die Parameter werden fiir die der Syntaxanalyse anschliefiende
Erzeugung der Einbettung verarbeitet und die Anweisung nach deren Interpretation verwor-
fen. Kommentare und Leerzeilen bleiben erhalten und werden der Ausgabedatei hinzugefiigt,
um die Zeilenzuordnung grofitenteils beizubehalten und somit eine etwaige Fehlersuche zu
vereinfachen.
Anweisungen, die weitere Eingabedateien inkludieren, haben folgende Form:

include('Axioms/Ax001.p').

7 Es sei auch erwihnt, dass eine Aneinanderreihung wie in ! [X:$1,Y:a] aus syntaktischen Griinden zu
(fforall_1 @ A[X:$i]: (fforall_3 @ ~[Y:a] ... )) aufgeteilt werden muss.
8 Das Axiom, das die Existenz des nicht-definierten Objekts postuliert, wird fiir jeden Typ eingebettet.
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Diese Anweisungen werden ausgelesen, die spezifizierte Datei zu der Liste der noch zu verar-
beitenden Eingabedateien hinzugefiigt und die Anweisung zusammen mit dem neuen Pfad
zu der in Kiirze ebenfalls tibersetzten Datei weitergegeben, um diese modifizierte Anweisung
an die Ausgabedatei anzuhéngen.

Die Anwendung ist als Kommandozeilenwerkzeug konzipiert worden und beherrscht fol-
gende Optionen, die neben der Eingebadatei durch einen Befehl der Form tff2thf [options]
<file> mitgegeben werden kénnen:

-0, ——out <file> -e, —-—empty_e <boolean> -u, --use_include
-w, --overwrite -c, —--choice <boolean> -r, —-result <logic>
--verbose <level> -i, --ite <boolean> -—help

--debug --more_axioms

Die Standardoptionen werden um die Optionen --empty_e, --choice und --1te ergénzt, ei-
ne weitere Moglichkeit die Parameter der Einbettung unabhingig von einer TPI-Anweisung zu
beeinflussen. Sollte jedoch trotzdem eine TPI-Anweisung gefunden werden, dann werden die
tiber die Kommandozeile festgelegten Parameter tiberschrieben. Die Option --more_axioms
setzt zusdtzliche Axiome fiir Einbettungen mit einem axiomatisierten choice-Operator. Sie
wird nach Beendigung des Ubersetzungsvorgangs vorgeschlagen, falls fiir die Ubersetzung der
choice-Operator mittels Axiomen eingebettet wurde. Die Option --use_include steuert, ob
die Einbettung an den Anfang jeder Eingabedatei eingefiigt werden soll, oder ob stattdessen
eine separate Einbettungsdatei angelegt und pro Eingabedatei eine einzeilige Anweisung fiir
die Inkludierung dieser Datei geschrieben werden soll. --result legt die Logiksprache fest,
in die die HFF-Anweisungen iibersetzt werden sollen. Prinzipiell wird eine Ubersetzung in
THF bevorzugt, in einigen Féllen kann die gewiinschte Zielsprache, zum Beispiel fiir eine
Folgetibersetzung von (freier) Modallogik nach THEF, abweichen. Die Anwendung halt sich an
gangige Ein- und Ausgabekonventionen. Eingabedateien konnen als relativer oder absoluter
Pfad angegeben werden, wobei auch die TPTP-Umgebungsvariable $TPTP ausgelesen wird, so-
fern diese gesetzt ist. Da moglicherweise mehrere Dateien nacheinander fiir eine erfolgreiche
Ausgabe beschrieben werden miissen, wird gewéhrleistet, dass bei einem Fehler alle Ausgabe-
dateien in ihren Ausgangszustand zuriickversetzt werden. Bereits vorhandene Dateien, die
tiberschrieben werden sollten, werden anhand einer Sicherheitskopie wiederhergestellt, neue
geloscht. So wird sichergestellt, dass die Ausgabe konsistent bleibt.

Die Implementierung wurde anhand von 401 einfachen Problemen der TPTP-Bibliothek
getestet sowie bei der Formalisierung von Kategorientheorie angewendet. Die Auswertung
wird in Kapitel 7 diskutiert.
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6 Anwendung am Beispiel der Kategorientheorie

Die Kategorientheorie ist ein Zweig der Mathematik, der die Gemeinsamkeiten von mathe-
matischen Strukturen wie Gruppen, Korper und Ringe, sogenannte Kategorien, erértert und
deren strukturelle Unterschiede zu erfassen versucht. Das 1990 erschienene Buch Categories,
Allegories von Freyd und Scedrov tiber Kategorientheorie basiert auf der Definition einer
partiellen Operation, sodass sich die freie Logik im Speziellen fiir die Formalisierung dieses
Buches eignet. Kategorientheorie nach Freyd und Scedrov soll im Folgenden (teil-)formalisiert
werden, um die erfolgreiche Automatisierung von freier Logik in Logik hoherer Stufe im
Rahmen dieser Arbeit auszutesten.

6.1 Formalisierungen

Die folgenden Formalisierungen stiitzen sich alle auf die Sprachelemente, die in Kapitel 4.2.3
vorgestellt wurden.

Freyd und Scedrov definieren zu Beginn drei Operatoren, um die Theorie von Kategorien
einzuleiten: die Quelle 10X, und das Ziel X,[] eines Morphismus X, mit Individuentyp ¢
sowie die Komposition zweier Morphismen X, -Y, . Diese grundlegenden Definitionen werden
wie folgt als Konstanten formalisiert, als zwei unére und eine bindre Operation:

hff(source_type, type, ( source: $i > $i ) ).
hff(target_type, type, ( target: $i > $i ) ).

hff(composition_type, type, ( comp: $i > $i > $i ) ).

X, und Y, werden als Variablen eines Typs $i umgesetzt, die im Sinne der Kategorientheorie
auch Morphismen genannt werden. Das urspriinglich auf diesen Operatoren aufbauende, von
Freyd und Scedrov angegebene Axiomensystem konnte von Benzmiiller und Scott (2016b)
bereits als inkonsistent nachgewiesen werden. Der Beweis hierfiir ldsst sich einfach anhand
eines Theorembeweisers nachvollziehen und wird an dieser Stelle ausgespart. Fiir die Forma-
lisierungen wird stattdessen auf ein dquivalentes, aber konsistentes Axiomensystem von Scott
(1979) zuriickgegriffen, um die Definitionen von Freyd und Scedrov gegenzupriifen. Dieses

wird wie folgt formalisiert:

hff(scott_sl_axiom, axiom,
( '+ [X: 6]
((Se@s$i@ (source@X))=>(S%e@sS$i@X)))
).

hff(scott_s2_axiom, axiom,

( '+ [X: $i] :
(($e@s$i@ ((target@X ) ) =>(%e@s$i@Xx)))

31



6.1 Formalisierungen

hff(scott_s3_axiom, axiom,
( '+ [X: $1] :
( '+ [y: $i] ¢
(($e@s$i@(compe@Xxae@y))
<=> (eql @ ( source @ X ) @ ( target @Y ) ) ) ) )

).
hff(scott_s4_axiom, axiom,
( '+ [X: $i] :
( '+ [Y: $i]
( '+ [Z: $i] :
( eq2

@ (comp @X @ (comp@YQ@Z))
@ (comp@ (comp@X@Y)e@zZ)))))

).

hff(scott_s5_axiom, axiom,
( '+ [X: $4]
(eg2 @ (comp @ ( source @ X ) @ X ) @ X ) )
).

hff(scott_s6_axiom, axiom,
( '+ [X: $4]
(eg2 @ (comp @ X @ ( target @ X ) ) @ X ) )

Im Folgenden sind die hervorgehobenen (Kapitel-)Nummerierungen denen in Categories,
Allegories nachempfunden, um eine dhnliche Struktur fiir die Orientierung beizubehalten.
=, gibt die dquivalente Umformung einer Formel in HFF an.

1.11. Gleichheit, in diesem Fall wie die von Freyd und Scedrov vorausgesetzte Kleene-
Gleichheit, ist wie folgt definiert:

Il

X, £Y, = (EIX,VEY,) - (X, 2 Y)

L L

—HEF

hff(eq2_type, type, ( eq2: $i > $i > S0 ) ).

hff(eq2, definition,
( eq2 =
(™~ [X: $i, Y: &i]
(((Se@s$ieXx) | (Se@siey))
=> (eqle@X@yY))))
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Scott nutzt zudem eine zweite, schwichere, nicht-reflexive Form von Gleichheit fir die
Definition der Kleene-Gleichheit und auch fiir das dritte Axiom, um ein konsistentes System
zu erlangen:

X, 2Y = EX, NEIY,AN(X,=Y,)

L L

—HEE

hff(eql_type, type, ( eql: $i > $i > $0 ) ).

hff(eql, definition,
( eql =
(™ [X: $i, Y: $i]
(($e@s$i@X)&(Se@si@qY)&(X=Y))))

1.12. Ergianzt werden diese Definitionen um eine dritte Gleichheit, die gerichtete Kleene-
Gleichheit:

X, =Y = EX —-(X,ZY)

L L
EHFF
hff(eq3_type, type, ( eq3: $i > $i > So ) ).
hff(eq3, definition,
( eq3 =

(M [X: $i, Y: $i]
((Se@s$i@X)=>(eql@X@Y))))

Das nachstehende Lemma ist eines der ersten im Buch und beschiftigt sich mit der gerichteten
Gleichheit:

O(x,-Y,) = 0X,-(@Y)) < 0K, Y,) = 0X

L
—HEE

hff(leml_12, conjecture,

(! [X: $i7 :
(! [Y: $4i] :
( ( eq2

@ ( source @ (comp @ X @Y ) )
@ ( source @ (comp @ X @ ( source @Y ) ) ) )
<=> ( eqg3
@ ( source @ (comp @ X @Y ) )
@ (source @ X)) ) ))
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1.13. Die kommenden zwei Lemmata gelten, da J(0X,) = O((0X,)0) = (0X,)0 =
X, und dquivalent far X, [].

0(0X,) = 0X

L

—HFF

hff(leml_13_1, conjecture,
(! [X: $i] :
(eq2 @ ( source @ ( source @ X ) ) @ ( source @ X ) ) )

(X,0)0 = X,0

L

—HEE

hff(leml_13_2, conjecture,
(' [X: %47
(eg2 @ ( target @ ( target @ X ) ) @ ( target @ X ) ) )

1.13. Die folgenden Aussagen sind gleichwertige Eigenschaften eines Morphismus E|:

1X,. E, = X,0

X,
X, .
Ein solches F, wird Identitditsmorphismus genannt. Die zugehorige Formalisierung lautet:

hff(idM_type, type, ( idM: $i > $o0 ) ).

hff(idM, definition,
( idM =
(N [X: $i]
(($e@s$i@X) & (eq2@X@ (source@X)))))
).

hff(lem_identityMorphism, conjecture,
(' [X: %47
((C(CidM @ X ) <=> (2?2 [Y: $i] ¢+ (eg2 @ X @ (source @Y ) ) ))
& ((idM @ X ) <=> ( 7?2 [Y: $i] : (eq2 @ X @ ( target @Y ) ) ) )
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idM @ X ) <=> ( eq2 @ X @ ( source @ X ) ) )
idM @ X ) <=> (eq2 @ X @ ( target @ X ) ) )
idM @ X ) <=> (! [Y: $i] ¢ (eg3 @ (comp @ X @Y )@Y ) ))
idM @ X ) <=> ( ! [Y: $i] :
(eg3@ (compeY@X)@yY)))))

Qo R0 Ro Qo
~ N ~ ~
~ A~ ~ ~

1.17. Ein Morphismus X, ist linksinvertierbar, wenn es einen Morphismus Y, gibt, sodass
Y, - X, ein Identitditsmorphismus ist, und rechtsinvertierbar, wenn es einen Morphismus
Z, gibt, sodass X, - Z, ein Identitdtsmorphismus ist. Ein Isomorphismus ist links- und
rechtsinvertierbar. Diese Definitionen werden wie folgt formalisiert:

hff(idM_type, type, ( idM: $i > $o ) ).

hff(idM, axiom,
( idm =
¢~ [X: $i]
(($%e@s$i@X) & (eqg2@X@ (source@X)))))
).

hff(lI_type, type, ( 1I: $i > $o ) ).

hff(1lI, definition,
(11 =
(™ [X: $i]
((Se@s$i@X) & (?2[Y:s$i]: (idM@ (compeYe@X))))))
).

hff(rI_type, type, ( rI: $i > $o ) ).

hff(rI, definition,
(rI =
(A [X: $4i] :
((Se@$i@X) & (?2[Z:3%i]: (didM@ (comp@X@Z))))))
).

hff(iso_type, type, ( iso: $i > $o ) ).
hff(iso, definition,

( iso =
(MIXesi]l s ( (T @eX)&(rIe@x))))

Ein Isomorphismus hat eine eindeutige Linksinverse und eine eindeutige Rechtsinverse und
diese sind identisch,da Y, = Y, - (X,-Z,) = (Y,- X,)- Z, = Z,:
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hff(isomorphism, conjecture,
(! [X: $i] :
( iso @ X )
=> (2?2 [Y: $i] :
(2 [Z: &3]
((4idM @ (comp @ X @ Z ) )
& (idM @ (comp @Y @ X ) )
& (eq2 @Y @ (comp@Y@ (comp@X@Z)))
& ( eq2
@ (compeYe@((comp@eXez))
@ (comp@ (compeY@X)@Z)
@X)e

)
& (eq2 @ ( comp @ ( comp @ Y Z)yezy)))d))

1.18. Gegeben zwei Kategorien A und B ist eine Funktion f: A + B ein Funktor genau
dann, wenn fiir drei Morphismen X, Y,,, Z, mit a als Individuentyp gilt:

0X, =Y, = 0O(f(X,) = f(Yo)
X0 =Y, - (f(X,)0) = f(Y,)
Xa'Ya = Za - f(Xa)f(Ya) = f(Za)

Fiir diese Formalisierung miissen alle bisherigen Definitionen auf zwei verschiedene Typen
erweitert werden. Dies wird hier nicht im Detail ausgefiihrt, es sei lediglich erwahnt, dass
die neuen Operatoren, am Beispiel des Operators source, die Namen source_a bzw. sour-
ce_b fiir zwei Individuentypen a und b tragen. Das gesamte Problem mit allen erneuerten
Operatoren kann im Anhang eingesehen werden. Demnach sind Funktoren gegeben durch
folgende Definition:

hff(functor_type, type, ( functor: (a >b ) > So ) ).

hff(functor, definition,

( functor =
(A [F: a>b] :
( () [A: a] :
(! [B: a] :
(eq2_a @ ( source_.a @A ) @ B)
=> (eq2_b@ (sourcebe (Fe@A))e@ (F@B))))
& (! [A: a] :
(! [B: a] :
(eg2_a @ ( target_a @A) @ B)
=> (eq2 b@ (targetb@ (F@A))e@ (Fe@B))))
& (! [A: a] :
(! [B: a] :
(! [C: a] :
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(eq2.a @ (comp_a@A@B) @C)

=> ( eq2_b
@ (compbe (FRA)R@ (F@B))
@ (FeC))H)))))))

Der Funktorenbegrift kann laut Freyd und Scedrov alternativ auch durch folgende drei Eigen-
schaften beschrieben werden:

AOX,) = O(f(X,))
Ax,0) = (f(x,)0
X, Y) = ((X,) f(Y,))

Fiir die Formularisierung der Aquivalenz wird zunéchst nur versucht, zu zeigen, dass eine
Richtung gilt:

hff(functor_equivalence, conjecture,
(! [F: a>b] :
( ( functor @ F )
=> ( (! [X: al] :
( eq2_b
@ ( F@ ( source_a @ X ) )
@ (source_b @ (F@X))))
& (! [X: a] :
( eq2_b
@ (F@ ( target_a @ X ) )
@ (targetb@ (F@X) ) ))
& (! [X: a] :
¢!V [Ly: a] :
( eq3_b
@ (F@ (comp_a@X@Y))
@ (comp_be (Fe@X)e@(CFe@Y))))))))

Doch leider konnte diese Annahme nicht bewiesen werden, die Beweissuche wurde nach einer
angemessenen Zeitspanne abgebrochen. Die Gegenrichtung indes konnte ohne Probleme
gezeigt werden, genauso wie die folgende Adaption:

hff(functor_equivalence, conjecture,
(V' [F: a>b] :
( ( functor @ F )
=> ( (! [X: a] :
( eq2_b
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@ (F@ ( source_a @ X ) )
@ (source.b@ (F@X))))
& (! [X: a] :
( eq2_b
@ ( F@ ( target_a @ X ) )
@ (targetbe@ (Fe@X)))))))

Alle anderen der bisher gezeigten Lemmata und Konjekturen konnten nach deren Uber-
setzung in die Logik hoherer Stufe von einem automatischen Theorembeweiser als valide
bestdtigt werden. Weitere Lemmata, unter anderem auch eines, das auf die Kennzeichnung
zuriickkommt, sowie eine weiter fortgeschrittene Formalisierung der Kategorientheorie in
Isabelle/HOL befinden sich im Projektordner der Anwendung.
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7 Evaluation

Im vorherigen Kapitel wurde festgestellt, dass einfache kategorientheoretische Probleme
mithilfe diverser Definitionen und Axiome ohne nennenswerte Schwierigkeiten tibersetzt und
anschliefSend auch bewiesen werden konnen. Einige wenige Probleme sind nicht entscheidbar,
doch ist fragwiirdig, ob die Lemmata gemaf3 den Vorstellungen von Freyd und Scedrov
umgesetzt wurden. Eine intuitive Formularisierung der Kategorientheorie auf dem Level
von HFF ist also erfolgreich realisierbar. Zusétzliche Tests mit verschiedenen Problemen
aus der TPTP waren im Gegensatz dazu weniger vielversprechend. Die erste Version der
Implementierung setzte auf eine vollstindige Einbettung fiir alle Variablentypen der Datei,
sodass die Kennzeichnung, obwohl selten gebraucht, immer angefiigt wurde. Jedoch brachten
die Axiome fiir die choice- und if-then-else-Operatoren die Beweiser in einigen Féllen an
ihre Grenzen. Erst als die Anzahl der Operatordefinitionen auf die tatséchlich notwendigen
beschrankt wurde, konnte iiber eine relevante Menge von Problemen eine Aussage getroffen
werden. Die Korrektheit der Einbettung aller axiomatisierter Operatoren konnte jedoch
verifiziert werden, die Konsistenz des folgenden Theorems ldsst sich problemlos nachweisen:

thf(freelogic_existence_type, type, ( eE: ( $i > $o0 ) ) ).
thf(freelogic_nonemptyE_axiom, axiom, ( ? [X: $i] : (eE@ X ) ) ).
thf(freelogic_star_type, type, ( star: $i ) ).
thf(freelogic_star_axiom, axiom, ( ~ ( eE @ star ) ) ).

thf(the, type, ( the : ( $i > S0 ) > $i ) ).

thf(the, axiom,

(! [P: $1i > %S0, A: $1] :
((P@A) = ( (1! [X: %] :

((P@X)=>(X=A)))
=> (P@(the@P)))))
).
thf(conj, conjecture,
(((the@ (M [X:$i] ¢ ( X =star ) ) ) = star ) )

).

Ahnlich einfache Probleme fiir den axiomatisierten if-then-else-Operator und die Einbettung
der Kennzeichnung konnten sowohl von Leo-II als auch von dem ebenfalls hoherstufigen
Beweiser Satallax (vgl. Brown 2012) als giiltig erkannt werden. Zum aktuellen Zeitpunkt lésst
sich nur vermuten, dass die native Unterstiitzung der Operatoren $1te und @+ aufgrund des
Verzichts auf Axiome eine bessere Erfiillbarkeitspriifung im Allgemeinen garantieren wird,
da kein hoherstufiger Beweiser bekannt ist, der einen der beiden oder gar beide Operatoren
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verarbeiten kann. Aus diesem Grund bleiben auch die Funktionstests fiir diese Einbettungsal-
ternativen aus.

Nachdem die Einbettung auf das Notwendigste beschrankt wurde, konnte die iiberwiegende
Anzahl der getesteten Probleme bewiesen werden und die Implementierung einem ersten
Kompletttest unterzogen werden. Fiir den Test wurden 401 in Bezug auf ihre Schwierigkeit
niedrig bewertete Theoreme aus der TPTP selektiert und als Probleme der freien Logik
interpretiert”, sodass sie nach deren Ubersetzung an Satallax in der Version 2.7 weitergegeben
werden konnten. Es wurde eine nicht-leere Domiane E, vorausgesetzt und auf die Einbettung
der Kennzeichnung wurde verzichtet. Von 401 getesteten Problemen konnten nur 158 als
Theorem eingeordnet werden und 151 haben die interne Zeitbeschrédnkung von 200 Sekunden
Uberschritten, sodass ihre Bearbeitung abgebrochen wurde. Fiir die restlichen Probleme
konnte ein Gegenbeispiel gefunden werden.!? Die Ursache der Zeitiiberschreitung in den iiber
100 Fallen ist unbekannt. Die naive Adaption von THF zu HFF konnte die Schwierigkeit der
Probleme erhoben haben oder die ausgewdhlten Theoreme sind schlicht nicht repréasentativ
genug fiir Probleme der freien Logik, wodurch eine Auswertung erschwert ware. Trotzdem
konnen versuchsweise Optimierungen (vgl. Kapitel 8) angedacht werden.

Auch wenn die Performance aufgrund der Trivialitit der Ubersetzung in diesem Stadium
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Abb. 6: Auswertung der Performance der Ubersetzung

eine untergeordnete Rolle spielt, soll trotzdem eine kurze Evaluation erfolgen. Abbildung 6
gibt ein Gesamtbild der Performance aller 401 im Test tibersetzter Probleme wieder. An der

9 Die Theoreme werden als wahrheitserhaltend angenommen, mindestens aber fiir entscheidbar gehalten.
10 Tests mit einer moglicherweise leeren Domine E, fithrten zu einem dhnlichen Ergebnis, von den 401
Problemen wurden 139 als Theoreme erkannt und 159 iiberschritten das Zeitlimit.
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horizontalen Achse des Streudiagramms wurden beispielhaft einige der tibersetzten Probleme
aufgelistet, die vollstdndige Liste der Bearbeitungszeit aller 401 Probleme befindet sich im
Projektordner der Implementierung. Die Ubersetzung fiigt im Durchschnitt 0,69 Sekunden
zu der Gesamtbearbeitungszeit des Problems hinzu. Die Gesamtdauer der Ubersetzung
aller 401 Probleme betrug 278,59 Sekunden. Die lingste Bearbeitungszeit hatte das Problem
SWW478"3.p mit 1,7 Sekunden!!, die kiirzeste Problem SYO149"5.p mit 0,52 Sekunden. Alle
Tests wurden auf einem 13’ Retina MacBook Pro aus dem Jahr 2015 und einer Broadwell-CPU
(i5-5257U) mit einer Frequenz von 2,7GHz unter Oracles Java 8 (1.8.0) und EPFLs Scala 2.11.7
ausgefiihrt.

1 Die relativ lange Bearbeitungszeit lasst sich durch die iiberdurchschnittlich hohe Zeilenanzahl von 8998 Zeilen
in der Datei erklaren.
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Beginnend mit der formalen Ausarbeitung einer héherstufigen freien Logik wurde deren
Einbettung in Logik hoherer Stufe wiedergegeben. Fiir die maschinenlesbare Kodierung beider
Logiken wurde auf die bewéhrte Standardisierung des TPTP-Projekts zuriickgegriffen. THF
ist eine TPTP-Sprache, die sich stark am einfach typisierten A-Kalkiil orientiert und damit
die Logik hoherer Stufe wiederspiegelt, ein Standard, der im Rahmen dieser Arbeit in soweit
ergdnzt wurde, dass er flr die freie Logik angewendet werden kann. Diese Neuinterpretation
von THEF, genannt HFF, richtet sich dabei an géngigen philosophischen Normen aus, um
einen moglichst intuitiven Umgang damit zu gewéhrleisten. Zudem wurde eine Erweiterung
der TPI-Sprache angeregt, um die freie Logik vollstandig in das TPTP-Projekt integrieren
zu konnen. Die kodierte Einbettung ist Grundlage fiir eine automatisierte, kommandozeilen-
gesteuerte Ubersetzung, bei der die festgelegten, freie Logik-spezifischen Sprachkonstrukte
durch dquivalente THF-Préadikate ausgetauscht werden. Diese werden durch vorausgehende
THE-Definitionen erginzt, sodass im Gesamten eine auf ihre Konsistenz tiberpriifbare Datei,
die komplett in der Logik hoherer Stufe interpretiert werden kann, entsteht und von hoher-
stufigen Theorembeweisern verarbeitet werden kann, was im Rahmen von diversen Tests
auch realisiert wurde. Das Ziel, die Automatisierung von freier Logik unter Zuhilfenahme
von hoherstufigen Theorembeweisern zu erwirken, wurde mittels Implementierung dieser
Ubersetzung erreicht. Anhand einfacher Beispiele, von denen sich eines davon mit Ein- und
Ausgabedatei im Anhang befindet, und kategorientheoretischer Formalisierungen konnte
ihre Effektivitdat nachgewiesen werden: Die tibersetzten Probleme der freien Logik konnten
von verschiedenen Theorembeweisern validiert werden.

Die erweiterten Funktionstests zusammen mit den kategorientheoretischen Formalisie-
rungen, evaluiert in Kapitel 7, zeigen, dass die Ubersetzung in dem Umfang, wie sie aktuell
vorgenommen wird, bereits nahezu uneingeschrankt zielfiihrend ist. Nur ein paar der fort-
geschrittenen kathegorientheoretischen Theoreme sowie einige TPTP-Probleme blieben
unentscheidbar. Um letztendlich auch diese auswerten zu konnen, werden im Folgenden
mogliche Losungsansitzen fiir eine (noch) effektivere Ubersetzung umrissen.

Verstérktes Setzen auf Polymorphismus von Seiten der Theorembeweiser stellt eine erste
Moglichkeit dar. Kaliszyk, Sutcliffe und Rabe stellten 2016 das Format TH1 vor, eine Variante
von THE, die polymorphe Typdefinitionen unterstiitzt. Eine solche Definition sieht wie folgt
aus:

thf(freelogic_star_type, type, ( star: !> [A: $tType] : A > So ) ).

$star @ $1 konnte in diesem Fall direkt zu star @ $1 und $star @ $1 > $o zu star @ $1 > $o
ibersetzt werden, was die Einbettung deutlich vereinfacht und verkiirzt. Ob effizienteres
Typhandling oder der Einsatz von @+ und $1te als eingebaute Operatoren zu einer Verbesse-
rung der Resultate der zuvor beschriebenen Tests fithrt, muss Giberpriift werden. Da in naher
Zukunft die Umsetzung von polymorphen Typen fiir das Leo-1II-Projekt geplant ist konnen
diese Tests in Kiirze nachgeliefert werden.

Eine weitere Alternative wire die Ubersetzung mit einem Optimierungsschritt auszustat-
ten. Die interaktive Beweisumgebung Isabelle/HOL tibersetzt Probleme der Logik hoherer
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Stufe aus einer eigenen doménenspezifischen Sprache in THF und reicht diese so an auto-
matische Theorembeweiser weiter. Bei dieser Ubersetzung werden die Benutzereingaben
stark optimiert, ein Schritt, der bei einer einfachen Ubersetzung wie der in dieser Arbeit
implementierten fehlt. Das formalisierte Lemma 1.13. aus Kapitel 6.1 wird von Isabelle/HOL
wie folgt umgestellt und erweitert:

thf(leml_13_1_type, type, X : $i ).

thf(leml_13_1, conjecture,
(CC(~(C(eE_1 @ ( source @ ( source @ X ) ) ) ))
& (~ ( (eE_1 @ (source@X ) ) )))
| ¢ ( eE_.1 @ ( source @ ( source @ X ) ) )
& ( ~ ( ( ( eE_1 @ ( source @ X ) )
=> (~ ( ( ( source @ ( source @ X ) )

= (source @ X ))))))))))

Die Umsetzung einer solchen Ubersetzung bringt in der Praxis aber einige Hindernisse mit
sich, weswegen der Nutzen hier genau abgewogen werden muss. Optimierungen sind fiir
sich nicht determiniert und unterscheiden sich je nach angewendetem Theorembeweiser.
Ein Optimierungsschritt wiirde die Ubersetzung im Wesentlichen verkomplizieren und eine
umfassende Forschungsarbeit nach sich ziehen, sofern man sich nicht nur auf einen Theo-
rembeweiser festlegen mochte.

Ein letzter Ansatz, der allerdings der konventionellen Idee einer Einbettung widerspricht,
wire, dass statt einer Einbettung der Quantifizierungsoperatoren im klassischen Sinn der
Wichter direkt in die einzelnen Formeln gesetzt wird, sodass folgende Ubersetzung angedacht
werden konnte:

hff(lem, conjecture,
(P IX:e 8, Yo $il : ((Se@sS$i@X) & (Se@si@yY)))
).

thf(lem, conjecture,
(! [X: $i, Y: $i]
( (eE_1 @ X )
=> ( (eE_l@VY)
=> ((eE_l@X) & (eE_1@Y)))))

Solche Umformungen werden auch von der Isabelle/HOL-Umgebung im Rahmen ihrer
internen Optimierungsmafinahmen vorgenommen (siehe vorheriges Beispiel). Sollte die
Einfithrung eigener Definitionen fiir grundlegende Operationen wie Quantifizierungen das
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Problem der Nichtentscheidbarkeit begiinstigen, dann wire dies ein Ansatz, mit dem man
diesem entgegenwirken und es néher betrachten kénnte.

Abgesehen von erwigenswerten Verbesserungen an der Ubersetzung per se gibt es noch
weitere offene Fragestellungen, die das Gesamtprojekt betreffen. Die in dieser Arbeit vorge-
stellte Einbettung bildet nur die positive, eventuell inklusive freie Logik ab. Die Einbettung
einer negativen und neutralen freien Logik steht noch aus. Insbesondere fiir die zweite der
beiden Semantikvarianten fehlen entscheidende theoretische Grundlagen, sodass hier eine
ausfithrliche Recherche vorausgehen muss. Letztendlich kann sich der Einbettung in Kombi-
nation mit mehrwertigen Logiken oder mittels einem *, angendhert werden. Zudem bildet,
wie bereits in Kapitel 3.3.3 angedeutet, die freie Logik einen Grundbaustein fiir verschiedenste
Logiken mit Kripke-Semantik, sodass deren Integration und Zusammenspiel mit der hier
gezeigten Einbettung der freien Logik Beachtung finden sollte.

Fiir erste Tests ist eine kommandogesteuerte Ubersetzung unabdingbar. Jedoch ist aus
benutzerfreundlicher Sicht ein in sich geschlossener Prozess dem Erzeugen einer Zwischen-
datei vorzuziehen. Auf lange Sicht ist es wiinschenswert, dass die Ubersetzung auch intern in
Leo-III angestofien werden kann. In diesem Kontext sollte auch evaluiert werden, ob eine
Erweiterung der der Ubersetzung zugrunde liegenden Grammatik notwendig ist. Die bis-
her verwendete Grammatik unterstiitzt beispielsweise annotierte TP TP-Anweisungen nicht,
aber eine in sich vollstindige Syntaxanalyse im Ubersetzungsschritt stellt einen zusitzlichen
Rechenaufwand dar, der so nicht bendtigt wird. Eine Losung, die die Kombination einer
Ubersetzung mit der tatsichlichen internen Syntaxanalyse vorsieht, ist als weitaus effizienter
anzusehen.

Zuletzt ist die Weiterentwicklung der Schnittstelle zur freien Logik stark abhangig von der
zukiinftigen offiziellen Unterstiitzung. Diverse tibersetzte Probleme der freien Logik sollten
Teil des Problemkatalogs, der obligatorisch fiir den CASC ist, werden, um einen Anreiz fiir
hoherstufige Theorembeweiser zu schaffen, diese l6sen zu konnen, und die Unterstiitzung
aller Einbettungsoperatoren voranzutreiben. Erst dann konnen vollstdndige Funktionstests
durchgefithrt werden und zuletzt auch hochkomplexe Probleme der freien Logik erfolgreich
entschieden werden.
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A Einbettung von freier Logik in THF

A.1 Einbettung mit choice-Operator (@+) und if-then-else Operator (Site)

%----Declaration of the existence predicate
thf(freelogic_existence_type, type, ( eE: ( $i > S0 ) ) ).
%----Axiom for a non-empty domain E

thf(freelogic_nonemptyE_axiom, axiom, ( ? [X: $i] : (eE @ X ) ) ).
%----Declaration of the star

thf(freelogic_star_type, type, ( star: $i ) ).
thf(freelogic_star_axiom, axiom, ( ~ ( eE @ star ) ) ).
%----Definition of free logic universal quantification
thf(freelogic_forall_type, type, ( fforall: ( ( $i > $o ) > $So ) ) ).

thf(freelogic_forall, definition,

( fforall =
(A [Phi: $i > $0] ¢ ! [X: $i] ¢+ ( (eE@ X ) => (Phi@X))))
).
%----Definition of free logic existential quantification

thf(freelogic_exists_type, type, ( fexists: ( ( $i > $o) > $0 ) ) ).

thf(freelogic_exists, definition,

( fexists =
( A [Phi: $1 > $0] ¢ ( ~ ( fforall @ » [X: $i] ¢ (~ (Phi@X))))))
).
%----Definition of free logic description

thf(ffthat_type, type, ( i: ( $i > $0o ) > $i ) ).

thf(ffthat, definition,

(1=
( » [Phi: $i > $o]
( $ite
@ (7 [X: $i]
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( (eE@X)
& ( Phi @ X))
& (! [Y: &i] :
((C(eE@Y )& (Phi@Y))
= (Y=X)))))
@ ( e+ [X: $i] :
((eE@X ) & (Phi@X)))
@ star ) ) )
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A.2 Einbettung mit Axiomen fiir choice- und if-then-else-Operatoren

%----Declaration of the existence predicate
thf(freelogic_existence_type, type, ( eE: ( $i > $o ) ) ).

%----Axiom for a non-empty domain E

thf(freelogic_nonemptyE_axiom, axiom, ( ? [X: $i] : (eE@ X ) ) ).
%----Declaration of the star

thf(freelogic_star_type, type, ( star: $i ) ).
thf(freelogic_star_axiom, axiom, ( ~ ( eE @ star ) ) ).
%----Definition of free logic universal quantification
thf(freelogic_forall_type, type, ( fforall: ( ( $i > $So ) > S0 ) ) ).

thf(freelogic_forall, definition,

( fforall =
(A [Phi: $i > $So] ¢ ! [X: $i] ¢+ ( (eE@X ) => (Phi@X))))
).
%----Definition of free logic existential quantification

thf(freelogic_exists_type, type, ( fexists: ( ( $i > $0) > $0 ) ) ).

thf(freelogic_exists, definition,

( fexists =
(A [Phi: $1 > $0o] ¢ ( ~ ( fforall @ A [X: $i] ¢ (~ (Phi@X))))))
).
%----Definition of free logic description

thf(the_type,type, ( the: ( $i > $o ) > $i ) ).

thf(the, axiom,
(! [P: $i > S0, A: S$i]
((P@A)=> (! [X: $i]
((P@EX)=>(X=A
=> (P@(the@P))))

) ) )
)
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thf(if_type, type, ( if: $0 > $i > $i > $i ) ).

thf(if, axiom,
(4if = ( » [P: $o] :
¢~ [X: $i]
¢~ Ly: $il
( the @ ( ~ [Z: $i] :
(CCCP)Yy=>(z2=X)))
& ((~(P))=>(CZ=Y)))))))))

).

thf(if_ax1, axiom, ( ! [P: $0] : ( (P = $true ) | ( P = $false ) ) ) ).
thf(if_ax2_1, axiom, ( ! [X: $i, V: $i] : ( (if@ sfalse@ X @Y ) =Y ) ) ).
thf(if_ax2_2, axiom, ( ! [X: $i, V: $9] : ( (if@ $true@X @Y ) =X ) ) ).
thf(freelogic_fthat_type, type, ( i: ( $i > $0 ) > $i ) ).

thf(freelogic_fthat, definition,

(i=
(A [Phi: $i > $o] :
(if
@ (7 [Xx: $i] :
( (eE@X)
& ( Phi @ X)
& (! [Y: $i] :
(((eE@Y ) & (Phi@Y))
= (Y=X)))))

@ ( the @ (A [X: $i] :
((eE@X) & (Phi@X))))
@ star ) ) )
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B Exemplarische Ein- und erwartete Ausgabedatei

Eingabedatei
hff(r_const, type, ( r: ( $i > S$i > S0 ) ) ).

hff(lem, conjecture,
C CC M [Xe $i]
((reXxeXx)=>(r
& (2 [Y: $i] :+ (Y =Y ) )
= (2 [y:$i] : ((revYe@Y)=>(reYevY))))

@exex)))
)

)) .

Ausgabedatei

%----Declaration of the existence predicate for type $i
thf(freelogic_existence_type_1, type, ( eE_1: ( $i > $o ) ) ).
%----Axiom for a non-empty domain E for type $i
thf(freelogic_nonemptyE_axiom_1, axiom, ( ? [X: $i] : (eE_1 @ X ) ) ).
%----Declaration of the star for type $i
thf(freelogic_star_type_1, type, ( star_1: $i ) ).
thf(freelogic_star_axiom_1, axiom, ( ~ ( eE_1 @ star_1 ) ) ).
%----Definition of free logic universal quantification for type $i
thf(freelogic_forall_type_1, type, ( fforall_1: ( ( $i > $o ) > $0 ) ) ).
thf(freelogic_forall_1, definition,

( fforall_1l =

( » [Phi: $i > $o]
D [X: $9] ¢ ( (eE_L @ X ) => (Phi@X))))
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%----Definition of free logic existential quantification for type $i
thf(freelogic_exists_type_1, type, ( fexists_1: ( ( $i > $0) > $0 ) ) ).

thf(freelogic_exists_1, definition,
( fexists_1 =
( A~ [Phi: $i > $o]
(~ ( fforall_1 @ "~ [X: $i] ¢+ (~ (Phi@X))))))

thf(r_const, type,( r: ( $i > S$i > %0 ) ) ).

thf(lem, conjecture,
CCCCP X il
((reXex)=>(rexex)))
& ( ( fexists_1 @ A [Y: $i]
(CYy=Y)))))
=> ( ( fexists_1 @ ™ [Y: $i]
(C(reye@yYy)=>(revYevy)))))d))
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C Eingabedatei fur die kategorientheoretische Annahme 1.18.

hff(a_type, type, ( a: $i ) ).

hff(b_type, type, ( b: $i ) ).

%----Definition of a weak, non-reflexive identity on the set of existing objects
hff(eql_a_type, type, ( eql_a: a > a > So ) ).

hff(eql_a, definition,
(eql_a =

(M[Xea, Yral : (($Se@a@X)&($Se@a@Y)&(X=Y))))
).
hff(eql_b_type, type, ( eql_b: b > b > $0 ) ).
hff(eql_b, definition,

( eql_b =

(M [Xeb, Yebl : (($Se@b@eX)&($e@b@Y)&(X=Y))))
).
%--—--Definition of Kleene equality

hff(eq2_a_type, type, ( eq2_a: a > a > $0 ) ).

hff(eq2_a, definition,
( eq2_a =
(™ [X: a, Y al] :
(((%e@a@X) | (Se@a@Y) )=>(eql.a@X@Y))))

hff(eq2_b_type, type, ( eq2_b: b > b > S0 ) ).
hff(eq2_b, definition,
( eq2_b =

(~ [X: b, Y: b]
(((Se@be@Xx) | (Se@b@yY) )=>(eqlbe@Xe@yY))))
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%----Definition of directed Kleene equality
hff(eq3_a_type, type, ( eq3_a: a > a > $So ) ).
hff(eq3_a, definition,
(eg3_,a= (M [X:a, Yral : ((se@a@X)=>(eql.a@XE@Y))))
hff(eq3_b_type, type, ( eq3_b: b > b > S0 ) ).
hff(eq3_b, definition,
(eq3_.b = (» [X: b, Yeb]l : (($Se@b@X)=>(egqlb@eX@yY))))
%----Definitions of basic notions for category theory
hff(source_a_type, type, ( source_a: a > a ) ).
hff(target_a_type, type, ( target_a: a > a ) ).
hff(composition_a_type, type, ( comp_a: a > a > a ) ).
hff(source_b_type, type, ( source_b: b > b ) ).
hff(target_b_type, type, ( target_b: b > b ) ).
hff(composition_b_type, type, ( comp_b: b > b > b ) ).
%----Scott's axiom system
hff(scott_sl_axiom_a, axiom,

(!'+ [X:al] : ((Se@a@ (source_ca@X))=>(Se@a@x)))

hff(scott_s2_axiom_a, axiom,
('+ [X:al :+ ((Se@a@(targetta@X) ) =>(%e@aeXx)))

).
hff(scott_s3_axiom_a, axiom,
( '+ [X: a]
( '+ [Y: a]

((Se@a@ (comp_a@Xe@yY))
<=> (eql_a @ ( source_a @ X ) @ ( target_,a @Y ) ) ) ) )
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hff(scott_s4_axiom_a, axiom,

( '+ [X: a]
( '+ [Y: a]
( '+ [Z: a]

( eq2_a
@ (comp_a @X@ (comp_a@Y@Z) )
@ (comp_a@ (comp_a@X@Y)@Z)))))

hff(scott_s5_axiom_a, axiom,
(!'+ [X: a] ¢+ (eg2_a @ ( comp_a @ ( source_a @ X ) @X ) @X))

hff(scott_s6_axiom_a, axiom,
( !+ [X: a]l] : (eq2_a @ ( comp_a @ X @ ( target_a @ X ) ) @X ) )

hff(scott_sl_axiom_b, axiom,
(!'+ [Xe b] : ( (Se@b@ (sourceeb@X))=>(Se@be@eE@Xx)))

hff(scott_s2_axiom_b, axiom,
( '+ [X: bl : (($e@b@(targetb@X ) ) =>(3%e@ba@Xx)))

).
hff(scott_s3_axiom_b, axiom,
( '+ [X: b]
( '+ [Y: b]

(($e@b@ (compbeEXe@Y))
<=> (eql_b @ ( source_.b @ X ) @ ( target_be@Y ) ) ) ))

).
hff(scott_s4_axiom_b, axiom,
( '+ [X: b]
( '+ [Y: b]
( '+ [Z: b]

( eq2_b
@ (comp_b@X@ (comp_beY@Z))
@ (comp_b@ (comp_beXey)ez)))))

hff(scott_s5_axiom_b, axiom,
( '+ [X: b] ¢ (eg2_b @ ( comp_b @ ( source_,b @ X ) @ X ) @ X))
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hff(scott_s6_axiom_b, axiom,
( '+ [X: b] : (eq2_.b @ ( comp_b @ X @ ( target_.b@ X ) ) @X ) )
).

hff(functor_type, type, ( functor: (a >b ) > S0 ) ).

hff(functor, definition,

( functor =
(M [F: a>b] :
¢! [A: a] :
(! [B: a] :
(eq2_a @ ( source_a @A) @ B)
=> (eq2_b @ ( sourceb@ (F@QA) )@ (F@B))))
& (! [A: a] :

(! [B: a] :
(eq2_a @ ( target_a @A ) @ B )
=> (eq2 b@ (targetb@ (F@A))eR@ (F@B))))
& (! [A: a] :

(! [B: a] :
(! [C: a] :
(eq2_.a @ (comp_a@A@B ) @C)
=> ( eq2_b

@ (comp_be (Fe@A)@(F@B))
@Q(CFe@C)HY)))I))I)»)))
).

hff(functor_equivalence, conjecture,
(! [F: a>b] :
( ( functor @ F )
=> ( (! [X: a] :
( eq2_b
@ ( F@ ( source_a @ X ) )
@ ( source_b @ (F@X))))
& (! [X: a] :
( eq2_b
@ (Fe( target,a@X ) )
@ (targetbe@ (Fe@X))))
& (! [X: a] :
(! [Y: al] :
( eq3_b
@ (F@(compa@X@y))
@ (compbe (FeXx)e(FeY))))))))
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