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Zusammenfassung

Freie Logik erweitert Logik um denAspekt der Nichtexistenz vonObjekten und
schafft Raum für Undefiniertheit. Logische Schlussfolgerungen über solche nicht-
klassischen Logiken können über unkonventionelle Einbettungen in die klassische
Logik höherer Stufe gezogen werden. Automatische Beweiser für höherstufige
Logik setzen auf die TPTP-Sprache THF, eine standardisierte Kodierung für
Formeln der Logik höherer Stufe. In dieser Arbeit wurde eine TPTP-konforme
Kodierung für die nicht-klassische freie Logik entworfen sowie die Einbettung von
freier Logik in Logik höherer Stufe diskutiert und eine automatisierte Übersetzung
von freier Logik in die Logik höherer Stufe implementiert. Ziel der Arbeit war es,
die native Formulierung von Formeln der freien Logik zu ermöglichen, für deren
Auswertung aber trotzdem auf die Fertigkeiten von namhaften höherstufigen
Theorembeweisern wie Leo-II(I) ausgewichen wird.

Die Effektivität der Übersetzungwurde anhand beispielhafter Formalisierungen
untersucht. Ansatzpunkt dafür bildete das kategorientheoretische Buch Catego-
ries, Allegories von Freyd und Scedrov (1990).
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Abstract

Free logic extends logic by including the aspect of non-existence of objects
and creates space for undefinedness. Reasoning about such non-classical logics
can be done using unconventional embeddings in classical higher-order logic.
Automated theorem provers for higher-order logic rely on the TPTP language
THF, a standardized encoding for formulae of higher-order logic. In this thesis,
a TPTP compliant encoding will be formulated for non-classical free logic, the
embedding of free logic in higher-order logic will be discussed and an automated
translation of free logic into higher-order logic will be implemented. The goal
of this thesis was to enable native formulation of free logic formulae – for their
evaluation, however, the capabilities of notable higher-order theorem provers
such as Leo-II(I) were used.

The effectiveness of the translation was investigated based on exemplary forma-
lizations. The starting point was the category theory book Categories, Allegories
by Freyd und Scedrov (1990).
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1 Einleitung

Gibt es Dinge, die es nicht gibt? Fragt man Willard Van Quine, dann ist das keineswegs
der Fall. Es gibt nichts, das es nicht gibt. Es gibt alles. Klassische Logik gibt Undefiniertheit
keinen Namen, schließt diese sogar kategorisch aus. Da Undefiniertheit und Nichtexistenz
aber sehr wohl übergeordnete Rollen in diversen Theorien spielen (vgl. Kapitel 1.1) reichen
klassische automatische Theorembeweiser (automated theorem prover, ATP), Werkzeuge für
die automatische Herleitung und Verifikation von logischen Formeln, nicht aus, um eben jene
zu verifizieren. In dieser Arbeit soll sich der automatischen Deduktion von freier Logik auf
Basis von höherstufigen Theorembeweisern angenähert werden.

1.1 Anwendungsgebiete der freien Logik
Freie Logik findet Anwendung in den Theorien der definiten Kennzeichnungen, in Sprachen,
die partielle Definiertheit und nicht-strikte Funktionen erlauben, in fiktionaler Logik, in den
Theorien der Prädikation, in Programmiersprachen als Abbildung von Fehlerzuständen und
in der Mengenlehre (vgl. Lambert 1991; Lambert 2001; Nolt 2002). Da sich die freie Logik
in der Vergangenheit bereits als nützliches Instrument zur Überprüfung der Konsistenz
mathematischer Theorien erwiesen hat (vgl. Benzmüller und Scott 2016b) sei an dieser Stelle
insbesondere ihre Anwendung in der Kategorientheorie und in der projektiven Geometrie
hervorgehoben.

1.2 Motivation
Aufgrund der vielfältigen Einsatzmöglichkeiten ist eine native Unterstützung der freien Lo-
gik durch automatische Theorembeweiser, die in naher Vergangenheit nicht zuletzt durch
ontologische Gottesbeweise große Erfolge verbuchen konnten (vgl. Benzmüller und Wolt-
zenlogel Paleo 2015a; Benzmüller und Woltzenlogel Paleo 2016), erstrebenswert. Formeln
der freien Logik sollen intuitiv, aber standardisiert eingegeben werden können und so auf
ihre Konsistenz überprüft werden können. Statt auf einen eigenständigen Theorembeweiser
für die freie Logik zu setzen, wird eine Einbettung nach Benzmüller (2013) vorgezogen. Mit
einer solchen Einbettung kann man auf die fortgeschrittenen Fertigkeiten von klassischen
höherstufigen Theorembeweisern ausweichen, ohne auf in der freien Logik natürliche Sprach-
konstrukte verzichten zu müssen. Eine auf einer Übersetzung beruhende Schnittstelle mit
standardisierter Ein- und Ausgabe hat den Vorteil, dass die dem der Übersetzung anschließen-
den Beweisschritt zu Grunde liegende Implementierung unabhängig von der Übersetzung
selbst ist. Im Folgenden soll deshalb eine automatisierte Übersetzung von freier Logik in die
Logik höherer Stufe realisiert werden. Dazu wird neben den theoretischen Grundlagen die
Einbettung von freier Logik in Logik höherer Stufe im Detail erörtert sowie eine Umsetzung
implementiert und letztendlich auch angewendet.

1



2



2 Logik höherer Stufe

Typentheorien konkretisieren die Ansätze von Logiken höherer Stufe (higher-order logic,
HOL). Im Folgenden soll die auf Church (1940) zurückgehende einfache Typentheorie (simple
type theory, STT), basierend auf dem einfach typisierten 𝜆-Kalkül, aufgegriffen werden.

2.1 Syntax
Die Syntax der einfachen Typentheorie orientiert sich am 𝜆-Kalkül und definiert sich über
einfach typisierte Terme, sogenannte Ausdrücke. Typen wiederum definieren sich über eine
Menge von Basistypen und dem Typkonstruktor →. Zu den Basistypen zählen 𝑜 für den
Propositionstyp und 𝜄 als Typ für die Domäne der Individuen. Der Vollständigkeit halber sei
erwähnt, dass es in der Logik höherer Stufe keinerlei Einschränkungen im Hinblick auf die
Definition von weiteren Basistypen gibt (Benzmüller und Miller 2014), in dieser Arbeit aber,
aus Gründen der Übersichtlichkeit, Churchs Beispiel gefolgt und sich auf die zuvor genannten
beschränkt wird. Die Erweiterung der folgenden Definitionen auf eine mächtigere Menge von
Basistypen ist trivial.

Definition 1. Die Menge der einfachen Typausdrücke 𝜏 besteht aus den Basistypen 𝑜 und 𝜄
und weiterhin aus Funktionstypen mit einem Domänentyp 𝛼 und einem Kodomänentyp 𝛽 :

𝛼, 𝛽 ≔ 𝜄 | 𝑜 | (𝛼 → 𝛽) .

Der Operator → ist rechtsassoziativ. Das heißt, werden Klammern ausgespart, dann ist, mit
𝛼1, 𝛼2, 𝛼3 ∈ 𝜏 , (𝛼1 → (𝛼2 → 𝛼3)) äquivalent zu 𝛼1 → 𝛼2 → 𝛼3.

Definition 2. Terme der Logik höherer Stufe sind durch folgende Grammatik gegeben:

𝑠, 𝑡  ≔ 𝑐u� | 𝑋u� | (𝑠u�→u� 𝑡u�)u� | (𝜆𝑋u�. 𝑠u�)u�→u� | ((=u�→u�→u� 𝑠u�) 𝑡u�)u� | (¬u�→u� 𝑠u�)u� |
((∨u�→u�→u�𝑠u�) 𝑡u�)u� | (∀(u�→u�)→u�(𝜆𝑋u�. 𝑠u�))u� | (𝜄(u�→u�)→u�(𝜆𝑋u�. 𝑠u�))u�

mit 𝛼, 𝛽 ∈ 𝜏 .

Konventionell sind Konstanten mit Klein- und Variablen mit Großbuchstaben bezeichnet. Der
Typ eines jeden Terms wird als Subskript angegeben und ausgelassen, wenn er als irrelevant
oder, zum Beispiel durch eine Bindung, als offensichtlich angesehen wird. Σu� ist eine Menge
von Konstanten des Typs 𝛼, 𝑉u� gibt die unendliche Menge aller Variablen des Typs 𝛼 an.
𝑐u� ist eine syntaktische Variable, die über Σu� iteriert, während 𝑋u� ∈ 𝑉u�. Terme des Typs 𝑜
werden Formeln genannt. Die logischen Konstanten ⊥ für Falsum und ⊤ für Verum sind wie
folgt definiert:
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2.1 Syntax

⊥ ≡ ∀(𝜆𝑋u�. 𝑋)

⊤ ≡ 𝜆𝑋u�. 𝑋 = 𝜆𝑋u�. 𝑋
mit 𝛼 ∈ 𝜏 .

Für jeden binären Operator 𝑜𝑝 kann statt auf seine Präfix-Notation (𝑜𝑝 𝑠u�) 𝑡u� auch auf
die Infix-Notation 𝑠u� 𝑜𝑝 𝑡u� ausgewichen werden. Durch die Negation, Disjunktion und
Allquantifizierung lassen sich ergänzend weitere logische Verknüpfungen beschreiben:

∧ u�→u�→u� ≔ 𝜆𝑠u�. 𝜆𝑡u�. ¬ (¬𝑠 ∨ ¬𝑡)

∃ (u�→u�)→u� ≔ 𝜆𝑠u�→u�. ¬∀(𝜆𝑋u�. ¬𝑠𝑋)

…

mit 𝛼 ∈ 𝜏 .

Die Kennzeichnung 𝜄(𝜆𝑋.𝑠) ist optional und gibt dasjenige eindeutige 𝑋 wieder, für das 𝑠
gilt. Für die Kennzeichnung sowie für ∀(𝜆𝑋.𝑠) kann auf die kompaktere Bindernotation
zurückgegriffen werden: {∀, 𝜄}(𝑋.𝑠). Im Kontext der Arbeit wird Gleichheit als primitiv
angenommen, kann aber auch alternativ durch die Leibniz-Gleichheit intendiert werden (vgl.
Benzmüller, Brown und Kohlhase 2004):

=u�
u�→u�→u� ≔ 𝜆𝑋u�. 𝜆𝑌u�. ∀𝑃u�→u�. 𝑃 𝑋 → 𝑃 𝑌

mit 𝛼 ∈ 𝜏 .

Ein if-then-else-Operator definiert sich mittels Kennzeichnung nach Backes (2010) wie folgt:

𝑖𝑡𝑒u�→u�→u�→u� ≔ 𝜆𝑠u�. 𝜆𝑋u�. 𝜆𝑌u�. 𝜄(𝜆𝑍u�. (𝑠 ∧ 𝑋 = 𝑍) ∨ (¬𝑠 ∧ 𝑌 = 𝑍))

mit 𝛼 ∈ 𝜏 .

Definition 3. Eine Variable 𝑋u� ist gebunden in einemTerm 𝑠u� mit 𝛼 ∈ 𝜏, wenn siemindestens
einmal gebunden in 𝑠u� vorkommt. 𝑋u� ist frei in 𝑠u�, wenn die Variable nicht gebunden ist.
Ein Term ohne freie Variablen wird geschlossen genannt.

Definition 4. Die Substitution einer Variablen 𝑋u� durch einen Term 𝑡u� in einem Term 𝑠u�,
wobei 𝛼 ∈ 𝜏, wird mit 𝑠 [𝑡/𝑋] angegeben.

Bei einer Substitution müssen gebundene Variablen gegebenenfalls umbenannt werden, damit
niemals eine freie Variable in einem Substitut nach einer Ersetzung gebunden wird. Man
spricht dann von 𝛼-Konversion. 𝛼-, 𝛽- und 𝜂-Konversion sind wie gewohnt definiert:

4



2.2 Semantik

𝜆𝑋. 𝑠 = 𝜆𝑌. (𝑠 [𝑌/𝑋]) mit 𝑌 nicht-frei in 𝑠 ( 𝛼 )
(𝜆𝑋. 𝑠) 𝑡 = 𝑠 [𝑡/𝑋] ( 𝛽 )

𝜆𝑋. (𝑠 𝑋) = 𝑠 mit 𝑋 nicht-frei in 𝑠. ( 𝜂 )

2.2 Semantik
Die Semantik von Logik höherer Stufe ordnet deren syntaktischen Strukturen eine formale
Bedeutung zu. Dazu werden aussagenlogischen Ausdrücken Wahrheitswerte zugewiesen,
indem diese in Modellen interpretiert werden. Der Modellbegriff wird zunächst anhand der
Definition eines Rahmens eingeführt und mit dem Begriff der Variablenzuweisung ergänzt,
um anschließend die Auswertungsfunktion für den Wert eines Terms zu erläutern. Sofern
nicht anders angegeben sind 𝛼, 𝛽 ∈ 𝜏 .

Definition 5. Ein Rahmen 𝐷 ist eine Menge {𝐷u�} bestehend aus nicht-leeren Mengen 𝐷u� mit
𝜏 ∈ 𝜏, sodass 𝐷u� frei wählbar, 𝐷u� = {𝑤𝑎ℎ𝑟, 𝑓𝑎𝑙𝑠𝑐ℎ} und 𝐷u�→u� Mengen von Funktionen
sind, die 𝐷u� auf 𝐷u� abbilden.

Definition 6. Ein Modell ist ein Tupel 𝑀 = ⟨ 𝐷, 𝐼 ⟩ mit einem Rahmen 𝐷 und einer Menge
von Interpretationsfunktionen 𝐼 = {𝐼u�}u�∈u� mit 𝐼u� als Abbildung, die jeder Konstanten 𝑝u�
ein Objekt aus 𝐷u� zuordnet.

Definition 7. Eine Funktion 𝑔u� ∶ 𝑉u� → 𝐷u� ist eine Variablenzuweisung, die Variablen des
Typs 𝛼 auf Objekte in 𝐷u� abbildet. Die Variablenzuweisung 𝑔 entspricht der Menge {𝑔u�}u�∈u� .
𝑔[𝑑/𝑋u�] mit 𝑑 ∈ 𝐷u� ist bis auf die auf 𝑑 abgebildete Variable 𝑋u� identisch zu 𝑔:

𝑔[𝑑/𝑋u�](𝑋u�) = 𝑑 und 𝑔[𝑑/𝑋u�](𝑌u�) = 𝑔(𝑌u�) ∈ 𝐷u� für alle 𝑌u� ≠ 𝑋u�.

Definition 8. In einem Standardmodell ist eine jede Domäne 𝐷u�→u� definiert als die Menge
{ 𝑓 | 𝑓 ∶ 𝐷u� → 𝐷u�}. In einem Henkin-Modell beschränkt sich diese Domäne auf eine endliche
Teilmenge der möglicherweise unendlichen Gesamtmenge: 𝐷u�→u� ⊆ { 𝑓 | 𝑓 ∶ 𝐷u� → 𝐷u�}.
DieMächtigkeit der eingeschränktenMenge ist frei wählbar, solange die Auswertungsfunktion
für die Werte von Termen der Logik höherer Stufe total bleibt.

Logik höherer Stufe mit Henkin-Semantik ist, im Gegensatz zur Standardsemantik mit ihren
überabzählbaren Modellen, widerspruchsfrei und vollständig (Henkin 1950; Benzmüller,
Brown et al. 2004).

Der Wert || 𝑠u� ||u�,u� eines Terms 𝑠u� in einem Modell 𝑀 unter der Variablenzuweisung 𝑔 ist
ein Element 𝑑 ∈ 𝐷u� und wird folgendermaßen ausgewertet:
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2.2 Semantik

|| 𝑐u� ||u�,u� ≔ 𝐼(𝑐u�)

|| 𝑋u� ||u�,u� ≔ 𝑔(𝑋u�)

|| (𝑠u�→u�𝑡u�)u� ||u�,u� ≔ || 𝑠u�→u� ||u�,u� (|| 𝑡u� ||u�,u�)

|| (𝜆𝑋u�. 𝑠u�)u�→u� ||u�,u� ≔ die Funktion 𝑓 von 𝐷u� nach 𝐷u�, sodass
𝑓(𝑑) =  || 𝑠u� ||u�,u�[u�/u�u�] für alle 𝑑 ∈ 𝐷u�

|| ((=u�→u�→u� 𝑠u�) 𝑡u�)u� ||u�,u� ≔ 𝑤𝑎ℎ𝑟 genau dann, wenn || 𝑠u� ||u�,u� = || 𝑡u� ||u�,u�

|| (¬u�→u� 𝑠u�)u� ||u�,u� ≔ 𝑤𝑎ℎ𝑟 genau dann, wenn || 𝑠u� ||u�,u� = 𝑓𝑎𝑙𝑠𝑐ℎ

|| ((∨u�→u�→u�𝑠u�) 𝑡u�)u� ||u�,u� ≔ 𝑤𝑎ℎ𝑟 genau dann, wenn || 𝑠u� ||u�,u� = 𝑤𝑎ℎ𝑟 oder
|| 𝑡u� ||u�,u� = 𝑤𝑎ℎ𝑟

|| (∀(u�→u�)→u�(𝜆𝑋u�. 𝑠u�))u� ||u�,u� ≔ 𝑤𝑎ℎ𝑟 genau dann, wenn für alle 𝑑 ∈ 𝐷u� gilt:
|| 𝑠u� ||u�,u�[u�/u�u�] = 𝑤𝑎ℎ𝑟

|| (𝜄(u�→u�)→u�(𝜆𝑋u�. 𝑠u�))u� ||u�,u� ≔ 𝑑 ∈ 𝐷u�, sodass || 𝑠u� ||u�,u�[u�/u�u�] = 𝑤𝑎ℎ𝑟 und
für alle 𝑑’ ∈ 𝐷u� gilt:
wenn || 𝑠u� ||u�,u�[u�’/u�u�] = 𝑤𝑎ℎ𝑟, dann ist 𝑑’ = 𝑑

mit 𝛼, 𝛽 ∈ 𝜏 .

Definition 9. Eine Formel 𝑠u� gilt in einem Modell 𝑀 unter der Variablenzuweisung 𝑔 genau
dann, wenn ||𝑠u�||u�,u� = 𝑤𝑎ℎ𝑟 und man schreibt 𝑀, 𝑔 ⊧ 𝑠u�. Eine Formel 𝑠u� ist gültig in 𝑀,
symbolisiert durch 𝑀 ⊧ 𝑠u�, genau dann, wenn 𝑀, 𝑔 ⊧ 𝑠u� für alle Variablenzuweisungen 𝑔
erfüllt ist. Eine Formel 𝑠u� ist genau dann (allgemein-)gültig, geschrieben ⊧ 𝑠u�, wenn 𝑀 ⊧ 𝑠u�
für alle 𝑀 erfüllt ist.

Definition 10. Sei 𝜑 eine Menge von Formeln der Logik höherer Stufe, dann gilt ⊧ 𝜑 genau
dann, wenn ⊧ 𝑠u� für alle 𝑠u� ∈ 𝜑 erfüllt ist.

Definition 11. Sei 𝜑 eine Menge von Formeln der Logik höherer Stufe. Eine Formel 𝑠u� ist
genau dann eine logische Konsequenz von 𝜑, geschrieben 𝜑 ⊧ 𝑠u�, wenn für jedes Modell 𝑀
erfüllt ist, dass, wenn 𝑀 ⊧ 𝜑, dann muss auch 𝑀 ⊧ 𝑠u� gelten.
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3 Freie Logik

Der Begriff der freien Logik (free logic) wurde von Lambert (1960) geprägt, als er damit eine
Logik, die frei von jeglichen Existenzannahmen ist, beschrieb. Konkret bedeutet das, dass
in der freien Logik die Quantifizierung über eine Domäne 𝐷u� in ihrer ursprünglichen Form
beibehalten wird, Terme aber Objekte außerhalb der Domäne 𝐷u� denotieren können oder gar
nicht definiert seinmüssen. So lassen sichAussagen überObjektewie „Golum“ oder „die größte
Primzahl“ treffen. Da klassische, fregeanische Logik annimmt, dass jeder Term ein (existentes)
Objekt in 𝐷u� bezeichnet, gilt freie Logik gemeinhin als nicht-klassisch (Nolt 2014). Dieser
allgemeine Begriff von freier Logik wurde von verschiedenen Autoren interpretiert und formal
dargestellt. Um die Syntax und Semantik von freier Logik höherer Stufe herauszuarbeiten,
wird in dieser Arbeit primär auf die Definition der freien Logik der ersten Stufe von Scott
(1991) bzw. Benzmüller und Scott (2016a) zurückgegriffen, jedoch im späteren Verlauf auch
auf differente Ausprägungen und Varianten von freier Logik eingegangen.

Scotts Konzept von freier Logik unterscheidet eine Domäne 𝐷u� und eine wohldefinierte
Unterdomäne 𝐸u�. Die Domäne 𝐷u� enthält alle möglicherweise nicht-existenten Objekte,
während 𝐸u� dieMenge der tatsächlich existentenObjekte erfasst. Quantifizierungen beziehen
sich per definitionem auf die Domäne 𝐸u�. Undefiniertheit wird durch ein eindeutiges Objekt
⋆u� ∈ 𝐷u� ∉ 𝐸u�, wie in Abbildung 1 illustriert, repräsentiert.

Abb. 1: Grafische Darstellung einer Domäne und ihrer Unterdomäne

3.1 Syntax
Bis auf die Grammatik von Termen, die um zwei Konstanten erweitert wird, entspricht die
Syntax von freier Logik der unter Kapitel 2.1 vorgestellten Syntax der Logik höherer Stufe.
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3.2 Semantik

Die induktive Definition von Termen lautet nun wie folgt:

Definition 12. Terme der freien Logik sind durch folgende Grammatik gegeben:

𝑠, 𝑡  ≔ 𝑐u� | 𝑋u� | ⋆u� | (𝐸!u�→u� 𝑠u�)u� | (𝑠u�→u� 𝑡u�)u� | (𝜆𝑋u�. 𝑠u�)u�→u� |
((=u�→u�→u� 𝑠u�) 𝑡u�)u� | (¬u�→u� 𝑠u�)u� | ((∨u�→u�→u�𝑠u�) 𝑡u�)u� |
(∀(u�→u�)→u�(𝜆𝑋u�. 𝑠u�))u� | (𝜄(u�→u�)→u�(𝜆𝑋u�. 𝑠u�))u�

mit 𝛼, 𝛽, 𝛾 ∈ 𝜏 und 𝛾 ≠ 𝑜.

Wie der initialen Darstellung aus Kapitel 3 zu entnehmen ist, bildet die Konstante ⋆ die
Undefiniertheit von Objekten ab. 𝐸! ist ein Prädikat zur Überprüfung von Existenz, das als
primitiv angenommen oder aber auch durch

𝐸! 𝑠 ≡ ∃𝑡. 𝑡 = 𝑠

mit einem über die Domäne der existenten Objekte quantifizierenden ∃ definiert werden kann
(vgl. Lambert 2001: 264 ff). Die Kennzeichnung gibt dasjenige eindeutige Objekt zurück, das
eine bestimmte Bedingung erfüllt. Gibt es ein solchesObjekt nicht, dann ist die Kennzeichnung
undefiniert. Die Einschränkung von ⋆ und der Kennzeichnung auf Typen ungleich dem
Propositionstyp ist ein Seiteneffekt der auf Undefiniertheit verzichtenden Domäne 𝐷u� (siehe
dazu auch die Erläuterungen zur Semantik von freier Logik in Kapitel 3.2) und nimmt der
Logik nichts von ihrer Expressivität.

3.2 Semantik
Die Semantik der freien Logik unterscheidet sich je nachArt, wie singuläre Terme, die ein nicht-
existentes Objekt enthalten, ausgewertet werden. Hierfür gibt es drei Herangehensweisen: die
positive, negative oder neutrale Semantik. Bevor auf die einzelnen Semantiken eingegangen
werden kann, muss zunächst die Definition eines Modells wie folgt abgewandelt werden:

Definition 13. Ein Rahmen 𝐷 ist eine Menge {𝐷u�} bestehend aus nicht-leeren Mengen 𝐷u�
mit 𝜏 ∈ 𝜏, sodass 𝐷u� frei wählbar, 𝐷u� = {𝑤𝑎ℎ𝑟, 𝑓𝑎𝑙𝑠𝑐ℎ} und 𝐷u�→u� Mengen von Funktionen
sind, die 𝐷u� auf 𝐷u� abbilden. Jeder Menge 𝐷u� mit 𝜏 ≠ 𝑜 wird das undefinierte Objekt ∗u�
zugeordnet.

Definition 14. Ein Unterrahmen 𝐸 ist eine Menge {𝐸u�} bestehend aus nicht-leeren Mengen
𝐸u� mit 𝜏 ∈ 𝜏, wobei jede Menge 𝐸u� eine Untermenge von 𝐷u� ist. Weiterhin gilt 𝐷u� = 𝐸u�.

Definition 15. Ein Modell ist ein Tripel 𝑀 = ⟨ 𝐷, 𝐸, 𝐼 ⟩ mit einem Rahmen 𝐷, einem Unter-
rahmen 𝐸 und einerMenge von Interpretationsfunktionen 𝐼 = {𝐼u�}u�∈u� mit 𝐼u� als Abbildung,
die jeder Konstanten 𝑝u� ein Objekt aus 𝐷u� zuordnet.

Die übrigen Definitionen der Semantik der Logik höherer Stufe (vgl. Kapitel 2.2) behalten

8



3.2 Semantik

ihre Gültigkeit.

3.2.1 Positive Semantik

In der positiven Semantik, von welcher Scott in seiner Schrift von 1991 ausgeht, können
singuläre Terme des Typs 𝑜, die ein nicht-existentes Objekt enthalten, wahr sein, auch wenn
diese Objekte nicht im Zusammenhang mit dem Existenzprädikat verwendet werden. Der
Wert || 𝑠u� ||u�,u� eines Terms der positiven freien Logik wird wie folgt ermittelt:

|| 𝑐u� ||u�,u� ≔ 𝐼(𝑐u�)

|| ⋆u� ||u�,u� ≔ ∗u�

|| 𝑋u� ||u�,u� ≔ 𝑔(𝑋u�)

|| (𝐸!u�→u� 𝑠u�)u� ||u�,u� ≔ 𝑤𝑎ℎ𝑟 genau dann, wenn || 𝑠u� ||u�,u� ∈ 𝐸u�

|| (𝑠u�→u� 𝑡u�)u� ||u�,u� ≔ || 𝑠u�→u� ||u�,u� (|| 𝑡u� ||u�,u�)

|| (𝜆𝑋u�. 𝑠u�)u�→u� ||u�,u� ≔ die Funktion 𝑓 von 𝐷u� nach 𝐷u�, sodass
𝑓(𝑑) =  || 𝑠u� ||u�,u�[u�/u�u�] für alle 𝑑 ∈ 𝐷u�

1

|| ((=u�→u�→u� 𝑠u�) 𝑡u�)u� ||u�,u� ≔ 𝑤𝑎ℎ𝑟 genau dann, wenn || 𝑠u� ||u�,u� = || 𝑡u� ||u�,u�

|| (¬u�→u� 𝑠u�)u� ||u�,u� ≔ 𝑤𝑎ℎ𝑟 genau dann, wenn || 𝑠u� ||u�,u� = 𝑓𝑎𝑙𝑠𝑐ℎ

|| ((→u�→u�→u� 𝑠u�) 𝑡u�)u� ||u�,u� ≔ 𝑤𝑎ℎ𝑟 genau dann, wenn || 𝑠u� ||u�,u� = 𝑤𝑎ℎ𝑟,
dann ist auch || 𝑡u� ||u�,u� = 𝑤𝑎ℎ𝑟

|| (∀(u�→u�)→u�(𝜆𝑋u�. 𝑠u�))u� ||u�,u� ≔ 𝑤𝑎ℎ𝑟 genau dann, wenn für alle 𝑒 ∈ 𝐸u� gilt:
|| 𝑠u� ||u�,u�[u�/u�u�] = 𝑤𝑎ℎ𝑟

|| (𝜄(u�→u�)→u�(𝜆𝑋u�. 𝑠u�))u� ||u�,u� ≔

⎧
{{{
⎨
{{{
⎩

𝑒 ∈ 𝐸u� wenn || 𝑠u� ||u�,u�[u�/u�u�] = 𝑤𝑎ℎ𝑟 und
für alle 𝑒’ ∈ 𝐸u� gilt:
wenn || 𝑠u� ||u�,u�[u�’/u�u�] = 𝑤𝑎ℎ𝑟,
dann ist 𝑒’ = 𝑒

∗u� sonst

mit 𝛼, 𝛽, 𝛾 ∈ 𝜏 und 𝛾 ≠ 𝑜.

Es sei angemerkt, dass die Auswertungsfunktion durch die Einführung eines fixen undefinier-
ten Objekts, dargestellt durch ∗, total bleibt (Nolt 2002). Die Funktion um die Evaluierung
von || (𝜄(u�→u�)→u�(𝜆𝑋u�. 𝑠u�))u� ||u�,u� zu erweitern ist trivial, allerdings im Rahmen dieser Arbeit
nicht von Belang.
1 Mögliche bzw. erzwungene Interaktionen von Undefiniertheit über die Typhierarchien hinweg sind noch zu
untersuchen.
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3.2 Semantik

3.2.2 Negative Semantik

In der negativen freien Logik (vgl. Burge 1974) werden alle singulären Formeln mit nicht-
existenten Objekten unabhängig von der Verwendung eines Existenzprädikats bedingungslos
zu falsch ausgewertet. Hierzu zählt insbesondere auch die Identität. Die Auswertungsfunktion
aus Kapitel 3.2.1 ändert sich an folgenden zentralen Stellen, damit der Wert || 𝑠u� ||u�,u� eines
Terms der negativen freien Logik ermittelt werden kann:

|| (𝑠u�→u� 𝑡u�)u� ||u�,u� ≔
⎧{
⎨{⎩

|| 𝑠u�→u� ||u�,u� (|| 𝑡u� ||u�,u�) wenn || 𝑠u�→u� ||u�,u�,
|| 𝑡u� ||u�,u� ∈ 𝐸u�

∗u� sonst

|| (𝑠u�→u� 𝑡u�)u� ||u�,u� ≔
⎧{
⎨{⎩

|| 𝑠u�→u� ||u�,u� (|| 𝑡u� ||u�,u�) wenn || 𝑠u�→u� ||u�,u�,
|| 𝑡u� ||u�,u� ∈ 𝐸u�

𝑓𝑎𝑙𝑠𝑐ℎ sonst

|| ((=u�→u�→u� 𝑠u�) 𝑡u�)u� ||u�,u� ≔ 𝑤𝑎ℎ𝑟 genau dann, wenn || 𝑠u� ||u�,u� = || 𝑡u� ||u�,u�

und wenn || 𝑠u� ||u�,u�, || 𝑡u� ||u�,u� ∈ 𝐸u�

mit 𝛼 ∈ 𝜏 und 𝛾 ≠ 𝑜.

Die hier vorgestellte Semantik der negativen freien Logik beruht auf einer strikten Variante der
Applikation. Alternativ kann sich Striktheit auch nur auf die Argumente von Applikationen
beziehen.

Während Formeln wie ((𝜆𝑋u�. (𝑋u� = 𝑋u�)u�)u�→u� ⋆u�)u� bzw. 𝐸𝑖𝑛ℎ𝑜𝑟𝑛 = 𝐸𝑖𝑛ℎ𝑜𝑟𝑛 in po-
sitiver freier Logik jeweils zu 𝑤𝑎ℎ𝑟 ausgewertet werden können, sind diese in freier Logik
mit negativer Semantik unabdingbar falsch und damit unerfüllbar. In der Beispieldomäne

Abb. 2: Beispieldomäne des Typs u� mit drei Objekten

aus Abbildung 2 würde die Identitätsfunktion 𝑓∶ 𝑋u� ↦ 𝑋u� das Objekt 𝑎 auf sich selbst
und durch die Neudefinition der Gleichheit die Objekte 𝑏 und ⋆ auf ∗u� abbilden. Auch
|| (𝜆𝑋. 𝑓(𝑋)) 𝑏 ||u�,u� = ||  𝑓(𝑏) ||u�,u� wird dann zu 𝑓𝑎𝑙𝑠𝑐ℎ ausgewertet.
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3.3 Variationen

3.2.3 Neutrale Semantik

In der neutralen Semantik erhalten alle singulären Formeln, die nicht der Form 𝐸! 𝑠u� entspre-
chen, einen unbestimmten Wahrheitswert, sie werden wahrheitswertfrei. Hier unterscheidet
man zwischen zwei Typen: die gewöhnliche neutrale Semantik, bei der die Wahrheitswerte
von Termen direkt auf der Basis von den wertfreien Termen ausgewertet werden und die
Supervaluationen, bei denen die Werte auf Basis der übrigen Terme berechnet werden, deren
Wahrheitswerte auf 𝑤𝑎ℎ𝑟 oder 𝑓𝑎𝑙𝑠𝑐ℎ gesetzt werden, indem man temporär davon ausgeht,
dass die Objekte existent statt nicht-existent sind und damit auch nicht wahrheitswertfrei
sein können.

Eine neutrale Semantik ist insofern einfach gehalten, als dass singuläre Terme eindeutig
wertfrei oder nicht wertfrei sind. Je komplexer die Terme werden, desto schwieriger wird
auch die Auswertung. Bei einem beliebigen wahrheitswertfreien Term ist dessen Negation
ebenfalls ohne Wahrheitswert, aber wie steht es um Implikationen? Ist eine Implikation
𝑠u� → 𝑡u� mit 𝑠u� wahr und 𝑡u� wahrheitswertfrei falsch oder ebenfalls wahrheitswertfrei? Auch
unabhängig von solchen Entscheidungen sind viele Formeln, die in der klassischen Logik und
auch in freier Logik gültig sind, dies nicht mehr in der freien Logik mit neutraler Semantik.
Die Formel ¬(𝑠u� ∧ ¬𝑠u�) ist, wenn 𝑠u� wahrheitswertfrei ist, ebenso wahrheitswertfrei und
somit nicht valide. Eine Logik mit vorwiegend wahrheitswertfreien Termen würde in einer
sehr schwachen Logik resultieren oder den Begriff einer schwachen Gültigkeit vorraussetzen
(Lehmann 2001).

Die Supervaluationssemantik wurde erstmals von van Fraassen (1966) vorgestellt und später
von Bencivenga (1986) weiter verfolgt. Bencivenga versucht in der von ihm vorgestellten
Semantik die primären Eigenschaften von Objekten unabhängig von deren Existenz einzube-
ziehen und so die wesentlichen Probleme der einfachen neutralen freien Logik zu überwinden.
Für weiterführende Erläuterungen und eine formale Ausarbeitung einer neutralen Semantik
mit Supervaluationen für die freie Logik erster Stufe sei auf die genannten Quellen verwiesen.

3.3 Variationen

In der Literatur sind von Russell2 bis heute diverse Abwandlungen der freien Logik –Morscher
und Simons (2001) sprechen sogar von einer ganzen Logikfamilie – zu finden, von denen die
wichtigsten kurz benannt und zusammengefasst werden sollen.

3.3.1 Meinongianische Logik

„Wer paradoxe Ausdrucksweisen liebt, könnte […] ganz wohl sagen: es gibt Gegenstände, von
denen gilt, daß es dergleichen Gegenstände nicht gibt“ (Meinong 1904: 9). Die klassische,
fregeanische Logik postuliert, dass es nichts gibt, was es nicht gibt. Alexius Meinong ist einer
der bekanntestenVertreter für eine gegensätzlicheMeinung, nämlich die, dass sehrwohl Dinge
existieren, die nicht existieren, und Namensgeber für die damit assoziierte meinongianische
Logik. Sie teilt mit der freien Logik die Motivation, den Begriff der Nichtexistenz einfangen
zu wollen. In der eigentlichen freien Logik müssen Objekte schlicht nicht denotieren, ein
2 Bertrand Russell (1920: 167 ff.) schlug in seinen Ausführungen zu Introduction to Mathematical Philosophy
einen ersten Ansatz in Richtung inklusiver Logik vor.
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3.3 Variationen

Umstand, der mit einer partiellen Auswertungsfunktion einhergeht. Nichtexistenz kann aber
auch durch ein „Etwas“ außerhalb der Domäne ausgedrückt werden, ein „Etwas“, welches nicht
über die (klassischen) Quantoren erreicht werden kann. Eine solche Auswertungsfunktion
wäre total, greift allerdings über die Grenzen der Domäne der existenten Objekte hinaus
(Schweizer 2015). Dies gibt genau den Ansatz von Meinongs (1904) Schrift über Existenz und
Subsistenz wieder. Meinongs Idee war für viele Freilogiker Inspiration für ein zweiteiliges
Domänenkonzept: eine innere Domäne für die existenten (𝐸u�) und eine zweite, äußere
Domäne, die die existenten und nicht-existenten Objekte erfasst (𝐷u�), ergänzt durch ein
weiteres Paar von Quantoren, die zusätzlich, neben den klassischen Quantoren, über die
existenten und nicht-existenten Objekte iterieren. Einige Autoren gehen sogar so weit, dass
die innere Domäne 𝐸u� keine Teilmenge von 𝐷u� sein muss, sondern dass es sich bei den
beiden um zwei disjunkte Mengen handelt (Nolt 2014). Obwohl die Dual-Domänen-Semantik
mit ihrer möglichen Quantifizierung über die äußere Domäne kontrovers diskutiert wird
und ihr sogar die Eigenschaften einer freien Logik abgesprochen werden (vgl. Paśniczek
2001), wird sie in Scotts Definition und somit auch in dieser Arbeit zur Vereinfachung einer
Automatisierung als implizit angenommen.

3.3.2 Inklusive Logik

Klassische Logik verlangt, dass alle Objekte Teil einer quantifizierbaren Domäne 𝐷u� sind,
ebenso wie die Tatsache, dass diese Domäne 𝐷u� nicht-leer ist. Freie Logik, 𝐷u� als eine zu
einer äußeren (nicht-leeren) Domäne unterschiedlichen inneren Domäne 𝐸u� interpretierend,
widerspricht der ersten Annahme. Inklusive Logik (oder auch inklusive bzw. universelle
freie Logik)3 geht noch einen Schritt weiter und widerspricht beiden (Quine 1954). Der
Modellbegriff wird leicht abgeändert: Statt wie in Kapitel 3.2 den Unterrahmen über nicht-
leere Mengen 𝐸u� mit 𝜏 ∈ 𝜏 zu definieren, können diese Untermengen in der inklusiven
Logik möglicherweise leer sein. Während jede inklusive Logik im Allgemeinen frei ist, muss
nicht jede freie Logik inklusiv sein. Inklusivität nimmt der freien Logik die letzte implizite
Existenzannahme: In der klassischen Logik gilt ∀𝑋. 𝑠 ⊧ ∃𝑋. 𝑠, in der inklusiven Logik ist man
frei von einer solchen Inferenz.

Existenzquantifizierte Formeln wie

∃𝑋u�. 𝑋 = 𝑋

∃𝑋u�. 𝑠𝑋 → 𝑠𝑋

sind wahr in einer nicht-leeren Domäne und somit auch wahr in klassischer und freier Logik.
In der inklusiven Logik sind diese aber aufgrund der möglicherweise leeren Domäne 𝐸u�
nicht allgemeingültig. Im Gegenzug sind Allquantifizierungen in der leeren Domäne uneinge-
schränkt gültig, sodass in der inklusiven Logik auch kontroverse Formeln – beispielsweise
∀𝑋. 𝑋 ∧ ¬𝑋 – wahr sein können. Zudem werden in der klassischen und freien Logik allge-
meingültige Formeln wie (∀𝑋. 𝑠) → 𝑠 mit 𝑋 nicht-frei in 𝑠 ungültig in der inklusiven Logik,

3 Inklusive Logik existiert auch als eigenständiger, von der freien Logik losgelöster Begriff. In dieser Arbeit wird
er synonym zu inklusiver freier Logik verwendet.
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3.3 Variationen

womit auch die Möglichkeiten für Quantorenverschiebungen eingeschränkt werden. Die
folgende Äquivalenz ist nicht allgemeingültig in der inklusiven Logik:

(∀𝑋u�. (𝑠 ∧ 𝑡)) ↔ (𝑠 ∧ ∀𝑋u�. 𝑡) mit 𝑋 nicht-frei in 𝑠

Trotzdem ist die inklusive Logik weit verbreitet unter Freilogikern, die diese Eigenschaften
für sich nutzen können (Nolt 2002).

3.3.3 Kripke-Semantik

Auch die Mögliche-Welten-Semantik, insbesondere in Kombination mit der Identität über
mehrere Welten hinweg, berührt den Existenzbegriff: Objekte existieren nicht nur in einer
Welt, sondern in einer Menge von zueinander in Relation stehenden Welten. Um solche
Modalitäten abzubilden, konstruiert die Semantik von Kripke (1963) einen Rahmen, der aus
einer Menge 𝐾 von sogenannten Welten mit jeweils variierenden Domänen und einer binären
Zugänglichkeitsrelation 𝑅 ⊆ 𝐾 × 𝐾 besteht, die diese verbindet (vgl. Abbildung 3). Logiken

Abb. 3: Grafische Darstellung eines Kripke-Rahmens

mit Kripke-Semantik, insbesondere die Modallogik, tendieren dazu, frei zu sein. Nach Garson
(1991) ist der Gebrauch von freier Logik für eine adäquate semantische Behandlung von
quantifizierter Modallogik sogar unumgänglich. Das ist der Tatsache geschuldet, dass Objekte
in einer oder mehreren Welten existieren können, in anderen Welten aber nicht zwangsläufig
auch existieren müssen. Zum Beispiel kann ein Objekt „Johann Wolfgang von Goethe“ in
einigen Welten, in der Temporallogik beispielsweise in der Vergangenheit, existieren, in der
Gegenwart und in allen zukünftigen Zeitepochen indessen nicht.
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4 Einbettung von freier Logik in Logik höherer Stufe

Während in den vorhergehendenKapiteln Syntax und Semantik der beiden an derÜbersetzung
beteiligten Logiken definiert wurden, wird nun die semantische Einbettung der freien Logik
in die Logik höherer Stufe beschrieben und deren Kodierung betrachtet.

4.1 Semantische Einbettung
Die im Folgenden gezeigte semantische Einbettung orientiert sich formal an der von Benzmül-
ler und Woltzenlogel Paleo (2015b) vorgestellten Einbettung von Modallogik in die Logik
höherer Stufe, die sich wiederum auf die Techniken von Gabbay (1996) stützt. Grundlage
für die in dieser Arbeit vorgestellte Einbettung bildet der Ansatz von Benzmüller und Scott
(2016a), welcher die Einbettung von positiver freier Logik in Isabelle/HOL4 behandelt.

Freie Logik wird in die Logik höherer Stufe eingebettet, indem ein Prädikat eingeführt wird,
das die Existenz von Objekten überprüft und so die Unterdomäne der existenten Objekte einer
Domäne 𝐷u� abbildet. Der Allquantor und der Existenzquantor iterieren unter Verwendung
dieses Existenzprädikats über die Domäne der existenten Objekte, über 𝐸u�. Die Kennzeich-
nung gibt ein Objekt aus 𝐸u� oder, falls ein solches Objekt nicht existiert, ein undefiniertes
Objekt aus der Domäne 𝐷u� ∖ 𝐸u� zurück. Somit sind – ausgehend von den Erläuterungen
aus den Kapiteln 2 und 3 – die logischen Verknüpfungen der positiven freien Logik wie folgt
in die Logik höherer Stufe eingebettet:

¬̇u�→u� ≔ 𝜆𝑠u�. ¬𝑠

→̇u�→u�→u� ≔ 𝜆𝑠u�. 𝜆𝑡u�. 𝑠 → 𝑡

=̇u�→u�→u� ≔ 𝜆𝑋u�.𝜆𝑌u�. 𝑋 = 𝑌

∀̇(u�→u�)→u� ≔ 𝜆𝑠u�→u�. ∀(𝜆𝑋u�. 𝐸! 𝑋 → 𝑠𝑋)

̇𝜄(u�→u�)→u� ≔ 𝜆𝑠u�→u�. 𝑖𝑡𝑒 (∃(𝜆𝑋u�. 𝐸! 𝑋 ∧ 𝑠𝑋 ∧ ∀(𝜆𝑌u�. (𝐸! 𝑌 ∧ 𝑠𝑋) → (𝑋 = 𝑌 ))))
(𝜄(𝜆𝑋u�. 𝐸! 𝑋 ∧ 𝑠𝑋))
⋆u�

mit 𝐸! als Existenzprädikat und ⋆u� als Konstante, die die Undefiniertheit in der Domäne 𝐷u�
symbolisiert. Die verbleibenden logischen Verknüpfungen können wie üblich abhängig von
¬̇, →̇ und ∀̇ definiert werden:

4 Bei Isabelle/HOL handelt es sich um eine interaktive Beweisumgebung für die Logik höherer Stufe (vgl.
Nipkow, Paulson und Wenzel 2002).

15



4.2 Kodierung der Einbettung

∨̇u�→u�→u� ≔ 𝜆𝑠u�. 𝜆𝑡u�. (¬̇𝑠) →̇ 𝑡

∧̇u�→u�→u� ≔ 𝜆𝑠u�. 𝜆𝑡u�. ¬̇(¬̇𝑠 ∨̇ 𝑡)

↔̇u�→u�→u� ≔ 𝜆𝑠u�.𝜆𝑡u�. (𝑠 →̇ 𝑡) ∧̇ (𝑡 →̇ 𝑠)

∃̇(u�→u�)→u� ≔ 𝜆𝑠u�→u�. ¬̇∀̇(𝜆𝑋u�. ¬̇𝑠𝑋)

Anhand dieser Einbettung können Probleme der freien Logik so erweitert und umschrieben
werden, dass sie vollständig in der Syntax der Logik höherer Stufe ausgedrückt werden können.
Nachdem ein Problem der freien Logik in ein äquivalentes Problem der Logik höherer Stufe
konvertiert wurde, kann dieses an einen höherstufigen Theorembeweiser weitergegeben
werden, der das Problem auf seine Konsistenz hin überprüft. Das Ergebnis kann schlussendlich
zum ursprünglichen Problem zurückprogagiert werden.

Für die Automatisierung der Übersetzung von freier Logik in Logik höherer Stufe muss die
Einbettung zunächst in ein maschinenlesbares Format gebracht werden.

4.2 Kodierung der Einbettung
Um die zuvor gezeigte Einbettung in ein praxisnahes Format zu überführen, wird die Einbet-
tung in TPTP-konforme logische Formeln übersetzt. Dazu soll zunächst initial das TPTP-
Projekt und die TPI-Sprache vorgestellt sowie auf das THF-Format, das TPTP-Sprachpendant
zur Logik höherer Stufe, und auf eine Adaption dessen für die freie Logik eingegangen wer-
den. Zudem wird eine Ergänzung der TPI-Sprache vorgeschlagen, mit welcher spezifische
Parameter für die Einbettung von freier Logik festgesetzt werden können.

4.2.1 TPTP

Die 2009 erstmals veröffentlichte Bibliothek der Tausend Probleme für Theorembeweiser
(Thousands of Problems forTheoremProvers, TPTP) sieht sich als eine Infrastruktur, aufgebaut,
um die Entwicklung, Forschung und Lehre von automatischen Theorembeweisern voranzu-
treiben (Sutcliffe 2009). Die Infrastruktur umfasst die Probleme selbst, die TPTP-Sprache,
die Bibliothek der Tausend Lösungen von Theorembeweisern (Thousands of Solutions from
Theorem Provers, TSTP) und weiteremit den Bibliotheken verknüptfe Tools sowie den jährlich
stattfindenden CADE-Wettbewerb für automatische Theorembeweissysteme (CADE ATP
System Competition, CASC).5

In denAnfängen, um 1993, wurde zunächst nur die konjunktiveNormalform (clause normal
form, CNF) als Untersprache der Logik erster Stufe unterstützt und 1997 mit FOF, einer Form
für die (vollständige) Logik erster Stufe, komplettiert. 2008 wurde THF, eine typisierte Form
von Logik höherer Stufe, entwickelt, der auch eine typisierte Form von Logik erster Stufe,
genannt TFF, folgte. Die THF-Probleme, die in der TPTP enthalten sind, sind größtenteils in
TH0 geschrieben, einemminimalen, aber ausreichend ausdrucksstarken Kernteil von THF, der

5 Alle Komponenten der Infrastruktur sind frei verfügbar und zu finden unter http://www.tptp.org.
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4.2 Kodierung der Einbettung

auf Churchs einfach typisiertes 𝜆-Kalkül zurückzuführen ist. Daneben steht die polymorphe
Form TH1 zur Verfügung (vgl. Kaliszyk, Sutcliffe und Rabe 2016).

Die TPTP-Sprachfamilie ist menschenlesbar, leicht parsebar, flexibel und beliebig erweiter-
bar, wodurch sie als ein effizientes Werkzeug für das Schreiben von Problemen und deren
Lösungen gilt. Sie findet breite Anwendung im Bereich des automatischen Theorembeweisens
und bildet auch die Grundlage für die Umsetzung der Einbettung, die im Rahmen dieser
Arbeit erarbeitet wurde. Im Folgenden wird kurz auf die Sprachkonstrukte TPI und THF
eingegangen. Eine vollständige Beschreibung der Syntax kann zum Beispiel in der Über-
sicht von Sutcliffe und Benzmüller (2010) nachgeschlagen oder unter http://www.tptp.org
eingesehen werden.

4.2.2 TPI

Die Sprache für TPTP-Prozessanweisungen (TPTP Process Instruction, TPI) kodiert Kontroll-
befehle an automatische Theorembeweiser, mit welchen logische Formeln aktiv beeinflusst
werden können. Eine Eingabe in TPI sieht beispielsweise wie folgt aufgebaut aus:

tpi(name, command, command details, [source, [useful-info]]).

Eingaben in TPI können direkt an Theorembeweiser weitergegeben oder durch externe Pro-
gramme gelesen werden, die letztendlich selbst Theorembeweiser aufrufen. Solche Systeme,
die TPI interpretieren können, werden TPI-Systeme genannt. Dateien, die an TPI-Systeme wei-
tergegeben werden, können logische Formeln und Befehle gleichermaßen enthalten: Formeln
werden ausgewertet, Befehle ausgeführt.

Die aus der Umsetzung der Einbettung resultierende Anwendung interpretiert für die
Übersetzung relevante TPI-Befehle. Da ein solcher Befehl in solch einer Form noch nicht
existiert, wird dem Beispiel von Wisniewski, Steen und Benzmüller (2016) folgend eine
Erweiterung der TPI-Sprache um nachfolgendes Konstrukt vorgeschlagen:

tpi(1, set_logic, free('$E' = '$empty', '$choice' = '$yes', '$ite' = '$yes')).

respektive

tpi(1, set_logic, free('$E' = '$non_empty', '$choice' = '$no', '$ite' = '$no')).

Durch den Parameter $E kann zwischen einer freien Logik ($E = $non-empty) oder einer
inklusiven freien Logik ($E = $empty) gewählt werden. Da die Einbettung die Kennzeichnung
berücksichtigt und für diese Opertoreneinbettung spezielle THF-Sprachkonstrukte notwen-
dig sind (vgl. dazu Kapitel 4.2.3), die nicht von jedem Theorembeweiser unterstützt werden,
soll festgelegt werden können, ob diese Sprachkonstrukte in der Einbettung Verwendung
finden sollen oder ob auf eine alternative Einbettung über Axiomatisierungen zurückgegriffen
werden soll. Die betroffenen Sprachkonstrukte – der choice-Operator @+ und der if-then-
else-Operator $ite – können über die Parameter $choice und $ite jeweils mit $yes oder
$no aktiviert bzw. deaktiviert werden. Die Reihenfolge der Schlüsselwörter spielt keine Rolle,
jedoch müssen alle drei über den TPI-Befehl festgelegt werden. Die Anwendung wird stan-
dardmäßig von der Belegung $non-empty/$yes/$yes ausgehen, sodass der TPI-Befehl auch
weggelassen werden kann.
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4.2.3 THF und HFF

Bevor die Einbettung im Detail erläutert werden kann, wird zunächst die Syntax von THF und
HFF, eine eigens entworfeneAnpassung vonTHF, die denAnsprüchen der freien Logik gerecht
wird, aufgezeigt. Die Semantik von THF entspricht der Logik höherer Stufe mit Henkin-
Semantik und einem choice-Operator, einer Konstanten, die dasjenige Objekt zurückgibt,
welches eine bestimmte Bedingung erfüllt (Sutcliffe und Benzmüller 2010). Das folgende
Beispiel für die Struktur einer THF-Formel, das die Vereinigung definiert, ist dem Papier von
Sutcliffe und Benzmüller (2010) entnommen:

thf(union, definition,
( union = ( ^ [X: $i > $o,Y: $i > $o,U: $i] : ( ( X @ U ) | ( Y @ U ) ) ) )

).

Der Angabe des Bezeichners und des Formeltyps (im Beispiel: definition) folgt die Formel
selbst. Neben logischen Verknüpfungen wie ,̃ &, |, => und <=> für ¬, ∧, ∨, → und ↔ wird
die 𝜆-Abstraktion mit dem Symbol ̂ und die Applikation mit @ angegeben. ! bezeichnet die
Allquantifizierung über bestimmte typisierte Variablen, ? den Existenzquantor. Für nähere
Informationen zu der Verwendung dieser Sprachelemente sei wieder auf die bereits erwähnten
Quellen in Bezug auf TPTP verwiesen.

HFF, eine Form für freie Logik höherer Stufe, benannt nach der in Wisniewski et al. (2016)
eingeführtenKonvention, übernimmt alle Eigenschaften vonTHF und fügt dessen Sprachspek-
trum weitere Konstanten ähnlich $true und $false hinzu, sodass diese nativ und ohne eine
vorherige Definition genutzt werden können. Die Definitionen werden bei der Übersetzung
von HFF nach THF nachgeliefert. Für die freie Logik werden Konstanten für das Existenz-
prädikat und ⋆u� benötigt, sowie ein Satz zusätzlicher Quantoren. Das Existenzprädikat wird
durch $e repräsentiert und wie folgt angewendet:

hff(eq, definition,
( eq = ( ^ [X: $i, Y: $i] :

( ( $e @ $i @ X ) & ( $e @ $i @ Y ) & ( X = Y ) ) ) )
).

$e erhält zwei Parameter, von denen der erste der Variablentyp ist, auf den das Prädikat
angewendet wird (im Beispiel: $i). Als zweites Argument wird die Variable selbst übergeben.
Das Undefiniertheit repräsentierende Symbol ⋆u� wird durch die Konstante $star umgesetzt,
welche als Argument ebenfalls ihren Domänentyp erhält und im folgenden Beispiel zusammen
mit der Kennzeichnung THE angewendet wird:

hff(lem, conjecture, ( THE [X: $i] : ( X = ( $star @ $i ) ) ) ).

Die Funktionsweise von THE ähnelt der Funktionsweise des choice-Operators @+ aus THF.
Die Quantoren bleiben erhalten, iterieren in ihrer ursprünglichen Form allerdings nur über
die Domäne der existenten Objekte:

hff(lem, conjecture, ( ! [X: $i] : ( $e @ $i @ X ) ) ).
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Für eine Iteration über die Gesamtdomäne, über die existenten und nicht-existenten Objekte,
wird !+ bzw. ?+ vorgeschlagen:

hff(lem, conjecture,
( !+ [X: $i] : ( ( $e @ $i @ X ) | ( ~ ( $e @ $i @ X ) ) ) )

).

Die syntaktische Unterscheidung dieser beiden Quantorenpaare wurde aufgrund der be-
schränkten Popularität der Dual-Domänen-Semantik so gewählt, wie zuvor beschrieben. Die
Idee von freier Logik gründet auf der Existenz einer einzelnen Domäne, der Domäne 𝐸u�.
Objekte können außerhalb oder innerhalb dieser liegen. Um der allgemeinen Auffassung
von freier Logik so nah wie möglich zu kommen, werden für die Quantifizierung über die
Domäne 𝐸u� weiterhin die primären Quantoren ! und ? eingesetzt und !+ bzw. ?+ nur bei
Bedarf herangezogen.

4.2.4 Einbettung von HFF in THF

Um eine Übersetzung von HFF in THF zu ermöglichen, müssen die unter Kapitel 4.2.3
vorgestellten freie Logik-spezifischen Konstanten in THF definiert werden. Zudem müssen
die in den Formeln verwendeten HFF-Konstanten so angepasst werden, dass sie mit der
Syntax von THF und den Definitionen konform gehen. Die nachfolgende Einbettung wurde
beispielhaft für Objekte des Typs $i skizziert, dieser kann aber durch beliebige Typkonstrukte
ausgetauscht werden.

Die Domäne 𝐸u� wird, wie bereits aus der semantischen Einbettung hervorging, durch ein
Existenzprädikat dargestellt. Dieses wird wie folgt definiert:

thf(freelogic_existence_type, type, ( eE: ( $i > $o ) ) ).

Jede Kombination $e @ $i, die in der HFF-Eingabedatei verwendet wird, wird in das Prädikat
eE übersetzt. Die Domäne 𝐸u� wird durch folgendes Axiom nicht-leer gesetzt und ausgelassen,
wenn eine inklusive Logik gewünscht ist:

thf(freelogic_nonemptyE_axiom, axiom, ( ? [X: $i] : ( eE @ X ) ) ).

Die Konstante $star @ $i wird als THF-Konstante star anhand folgender Typdefinition
eingebettet:

thf(freelogic_star_type, type, ( star: $i ) ).

thf(freelogic_star_axiom, axiom, ( ~ ( eE @ star ) ) ).

Aufgrund der Präsumtion, dass die äußere Domäne nur nicht-leer sein kann, wird star als
Teil der Domäne 𝐷u� deklariert. Die Einbettung des Allquantors wird ebenfalls über das
Existenzprädikat als Wächter erreicht:
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thf(freelogic_forall_type, type, ( fforall: ( ( $i > $o ) > $o ) ) ).

thf(freelogic_forall, definition,
( fforall =

( ^ [Phi: $i > $o] : ! [X: $i] : ( ( eE @ X ) => ( Phi @ X ) ) ) )
).

Eine Übersetzung von ! im Sinne von HFF in ein äquivalentes THF-Konstrukt erfordert
eine 𝜆-Abstraktion und eine Applikation, damit die Neudefinition des Allquantors von den
Theorembeweisern verarbeitet werden kann. Eines der Beispiele aus Kapitel 4.2.3 übersetzt
sich dann wie folgt:

hff(lem, conjecture, ( ! [X: $i] : ( $e @ $i @ X ) ) ).

≡

thf(lem, conjecture, ( fforall @ ^ [X: $i] : ( eE @ X ) ) ).

Hierbei ist es wichtig zu erwähnen, dass in der Übersetzung dem : zwingend Klammern
folgen müssen, um die Norm der THF-Syntax zu erfüllen. Die Ersetzung des Existenzquantors
erfolgt äquivalent. Dieser wird, wie üblich, abhängig vom Allquantor definiert:

thf(freelogic_exists_type, type, ( fexists: ( ( $i > $o ) > $o ) ) ).

thf(freelogic_exists, definition,
( fexists =

( ^ [Phi: $i > $o] : ~ ( fforall @ ^ [X: $i] : ( ~ ( Phi @ X ) ) ) ) )
).

Das neue Quantorenpaar !+ und ?+ iteriert ohne Zuhilfenahme des Existenzprädikats über
die Gesamtdomäne 𝐷u� und wird damit durch ! und ? in ihrer eigentlichen Funktion ersetzt.
Für die Einbettung der Kennzeichnung werden die Operatoren $ite und @+ verwendet:

thf(ffthat_type, type, ( i: ( ( $i > $o ) > $i ) ) ).

thf(ffthat, definition,
( i =

( ^ [Phi: $i > $o] :
( $ite

@ ( ? [X: $i] :
( ( eE @ X )

& ( Phi @ X )
& ( ! [Y: $i] :

( ( ( eE @ Y ) & ( Phi @ Y ) ) => ( Y = X ) ) ) ) )

20



4.2 Kodierung der Einbettung

@ ( @+6 [X : $i] :
( ( eE @ X ) & ( Phi @ X ) ) )

@ star ) ) )
).

Sofern $ite und @+ vermieden werden sollen, wird folgende alternative Einbettung auf der
Grundlage von axiomatisierten Definitionen für choice- und if-then-else-Operatoren nach
Backes (2010) und Backes und Brown (2011) gewählt:

thf(the_type, type, ( the: ( $i > $o ) > $i ) ).

thf(the, axiom,
( ! [P: $i > $o, A: $i] :

( ( P @ A ) => ( ( ! [X: $i] :
( ( P @ X ) => ( X = A ) ) )
=> ( P @ ( the @ P ) ) ) ) )

).

thf(if_type, type, ( if: $o > $i > $i > $i ) ).

thf(if, axiom,
( if =

( ^ [P: $o] :
( ^ [X: $i] :

( ^ [Y: $i] :
( the @ ( ^ [Z: $i] :

( ( ( P ) => ( Z = X ) )
& ( ( ~ ( P ) ) => ( Z = Y ) ) ) ) ) ) ) ) )

).

thf(if_ax1, axiom,
( ! [P: $o] : ( ( P = $true ) | ( P = $false ) ) ) ).

thf(if_ax2_1,axiom,
( ! [X: $i,Y: $i] : ( ( if @ $false @ X @ Y ) = Y ) ) ).

thf(if_ax2_2,axiom,
( ! [X: $i,Y: $i] : ( ( if @ $true @ X @ Y ) = X ) ) ).

thf(freelogic_fthat_type, type, ( i: ( $i > $o ) > $i ) ).

6 Der choice-Operator @+ gibt per Definition ein Objekt wieder, das eine bestimmte Bedingung erfüllt. Dieses
Objekt muss nicht eindeutig sein. Für die Einbettung der Kennzeichnung ist Eindeutigkeit aber unablässig. In
dieser Kodierung wird dies durch die Prämisse gewährleistet, dass es sich bei allen Objekte in der Domäne,
die die Bedingung ebenfalls erfüllen, um dasselbe Objekt handelt.
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thf(freelogic_fthat, definition,
( i =

( ^ [Phi: $i > $o] :
( if

@ ( ? [X: $i] :
( ( eE @ X )

& ( Phi @ X )
& ( ! [Y: $i] :

( ( ( eE @ Y ) & ( Phi @ Y ) )
=> ( Y = X ) ) ) ) )

@ ( the @ ( ^ [X: $i] :
( ( eE @ X ) & ( Phi @ X ) ) ) )

@ star ) ) )
).

Soll nur einer der beiden vordefinierten Operatoren umgangen werden, dann wird eine
Mischform der zwei Einbettungsalternativen gewählt. Jedoch sollte die Verwendung von $ite
und @+ bevorzugt werden, wenn der Zieltheorembeweiser die Möglichkeit dazu bietet, da die
interne Behandlung der Operatoren im Allgemeinen als effektiver angesehen werden kann als
die Verarbeitung von Axiomen.

Wie der formalen Einbettung aus Kapitel 4.1 zu entnehmen ist ändert sich die semantische
Bedeutung der logischen Verknüpfungen ¬, → und = für die positive freie Logik nicht,
weswegen auf eine Kodierung dieser verzichtet wird. Eine Übersetzung ist in diesem Sinne
nicht notwendig. Die Einbettung ist in ihrer Vollständigkeit auch als Anhang hinterlegt.
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5 Umsetzung der Einbettung

Der Entwurf einer Einbettung ist nur der erste Schritt zu einer Übersetzung von freier Logik
in Logik höherer Stufe. Die Einbettung wird nun in einen Gesamtkontext eingebunden und
die Automatisierung der Übersetzung umfassend beschrieben.

5.1 Leo-III
Leo-III ist ein sich zum aktuellen Zeitpunkt in Entwicklung befindlicher „state-of-the-art“
Theorembeweiser für die Logik höherer Stufe und der Nachfolger des Leo-II-Beweisers
(Benzmüller, Theiss, Paulson und Fietzke 2008). Leo-III basiert auf Konzepten wie geordneter
Paramodulation/Superposition und setzt im Gegensatz zu seinem Vorgänger auf ein poly-
morphes Typsystem (Wisniewski, Steen und Benzmüller 2015). Zudem wird großer Wert auf
die Integrierbarkeit von semantischen Einbettungen nach Benzmüller (2013) gelegt, um sich
dem logischen Schließen von nicht-klassischen Logiken aufbauend auf der Mächtigkeit von
gewöhnlichen höherstufigen Beweisern annähern zu können.

Die vorliegende Arbeit wurde im Kontext von diesem Projekt initiiert, um einen ersten
Schritt in Richtung der Unterstützung für nicht-klassische Logiken zu gehen. Da Leo-III in der
funktionalen, objektorientierten Sprache Scala geschriebenwird, erfolgte die Implementierung
der Umsetzung ebenfalls in Scala. Die zum Zeitpunkt der Implementierung aktuelle Version
von Scala trug die Versionsnummer 2.11.7.

5.2 Implementierung

Die Übersetzung der einzelnen HFF-spezifischen Elemente wurde bereits in Kapitel 4.2.4
im Detail betrachtet. Im Folgenden wird die Anwendung beschrieben, die diese Elemente
anhand einer differenzierten Syntaxanalyse lokalisiert und deren Übersetzung durchführt.
Die Anwendung erhält eine beliebige Eingabedatei, idealerweise eine .p- oder .tpi-Datei,
die alle Arten von TPTP-konformen Anweisungen inklusive HFF-Formeln enthalten kann.
Für die resultierende Ausgabedatei werden die identifizierten HFF-Anweisungen übersetzt
sowie adäquate TPI-Anweisungen interpretiert. Die übrigen Anweisungen werden bis auf
minimale Modifikationen an den Pfaden von inkludierten Eingabedateien unverändert in
die Ausgabedatei übernommen. Das Diagramm in Abbildung 4 veranschaulicht den exakten
Ablauf der Anwendung.

Für die Verarbeitung der Eingabe wird die Eingabedatei zuerst in separate Anweisungen
segmentiert, um aufgrund der syntaktischen Unabhängigkeit dieser die Option einer paralleli-
siert durchgeführten Übersetzung aller Einzelanweisungen offen zu halten. Als Trennsymbol
dient der Punkt, der Abschluss einer jeden nicht-leeren Anweisung. Punkte in Kommentaren
und Zahlen sowie Punkte zwischen einfachen Anführungszeichen werden übersprungen.
Kommentare unmittelbar vor einer Anweisung werden syntaktisch zu dieser gezählt. Die
letzte Anweisung muss nicht mit einem Punkt abschließen. In diesem Fall handelt es sich
um eine leere Anweisung, die nur typografischen Weißraum oder Kommentare umfasst.
Im Anschluss wird jede Anweisung für sich analysiert. Hierfür wurden sechs verschiedene
Parser entworfen, einer für jede Art von TPTP-Anweisung, die in der Eingabe enthalten sein
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Abb. 4: Ablaufdiagramm der Anwendung

Abb. 5: Ablaufdiagramm der Syntaxanalyse einer Anweisung
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kann. Diese werden nacheinander durchlaufen bis einer die Anweisung erfolgreich analysiert
hat (vgl. Abbildung 5) und einen entsprechenden Rückgabewert für die Weiterverarbeitung
zurückliefert. Wenn keiner der Parser die Anweisung verifizieren konnte, dann ist die An-
weisung fehlerhaft und der Benutzer erhält unter Angabe einer Zeilen- und Spaltennummer
sowie der stattdessen erwarteten Eingabe die Fehlermeldung des Parsers, der die Eingabe am
weitesten vergleichen konnte, angezeigt.

Jeder der sechs Parser analysiert auf der Basis von PEG (parsing expression grammar), einer
leichtgewichtigen Alternative zu kontextfreien Grammatiken, die Backtracking unterstützt.
Ein solcher Parser operiert in der Regel direkt auf der Eingabezeichenfolge und verzichtet auf
eine vorherige lexikalische Analyse. Für die Implementierung dieser Parser wurde auf Parserge-
neratoren gesetzt, wofür die Bibliothek Parboiled2 (Doenitz und Myltsev 2013) herangezogen
wurde. Diese wurde den Parserkombinatoren von Scala vorgezogen, da der Funktionsumfang
der Bibliothek insbesondere im Hinblick auf die Flexibilität der domänenspezifischen Sprache
mehr überzeugen konnte. Zudem setzt Parboiled2 zur Steigerung der Leistungfähigkeit auf
effizientere Strukturen sowie Scala Macros (vgl. Béguet und Jonnalagedda 2014; Kurš, Vraný,
Ghafari, Lungu und Nierstrasz 2016) und vergleicht damit die Performance seiner zur Kompi-
lierzeit generierten Parser mit der von handgeschriebenen Parsern. Der Aufruf eines solchen
Parsers und das Abfangen seiner Ergebnisse wird wie folgt durchgeführt:

parser.Statement_HFF.run() match {
case Success(result) =>

return result
case Failure(new_parseError: ParseError) =>

handleParseError
case Failure(new_parseError) =>

debug("unexpected error during parsing run")
}

Die Entscheidung für die Aufteilung der Syntaxanalyse auf verschiedene Parser ermöglicht
die Anbindung externer Parser, um so zum Beispiel auch THF oder andere Logiksprachen
direkt aus der Anwendung heraus analysieren zu können ohne an die bereits bestehenden
Parser gebunden zu sein. Die Parser bleiben übersichtlich und können einfach ergänzt oder
ausgetauscht werden.

Die Grammatik, die dem Parser für HFF-Anweisungen zu Grunde liegt, lautet wie folgt:

statement ::= "hff" "(" <id> "," <formula_type> "," <formula>
")" "."

id ::= [a-z] [a-zA-Z0-9_]* | [0-9]+
formula_type ::= "axiom" | "conjecture" | "definition"| "lemma" | …
formula ::= "(" <formula>? ")" <formula>?

| "'" <formula>? "'" <formula>?
| <definitions>
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| "eE_" <formula>?
| "$e" "@" "$"? [a-zA-Z0-9]+ "@" <formula>
| "star_" <formula>?
| "$star" "@" "$"? [a-zA-Z0-9]+ <formula>
| <quantifier_outerdomain>
| <quantifier_innerdomain>
| <description>
| ^[()'.] <formula>?

comment ::= "%" ^[\n] "\n"
definitions ::= "[" variable_definition ( ","

variable_definition )* "]" ":" <formula>
quantifier_outerdomain ::= ( "!+" | "?+" ) "[" variable_definition

( "," variable_definition )* "]" ":" <formula>
quantifier_innerdomain ::= ( "!" | "?" ) "[" variable_definition

variables_list
description ::= "THE" "[" variable_definition variables_list
variables_list ::= "," variable_definition variables_list | "]" ":"

<formula>
variable_definition ::= ^[:,[].]+ ":" <type>
type ::= "(" <type> ")" <type>? | ^[()[]:,.]+ <type>?

Token sind mit Anführungszeichen markiert, weiterführende Regeln mit spitzen Klammern
und reguläre Ausdrücke sind in eckige Klammern gesetzt. Die in der Notation verwendete
Syntax für reguläre Ausdrücke entspricht dem allgemeinen Standard. Die Grammatik wur-
de leicht adaptiert, um ihre Lesbarkeit zu vereinfachen. Zum Beispiel können an diversen
Stellen Leerraum und Kommentare eingesetzt werden, die hier der Übersichtlichkeit halber
ausgelassen wurden. Die Grammatik konzentriert sich darauf, Quantoren und Konstanten der
freien Logik zu finden und deren syntaktische Verwendung, insbesondere die zugehörigen
Variablendefinitonen und Applikationen, auf ihre Korrektheit zu überprüfen. Sollte eine der
Definitionen, die in der anschließenden Übersetzung hinzugefügt werden, bereits in der
eigentlichen Eingabe definiert worden sein, so werden diese ebenfalls aufgespürt und umbe-
nannt. Zusätzlich werden zusammengehörende Klammern und einfache Anführungszeichen
erkannt und geprüft. Bis auf einige wenige Ausnahmen wie die grundlegende Struktur von
TPTP-konformen Anweisungen und die Syntaxregeln für Bezeichner wurde die exakte Syntax
von TPTP außer Acht gelassen, da deren Beachtung nicht zwingend für die Übersetzung
notwendig ist. Die syntaktische Korrektheit der Eingabe wird während dem der Übersetzung
obligatorisch nachstehenden Beweisvorgang sichergestellt, sodass die Übersetzung nur als
eine Art Vorverarbeitungsschritt anzusehen ist. Ein Ausschnitt des Parboiled2-Parsers, der
diese Grammatik erkennen kann, sieht wie folgt aus:

def Statement_HFF: Rule1String = rule {
clearSB ~ quiet( W ) ~ HFF_Language.named("hff") ~
quiet( W ) ~ leftParenthesis.named("left parenthesis") ~
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quiet( W ) ~ ID ~ quiet( W ) ~ comma ~ quiet( W ) ~
FormulaType ~ quiet( W ) ~ comma ~ quiet( W ) ~
Formula.named("formula") ~ ( comma ~ Annotation ).? ~
rightParenthesis.named("right parenthesis") ~ quiet( W ) ~
dot ~ EOI ~ push(sb.toString) }

def comma: Rule0 = rule { CharPredicate(',') ~ appendSB(",") }

def VariableDefinition(quantifier: String): Rule0 = rule {
( noneOf(":,.").+ ).named("variable name") ~ ( colon ~
( capture( Type ) ~> { (var_type: String) =>
{ appendSB( handleFoundVarType(quantifier, var_type) ) } } |
fail("type") ) | fail("colon") ) }

Neben altbekannten Operatoren – .+ für sich mindestens einmal wiederholende und .? für
optionale Regeln – und der Regelkonkatenation durch Tilden unterstützt Parboiled2s domä-
nenspezifische Sprache auch weitere nützliche Parseraktionen: Beispielsweise gibt .named
den Namen der Regel an, der im Fehlerfall ausgegeben wird und quiet sorgt gegenteilig dafür,
dass die Regel im Verborgenen bleibt. Mit fail kann ein mögliches Backtracking des Parsers
verhindert werden, indem die Anwendung der Regel im Falle einer missglückten Überein-
stimmung fehlschlägt und damit den Parsevorgang beendet. capture fängt die Analyse der
darunterliegenden Regel auf und stellt sie zur Weiterverarbeitung durch ~> zur Verfügung.
In dem gezeigten Parserauschnitt wird die Erkennung des Typs in einer Variablendefinition
mitgeschnitten und der Typ dann anhand der Methode handleFoundVarType ausgewertet.
SB ist eine Erweiterung des Parboiled2-Parsers mit der direkt während dem Parsevorgang eine
Zeichenkette zusammengesetzt werden kann. Für die Übersetzung wird dies so genutzt, dass
ein gelesener Buchstabe oder eine gelesene Zeichenkombination sofort wieder an die Ausga-
bezeichenkette angehängt wird. Wenn dabei eine der HFF-spezifischen Regeln ausgelöst wird,
dann wird nicht die gleiche Zeichenkette an die Ausgabezeichenkette angefügt, welche auch
gelesen wurde, sondern deren korrespondierende Übersetzung in THF. Solche SB-Methoden
sind im oberen Beispiel kursiv markiert, befinden sich aber größtenteils in untergeordneten
Regeln. Sofern eine Anweisung komplett von dem Parser gelesen werden konnte wird die
übersetzte Eingabezeichenfolge zurückgegeben, die vervollständigt durch eine Einbettung an
die Ausgabedatei angefügt werden kann.

Da sich die Einbettung nicht auf einen Variablentyp im Speziellen beschränken soll, sondern
die Operatoren und Konstanten für alle Typen, die in der Eingabedatei Verwendung gefunden
haben, eingebettet werden sollen, wird bei der Syntaxanalyse der Typ jeder gelesenen Varia-
blendefinition verarbeitet, indem er mit den Daten der bisher verwerteten Typen verglichen
wird. Sofern der Typ noch nicht zusammen mit diesem Operator verwendet wurde, dann
wird er den Daten hinzugefügt. Hierbei wird jeder Typ mit einem bestimmten globalen Index
identifiziert, der bei der Ersetzung der Zeichenkette Beachtung findet. Das Konstrukt $e
@ $i @ ersetzt sich so zum Beispiel zu eE_1 @ während das Konstrukt $e @ ($i>$o) @ zu
eE_2 @ ersetzt wird, wobei der Typ $i intern den Index eins erhält und $i>$o den Index
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zwei. Eine hypothetische Allquantifizierung ![X:$i>$o] wird dann in der selben Ausgabeda-
tei zu (fforall_2 @ ^[X:$i>$o] ... ) ersetzt.7 Zu diesem Zweck wurde die Einbettung
bereits so vorbereitet, dass nach Beendigung der Syntaxanalyse aller Anweisungen jeder
Einbettungsteil wiederholt zu der Gesamteinbettung hinzugefügt werden kann, abhängig
von den Typen, die für genau diesen Einbettungspart gefunden wurden. Die sich ergebende
Einbettung enthält somit nur exakt die Definitionen, die tatsächlich auch benötigt werden.8
So wird die Einbettung schlank gehalten und die Theorembeweiser müssen nicht mehr Input
verarbeiten als notwendig. Bei der Zusammensetzung der Einbettung werden die einzelnen
Teile abhängig von bestimmten Parameter gewählt (vgl. Kapitel 4.2.4). Die TPI-Anweisung,
die in Kapitel 4.2.2 speziell für die freie Logik vorgeschlagen wurde und die die Parameter
für die Einbettung kontrolliert, wird anhand folgender Grammatik und zugehörigem Parser
ausgelesen:

statements. ::= "tpi" "(" <id> "," "set_logic" "," "free"
"(" <parameters> ")" ")" "."

id ::= [a-z] [a-zA-Z0-9_]* | [0-9]+
parameters ::= <e> "," ( <choice> "," <ite> | <ite> "," <choice> )

| <choice> "," ( <e> "," <ite> | <ite> "," <e> )
| <ite> "," ( <e> "," <choice> | <choice> "," <e> )

e ::= "'" <para_e> "'" "=" "'" <value_e> "'"
choice ::= "'" <para_choice> "'" "=" "'" <value_yes_no> "'"
ite ::= "'" <para_ite> "'" "=" "'" <value_yes_no> "'"
value_e ::= "$empty" | "$non_empty"
value_yes_no ::= "$yes" | "$no"
para_e ::= "$E"
para_choice ::= "$choice"
para_ite ::= "$ite"

Wie bereits erwähnt wird die Eingabe aller drei Parameter verlangt, jedoch wäre eine Anpas-
sung kein Problem, sollten zukünftig im Kontext von TPTP Standardwerte vorgesehen sein.
Der Parser gibt eine Liste der ausgelesenen Parameter zurück sowie eine Liste der gefundenen
Leerzeilen und Kommentare. Die Parameter werden für die der Syntaxanalyse anschließende
Erzeugung der Einbettung verarbeitet und die Anweisung nach deren Interpretation verwor-
fen. Kommentare und Leerzeilen bleiben erhalten und werden der Ausgabedatei hinzugefügt,
um die Zeilenzuordnung größtenteils beizubehalten und somit eine etwaige Fehlersuche zu
vereinfachen.

Anweisungen, die weitere Eingabedateien inkludieren, haben folgende Form:

include('Axioms/Ax001.p').

7 Es sei auch erwähnt, dass eine Aneinanderreihung wie in ![X:$i,Y:a] aus syntaktischen Gründen zu
(fforall_1 @ ^[X:$i]: (fforall_3 @ ^[Y:a] ... )) aufgeteilt werden muss.

8 Das Axiom, das die Existenz des nicht-definierten Objekts postuliert, wird für jeden Typ eingebettet.

28



5.2 Implementierung

Diese Anweisungen werden ausgelesen, die spezifizierte Datei zu der Liste der noch zu verar-
beitenden Eingabedateien hinzugefügt und die Anweisung zusammen mit dem neuen Pfad
zu der in Kürze ebenfalls übersetzten Datei weitergegeben, um diese modifizierte Anweisung
an die Ausgabedatei anzuhängen.

Die Anwendung ist als Kommandozeilenwerkzeug konzipiert worden und beherrscht fol-
gendeOptionen, die neben der Eingebadatei durch einen Befehl der Form tff2thf [options]
<file> mitgegeben werden können:

-o, --out <file> -e, --empty_e <boolean> -u, --use_include
-w, --overwrite -c, --choice <boolean> -r, --result <logic>
--verbose <level> -i, --ite <boolean> --help
--debug --more_axioms

Die Standardoptionen werden um die Optionen --empty_e, --choice und --ite ergänzt, ei-
ne weitereMöglichkeit die Parameter der Einbettung unabhängig von einer TPI-Anweisung zu
beeinflussen. Sollte jedoch trotzdem eine TPI-Anweisung gefunden werden, dann werden die
über die Kommandozeile festgelegten Parameter überschrieben. Die Option --more_axioms
setzt zusätzliche Axiome für Einbettungen mit einem axiomatisierten choice-Operator. Sie
wird nach Beendigung des Übersetzungsvorgangs vorgeschlagen, falls für die Übersetzung der
choice-Operator mittels Axiomen eingebettet wurde. Die Option --use_include steuert, ob
die Einbettung an den Anfang jeder Eingabedatei eingefügt werden soll, oder ob stattdessen
eine separate Einbettungsdatei angelegt und pro Eingabedatei eine einzeilige Anweisung für
die Inkludierung dieser Datei geschrieben werden soll. --result legt die Logiksprache fest,
in die die HFF-Anweisungen übersetzt werden sollen. Prinzipiell wird eine Übersetzung in
THF bevorzugt, in einigen Fällen kann die gewünschte Zielsprache, zum Beispiel für eine
Folgeübersetzung von (freier) Modallogik nach THF, abweichen. Die Anwendung hält sich an
gängige Ein- und Ausgabekonventionen. Eingabedateien können als relativer oder absoluter
Pfad angegeben werden, wobei auch die TPTP-Umgebungsvariable $TPTP ausgelesen wird, so-
fern diese gesetzt ist. Da möglicherweise mehrere Dateien nacheinander für eine erfolgreiche
Ausgabe beschrieben werden müssen, wird gewährleistet, dass bei einem Fehler alle Ausgabe-
dateien in ihren Ausgangszustand zurückversetzt werden. Bereits vorhandene Dateien, die
überschrieben werden sollten, werden anhand einer Sicherheitskopie wiederhergestellt, neue
gelöscht. So wird sichergestellt, dass die Ausgabe konsistent bleibt.

Die Implementierung wurde anhand von 401 einfachen Problemen der TPTP-Bibliothek
getestet sowie bei der Formalisierung von Kategorientheorie angewendet. Die Auswertung
wird in Kapitel 7 diskutiert.
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6 Anwendung am Beispiel der Kategorientheorie

Die Kategorientheorie ist ein Zweig der Mathematik, der die Gemeinsamkeiten von mathe-
matischen Strukturen wie Gruppen, Körper und Ringe, sogenannte Kategorien, erörtert und
deren strukturelle Unterschiede zu erfassen versucht. Das 1990 erschienene Buch Categories,
Allegories von Freyd und Scedrov über Kategorientheorie basiert auf der Definition einer
partiellen Operation, sodass sich die freie Logik im Speziellen für die Formalisierung dieses
Buches eignet. Kategorientheorie nach Freyd und Scedrov soll im Folgenden (teil-)formalisiert
werden, um die erfolgreiche Automatisierung von freier Logik in Logik höherer Stufe im
Rahmen dieser Arbeit auszutesten.

6.1 Formalisierungen
Die folgenden Formalisierungen stützen sich alle auf die Sprachelemente, die in Kapitel 4.2.3
vorgestellt wurden.

Freyd und Scedrov definieren zu Beginn drei Operatoren, um die Theorie von Kategorien
einzuleiten: die Quelle �𝑋u� und das Ziel 𝑋u�� eines Morphismus 𝑋u� mit Individuentyp 𝜄
sowie die Komposition zweierMorphismen 𝑋u� ⋅𝑌u� . Diese grundlegendenDefinitionenwerden
wie folgt als Konstanten formalisiert, als zwei unäre und eine binäre Operation:

hff(source_type, type, ( source: $i > $i ) ).

hff(target_type, type, ( target: $i > $i ) ).

hff(composition_type, type, ( comp: $i > $i > $i ) ).

𝑋u� und 𝑌u� werden als Variablen eines Typs $i umgesetzt, die im Sinne der Kategorientheorie
auch Morphismen genannt werden. Das ursprünglich auf diesen Operatoren aufbauende, von
Freyd und Scedrov angegebene Axiomensystem konnte von Benzmüller und Scott (2016b)
bereits als inkonsistent nachgewiesen werden. Der Beweis hierfür lässt sich einfach anhand
eines Theorembeweisers nachvollziehen und wird an dieser Stelle ausgespart. Für die Forma-
lisierungen wird stattdessen auf ein äquivalentes, aber konsistentes Axiomensystem von Scott
(1979) zurückgegriffen, um die Definitionen von Freyd und Scedrov gegenzuprüfen. Dieses
wird wie folgt formalisiert:

hff(scott_s1_axiom, axiom,
( !+ [X: $i] :

( ( $e @ $i @ ( source @ X ) ) => ( $e @ $i @ X ) ) )
).

hff(scott_s2_axiom, axiom,
( !+ [X: $i] :

( ( $e @ $i @ ( target @ X ) ) => ( $e @ $i @ X ) ) )
).
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hff(scott_s3_axiom, axiom,
( !+ [X: $i] :

( !+ [Y: $i] :
( ( $e @ $i @ ( comp @ X @ Y ) )

<=> ( eq1 @ ( source @ X ) @ ( target @ Y ) ) ) ) )
).

hff(scott_s4_axiom, axiom,
( !+ [X: $i] :

( !+ [Y: $i] :
( !+ [Z: $i] :

( eq2
@ ( comp @ X @ ( comp @ Y @ Z ) )
@ ( comp @ ( comp @ X @ Y ) @ Z ) ) ) ) )

).

hff(scott_s5_axiom, axiom,
( !+ [X: $i] :

( eq2 @ ( comp @ ( source @ X ) @ X ) @ X ) )
).

hff(scott_s6_axiom, axiom,
( !+ [X: $i] :

( eq2 @ ( comp @ X @ ( target @ X ) ) @ X ) )
).

Im Folgenden sind die hervorgehobenen (Kapitel-)Nummerierungen denen in Categories,
Allegories nachempfunden, um eine ähnliche Struktur für die Orientierung beizubehalten.
≡HFF gibt die äquivalente Umformung einer Formel in HFF an.

1.11. Gleichheit, in diesem Fall wie die von Freyd und Scedrov vorausgesetzte Kleene-
Gleichheit, ist wie folgt definiert:

𝑋u�
s= 𝑌u� ≡ (𝐸!𝑋u� ∨ 𝐸!𝑌u�) → (𝑋u�

w= 𝑌u�)

≡HFF

hff(eq2_type, type, ( eq2: $i > $i > $o ) ).

hff(eq2, definition,
( eq2 =

( ^ [X: $i, Y: $i] :
( ( ( $e @ $i @ X ) | ( $e @ $i @ Y ) )

=> ( eq1 @ X @ Y ) ) ) )
).
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Scott nutzt zudem eine zweite, schwächere, nicht-reflexive Form von Gleichheit für die
Definition der Kleene-Gleichheit und auch für das dritte Axiom, um ein konsistentes System
zu erlangen:

𝑋u�
w= 𝑌u� ≡ 𝐸!𝑋u� ∧ 𝐸!𝑌u� ∧ (𝑋u� = 𝑌u�)

≡HFF

hff(eq1_type, type, ( eq1: $i > $i > $o ) ).

hff(eq1, definition,
( eq1 =

( ^ [X: $i, Y: $i] :
( ( $e @ $i @ X ) & ( $e @ $i @ Y ) & ( X = Y ) ) ) )

).

1.12. Ergänzt werden diese Definitionen um eine dritte Gleichheit, die gerichtete Kleene-
Gleichheit:

𝑋u�
d= 𝑌u� ≡ 𝐸!𝑋u� → (𝑋u�

w= 𝑌u�)
≡HFF

hff(eq3_type, type, ( eq3: $i > $i > $o ) ).

hff(eq3, definition,
( eq3 =

( ^ [X: $i, Y: $i] :
( ( $e @ $i @ X ) => ( eq1 @ X @ Y ) ) ) )

).

Das nachstehende Lemma ist eines der ersten im Buch und beschäftigt sichmit der gerichteten
Gleichheit:

�(𝑋u� ⋅ 𝑌u�)
s= �(𝑋u� ⋅ (�𝑌u�)) ↔ �(𝑋u� ⋅ 𝑌u�)

d= �𝑋u�

≡HFF

hff(lem1_12, conjecture,
( ! [X: $i] :

( ! [Y: $i] :
( ( eq2

@ ( source @ ( comp @ X @ Y ) )
@ ( source @ ( comp @ X @ ( source @ Y ) ) ) )

<=> ( eq3
@ ( source @ ( comp @ X @ Y ) )
@ ( source @ X ) ) ) ) )

).
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1.13. Die kommenden zwei Lemmata gelten, da �(�𝑋u�)
s= �((�𝑋u�)�) s= (�𝑋u�)�

s=
�𝑋u� und äquivalent für 𝑋u��.

�(�𝑋u�)
s= �𝑋u�

≡HFF

hff(lem1_13_1, conjecture,
( ! [X: $i] :

( eq2 @ ( source @ ( source @ X ) ) @ ( source @ X ) ) )
).

(𝑋u��)� s= 𝑋u��

≡HFF

hff(lem1_13_2, conjecture,
( ! [X: $i] :

( eq2 @ ( target @ ( target @ X ) ) @ ( target @ X ) ) )
).

1.13. Die folgenden Aussagen sind gleichwertige Eigenschaften eines Morphismus 𝐸u�:

∃𝑋u�. 𝐸u�
s= �𝑋u�

∃𝑋u�. 𝐸u�
s= 𝑋u��

𝐸u�
s= �𝐸u�

𝐸u�
s= 𝐸u��

∀𝑋u�. 𝐸u� ⋅ 𝑋u�
d= 𝑋u�

∀𝑋u�. 𝑋u� ⋅ 𝐸u�
d= 𝑋u� .

Ein solches 𝐸u� wird Identitätsmorphismus genannt. Die zugehörige Formalisierung lautet:

hff(idM_type, type, ( idM: $i > $o ) ).

hff(idM, definition,
( idM =

( ^ [X: $i] :
( ( $e @ $i @ X ) & ( eq2 @ X @ ( source @ X ) ) ) ) )

).

hff(lem_identityMorphism, conjecture,
( ! [X: $i] :

( ( ( idM @ X ) <=> ( ? [Y: $i] : ( eq2 @ X @ ( source @ Y ) ) ) )
& ( ( idM @ X ) <=> ( ? [Y: $i] : ( eq2 @ X @ ( target @ Y ) ) ) )
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& ( ( idM @ X ) <=> ( eq2 @ X @ ( source @ X ) ) )
& ( ( idM @ X ) <=> ( eq2 @ X @ ( target @ X ) ) )
& ( ( idM @ X ) <=> ( ! [Y: $i] : ( eq3 @ ( comp @ X @ Y ) @ Y ) ) )
& ( ( idM @ X ) <=> ( ! [Y: $i] :

( eq3 @ ( comp @ Y @ X ) @ Y ) ) ) ) )
).

1.17. Ein Morphismus 𝑋u� ist linksinvertierbar, wenn es einen Morphismus 𝑌u� gibt, sodass
𝑌u� ⋅ 𝑋u� ein Identitätsmorphismus ist, und rechtsinvertierbar, wenn es einen Morphismus
𝑍u� gibt, sodass 𝑋u� ⋅ 𝑍u� ein Identitätsmorphismus ist. Ein Isomorphismus ist links- und
rechtsinvertierbar. Diese Definitionen werden wie folgt formalisiert:

hff(idM_type, type, ( idM: $i > $o ) ).

hff(idM, axiom,
( idM =

( ^ [X: $i] :
( ( $e @ $i @ X ) & ( eq2 @ X @ ( source @ X ) ) ) ) )

).

hff(lI_type, type, ( lI: $i > $o ) ).

hff(lI, definition,
( lI =

( ^ [X: $i] :
( ( $e @ $i @ X ) & ( ? [Y: $i] : ( idM @ ( comp @ Y @ X ) ) ) ) ) )

).

hff(rI_type, type, ( rI: $i > $o ) ).

hff(rI, definition,
( rI =

( ^ [X: $i] :
( ( $e @ $i @ X ) & ( ? [Z: $i] : ( idM @ ( comp @ X @ Z ) ) ) ) ) )

).

hff(iso_type, type, ( iso: $i > $o ) ).

hff(iso, definition,
( iso =

( ^ [X: $i] : ( ( lI @ X ) & ( rI @ X ) ) ) )
).

Ein Isomorphismus hat eine eindeutige Linksinverse und eine eindeutige Rechtsinverse und
diese sind identisch, da 𝑌u�

s= 𝑌u� ⋅ (𝑋u� ⋅ 𝑍u�)
s= (𝑌u� ⋅ 𝑋u�) ⋅ 𝑍u�

s= 𝑍u�:
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hff(isomorphism, conjecture,
( ! [X: $i] :

( iso @ X )
=> ( ? [Y: $i] :

( ? [Z: $i] :
( ( idM @ ( comp @ X @ Z ) )

& ( idM @ ( comp @ Y @ X ) )
& ( eq2 @ Y @ ( comp @ Y @ ( comp @ X @ Z ) ) )
& ( eq2

@ ( comp @ Y @ ( comp @ X @ Z ) )
@ ( comp @ ( comp @ Y @ X ) @ Z ) )

& ( eq2 @ ( comp @ ( comp @ Y @ X ) @ Z ) @ Z ) ) ) ) )
).

1.18. Gegeben zwei Kategorien 𝐴 und 𝐵 ist eine Funktion 𝑓∶ 𝐴 ↦ 𝐵 ein Funktor genau
dann, wenn für drei Morphismen 𝑋u�, 𝑌u�, 𝑍u� mit 𝑎 als Individuentyp gilt:

�𝑋u�
s= 𝑌u� → �(𝑓(𝑋u�)) s= 𝑓(𝑌u�)

𝑋u��
s= 𝑌u� → (𝑓(𝑋u�)�) s= 𝑓(𝑌u�)

𝑋u� ⋅ 𝑌u�
s= 𝑍u� → 𝑓(𝑋u�) ⋅ 𝑓(𝑌u�) s= 𝑓(𝑍u�) .

Für diese Formalisierung müssen alle bisherigen Definitionen auf zwei verschiedene Typen
erweitert werden. Dies wird hier nicht im Detail ausgeführt, es sei lediglich erwähnt, dass
die neuen Operatoren, am Beispiel des Operators source, die Namen source_a bzw. sour-
ce_b für zwei Individuentypen a und b tragen. Das gesamte Problem mit allen erneuerten
Operatoren kann im Anhang eingesehen werden. Demnach sind Funktoren gegeben durch
folgende Definition:

hff(functor_type, type, ( functor: ( a > b ) > $o ) ).

hff(functor, definition,
( functor =

( ^ [F: a > b] :
( ( ! [A: a] :

( ! [B: a] :
( eq2_a @ ( source_a @ A ) @ B )
=> ( eq2_b @ ( source_b @ ( F @ A ) ) @ ( F @ B ) ) ) )

& ( ! [A: a] :
( ! [B: a] :

( eq2_a @ ( target_a @ A ) @ B )
=> ( eq2_b @ ( target_b @ ( F @ A ) ) @ ( F @ B ) ) ) )

& ( ! [A: a] :
( ! [B: a] :

( ! [C: a] :
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( eq2_a @ ( comp_a @ A @ B ) @ C )
=> ( eq2_b

@ ( comp_b @ ( F @ A ) @ ( F @ B ) )
@ ( F @ C ) ) ) ) ) ) ) )

).

Der Funktorenbegriff kann laut Freyd und Scedrov alternativ auch durch folgende drei Eigen-
schaften beschrieben werden:

𝑓(�𝑋u�)
s= �(𝑓(𝑋u�))

𝑓(𝑋u��) s= (𝑓(𝑋u�))�
𝑓(𝑋u� ⋅ 𝑌u�)

d= (𝑓(𝑋u�) ⋅ 𝑓(𝑌u�)) .

Für die Formularisierung der Äquivalenz wird zunächst nur versucht, zu zeigen, dass eine
Richtung gilt:

hff(functor_equivalence, conjecture,
( ! [F: a > b] :

( ( functor @ F )
=> ( ( ! [X: a] :

( eq2_b
@ ( F @ ( source_a @ X ) )
@ ( source_b @ ( F @ X ) ) ) )

& ( ! [X: a] :
( eq2_b

@ ( F @ ( target_a @ X ) )
@ ( target_b @ ( F @ X ) ) ) )

& ( ! [X: a] :
( ! [Y: a] :

( eq3_b
@ ( F @ ( comp_a @ X @ Y ) )
@ ( comp_b @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ) )

).

Doch leider konnte diese Annahme nicht bewiesen werden, die Beweissuche wurde nach einer
angemessenen Zeitspanne abgebrochen. Die Gegenrichtung indes konnte ohne Probleme
gezeigt werden, genauso wie die folgende Adaption:

hff(functor_equivalence, conjecture,
( ! [F: a > b] :

( ( functor @ F )
=> ( ( ! [X: a] :

( eq2_b
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@ ( F @ ( source_a @ X ) )
@ ( source_b @ ( F @ X ) ) ) )

& ( ! [X: a] :
( eq2_b

@ ( F @ ( target_a @ X ) )
@ ( target_b @ ( F @ X ) ) ) ) ) ) )

).

Alle anderen der bisher gezeigten Lemmata und Konjekturen konnten nach deren Über-
setzung in die Logik höherer Stufe von einem automatischen Theorembeweiser als valide
bestätigt werden. Weitere Lemmata, unter anderem auch eines, das auf die Kennzeichnung
zurückkommt, sowie eine weiter fortgeschrittene Formalisierung der Kategorientheorie in
Isabelle/HOL befinden sich im Projektordner der Anwendung.
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7 Evaluation

Im vorherigen Kapitel wurde festgestellt, dass einfache kategorientheoretische Probleme
mithilfe diverser Definitionen und Axiome ohne nennenswerte Schwierigkeiten übersetzt und
anschließend auch bewiesen werden können. Einige wenige Probleme sind nicht entscheidbar,
doch ist fragwürdig, ob die Lemmata gemäß den Vorstellungen von Freyd und Scedrov
umgesetzt wurden. Eine intuitive Formularisierung der Kategorientheorie auf dem Level
von HFF ist also erfolgreich realisierbar. Zusätzliche Tests mit verschiedenen Problemen
aus der TPTP waren im Gegensatz dazu weniger vielversprechend. Die erste Version der
Implementierung setzte auf eine vollständige Einbettung für alle Variablentypen der Datei,
sodass die Kennzeichnung, obwohl selten gebraucht, immer angefügt wurde. Jedoch brachten
die Axiome für die choice- und if-then-else-Operatoren die Beweiser in einigen Fällen an
ihre Grenzen. Erst als die Anzahl der Operatordefinitionen auf die tatsächlich notwendigen
beschränkt wurde, konnte über eine relevante Menge von Problemen eine Aussage getroffen
werden. Die Korrektheit der Einbettung aller axiomatisierter Operatoren konnte jedoch
verifiziert werden, die Konsistenz des folgenden Theorems lässt sich problemlos nachweisen:

thf(freelogic_existence_type, type, ( eE: ( $i > $o ) ) ).

thf(freelogic_nonemptyE_axiom, axiom, ( ? [X: $i] : ( eE @ X ) ) ).

thf(freelogic_star_type, type, ( star: $i ) ).

thf(freelogic_star_axiom, axiom, ( ~ ( eE @ star ) ) ).

thf(the, type, ( the : ( $i > $o ) > $i ) ).

thf(the, axiom,
( ! [P: $i > $o, A: $i] :

( ( P @ A ) => ( ( ! [X: $i] :
( ( P @ X ) => ( X = A ) ) )
=> ( P @ ( the @ P ) ) ) ) )

).

thf(conj, conjecture,
( ( ( the @ ( ^ [X : $i] : ( X = star ) ) ) = star ) )

).

Ähnlich einfache Probleme für den axiomatisierten if-then-else-Operator und die Einbettung
der Kennzeichnung konnten sowohl von Leo-II als auch von dem ebenfalls höherstufigen
Beweiser Satallax (vgl. Brown 2012) als gültig erkannt werden. Zum aktuellen Zeitpunkt lässt
sich nur vermuten, dass die native Unterstützung der Operatoren $ite und @+ aufgrund des
Verzichts auf Axiome eine bessere Erfüllbarkeitsprüfung im Allgemeinen garantieren wird,
da kein höherstufiger Beweiser bekannt ist, der einen der beiden oder gar beide Operatoren
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verarbeiten kann. Aus diesem Grund bleiben auch die Funktionstests für diese Einbettungsal-
ternativen aus.

Nachdem die Einbettung auf das Notwendigste beschränkt wurde, konnte die überwiegende
Anzahl der getesteten Probleme bewiesen werden und die Implementierung einem ersten
Kompletttest unterzogen werden. Für den Test wurden 401 in Bezug auf ihre Schwierigkeit
niedrig bewertete Theoreme aus der TPTP selektiert und als Probleme der freien Logik
interpretiert9, sodass sie nach deren Übersetzung an Satallax in der Version 2.7 weitergegeben
werden konnten. Es wurde eine nicht-leere Domäne 𝐸u� vorausgesetzt und auf die Einbettung
der Kennzeichnung wurde verzichtet. Von 401 getesteten Problemen konnten nur 158 als
Theorem eingeordnet werden und 151 haben die interne Zeitbeschränkung von 200 Sekunden
überschritten, sodass ihre Bearbeitung abgebrochen wurde. Für die restlichen Probleme
konnte ein Gegenbeispiel gefunden werden.10 Die Ursache der Zeitüberschreitung in den über
100 Fällen ist unbekannt. Die naive Adaption von THF zu HFF könnte die Schwierigkeit der
Probleme erhoben haben oder die ausgewählten Theoreme sind schlicht nicht repräsentativ
genug für Probleme der freien Logik, wodurch eine Auswertung erschwert wäre. Trotzdem
können versuchsweise Optimierungen (vgl. Kapitel 8) angedacht werden.

Auch wenn die Performance aufgrund der Trivialität der Übersetzung in diesem Stadium

Abb. 6: Auswertung der Performance der Übersetzung

eine untergeordnete Rolle spielt, soll trotzdem eine kurze Evaluation erfolgen. Abbildung 6
gibt ein Gesamtbild der Performance aller 401 im Test übersetzter Probleme wieder. An der
9 Die Theoreme werden als wahrheitserhaltend angenommen, mindestens aber für entscheidbar gehalten.

10 Tests mit einer möglicherweise leeren Domäne u�u� führten zu einem ähnlichen Ergebnis, von den 401
Problemen wurden 139 als Theoreme erkannt und 159 überschritten das Zeitlimit.
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horizontalen Achse des Streudiagramms wurden beispielhaft einige der übersetzten Probleme
aufgelistet, die vollständige Liste der Bearbeitungszeit aller 401 Probleme befindet sich im
Projektordner der Implementierung. Die Übersetzung fügt im Durchschnitt 0,69 Sekunden
zu der Gesamtbearbeitungszeit des Problems hinzu. Die Gesamtdauer der Übersetzung
aller 401 Probleme betrug 278,59 Sekunden. Die längste Bearbeitungszeit hatte das Problem
SWW478ˆ3.p mit 1,7 Sekunden11, die kürzeste Problem SYO149ˆ5.p mit 0,52 Sekunden. Alle
Tests wurden auf einem 13’ Retina MacBook Pro aus dem Jahr 2015 und einer Broadwell-CPU
(i5-5257U) mit einer Frequenz von 2,7GHz unter Oracles Java 8 (1.8.0) und EPFLs Scala 2.11.7
ausgeführt.

11 Die relativ lange Bearbeitungszeit lässt sich durch die überdurchschnittlich hohe Zeilenanzahl von 8998 Zeilen
in der Datei erklären.
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Beginnend mit der formalen Ausarbeitung einer höherstufigen freien Logik wurde deren
Einbettung in Logik höherer Stufe wiedergegeben. Für die maschinenlesbare Kodierung beider
Logiken wurde auf die bewährte Standardisierung des TPTP-Projekts zurückgegriffen. THF
ist eine TPTP-Sprache, die sich stark am einfach typisierten 𝜆-Kalkül orientiert und damit
die Logik höherer Stufe wiederspiegelt, ein Standard, der im Rahmen dieser Arbeit in soweit
ergänzt wurde, dass er für die freie Logik angewendet werden kann. Diese Neuinterpretation
von THF, genannt HFF, richtet sich dabei an gängigen philosophischen Normen aus, um
einen möglichst intuitiven Umgang damit zu gewährleisten. Zudem wurde eine Erweiterung
der TPI-Sprache angeregt, um die freie Logik vollständig in das TPTP-Projekt integrieren
zu können. Die kodierte Einbettung ist Grundlage für eine automatisierte, kommandozeilen-
gesteuerte Übersetzung, bei der die festgelegten, freie Logik-spezifischen Sprachkonstrukte
durch äquivalente THF-Prädikate ausgetauscht werden. Diese werden durch vorausgehende
THF-Definitionen ergänzt, sodass im Gesamten eine auf ihre Konsistenz überprüfbare Datei,
die komplett in der Logik höherer Stufe interpretiert werden kann, entsteht und von höher-
stufigen Theorembeweisern verarbeitet werden kann, was im Rahmen von diversen Tests
auch realisiert wurde. Das Ziel, die Automatisierung von freier Logik unter Zuhilfenahme
von höherstufigen Theorembeweisern zu erwirken, wurde mittels Implementierung dieser
Übersetzung erreicht. Anhand einfacher Beispiele, von denen sich eines davon mit Ein- und
Ausgabedatei im Anhang befindet, und kategorientheoretischer Formalisierungen konnte
ihre Effektivität nachgewiesen werden: Die übersetzten Probleme der freien Logik konnten
von verschiedenen Theorembeweisern validiert werden.

Die erweiterten Funktionstests zusammen mit den kategorientheoretischen Formalisie-
rungen, evaluiert in Kapitel 7, zeigen, dass die Übersetzung in dem Umfang, wie sie aktuell
vorgenommen wird, bereits nahezu uneingeschränkt zielführend ist. Nur ein paar der fort-
geschrittenen kathegorientheoretischen Theoreme sowie einige TPTP-Probleme blieben
unentscheidbar. Um letztendlich auch diese auswerten zu können, werden im Folgenden
mögliche Lösungsansätzen für eine (noch) effektivere Übersetzung umrissen.

Verstärktes Setzen auf Polymorphismus von Seiten der Theorembeweiser stellt eine erste
Möglichkeit dar. Kaliszyk, Sutcliffe und Rabe stellten 2016 das Format TH1 vor, eine Variante
von THF, die polymorphe Typdefinitionen unterstützt. Eine solche Definition sieht wie folgt
aus:

thf(freelogic_star_type, type, ( star: !> [A: $tType] : A > $o ) ).

$star @ $i könnte in diesem Fall direkt zu star @ $i und $star @ $i > $o zu star @ $i > $o
übersetzt werden, was die Einbettung deutlich vereinfacht und verkürzt. Ob effizienteres
Typhandling oder der Einsatz von @+ und $ite als eingebaute Operatoren zu einer Verbesse-
rung der Resultate der zuvor beschriebenen Tests führt, muss überprüft werden. Da in naher
Zukunft die Umsetzung von polymorphen Typen für das Leo-III-Projekt geplant ist können
diese Tests in Kürze nachgeliefert werden.

Eine weitere Alternative wäre die Übersetzung mit einem Optimierungsschritt auszustat-
ten. Die interaktive Beweisumgebung Isabelle/HOL übersetzt Probleme der Logik höherer
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Stufe aus einer eigenen domänenspezifischen Sprache in THF und reicht diese so an auto-
matische Theorembeweiser weiter. Bei dieser Übersetzung werden die Benutzereingaben
stark optimiert, ein Schritt, der bei einer einfachen Übersetzung wie der in dieser Arbeit
implementierten fehlt. Das formalisierte Lemma 1.13. aus Kapitel 6.1 wird von Isabelle/HOL
wie folgt umgestellt und erweitert:

thf(lem1_13_1_type, type, X : $i ).

thf(lem1_13_1, conjecture,
( ( ( ( ~ ( ( eE_1 @ ( source @ ( source @ X ) ) ) ) )

& ( ~ ( ( eE_1 @ ( source @ X ) ) ) ) )
| ( ( eE_1 @ ( source @ ( source @ X ) ) )

& ( ~ ( ( ( eE_1 @ ( source @ X ) )
=> ( ~ ( ( ( source @ ( source @ X ) )

= ( source @ X ) ) ) ) ) ) ) ) ) )
).

Die Umsetzung einer solchen Übersetzung bringt in der Praxis aber einige Hindernisse mit
sich, weswegen der Nutzen hier genau abgewogen werden muss. Optimierungen sind für
sich nicht determiniert und unterscheiden sich je nach angewendetem Theorembeweiser.
Ein Optimierungsschritt würde die Übersetzung im Wesentlichen verkomplizieren und eine
umfassende Forschungsarbeit nach sich ziehen, sofern man sich nicht nur auf einen Theo-
rembeweiser festlegen möchte.

Ein letzter Ansatz, der allerdings der konventionellen Idee einer Einbettung widerspricht,
wäre, dass statt einer Einbettung der Quantifizierungsoperatoren im klassischen Sinn der
Wächter direkt in die einzelnen Formeln gesetzt wird, sodass folgende Übersetzung angedacht
werden könnte:

hff(lem, conjecture,
( ! [X: $i, Y: $i] : ( ( $e @ $i @ X ) & ( $e @ $i @ Y ) ) )

).

≡

thf(lem, conjecture,
( ! [X: $i, Y: $i] :

( ( eE_1 @ X )
=> ( ( eE_1 @ Y )

=> ( ( eE_1 @ X ) & ( eE_1 @ Y ) ) ) ) )
).

Solche Umformungen werden auch von der Isabelle/HOL-Umgebung im Rahmen ihrer
internen Optimierungsmaßnahmen vorgenommen (siehe vorheriges Beispiel). Sollte die
Einführung eigener Definitionen für grundlegende Operationen wie Quantifizierungen das
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Problem der Nichtentscheidbarkeit begünstigen, dann wäre dies ein Ansatz, mit dem man
diesem entgegenwirken und es näher betrachten könnte.

Abgesehen von erwägenswerten Verbesserungen an der Übersetzung per se gibt es noch
weitere offene Fragestellungen, die das Gesamtprojekt betreffen. Die in dieser Arbeit vorge-
stellte Einbettung bildet nur die positive, eventuell inklusive freie Logik ab. Die Einbettung
einer negativen und neutralen freien Logik steht noch aus. Insbesondere für die zweite der
beiden Semantikvarianten fehlen entscheidende theoretische Grundlagen, sodass hier eine
ausführliche Recherche vorausgehen muss. Letztendlich kann sich der Einbettung in Kombi-
nation mit mehrwertigen Logiken oder mittels einem ∗u� angenähert werden. Zudem bildet,
wie bereits in Kapitel 3.3.3 angedeutet, die freie Logik einen Grundbaustein für verschiedenste
Logiken mit Kripke-Semantik, sodass deren Integration und Zusammenspiel mit der hier
gezeigten Einbettung der freien Logik Beachtung finden sollte.

Für erste Tests ist eine kommandogesteuerte Übersetzung unabdingbar. Jedoch ist aus
benutzerfreundlicher Sicht ein in sich geschlossener Prozess dem Erzeugen einer Zwischen-
datei vorzuziehen. Auf lange Sicht ist es wünschenswert, dass die Übersetzung auch intern in
Leo-III angestoßen werden kann. In diesem Kontext sollte auch evaluiert werden, ob eine
Erweiterung der der Übersetzung zugrunde liegenden Grammatik notwendig ist. Die bis-
her verwendete Grammatik unterstützt beispielsweise annotierte TPTP-Anweisungen nicht,
aber eine in sich vollständige Syntaxanalyse im Übersetzungsschritt stellt einen zusätzlichen
Rechenaufwand dar, der so nicht benötigt wird. Eine Lösung, die die Kombination einer
Übersetzung mit der tatsächlichen internen Syntaxanalyse vorsieht, ist als weitaus effizienter
anzusehen.

Zuletzt ist die Weiterentwicklung der Schnittstelle zur freien Logik stark abhängig von der
zukünftigen offiziellen Unterstützung. Diverse übersetzte Probleme der freien Logik sollten
Teil des Problemkatalogs, der obligatorisch für den CASC ist, werden, um einen Anreiz für
höherstufige Theorembeweiser zu schaffen, diese lösen zu können, und die Unterstützung
aller Einbettungsoperatoren voranzutreiben. Erst dann können vollständige Funktionstests
durchgeführt werden und zuletzt auch hochkomplexe Probleme der freien Logik erfolgreich
entschieden werden.
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A Einbettung von freier Logik in THF

A.1 Einbettung mit choice-Operator (@+) und if-then-else Operator ($ite)

%----Declaration of the existence predicate

thf(freelogic_existence_type, type, ( eE: ( $i > $o ) ) ).

%----Axiom for a non-empty domain E

thf(freelogic_nonemptyE_axiom, axiom, ( ? [X: $i] : ( eE @ X ) ) ).

%----Declaration of the star

thf(freelogic_star_type, type, ( star: $i ) ).

thf(freelogic_star_axiom, axiom, ( ~ ( eE @ star ) ) ).

%----Definition of free logic universal quantification

thf(freelogic_forall_type, type, ( fforall: ( ( $i > $o ) > $o ) ) ).

thf(freelogic_forall, definition,
( fforall =
( ^ [Phi: $i > $o] : ! [X: $i] : ( ( eE @ X ) => ( Phi @ X ) ) ) )

).

%----Definition of free logic existential quantification

thf(freelogic_exists_type, type, ( fexists: ( ( $i > $o) > $o ) ) ).

thf(freelogic_exists, definition,
( fexists =
( ^ [Phi: $i > $o] : ( ~ ( fforall @ ^ [X: $i] : ( ~ ( Phi @ X ) ) ) ) ) )

).

%----Definition of free logic description

thf(ffthat_type, type, ( i: ( $i > $o ) > $i ) ).

thf(ffthat, definition,
( i =
( ^ [Phi: $i > $o] :

( $ite
@ ( ? [X: $i] :
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( ( eE @ X )
& ( Phi @ X )
& ( ! [Y: $i] :

( ( ( eE @ Y ) & ( Phi @ Y ) )
=> ( Y = X ) ) ) ) )

@ ( @+ [X: $i] :
( ( eE @ X ) & ( Phi @ X ) ) )

@ star ) ) )
).
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A.2 Einbettung mit Axiomen für choice- und if-then-else-Operatoren

%----Declaration of the existence predicate

thf(freelogic_existence_type, type, ( eE: ( $i > $o ) ) ).

%----Axiom for a non-empty domain E

thf(freelogic_nonemptyE_axiom, axiom, ( ? [X: $i] : ( eE @ X ) ) ).

%----Declaration of the star

thf(freelogic_star_type, type, ( star: $i ) ).

thf(freelogic_star_axiom, axiom, ( ~ ( eE @ star ) ) ).

%----Definition of free logic universal quantification

thf(freelogic_forall_type, type, ( fforall: ( ( $i > $o ) > $o ) ) ).

thf(freelogic_forall, definition,
( fforall =
( ^ [Phi: $i > $o] : ! [X: $i] : ( ( eE @ X ) => ( Phi @ X ) ) ) )

).

%----Definition of free logic existential quantification

thf(freelogic_exists_type, type, ( fexists: ( ( $i > $o) > $o ) ) ).

thf(freelogic_exists, definition,
( fexists =
( ^ [Phi: $i > $o] : ( ~ ( fforall @ ^ [X: $i] : ( ~ ( Phi @ X ) ) ) ) ) )

).

%----Definition of free logic description

thf(the_type,type,( the: ( $i > $o ) > $i ) ).

thf(the, axiom,
( ! [P: $i > $o, A: $i] :

( ( P @ A ) => ( ( ! [X: $i] :
( ( P @ X ) => ( X = A ) ) )

=> ( P @ ( the @ P ) ) ) ) )
).
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thf(if_type, type, ( if: $o > $i > $i > $i ) ).

thf(if, axiom,
( if = ( ^ [P: $o] :
( ^ [X: $i] :

( ^ [Y: $i] :
( the @ ( ^ [Z: $i] :

( ( ( ( P ) => ( Z = X ) ) )
& ( ( ~ ( P ) ) => ( Z = Y ) ) ) ) ) ) ) ) )

).

thf(if_ax1, axiom, ( ! [P: $o] : ( ( P = $true ) | ( P = $false ) ) ) ).

thf(if_ax2_1, axiom, ( ! [X: $i, Y: $i] : ( ( if @ $false @ X @ Y ) = Y ) ) ).

thf(if_ax2_2, axiom, ( ! [X: $i, Y: $i] : ( ( if @ $true @ X @ Y ) = X ) ) ).

thf(freelogic_fthat_type, type, ( i: ( $i > $o ) > $i ) ).

thf(freelogic_fthat, definition,
( i =
( ^ [Phi: $i > $o] :

( if
@ ( ? [X: $i] :

( ( eE @ X )
& ( Phi @ X )
& ( ! [Y: $i] :

( ( ( eE @ Y ) & ( Phi @ Y ) )
=> ( Y = X ) ) ) ) )

@ ( the @ ( ^ [X: $i] :
( ( eE @ X ) & ( Phi @ X ) ) ) )

@ star ) ) )
).
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B Exemplarische Ein- und erwartete Ausgabedatei

Eingabedatei

hff(r_const, type, ( r: ( $i > $i > $o ) ) ).

hff(lem, conjecture,
( ( ( ( !+ [X: $i] :

( ( r @ X @ X ) => ( r @ X @ X ) ) )
& ( ? [Y: $i] : ( Y = Y ) ) )

=> ( ? [Y: $i] : ( ( r @ Y @ Y ) => ( r @ Y @ Y ) ) ) )
)).

Ausgabedatei

%------------------------------------------------------------------------------
% Semantic embedding of higher-order free logic into higher-order logic
%------------------------------------------------------------------------------

%----Declaration of the existence predicate for type $i

thf(freelogic_existence_type_1, type, ( eE_1: ( $i > $o ) ) ).

%----Axiom for a non-empty domain E for type $i

thf(freelogic_nonemptyE_axiom_1, axiom, ( ? [X: $i] : ( eE_1 @ X ) ) ).

%----Declaration of the star for type $i

thf(freelogic_star_type_1, type, ( star_1: $i ) ).

thf(freelogic_star_axiom_1, axiom, ( ~ ( eE_1 @ star_1 ) ) ).

%----Definition of free logic universal quantification for type $i

thf(freelogic_forall_type_1, type, ( fforall_1: ( ( $i > $o ) > $o ) ) ).

thf(freelogic_forall_1, definition,
( fforall_1 =
( ^ [Phi: $i > $o] :

! [X: $i] : ( ( eE_1 @ X ) => ( Phi @ X ) ) ) )
).
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%----Definition of free logic existential quantification for type $i

thf(freelogic_exists_type_1, type, ( fexists_1: ( ( $i > $o) > $o ) ) ).

thf(freelogic_exists_1, definition,
( fexists_1 =
( ^ [Phi: $i > $o] :

( ~ ( fforall_1 @ ^ [X: $i] : ( ~ ( Phi @ X ) ) ) ) ) )
).

%------------------------------------------------------------------------------

thf(r_const, type,( r: ( $i > $i > $o ) ) ).

thf(lem, conjecture,
( ( ( ( ! [X: $i] :

( ( r @ X @ X ) => ( r @ X @ X ) ) )
& ( ( fexists_1 @ ^ [Y: $i] :

( ( Y = Y ) ) ) ) )
=> ( ( fexists_1 @ ^ [Y: $i] :

( ( ( r @ Y @ Y ) => ( r @ Y @ Y ) ) ) ) ) ) )
).
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C Eingabedatei für die kategorientheoretische Annahme 1.18.

%------------------------------------------------------------------------------
% Formalization (Categories, Allegories by Freyd and Scedrov)
%------------------------------------------------------------------------------

hff(a_type, type, ( a: $i ) ).

hff(b_type, type, ( b: $i ) ).

%----Definition of a weak, non-reflexive identity on the set of existing objects

hff(eq1_a_type, type, ( eq1_a: a > a > $o ) ).

hff(eq1_a, definition,
( eq1_a =
( ^ [X: a, Y: a] : ( ( $e @ a @ X ) & ( $e @ a @ Y ) & ( X = Y ) ) ) )

).

hff(eq1_b_type, type, ( eq1_b: b > b > $o ) ).

hff(eq1_b, definition,
( eq1_b =
( ^ [X: b, Y: b] : ( ( $e @ b @ X ) & ( $e @ b @ Y ) & ( X = Y ) ) ) )

).

%----Definition of Kleene equality

hff(eq2_a_type, type, ( eq2_a: a > a > $o ) ).

hff(eq2_a, definition,
( eq2_a =
( ^ [X: a, Y: a] :

( ( ( $e @ a @ X ) | ( $e @ a @ Y ) ) => ( eq1_a @ X @ Y ) ) ) )
).

hff(eq2_b_type, type, ( eq2_b: b > b > $o ) ).

hff(eq2_b, definition,
( eq2_b =
( ^ [X: b, Y: b] :

( ( ( $e @ b @ X ) | ( $e @ b @ Y ) ) => ( eq1_b @ X @ Y ) ) ) )
).
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%----Definition of directed Kleene equality

hff(eq3_a_type, type, ( eq3_a: a > a > $o ) ).

hff(eq3_a, definition,
( eq3_a = ( ^ [X: a, Y: a] : ( ( $e @ a @ X ) => ( eq1_a @ X @ Y ) ) ) )

).

hff(eq3_b_type, type, ( eq3_b: b > b > $o ) ).

hff(eq3_b, definition,
( eq3_b = ( ^ [X: b, Y: b] : ( ( $e @ b @ X ) => ( eq1_b @ X @ Y ) ) ) )

).

%----Definitions of basic notions for category theory

hff(source_a_type, type, ( source_a: a > a ) ).

hff(target_a_type, type, ( target_a: a > a ) ).

hff(composition_a_type, type, ( comp_a: a > a > a ) ).

hff(source_b_type, type, ( source_b: b > b ) ).

hff(target_b_type, type, ( target_b: b > b ) ).

hff(composition_b_type, type, ( comp_b: b > b > b ) ).

%----Scott's axiom system

hff(scott_s1_axiom_a, axiom,
( !+ [X: a] : ( ( $e @ a @ ( source_a @ X ) ) => ( $e @ a @ X ) ) )

).

hff(scott_s2_axiom_a, axiom,
( !+ [X: a] : ( ( $e @ a @ ( target_a @ X ) ) => ( $e @ a @ X ) ) )

).

hff(scott_s3_axiom_a, axiom,
( !+ [X: a] :

( !+ [Y: a] :
( ( $e @ a @ ( comp_a @ X @ Y ) )
<=> ( eq1_a @ ( source_a @ X ) @ ( target_a @ Y ) ) ) ) )

).
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hff(scott_s4_axiom_a, axiom,
( !+ [X: a] :

( !+ [Y: a] :
( !+ [Z: a] :

( eq2_a
@ ( comp_a @ X @ ( comp_a @ Y @ Z ) )
@ ( comp_a @ ( comp_a @ X @ Y ) @ Z ) ) ) ) )

).

hff(scott_s5_axiom_a, axiom,
( !+ [X: a] : ( eq2_a @ ( comp_a @ ( source_a @ X ) @ X ) @ X ) )

).

hff(scott_s6_axiom_a, axiom,
( !+ [X: a] : ( eq2_a @ ( comp_a @ X @ ( target_a @ X ) ) @ X ) )

).

hff(scott_s1_axiom_b, axiom,
( !+ [X: b] : ( ( $e @ b @ ( source_b @ X ) ) => ( $e @ b @ X ) ) )

).

hff(scott_s2_axiom_b, axiom,
( !+ [X: b] : ( ( $e @ b @ ( target_b @ X ) ) => ( $e @ b @ X ) ) )

).

hff(scott_s3_axiom_b, axiom,
( !+ [X: b] :

( !+ [Y: b] :
( ( $e @ b @ ( comp_b @ X @ Y ) )
<=> ( eq1_b @ ( source_b @ X ) @ ( target_b @ Y ) ) ) ) )

).

hff(scott_s4_axiom_b, axiom,
( !+ [X: b] :

( !+ [Y: b] :
( !+ [Z: b] :

( eq2_b
@ ( comp_b @ X @ ( comp_b @ Y @ Z ) )
@ ( comp_b @ ( comp_b @ X @ Y ) @ Z ) ) ) ) )

).

hff(scott_s5_axiom_b, axiom,
( !+ [X: b] : ( eq2_b @ ( comp_b @ ( source_b @ X ) @ X ) @ X ) )

).
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hff(scott_s6_axiom_b, axiom,
( !+ [X: b] : ( eq2_b @ ( comp_b @ X @ ( target_b @ X ) ) @ X ) )

).

hff(functor_type, type, ( functor: ( a > b ) > $o ) ).

hff(functor, definition,
( functor =
( ^ [F: a > b] :

( ( ! [A: a] :
( ! [B: a] :

( eq2_a @ ( source_a @ A ) @ B )
=> ( eq2_b @ ( source_b @ ( F @ A ) ) @ ( F @ B ) ) ) )

& ( ! [A: a] :
( ! [B: a] :

( eq2_a @ ( target_a @ A ) @ B )
=> ( eq2_b @ ( target_b @ ( F @ A ) ) @ ( F @ B ) ) ) )

& ( ! [A: a] :
( ! [B: a] :

( ! [C: a] :
( eq2_a @ ( comp_a @ A @ B ) @ C )
=> ( eq2_b

@ ( comp_b @ ( F @ A ) @ ( F @ B ) )
@ ( F @ C ) ) ) ) ) ) ) )

).

hff(functor_equivalence, conjecture,
( ! [F: a > b] :

( ( functor @ F )
=> ( ( ! [X: a] :

( eq2_b
@ ( F @ ( source_a @ X ) )
@ ( source_b @ ( F @ X ) ) ) )

& ( ! [X: a] :
( eq2_b

@ ( F @ ( target_a @ X ) )
@ ( target_b @ ( F @ X ) ) ) )

& ( ! [X: a] :
( ! [Y: a] :

( eq3_b
@ ( F @ ( comp_a @ X @ Y ) )
@ ( comp_b @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ) ) )

).
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