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Zusammenfassung

In dieser Arbeit wird ein Verfahren vorgestellt und detailliert be-
schrieben, mit welchem es möglich ist, aus einem Eingabebild ein im-
pressionistisch aussehenden Ausgabebild im Stil des Malers Leonid
Afremov zu erzeugen. Dieses Verfahren verwendet als Grundlage ein
initiales Clustering des Bildes, und nutzt die Größe, Form und Aus-
richtung der Cluster, um die passende Pinselstrich-Art zu wählen und
um die Attribute der Pinselstriche zu bestimmen. Ähnlich wie auf
Afremovs Bildern werden je nach erwünschtem Detailgrad in einer
Bildregion entweder kleine und simple oder große und mehrfarbige
Pinselstriche eingesetzt. Zum Schluss werden die Ergebnisse mit ei-
nem statistischen Mittel validiert.
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6.2 Durchführung des Experiments . . . . . . . . . . . . . . . . . 43
6.3 Resultate des Experiments . . . . . . . . . . . . . . . . . . . . 43
6.4 Interpretation der Resultate . . . . . . . . . . . . . . . . . . . 44

7 Ausblick 44

8 Literatur 44

3



9 Gallerie 46

4



1 Einleitung

1.1 Problembeschreibung

Das Ziel dieser Arbeit ist die Entwicklung und Implementierung eines Algo-
rithmus, welcher, gegeben ein Eingabebild, aus diesem ein impressionistisch
aussehendes Ausgabebild im Stil von Leonid Afremov erzeugt.
Dabei sollen sowohl die für den Impressionismus im Allgemeinen geltenden
Prinzipien eingehalten werden, als auch die für die Werke Leonid Afremovs
spezifischen Charakteristika möglichst gut in das resultierende Bild einge-
bracht werden.

Für den Impressionismus als Kunstrichtung ist das Darstellen der subjek-
tiven Wahrnehmung des Künstlers das zentrale Problem. So werden z. B.
auf einem Gemälde diejenigen Teile einer Szene detailliert dargestellt, welche
die Aufmerksamkeit des Künstlers beim kurzen Draufblicken auf die Szene
gefesselt haben, solche also, die er als wichtig empfand.
Diese subjektive Komponente der Kunstrichtung scheint schon vom Prinzip
her ein maschinelles Nachbauen eines impressionistischen Bildes unmöglich
zu machen. Das Einzige, was uns übrig bleibt, wenn man dies trotzdem ver-
sucht, ist die malerischen Effekte nachzumachen, die sich aus diesem kurzen
Draufblicken und selektiven Wahrnehmen des Bildes ergeben.
Wie dem Kapitel “Impressionismus” zu entnehmen ist, gehört zu solchen
Effekten eine Art des Ausmalens des Bildes, bei welcher nicht das gesamte
Bild mit dem gleichen Detailgrad gemalt werden darf, sondern mit einem ge-
eigneten Verfahren Bildflächen identifiziert werden müssen, die sich in ihrer
Wichtigkeit von den benachbarten Flächen abheben. Solche “wichtigeren”
Flächen müssen dann auf eine solche Art ausgemalt werden, dass auf ihnen
mehr Details beibehalten werden als auf benachbarten Flächen.

1.2 Problemrelevanz und Ziele

Maschinelle Generierung von Bildern, die nicht die Realität darstellen, son-
dern sich im Gegenteil um eine Abstraktion dieser bemühen, kann viele
Gründe haben. So ist es z. B. für Menschen einfacher, Inhalte anhand von
vereinfachten, abstrahierten Skizzen als anhand von komplizierten Abbildun-
gen zu lernen, die den Beobachter mit Details überfluten.
Abstrakte Darstellung bzw. abstrakte Kunst muss jedoch keinem praktischen
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Zweck dienen; es kann etwas sein, womit man sich gerne umgibt, um sich dar-
an einfach zu erfreuen. Dies hat den Nebeneffekt, dass abstrakte Kunst zu
einem Mittel werden kann, mit Hilfe dessen das Interesse von Menschen an
mit konkreten Kunstwerken verwandten Themen geweckt wird: Ein gutes
Beispiel hierfür ist Googles neue Methode zur Visualisierung von neuronalen
Netzwerken, auch bekannt als “Deepdream” [1]. Ursprünglich dazu gedacht,
unser Verständnis des Lernprozesses neuronaler Netzwerke zu verbessern,
gewann das Projekt sehr schnell an Popularität und verbreitete sich unter
anderem über soziale Netzwerke, da die visualisierten Daten traumähnliche
Landschaften entstehen lassen, von welchen Menschen fasziniert waren.
Die Werke Afremovs teilen diese Qualitäten: Sie ziehen den Blick an und
fesseln selbst Kunst-Laien durch ihre lebendige Farbpalette und traumhaft
schöne Szenerien. In dieser Arbeit soll untersucht werden, ob und inwieweit
es möglich ist, einen Algorithmus zu entwickeln, der die Essenz dieser Werke
auffängt und wiedergibt, um einen ähnlichen Eindruck beim Beobachter wie
beim Anblick der Original-Werke zu hinterlassen.

1.3 Beitrag dieser Arbeit

Der Beitrag dieser Arbeit liegt darin, dass sie als erste versucht, nach im-
pressionistischen Prinzipien vorgehend “wichtige” (siehe Kap. “Problembe-
schreibung”) Flächen im Eingabebild grundsätzlich anders zu behandeln als
weniger wichtige Flächen.
So werden “wichtigere” Bildflächen auch mit einem anderen Detailgrad und
auf eine andere Art ausgemalt als weniger wichtige Stellen. Zu diesem Zweck
werden beim Generieren des Ausgabebildes zwei Arten von Pinselstrichen
eingesetzt, die grundsätzlich unterschiedlich sind:

• simple, einfarbige Pinselstriche, die durch ihre Position, Farbe, Größe,
Richtung und Form eindeutig definiert sind, so wie man dies aus vielen
anderen Arbeiten kennt [2] [3] [4] [5]. Das Verfahren zur Ermittlung
optimaler Werte für diese Attribute ist dabei quadratische Regressi-
on über den Datenpunkten jedes Bildsegments, welcher durch einen
Pinselstrich ersetzt werden soll. Der Einsatz einer Regression zur Er-
mittlung der Ausrichtung der Pinselstriche ist ebenfalls noch in keiner
der untersuchten verwandten Arbeiten vorgekommen.

• mehrfarbige Pinselstriche mit Gradienten zwischen ihren einzelnen Farb-
komponenten. Der Einsatz von solchen mehrfarbigen Pinselstrichen ist
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ein dritter wichtiger Punkt, in welchem sich diese Arbeit von anderen
Arbeiten mit einem ähnlichen Thema unterscheidet.

Kleine Bildsegmente (diese werden als Flächen behandelt, denen der Künstler
bei einem Gemälde eine erhöhte Aufmerksamkeit geschenkt hätte) werden
mit den simplen Pinselstrichen ausgemalt, die sich in ihrer Form dem Ver-
lauf ihrer zugehörigen Segmente anpassen, um detailreiche Regionen mit
möglichst wenig Informationsverlust darzustellen.
Große Bildsegmente werden mit zufällig positionierten mehrfarbigen Pinsel-
strichen ausgemalt, die innerhalb eines Bildsegments einander sehr ähnlich
sind, sich aber stark von Pinselstrichen benachbarter (großer und kleiner)
Segmente unterscheiden. Hierdurch gehen die Details innerhalb jedes großen
Segments weitestgehend verloren, dies ist jedoch erwünscht, da jedes Segment
als ein für die Wahrnehmung atomarer Baustein betrachtet wird und ledig-
lich seine Abgrenzung zu benachbarten Segmenten realisiert werden muss.

2 Grundlagen

2.1 Impressionismus

Mit dem Begriff “Impressionismus” bezeichnet man einen Stil der Kunst, u.a.
der Malerei, der sich in der 2. Hälfte des 19. Jahrhunderts[6] in Frankreich
ausbildete und sich in viele andere Länder ausgebreitet hat.
Zu den führenden Vertretern gehörten[7]:

• Edouard Manet (1832 - 1883)

• Edgar Degas (1834 - 1917)

• Auguste Renoir (1841 - 1919)

Impressionismus legt den Nachdruck nicht auf die Darstellung der Dinge, wie
sie wirklich sind, und wie alle sie wahrnehmen können, sondern im Gegenteil
darauf, wie der Einzelne die Wirklichkeit wahrnimmt:

“Was alle haben und erfahren können, das bereichert nicht mehr”[6]

Dabei bleibt die Natur der Hauptgegenstand dieser Wahrnehmung.
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Die Art, auf welche sich die Seheindrücke des Einzelnen von denen aller an-
deren Individuen unterscheiden, könne nur festgehalten werden, indem man
die “Dauerbetrachtung meidet”, also die Dauer der Betrachtung einer Szene
oder eines Gegenstandes verkürzt. Nur, wenn Objekte möglichst rasch ge-
sehen werden, bleiben jene individuellen Tönungen der Erfahrung erhalten;
wenn man ein Objekt zu oft wiederholt betrachte, führe dies nur zur Feststel-
lung dessen, was die Mehrheit der Menschen dieser Szene entnehmen würde.
Dieses Bestreben nach der Moment-Betrachtung äußerte sich im Impressio-
nismus auf zwei Arten: bei der Form und bei der Farbe.

Umgang des Impressionismus mit der Farbe:
Die streng in sich geschlossenen Grenzen der Farbflächen wurden immer mehr
aufgelöst, um sie auf eine solche Art nebeneinander stehend darzustellen, wie
sie sich bei raschestem Blick in freier Luft und freiem Licht zeigen.
Wenn man beim Betrachten eines Gegenstandes seine Farbe kurz in den Mit-
telpunkt stellt, statt den gesamten Gegenstand lange und genau zu untersu-
chen, so scheinen seine formalen Grenzen zurückzuweichen, zu verschwimmen
- genau diesen Effekt wollte man erreichen.
Hierbei spielte das Licht eine ganz besondere Rolle: Es wurde zum verbin-
denden Element, es überflutete die Dinge und hebte damit feste Grenzen auf.
Da es an sich farblos ist, wurde es dargestellt, indem man Gegenstände, auf
welche es traf, hell aufleuchten ließ.
An Stellen, an welchen trübe Mischfarben erforderlich gewesen wären, ver-
mied man es, die Farben bereits auf der Farbpalette zu mischen, was zu ihrer
Trübung geführt hätte, und setzte sie stattdessen auf der Malfläche knapp
nebeneinander, wodurch sie ihre Helligkeit und Schönheit behielten.
Räumliche Tiefe wurde, da nun scharfe Trennlinien zwischen Gegenständen
fehlten, auf der Ebene der Farbe dadurch simuliert, dass weiter entfernt lie-
gende Teile des Bildes mit einem größeren Blauanteil gemalt wurden, mit dem
Hintergedanken, dass je dicker eine Luftschicht ist, umso bläulicher die Ge-
genstände in der realen Welt erscheinen, von welchen sie uns trennt. (“Luft-
perspektive”)

Umgang des Impressionismus mit der Form:
Die festen Grenzen alles Körperlichen wurden immer mehr aufgelöst bis völlig
negiert, um ein extremes Augenblicks-Erlebnis raschtest bewegter Dinge und
Vorgänge beim Betrachter zu erzeugen.
Beim Betrachten unserer Umwelt sehen wir nämlich nie alle Teile einer Ge-
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samtszene zum selben Zeitpunkt scharf, sondern wir fixieren nacheinander
alle Teilszenen, und setzen sie in unserem Kopf zu einem Ganzen zusammen.
Beim kurzen Draufblicken auf eine Szene können gar nicht all ihre Teile
gleichzeitig scharf gesehen werden; zu den Rändern des Sehfeldes hin wirkt
alles immer mehr verwaschen. Daher werden auch nicht alle Teile eines im-
pressionistischen Gemäldes mit dem gleichen Detailgrad gemalt. [6]

Zusammenfassend kann man sagen, dass das Motiv zurückgetreten ist, und
dass Bewegung, Licht und Farbe zu zentralen Problemen wurden, die die
Fragen der Komposition, der strengen Form und Statik überklangen.[7]

2.2 Leonid Afremov

Leonid Afremov (geboren am 12. Juli 1955 in Vitebsk, Weißrussland) ist ein
russisch–israelischer moderner impressionisticher Künstler, der am häufigsten
mit einer Malspachtel und mit Ölfarben arbeitet. Er entwickelte seine eige-
ne, einmalige Technik und Stil, welche nur schwer mit Techniken anderer
Maler verwechselt werden könnten. Als Künstler repräsentiert er sich selbst
und verkauft seine Werke ausschließlich übers Internet, mit nur sehr wenigen
Ausstellungen oder Beteiligung von Händlern und Gallerien.
Bevor Online-Einkäufe zum Alltag wurden, war er ein armer Künstler. Er
lebte in Vitebsk, seiner Geburtsstadt, bis 1990. Von 1990 bis 2002 lebte er
in Israel, und danach bis 2010 in Boca Raton, Florida. Heute hat er seinen
Wohnsitz im populären Urlaubsort Playa del Carmen, Quintana Roo, Mexi-
co, nahe Cancun.
Zu seinen Motiven gehören hauptsächlich Landschaften, Szenen aus der Stadt,
Meereslandschaften, Blumen und Portraits. Die meisten seiner Werke sind
sehr farbenfroh und politisch neutral. [8]

Wie dem Kapitel “Impressionismus” zu entnehmen ist, ist auf impressio-
nistischen Bildern ein Variieren des Detailgrads zu beobachten. Dies ist auch
auf Afremovs Bildern sofort ersichtlich. Während Menschenfiguren und Ge-
genstände wie Straßenlaternen oder Sitzbänke eher detailliert dargestellt wer-
den, mit kleineren, eher einfarbigen Pinselstrichen, sieht man anstelle von
Baumkronen nur Gruppierungen von sehr breiten (mehrfarbigen, rechtecki-
gen) Pinselstrichen, die fast alle Details verschwinden lassen. Die einzige
Ausnahme bilden Baumäste, die hier und da zu sehen sind. Generell bleiben
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dünne und lange Linien (Baumstämme, Gebäudeecken, Ränder von gepflas-
terten Gehwegen) gut sichtbar.
Eine andere Art, große Flächen auszumalen, die Afremov gerne verwendet, ist
das Malen von vielen ovalen und parallelen Pinselstrichen, die große Flächen
befüllen. Dieser Ansatz wird z. B. zur Darstellung von Wasser oder vom Bo-
den gewählt (Gras, Gehwege).
Lichtquellen werden dargestellt, indem helle Pinselstriche der gleichen Farbe
wie die Lichtquelle selbst in einer bestimmten Distanz von dieser Quelle plat-
ziert werden, inmitten anderer Objekte, oft in die Mitte von Wasserflächen.
Die Lichtreflektion, die man in der realen Welt beobachten würde, ist auf
seinen Bildern immer stark übertrieben.
Alle verwendeten Farben sind insgesamt sehr hell und lebhaft. Die nachfol-
genden zwei Bilder sind gute Beispiele für die genannten Charakteristika:
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Abbildung 1: Gemälde “Sounds of the Fall”, Leonid Afremov
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Abbildung 2: Gemälde “Alley by the Lake”, Leonid Afremov

2.3 Non-Photorealistic Rendering und verwandte Ar-
beiten

Seit in den 60er Jahren das Feld der Computergrafik entstanden ist, war
sein Hauptziel der Fotorealismus. Aus diesem Feld heraus hat sich später
ein ein anderes Feld mit einem genau entgegengesetzten Ziel abgespalten:
Non-Photorealistic Rendering (NPR). Statt sich um eine exakte Re-
präsentation der Realität zu bemühen, konzentriert sich NPR darauf, wie
man Details abstrahieren und expressive und künstlerische Stile emulieren
kann. [9]
Da es in dieser Arbeit darum geht, einen Stil der Malerei nachzuahmen, der
eben die Details einer Szene auf eine künstlerische Art abstrahiert, und dabei
auf Fotorealismus verzichtet, wäre diese Arbeit wissenschaftlich genau in das
Gebiet des NPR einzuordnen.
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Es wurden bis heute mehrere Arbeiten im Bereich Non-Photorealistic Ren-
dering geschrieben, die sich spezifisch mit dem Problem des “Painterly Ren-
dering”, also der Generierung von gemäldeähnlichen Bildern beschäftigen.
Dabei ist zwischen solchen Arbeiten zu unterscheiden, die beim Generieren
der Bilder teilweise auf Benutzer-Input angewiesen sind und solchen, die Bil-
der voll automatisiert erzeugen.

• Methoden mit Benutzer-Input:
Zu dieser Gruppe gehört z. B. Zhaos semantisch-orientiertes “From
Image Parsing to Painterly Rendering” [10] mit seiner interaktiven
Segmentierung, bei welcher der Benutzer angeben soll, welche Bildtei-
le Menschen, Kleidungsstücke, und welche der Hintergrund sind, oder
die berühmte Arbeit von P. Haeberli, “Paint By Numbers: Abstract
Image Representations”[2], deren Ziel das Erzeugen von impressionisti-
schen Bildern ist. Sie geht davon aus, dass ein Gemälde eine Serie von
Pinselstrichen ist, die die Attribute Position, Farbe, Größe, Richtung
und Form haben. Die konkreten Werte dieser Attribute für jeden Pin-
selstrich werden in Interaktion mit dem Benutzer festgelegt, und das
abhängig davon, wie schnell, wo, in welche Richtung etc. er den Maus-
zeiger über die “Leinwand” bewegt.

• Voll automatisierte Methoden:
Da meine Arbeit sich damit beschäftigt, Bilder voll automatisiert zu
generieren, werde ich mich im Rest der Zusammenfassung auf diese
zweite Gruppe konzentrieren.

Einige NPR-Arbeiten verfolgen das Ziel, ganz konkrete Stilrichtungen
der Malerei nachzuahmen, wie z. B. den Kubismus (Montin [9]), Poin-
tillismus (Yang u. Yang [11]), oder Impressionismus (Haeberli [2], Lit-
winowicz [3], Sparavigna u. Marazzato [12]).
Andere (Hertzmann [5], Gooch, Coombe und Shirley [13]) wiederum
befassen sich entweder mit dem Painterly Rendering im Allgemeinen,
d.h. die resultierenden Bilder sollen an keinen konkreten Stil erinnern,
oder aber es können durch eine Anpassung der Parameter Ergebnisbil-
der in einem von mehreren Kunststilen entstehen.
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Einige der in diesen Arbeiten verwendeten Grundideen und Vorgehens-
weisen sind auch für meine Arbeit durchaus relevant und werden von
mir zur Lösung einiger der Teilprobleme angewandt, wie z. B. die Idee,
dass der allererste Schritt beim Erzeugen des resultierenden Bildes eine
Segmentierung des Eigabebildes sein muss, oder dass die Farbpalette
vor dem Ausmalen reduziert werden sollte.
Andere jedoch sind aus ganz offensichtlichen Gründen nicht anwendbar,
weil nämlich die Problemstellung, mit der sich diese Arbeiten befassen,
doch eine etwas andere ist als die in dieser Arbeit.

– Kunststil-orientierte Arbeiten:
So liegt der Fokus beim Generieren kubistischer Bilder [9] dar-
auf, saliente Features (für die Wahrnehmung wichtige Features
wie Augen, Mund, Ohren des Menschen auf dem Originalbild) zu
extrahieren und auf das resultierende Bild auf eine randomisierte
Art so zu bringen, dass sich diese Features nicht wiederholen oder
überlappen. Die Problematik des Ausmalens des Bildes tritt eher
in den Hintergrund.

Bei der Malrichtung des Pointillismus [11] besteht das Gesamt-
bild aus vielen kleinen Bildpunkten ungefähr der gleichen Größe.
Dies ist ein wesentlicher Unterschied zu den impressionistischen
Werken Afremovs, die in einigen Bereichen (Personen im Vor-
dergrund) einen viel höheren Detailgrad aufweisen als in anderen
(Bäume, weit entfernte Gegenstände). Aus diesem Grund ist bei
seinen Werken eine ganz andere Herangehensweise erforderlich als
bei pointillistischen Gemälden.

Nach dem Paper von Sparavigna und Marazzato [12] erzeugt
man impressionistische Bilder, indem für jeden gewählten Pixel ein
zweiter Pixel (innerhalb einer zufällig bestimmten kurzen Entfer-
nung) gewählt wird, und die kreisförmige Umgebung des zweiten
Pixels mit der Farbe eingefärbt wird, die der erste Pixel hatte.
Dies wird iterativ gemacht, z. B. bis das ganze Bild übermalt
wurde. Dieses Verfahren hat ähnlich wie das Pointillismus-Paper
den Mangel, dass die generierten Pinselstriche alle sehr gleichbe-
rechtigt sind; es sind keine Bereiche im Bild erkennbar, die sich
durch einen höheren Detailgrad auszeichnen als der Rest.
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Litwinowicz [3] geht beim Erzeugen impressionistischer Bilder
folgendermaßen vor:

1. Auf das Eingabebild wird ein gausscher Filter angewandt

2. Es werden Farbgradienten berechnet und Bildkanten deteziert

3. Pinselstriche werden generiert, indem sie von ihrem Start-
punkt entlang des berechneten Gradienten in beide Richtun-
gen verlängert werden, bis entweder auf eine Kante gestoßen
wird, oder die maximale Pinselstrichlänge erreicht ist

Dies produziert sehr schöne Ergebnisse, die einen handgemalten
Eindruck machen. Jedoch ist die Behandlung der Kanten für die
Zwecke dieser Arbeit wiederum viel zu präzise und viel zu perfekt.

– Arbeiten, die sich nicht nach einem Kunststil orientieren:

Das Hertzmann-Paper “Painterly Rendering with Curved Brush
Strokes of Multiple Sizes” [5] geht auf den Bedarf nach Pinsel-
strichen unterschiedlicher Größen durchaus ein. Das resultieren-
de Bild wird hier in mehreren Durchgängen gemalt; es wird mit
großen Pinselstrichen angefangen, und an Stellen, an welchen sich
das so entstandene Bild allzu sehr vom Originalbild unterscheidet,
wird das Bild iterativ mit immer kleiner werdenden Pinselstrichen
präzisiert.

Die Arbeit “Artistic Vision: Painterly Rendering Using Compu-
ter Vision Techniques” von Gooch, Coombe und Shirley [13]
nimmt zunächst ein Clustering des Ausgangsbildes vor, und ap-
proximiert dann für jeden Cluster seine mediale Achse, die die
Richtung des Pinselstrichs führen wird, mit welchem der Cluster
ausgemalt wird. (Die mediale Achse eines Clusters ist eine Linie,
die entlang der Länge und ungefähr durch die Mitte des Clusters
führt, und den Cluster somit beschreibt.) Von dieser Methode wur-
de der in dieser Arbeit verwendete (etwas einfachere) Ansatz zum
Ausmalen sehr kleiner Regionen inspiriert: für jede auszumalen-
de Region wird seine Regressionslinie ermittelt, und der entspre-
chende Pinselstrich wird entlang dieser Linie gelegt. Siehe Kapitel
“Schritt 2 - Generieren der Pinselstriche”.
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Ein weiteres Mittel, von welchem [13] Gebrauch macht, ist die Ver-
wendung von Depth Maps. Die Depth Map eines Bildes liefert In-
formationen darüber, welche Bildflächen im Vordergrund stehende
Gegenstände enhalten, und welche Flächen den Hintergrund dar-
stellen. Die weiter im Vordergrund stehenden Gegenstände werden
feiner segmentiert als diejenigen im Hintergrund. Interessanterwei-
se haben Depth Map verwendende Bilder einen weniger impressio-
nistischen Charakter als diejenigen, die auf Depth Maps verzich-
ten, was sich jedoch dadurch erklären ließe, dass die Depth Maps
nicht nur zur Bestimmung der Feingranulierung der Segmente ge-
nutzt werden, sondern auch um die Richtung der Pinselstriche
zu leiten, was auf impressionistischen Bildern so nicht vorzufin-
den ist. Dennoch ist die Idee der feineren Segmentierung der im
Vordergrund stehenden Objekte hoch interessant und stellt eine
mögliche Antwort auf die Frage dar, welche Flächen in einem Bild
mit einem höheren Detailgrad ausgemalt werden sollten.

Einen ganz anderen Ansatz verfolgt das vor kurzem erschienene
Paper von Gatys, Ecker und Bethge [14], welches ein faltendes
neuronales Netzwerk (Convolutional Neural Network, CNN)
verwendet. In einem CNN kann man die Neuronen jeder Schicht
als eine Reihe von hintereinander geschalteten Filtern verstehen,
von welchen jeder auf andere Features im Eingabebild reagiert.
Die o. g. Arbeit verwendet CNNs, um aus dem Eingagebild (z. B.
ein Foto) ein Ausgabebild zu produzieren, welches mit seinem Stil
an den Stil ganz konkreter malerischer Kunstwerke erinnert. Dies
wird erreicht, indem das Netzwerk zum einen aus dem Eingabebild
seine “Content Representation” isoliert, also seinen eigentlichen
Inhalt, und zum anderen aus dem Kunstwerk, welches einem als
Stil-Vorlage für das Ausgabebild dient, seine “Style Representati-
on” isoliert.
Dabei sind unter “Content Representation” die Reaktionen der
Neuronen der höheren Schichten des Netzwerks auf das Eingabe-
bild zu verstehen, also die Daten, für derer Gewinnung man CNNs
typischerweise verwendet.
Für die Extraktion der “Style Representation” eines Bildes wird
dagegen ein Feature-Raum verwendet, der aus den Reaktionen der
Neuronen einer jeden Schicht zusammengesetzt wird und aus Kor-
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relationen zwischen den unterschiedlichen Filter-Reaktionen be-
steht. Aus Feature-Korrelationen unterschiedlicher CNN-Schichten
erhält man Informationen über das Bild, die seine Textur beschrei-
ben, aber nicht seine globale Anordnung.
Im Ausgabebild wird die “Content Representation” des Einga-
befotos mit der “Style Representation” des Eingabe-Kunstwerks
kombiniert.

2.4 Bildsegmentierung

In Arbeiten, in welchen das Thema dieses Kapitels im Hauptfokus liegt, wird
zwischen den Begriffen “Segmentierung” und “Clustering” unterschieden. Da
aber diese Unterscheidung stellenweise problematisch sein kann und für die
Zwecke dieser Arbeit unwichtig ist, werden hier beide Begriffe als gleich be-
deutend behandelt.

Die Segmentierung eines Bildes kann als eine Unterteilung des Bildes in dis-
junkte, homogene Regionen definiert werden. Solche Regionen enhalten i.
d. R. ähnliche Bildobjekte oder Objektteile. Das Ausmaß der Homogenität
der segmentierten Regionen (Ähnlichkeit der Pixel einer jeden Region zu
anderen Pixeln derselben Region) wird mit Hilfe einer vorher bestimmten
Bildeigenschaft gemessen, wie z. B. der Pixelfarbe. Bildsegmentierung ist ein
fundamentaler Schritt, welcher gewöhnlich am Anfang komplexerer Compu-
ter Vision-Verfahren steht. [15]
Durch Bildsegmentierung entstandene Regionen sollten gleichzeitig die Ei-
genschaft haben, dass die in ihnen enthaltenen Pixel auch vom Menschen als
zusammen gehörend wahrgenommen werden.

Es gibt zahlreiche Verfahren, mit welchen dies erreicht werden kann. Un-
terschiedliche Verfahren betrachten jeweils unterschiedliche Segmentierungs-
kriterien als ihre Priorität; daher sind einige Verfahren für die Zwecke dieser
Arbeit besser geeignet als andere.
Zu Kriterien, die ein Segmentierungsalgorithmus erfüllen sollte, können gehören
[16]

• Adhäsion zu Regionsgrenzen innerhalb des Bildes (d. h. Grenzen der
Segmente überdecken sich mit tatsächlichen Grenzen der Bildregionen)
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• Die Größe und / oder Anzahl der Segmente in einem Bild sollte ein-
stellbar sein

• Der Algorithmus sollte schnell sein, vor allem wenn er als ein Pre-
Processing-Schritt vor weiterer Bildbearbeitung verwendet wird

Für die Zwecke dieser Arbeit ist ein Segmentierungs-Algorithmus erwünscht,
der sich stark an das erste genannte Kriterium hält. Die Einstellung der An-
zahl der Regionen ist z. B. unwichtig. Hohe Geschwindigkeit wäre natürlich
erwünscht, aber nicht zwingend erforderlich.

• In einem Versuch, einen solchen Algorithmus zu finden, habe ich einen
simplen, iterativen, Graph-basierten Algorithmus implementiert, bei
dem ich mich von dem aus der Bioinformatik bekannten Neighbor-
Joining-Algorithmus [17] zum Erzeugen phylogenetischer Bäume inspi-
rieren ließ: Ich modellierte alle Bildpixel als Graphknoten, und zwischen
jeden Knoten und seine (maximal 4) direkten Nachbarn habe ich je-
weils Kanten gesetzt. Jede Kante zwischen den Pixeln p1 und p2 mit
den RGB-Werten (p1r, p1g, p1b) und (p2r, p2g, p2b) hatte das Gewicht
g:

g = abs(p1r − p2r) + abs(p1g − p2g) + abs(p1b − p2b)

Nach dem Neighbor-Joining Prinzip habe ich alle Kanten nach ihren
Gewichten aufsteigend sortiert, und iterativ immer das Pixelpaar mit
dem kleinsten Kantengewicht zu einem Cluster gemerged, solange noch
Kantengewichte existierten, die unter einem fest gewählten, konstan-
ten Threshold lagen. Nach einem solchen merge-Schritt mussten für
den neu entstandenen Cluster jeweils die Distanzen zwischen diesem
neuen Cluster und all seinen Nachbarn berechnet werden. Die Menge
der Nachbarn des neuen Clusters ergab sich dabei aus einer Vereinigung
der Nachbarmengen der zwei alten Cluster, die gemerged wurden, und
die neuen Distanzen wurden immer zwischen dem Pixelrepräsentanten
des neuen Clusters und dem Repräsentanten eines Nachbarn berechnet.
Die folgende Graphik ist ein Beispiel für die Resultate dieses Algorith-
mus. Zum Einfärben der Cluster wurden zufällige Grautöne verwendet.
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Abbildung 3: Eigener Graph-basierter Clustering-Algorithmus

Dieses Verfahren hatte den Nachteil, dass die entstandene Segmentie-
rung stellenweise viel zu fein war (zu viele kleine Cluster in nach der
menschlichen Wahrnehmung sehr homogenen Regionen), oder viel zu
grob (viel zu große Segmente, die wichtige Details verschwinden ließen).
Außerdem waren die Segmentgrenzen viel zu uneben. All dies sind An-
zeichen eines viel zu simplen Clustering-Verfahrens gewesen, welche sich
nur mit hohem Post-Processing-Aufwand, wenn überhaupt, beseitigen
ließen.

Ideal wäre ein Algorithmus, der in der Lage ist, Objekte als Regio-
nen zu erkennen wie etwa eine Baumkrone, eine Wiese, das Hemd ei-
nes Menschen, ein Baumast etc. Da mein Clustering-Algorithmus noch
einen sehr weiten Weg vor sich gehabt hätte, bis er diese Anforderungen
erfüllt, entschied ich mich, nach einem bereits existierenden Clustering-
Verfahren zu greifen. Algorithmen, die meinen Zielen nahe gekommen
sind, sind z. B. SRM (Statistical Region Merging) [18], oder das Verfah-
ren von Felzenszwalb [19], da beide Verfahren innerhalb hochfrequenter
Bildbereiche anders clustern als innerhalb sehr homogener Bereiche. (So
wird z.B. nicht jeder Grashalm zu seiner eigenen Region, sondern die
gesamte Wiese bildet eine Region, weil die Wiese als ein hochfrequenter
Bereich erkannt wurde.)
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• SRM (Statistical Region Merging) [18] geht folgendermaßen vor:
Es wird über alle adjazenten Pixelpaare iteriert, und die zwei Regio-
nen R1, R2, in welche die zwei Pixel p1, p2 des aktuellen Pixelpaares
gehören, werden genau dann zu einer Region zusammengefasst, wenn
das statistische Prädikat P , welches die Ähnlichkeit dieser Regionen
misst, True zurückliefert. wobei

P (R1, R2) =


true if ∀a ∈ {R,G,B} :

|R2a −R1a| ≤
√
b2(R1) + b2(R2)

false otherwise

wo {R,G,B} den drei Farbchannels “rot, grün, blau” entsprechen und
b eine Konstante ist.
Folgendes Bild stellt die Resultate dieses Verfahrens dar:

Abbildung 4: SRM-Clustering [18]

• Felzenszwalbs Paper “Efficient Graph-Based Image Segmentation”
[19] fängt mit einer initialen Segmentierung an, in welcher jeder Pi-
xel in sein eigenes Segment (Komponente) gehört. Es werden zunächst
alle Kanten zwischen benachbarten Pixeln (also Pixelpaare) aufstei-
gend nach ihrem Kantengewicht sortiert. Es wird über diese sortier-
ten Pixelpaare iteriert, und falls für das aktuelle Pixelpaar vi, vj gilt,
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dass das Gewicht w(vi, vj) klein ist im Vergleich zu der internen Diffe-
renz MInt(C1, C2) beider Komponenten C1, C2, zu welchen die zwei
betrachteten Pixel gehören, werden diese Komponenten zusammenge-
fasst. Diese interne Differenz wird berechnet als

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2))

Int(C1) ist die interne Differenz zwischen Pixeln der Komponente C1
und ist definiert als das größte Kantengewicht e im minimalen Spann-
baum der Komponente C1 mit der Kantenmenge E:

Int(C1) = max(w(e)), e ∈MST (C1, E)

τ ist die Threshold-Funktion, welche das Ausmaß kontrolliert, in wel-
chem die Differenz zwischen zwei Komponenten größer sein muss als
ihre internen Differenzen Int, damit sie vom Algorithmus tatsächlich
als zwei unterschiedliche Komponenten gesehen werden (also die Evi-
denz für eine Grenze zwischen ihnen existiert).

τ(C1) = k
|C1|

wo |C1| der Größe von C1 entspricht und k eine Konstante ist.

Abbildung 5: Felzenszwalb-Clustering [19]
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• Eher schlechter geeignet wären sog. Superpixel-Methoden wie SLIC
(Simple Linear Iterative Clustering) [16]. Die Regionen, die durch
diese Verfahren produziert werden, erinnern an große Pixel: sie sind alle
ungefähr gleich groß und mehr oder weniger rund. Damit diese Größen-
und Formanforderung überhaupt eingehalten werden kann, kommt es
öfter dazu, dass eine Grenze zwischen zwei optisch unterschiedlichen
Bereichen mitten durch einen Superpixel durchläuft, und nicht entlang
seiner Grenze. Selbst wenn man die Superpixelgröße klein genug wählen
würde, dass dies nicht passiert, stünde man nachher immer noch vor
dem Problem, diese Superpixel weiter gruppieren zu müssen, welches
die weiter oben genannten Verfahren nicht haben.

Abbildung 6: SLIC-Superpixel [16]
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3 Der Algorithmus

3.1 Überblick über den Algorithmus

1. Bildsegmentierung mit dem Felzenszwalb-Algorithmus

2. Als Hintergrund für das Ausgabebild wird entweder das segmentierte
Bild oder das saturierte und verwischte Eingabebild verwendet

3. Abspeicherung der Bildsegmente in einer Liste S, absteigend nach Größe
sortiert

4. for segment in S:

if segment.size < threshold:

paintSmallSegment(segment)

else:

paintLargeSegment(segment)

Die Funktion paintSmallSegment() ist im Kapitel “Simple, einfarbige Pin-
selstriche” beschrieben, die Funktion paintLargeSegment() im Kapitel “Kom-
plexe, mehrfarbige Pinselstriche”.

3.2 Schritt 1 - Bildsegmentierung

Von den vorgestellten Algorithmen hat sich der Felzenszwalb-Clustering-
Algorithmus erwiesen. Siehe Unterkapitel “Bildsegmentierung” im Kapitel
“Grundlagen”.

3.3 Schritt 2 - Generieren der Pinselstriche

Afremovs spezifischer Malstil (Malen mit der Spachtel) schließt nicht nur
existierende Malprogramme aus, sondern auch Rendering-Algorithmen al-
ler für diese Arbeit untersuchten Paper. So haben z. B. Pinselstriche, mit
welchen Baumkronen auf jedem Bild ausgemalt werden, typischerweise eine
gerade Unterkante, eine Oberkante, die mehrere Ausbuchtungen und Dellen
aufweist, und eine Krümmung, die sich nach oben hin abschwächt, nicht
unähnlich einer Logarithmus-Kurve. Sowohl entlang des Pinselstrichs als
auch querverlaufend sind oft mehrere Farbgradienten zu beobachten.
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Das Programm unterscheidet, wie auch Afremovs Werke selbst, zwischen zwei
Arten von Pinselstrichen: simple zum Ausmalen von detailreichen Flächen
(paintSmallSegment()), und mehrfarbige, viereckige, zum Ausmalen von
großen Flächen wie Baumkronen, Wiesen, Gebäudewänden... (Funktion
paintLargeSegment()).

3.3.1 Simple, einfarbige Pinselstriche

In detailreichen Regionen des Eingabebildes erkennt der Clustering-Algorithmus
eine größere Anzahl von kleineren Segmenten als in weniger detailreichen
Regionen. In dieser Arbeit wird jeder solche kleine Cluster mit einem ge-
krümmten Pinselstrich ausgemalt, dessen Krümmung durch eine Linie gelei-
tet wird, die durch polynomielle Regression 2. Grades über alle Pixel dieses
Segments berechnet wird.

Polynomielle Regression
Polynomielle Regression ist ein Verfahren, bei dem solche Koeffizienten für
die Polynomgleichung

p(x) = p0 · xdeg + ...+ pdeg

vom Grad deg gesucht werden, die den quadratischen Fehler (“mean squared
error”, MSE) minimieren.[20]

MSE =
∑k

j=0 |p(xj)− yj|2

wobei jedes xj der x-Koordinate eines Pixels entspricht, und yj der zu-
gehörigen y-Koordinate dieses Pixels auf diesem Bild.
Es wird also nach einem Polynom gesucht, dessen Funktionskurve eine möglichst
kleine Abweichung zu allen Pixeln hat, und das Segment somit am besten
beschreibt.
Im Gegensatz zur linearen Regression gibt es keine geschlossene Formel zur
Berechnung dieser Koeffizienten; sie werden iterativ ermittelt.[21]

Auf dem folgenden Lena-Bild wurde durch jedes erkannte Segment seine Re-
gressionslinie gelegt und gelb gefärbt:
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Abbildung 7: Lena, Regressionslinien

Auf den folgenden zwei Abbildungen wurde jeder Pinselstrich wie ein “simp-
ler” Pinselstrich gemalt. Man sieht, dass die quadratische Regression für die
größeren, konkaven Regionen eine eher schlechte Approximation liefert, und
für kleinere eine etwas bessere. Der einzige Unterschied zwischen den folgen-
den zwei Abbildungen ist die Breite der verwendeten Pinselstriche. In der
ersten Abbildung wird als Breite jedes Pinselstrichs der Wert

max

(
1,
Anzahl P ixel im Segment

P inselstrichlaenge

)
verwendet, in der zweiten die Breite der rotierten Bounding Box des Seg-
ments. (Eine rotierte Bounding Box einer Region ist das kleinste Rechteck, in
welches diese Region reinpasst. Eine nicht-rotierte Bounding Box ist achsen-
parallel, eine rotierte ist so ausgerichtet, dass sie die kleinstmögliche Fläche
einnimmt.)
Auf beiden Lena-Bildern wurde beim Ausmalen mit den größten Segmenten
angefangen.
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Abbildung 8: Lena, dünne, simple Pinselstriche

Abbildung 9: Lena, breite, simple Pinselstriche
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Vorgehen:
Jeder simple Pinselstrich wird durch das Nebeneinanderlegen von senkrech-
ten, von oben nach unten wachsenden Pixellinien gemalt und anschließend
rotiert und an die richtige Stelle im resultierenden Bild eingefügt. Der Win-
kel angle, um welchen der Pinselstrich rotiert wird, entspricht dem Winkel
zwischen der Strecke r, die die Endpunkte der Regressionslinie verbindet,
und einer senkrechten Linie, die durch den weiter unten liegenden der beiden
Endpunkte der Regressionslinie r verläuft:

Abbildung 10: Simpler Pinselstrich

Form des simplen Pinselstrichs:
Biegung:
Für jede x-Koordinate xi des Pinselstrichs wird eine dünne (Pixelbreite 1),
sich nach unten ziehende Pixellinie eingefärbt, die bei xi anfängt. Die y-
Koordinaten yj dieser Pixellinie nehmen Werte von 0 bis length(r) an. Die
x-Koordinaten der Pixellinie sind nicht konstant, was einen geraden, vier-
eckigen Pinselstrich erzeugen würde, sondern haben jeweils einen Abstand
von der linken Seite des Pinselstrichs, der für jeden y-Wert yj eines Pixellinie
anders ist, und dem Abstand gleich ist, welchen der yj-te Pixel der Regres-
sionslinie von der Strecke r hat, die die Endpunkte der Regressionslinie ver-
bindet. Das Array, das die Abweichungen einer Pixellinie von einer geraden,
nach unten laufenden Pixellinie enthält, und der somit das Einfärben leitet,
wird in dieser Arbeit als arc bezeichnet.
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Form der Ober- und Unterseite:
Die Ecken der Pinselstriche werden abgerundet, indem von der Ober- und
Unterseite ein Teil des Pinselstrichs abgeschnitten wird. Die Angabe darüber,
wieviele Pixel bei welcher x-Koordinate abgeschnitten werden, ist in den Ar-
rays upperTemplate (für die Oberseite) und lowerTemplate (für die Un-
terseite des Pinselstrichs) gespeichert. Die Werte in jedem dieser Arrays
sind ganz einfach die Kosinuswerte für Winkel zwischen −90 und 90 Grad
(zum Ausschneiden eines bogenförmigen Bereichs), multipliziert mit einem
zufälligen Skalierungsfaktor, um etwas mehr Diversität reinzubringen. Für
die Wirkung der Templates siehe folgende Grafik:

Abbildung 11: Abrundung der Ecken

Farben:
Zum Ausfärben des simplen Pinselstrichs wird eine einzige Farbe verwendet.

Position des simplen Pinselstrichs:
Der Pinselstrich wird so in das resultierende Bild eingefügt, dass die Regres-
sionslinie, welche das zum Pinselstrich gehörige Segment im Eingabebild be-
schreibt, auch den eingefügten Pinselstrich im Ausgabebild gut abstrahieren
würde. Dies wird erreicht, indem beim senkrecht ausgerichteten Pinselstrich
der horizontale Mittelpunkt seiner oberen (oder unteren) Kante ermittelt
wird. Nach dem Rotieren um angle wird dieser Mittelpunkt erneut gefunden
und der nun richtig ausgerichtete Pinselstrich wird an eine solche Position
im Ausgabebild gelegt, dass dieser Mittelpunkt sich mit dem Anfang der Re-
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gressionslinie deckt. Falls angle negativ ist, wird der horizonale Mittepunkt
der Pixel der oberen Kante bestimmt, beim negativen angle wird die unte-
re Kante genommen. Beim negativen Winkel der Regressionslinie weiß man
nämlich, dass der Anfang der Regressionslinie mit dem linken oberen Ende
des Segments zusammenfallen wird (dies war eine Design-Entscheidung).

3.3.2 Komplexe, mehrfarbige Pinselstriche

Komplexere, mehrfarbige Pinselstriche haben eine grob viereckige Form und
einen Aufbau, der durch die folgende Grafik veranschaulicht wird:

Abbildung 12: Aufbau eines Pinselstrichs
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Komplexe Pinselstriche werden ebenfalls durch das Nebeneinanderlegen von
senkrechten, von oben nach unten wachsenden Pixellinien gemalt, rotiert und
an die richtige Stelle im resultierenden Bild eingefügt.

Form des komplexen Pinselstrichs:
Biegung:
Ähnlich wie bei den simplen Pinselstrichen werden auch hier die 1 Pixel brei-
ten senkrechten Pixellinien anhand der Werte im arc-Array berechnet, das
für jede y-Koordinate ihren Offset von der linken Seite des Pinselstrichs.
Anders als bei den simplen Pinselstrichen ergeben sich die Werte in arc
aus keiner Regressionslinie, sondern folgen entweder einer Logarithmus- oder
Kosinus-Kurve. Dies verleiht jeder vertikalen Pixellinie eine leicht geboge-
ne Form. Die Stärke der Biegung kann durch einen Parameter festgesetzt
werden (bulgeSize). Der folgende Pseudocode stellt die Erzeugung eines lo-
garithmusförmigen arc-Arrays dar. sizeY bezeichnet die vertikale Länge des
Pinselstrichs.

1: function createLogArc(sizeY, bulgeSize)
2: if sizeY = 1 then
3: return [0]
4: end if
5: if sizeY = 2 then
6: return [0, 0]
7: end if
8: arc← zeros[sizeY ]
9: stepsize← 10

10: logparam← 1.1
11: i← 0
12: while i ≤ length(arc) do
13: arc[i]← log2(logparam)
14: logparam← logparam+ stepsize
15: i← i+ 1
16: end while
17: arcMax← max(arc)
18: arcScale← bulgeSize

arcMax

19: arc← arc · arcScale
20: return arc
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21: end function

Die folgende Grafik verdeutlicht die Wirkung der Biegung auf den Pin-
selstrich:

Abbildung 13: Pinselstrich-Biegung

Form der Ober- und Unterseite:
Die Wellenform der Ober- und Unterseite wird auch hier durch das Ab-
schneiden des Ober- und Unterteils jedes Pinselstrichs erreicht. Die Angaben
zur abzuschneidenden Pixelanzahl für jede x-Koordinate sind in den Arrays
upperTemplate (für die Oberseite) und lowerTemplate (für die Unterseite
des Pinselstrichs) gespeichert. Die Werte in jedem dieser Arrays entstehen
durch kubische Spline-Interpolation der Werte in einem kürzeren Array, das
nur die gewünschten Spitzpunkte (Anzahl der Pixel, die abgeschnitten wer-
den sollen) enthält.

Die kubische Spline-Interpolation[22] ist ein Interpolationsverfahren, bei wel-
chem von einer endlichen Menge von Punkten

M = [xi, yi], für i = 0..n

ein Polynom gebildet wird, dessen Funktionskurve durch all diese Punkte
durchläuft. Dabei wird jeder Abschnitt zwischen zwei (auf der x-Achse be-
nachbarten) Punkten aus M lokal durch seine eigene kubische Polynomglei-
chung beschrieben, und am Ende werden all diese Teilpolynome zu einem
einzigen Polynom verbunden.
Für jedes Intervall existiert eine andere Polynomgleichung, mit ihren eigenen
Koeffizienten:

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di, x ∈ [xi, xi+1]
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Durch Zusammensetzung all dieser Gleichungen für die Teilabschnitte ent-
steht eine Gesamtgleichung S(x) mit einer kontinuierlichen Funktionskurve.
Dies wird durch das Einhalten der folgenden Bedingungen erreicht:

• Jedes kubische Polynom muss an seinen beiden Enden durch Punkte
aus M durchgehen, die es von beiden Seiten beschränken (dies stellt
die Kontinuität der Funktion sicher):

Si(xi) = yi, Si(xi+1) = yi+1

• Die erste und zweite Ableitung müssen auch kontinuierlich sein (hier-
durch entsteht eine optisch zufriedenstellende Kurve ohne spitze Um-
bruchstellen):

S ′i−1(xi) = S ′i(xi), S ′′i−1(xi) = S ′′i (xi)

Die Anzahl solcher Spitzpunkte ist momentan auf 5 für upperTemplate und
6 für lowerTemplate festgesetzt. Die konkreten Werte für die Spitzpunkte
sind Zufallszahlen. Für den ersten und den letzten Spitzpunkt werden jeweils
größere Zufallszahlen genommen, um an den Ecken mehr vom Pinselstrich
abzuschneiden, damit dieser abgerundeter wirkt. Für die Wirkung der Tem-
plates siehe folgende Grafik:

Abbildung 14: upper- und lowerTemplate
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Farben:
Entlang der Breite des Pinselstrichs kann eine beliebige Anzahl von Farben
definiert werden. Diese können für die Oberseite und die Unterseite unter-
schiedlich sein, auch in ihrer Anzahl.

Breitengradient:
Für alle Farben, die für die Oberseite definiert wurden, wird entlang der
Breite des Pinselstrichs mit linearer Spline-Interpolation ein Farbgradient
berechnet, der alle definierten Farben enthält und für sanfte Übergänge zwi-
schen ihnen sorgt. Das gleiche gilt für die Farben der Unterseite. Die un-
ten stehende Grafik verdeutlicht, wie es aussehen würde, wenn entlang der
Breite kein Gradient berechnet wird, sondern harte Farbübergänge zwischen
den Farben am upperTemplate untereinander und zwischen den Farben am
lowerTemplate untereinander verwendet werden.

Längengradient:
Darüber hinaus wird auch entlang der Länge des Pinselstrichs ein Gradient
berechnet, nämlich für den Übergang zwischen der Farbe, die an der oberen
Kante bei einem konkreten x-Wert anliegt, und der Farbe, die an der unteren
Kante anliegt, an der Stelle, die mit dem obigen x-Wert durch arc verbunden
wurde.
Beide Pinselstriche in der folgenden Grafik bestehen aus drei zufällig gene-
rierten Farben am upperTemplate und drei Farben am lowerTemplate und
verwenden Längengradienten zwischen allen drei Farbenpaaren, jedoch nur
der zweite Pinselstrich verwendet auch Breitengradienten.

Abbildung 15: Farbgradienten
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Farbstreifen:
Um noch bessere Ergebnisse zu erreichen, ist dieser Längengradient nicht
einheitlich, sondern fängt für jeden x-Wert bei einem anderen Abstand von
der Oberkante an. Dieser Abstand ist zwar randomisiert, aber für benach-
barte x-Werte nimmt er mit hoher Wahrscheinlichkeit sehr ähnliche Werte
an, wodurch entlang des Pinselstrichs deutlich sichtbare Streifen (in Abbil-
dung 12“streaks” genannt) entstehen. Diese Streifen haben eine Pixelbreite
zwischen 1 und einem Maximalwert, der ein Viertel der sichtbaren Pinsel-
strichbreite (“Breite der Oberkante” in Abbildung 12) beträgt. Mit einer
Wahrscheinlichkeit von 0.5(excess) können sie jedoch um excess viele Pixel
breiter werden.
Wenn der Abstand des Gradientenanfangs von der Oberkante des Pinsel-
strichs > 0 ist, entsteht für diesen x-Wert im Bereich dieses Abstands eine
Zone ohne vertikalen Gradienten (siehe Abbildung 12). Da der erwähnte Ab-
stand für Werte des gleichen Farbstreifens ähnlich sind, sich aber stark von
den Abständen der benachbarten Streifen unterscheidet, entsteht auf diese
Art eine gut sichtbare Grenze zwischen einzelnen Streifen.

Abbildung 16: Farbstreifen

3D-Effekt:
Bei einigen Pinselstrichen auf Afremovs Bildern ist an der Unterkante eine
Anhäufung von Farbe zu beobachten, die sich als ein dünner heller Streifen
entlang der Unterkante des Pinselstrichs äußert, begleitet durch einen noch
dünneren dunklen Streifen unterhalb von dem hellen:
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Abbildung 17: 3D-Effekt

3.3.3 Farben der Pinselstriche

Noch vor dem Clustering-Schritt wird die Farbsättigung des Eingabebildes
auf das Dreifache erhöht. Das auf diese Art entstandene gesättigte Bild dient
als Farbgrundlage für das Ausgabebild.

Jeder simple, einfarbige Pinselstrich wird mit der Farbe eingefärbt, die der
Pixel des gesättigten Bildes hat, bei welchem die Regressionslinie dieses Seg-
ments anfängt. Da alle Pixel desselben Segments relativ ähnliche Farben
haben, produziert diese simple Methode zufriedenstellende Ergebnisse.

Jeder komplexe Pinselstrich wird unter Angabe von vier Farben generiert. Die
Färbung des ganzen Pinselstrichs ergibt sich aus der Interpolation der Farb-
werte zwischen diesen vier Eingabefarben (zwei startColors, zwei endColors.
Siehe Kapitel “Komplexe, mehrfarbige Pinselstriche”) Als Quelle für diese
Farben werden vier Pixel verwendet, die sich auf dem gesättigten Bild in
der Umgebung der vorgesehenen Koordinate für diesen Pinselstrich befin-
den. Somit spiegelt der komplexe Pinselstrich grob die Färbung der unter
ihm liegenden Pixel wider, was eine ungefähre Erkennung von Strukturen im
Bild ermöglicht.
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3.4 Schritt 4 - Ausmalen des Bildes mit generierten
Pinselstrichen

Die Grundidee des Ausmalens des Bildes besteht darin, über eine nach der
Größe absteigend sortierte Liste aller Felzenszwalb-Segmente zu iterieren und
jedes Segment mit den zu den Segmentattributen passenden Pinselstrichen
auszumalen.

3.4.1 Hintergrund

Sowohl beim Produzieren echter Gemälde als auch bei ihrem maschinellen
Generieren [12] ist es üblich, das Ausgabebild mit einer Hintergrundfarbe
auszumalen, bevor die Pinselstriche aufgetragen werden, die am Ende sicht-
bar bleiben. Beim maschinellen Generieren von Bildern kann der Hinter-
grund eine einzige Farbe sein (weiß, schwarz, die auf dem Originalbild am
häufigsten vorkommende Farbe), oder das Originalbild selbst (entweder 1:1
übernommen oder verschwommen).

Bei diesem Algorithmus hat man die Möglichkeit, entweder das verschwom-
mene (“blurred”) Eingabebild als Hintergrund zu nehmen, oder das gefärbte,
mit dem Felzenszwalb-Verfahren geclusterte Bild, in welchem jeder Cluster
mit der Farbe eines zufälligen Pixels aus diesem Cluster gefärbt wurde. Beide
Möglichkeiten führen zu optisch zufriedenstellenden Ergebnissen.

3.4.2 Große Segmente

Segmente, deren Größe (Anzahl der Pixel, aus welchen sie bestehen) über
einer bestimmten Grenze liegt, werden mit multiplen, mehrfarbigen Pinsel-
strichen ausgemalt. Dazu müssen zunächst für jedes Segment die Positio-
nen ermittelt werden, an welchen die komplexen Pinselstriche zu platzie-
ren sind. Der folgende Pseudocode beschreibt diesen Prozess. minX, minY ,
maxX und maxY sind die Koordinaten der nicht-rotierten Bounding Box
des Segments, segment ist eine Liste aller Koordinaten des Segments, und
stroke density ist die Größe der Schritte, in welchen nach passenden Koor-
dinaten gesucht wird.
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1: function getStrokePositions(segment, stroke density,minX,minY ,
maxX, maxY )

2: coordinates← []
3: x← minX
4: while x ≤ maxX do
5: y ← minY
6: while y ≤ maxY do
7: if [x, y] ∈ segment then
8: coordinates.append([x, y])
9: end if

10: y ← y + stroke density
11: end while
12: x← x+ stroke density
13: end while
14: return randomize(coordinates)
15: end function

In der Praxis produziert dieses Verfahren bessere Ergebnisse, als über segment
zu iterieren und mit einer bestimmten Schrittgröße dort Koordinaten aus-
zuwählen. Das gewählte Verfahren hat den Effekt, dass wenn eine potentielle
Koordinate untersucht wird, die doch nicht zum segment gehört, um diese
herum ein größerer Raum frei gelassen wird (da die nächste Koordinate, die
untersucht wird, stroke density viele Pixel entfernt ist, und nicht in direkter
Nachbarschaft).

Komplexe Pinselstriche innerhalb eines Segments haben immer die gleiche
Größe, sowie eine sehr ähnliche Ausrichtung (±40 Grad). Komplexe Pinsel-
striche anderer Regionen können eine ganz andere Ausrichtung haben, und
je nach Parametern, mit welchen der Algorithmus gestartet wird, auch eine
andere Pinselstrichgröße. Dies dient einer besseren optischen Unterscheidung
der Bildsegmente.

3.4.3 Kleine Segmente

Jedes Segment, dessen Größe unter einer bestimmten Grenze liegt, wird mit
einem einzigen, einfarbigen Pinselstrich ausgemalt. Sie sorgen dafür, dass fei-
ne Umrisse von Gegenständen sichtbar sind, sowie kleine Regionen, die sich
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durch ihre Farbe und andere Eigenschaften stark von ihrer Umgebung abho-
ben (und somit einem menschlichen Beobachter auffallen würden), weswegen
sie vom Clustering-Algorithmus als eigene Segmente erkannt wurden. Jeder
simple Pinselstrich ist in seiner Farbe, Position, Form und Ausrichtung eine
Approximation des Segments, welches er ausmalt. Für Details siehe Kapitel
“Simple, einfarbige Pinselstriche”.
Simple Pinselstriche für Segmente, deren Farbe sich nicht allzu stark von der
Farbe der Umgebung abhebt, werden gar nicht angefärbt. Der Zweck die-
ser Maßnahme ist das Eliminieren von überflüssigen kleinen Segmenten, die
zwar durch das Clustering erkannt wurden, jedoch einem menschlichen Be-
obachter wahrscheinlich kaum als eigenständige Regionen auffallen würden.
Da diese Segmente nicht ausgemalt werden, wird ihre Fläche entweder durch
einen komplexen Pinselstrich überdeckt (der zu einem benachbarten großen
Segment gehört), oder diese Fläche bleibt dank des Hintergrundbildes sicht-
bar (welches eine abgewandelte Form des Eingabebildes ist).
Kleine Segmente werden nach großen gemalt, um von diesen nicht überdeckt
zu werden.

3.4.4 Haarlinien-Segmente

Eine dritte Gruppe von Pinselstrichen bilden haardünne Segmente, deren
Breite oder Länge 1 Pixel beträgt. Diese werden nicht approximiert, sondern
direkt in das Bild gemalt. Sie kommen selten genug vor, dass sie die Illusion
eines Gemäldes gut ergänzen und wichtige Details unterstreichen, ohne allzu
störend zu wirken.
Haarlinien-Segmente werden als letzte gemalt, um von den größeren nicht
überdeckt zu werden.

4 Laufzeitanalyse

Die Gesamtlaufzeit des in dieser Arbeit vorgestellten Algorithmus liegt in
O(n · log(n)), wobei n die Anzahl der Pixel im Eingabebild ist.

Zum Zweck der Laufzeitanalyse könnte man den Gesamtalgorithmus in 2
Hälften teilen:

1. Der Felzenszwalb-Clustering-Schritt [19], der ganz am Anfang ausgeführt
wird, hat nach den Angaben in [19] eine Laufzeit von O(n · log(n)) mit
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n = Anzahl der Pixel

2. Der Rest des Algorithmus, also alles bis auf den Clustering-Schritt,
läuft ebenfalls in O(n · log(n)).
Für diese obere Schranke ist der Schritt verantwortlich, in welchem die
erkannten Felzenszwalb-Cluster nach ihrer Größe sortiert werden. Die
Anzahl dieser Cluster ist zwar nach oben durch die Anzahl der Pixel
beschränkt, liegt jedoch in der Praxis deutlich darunter.
Alle anderen Schritte des Algorithmus haben lineare Laufzeit in der
Anzahl der Pixel n, darunter:

(a) Die polynomielle Regression 2. Grades, die die Leitlinien für die
simplen Pinselstriche erzeugt, läuft für die Pixel jedes Felzenszwalb-
Clusters in linearer Zeit. Die hierfür verwendete Methode der
kleinsten Quadrate macht sich sie sog. SVD (Single Value Decom-
position) zunutze, die nach [23] in ihrem ersten Schritt (Reduktion
der Eingabematrix auf eine bidiagonale Matrix) in O(mn2) läuft,
wobei m in unserem Fall die Anzahl der Pixel im jeweiligen Cluster
ist, und n der Grad der Regression (2 bei quadratischer Regression,
damit konstant), und in O(n) in ihrem zweiten Schritt (iterative
Berechnung der SVD für die bidiagonale Matrix aus Schritt 1, mit
konstanter Präzision).
Aus der linearen Laufzeit für jeden Cluster, und aus der Tatsache,
dass die Cluster disjunkt sind, ergibt sich eine lineare Laufzeit für
die polynomielle Regression für das Gesamtbild.

(b) Die Ermittlung der Stellen, an welchen komplexe Pinselstriche in-
nerhalb von Clustern platziert werden sollen, kann in O(n) reali-
siert werden, wenn für jeden Cluster die Liste seiner Pixel durch-
gegangen wird und an Koordinaten in regelmäßigen Abständen
der Größe stepSize Pinselstriche platziert werden.
Ein solcher Ansatz führt aber zu optisch weniger zufriedenstellen-
den Ergebnissen und hat in der Praxis eine schlechtere Laufzeit
als der in dieser Arbeit tatsächlich verwendete Ansatz, der asym-
ptotisch in O(n2) läuft: Die Positionen für komplexe Pinselstri-
che werden ermittelt, indem durch alle Koordinaten innerhalb der
Bounding Box des Clusters iteriert wird, und für jede stepSize-te
Koordinate überprüft wird, ob sie zum Cluster gehört. Wenn ja,
wird an ihrer Position ein komplexer Pinselstrich gemalt.
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(c) Eine letzte potenziell problematische Stelle ist die Interpolation,
die zum Erzeugen der Cutoff-Templates für die komplexen Pinsel-
striche dient (kubische Interpolation), sowie für die Farbübergange
innerhalb der komplexen Pinselstriche (lineare Interpolation). Die-
ser Schritt hat jedoch eine Laufzeit, die linear in der Anzahl der
zu interpolierenden Punkte liegt, da hier die Spline-Interpolation
verwendet wird.

5 Resultate

Der Algorithmus erreicht relativ gute Ergebnisse bei Bildregionen mit einer
hohen Anzahl an komplexen Pinselstrichen. Diese zeichnen sich durch
eine traumähnliche Atmosphäre aus, die an Afremovs Werke erinnert, nicht
nur durch eine Ähnlichkeit der Pinselstrichformen, Farbübergänge und La-
gebeziehungen zueinander, sondern auch durch den Gesamteindruck, den sie
hinterlassen.

Genauso gut gelungen ist die Anpassung der Farbpalette: Die Lebhaftigkeit
der Farben, die beim Betrachten der Bilder Afremovs sofort unsere Aufmerk-
samkeit auf sich zieht, konnte durch eine simple Erhöhung der Farbsättigung
erreicht werden.

Die Abbildung von Wasserflächen erinnert schon etwas weniger an Afre-
mov, der diese auf eine sehr charakteristische Art malt, mit dünnen, paral-
lelen und leicht unregelmäßigen Pinselstrichen, wobei blaue und hell leuch-
tende Flächen im starken Kontrast gegenüber gestellt werden. Die von die-
sem Algorithmus verwendeten Verfahren führen zwar zu Resultaten, die gut
genug sind, dass Wasserflächen als solche erkannt werden (und damit zum
Gesamteindruck eines impressionistischen Bildes beitragen), aber damit es
möglich wäre, dass diese unmissverständlich wie von Afremov gemalt ausse-
hen, wäre es erforderlich, Wasserflächen als solche zu erkennen und gesondert
zu behandeln, was den Rahmen dieser Arbeit sprengen würde.

Etwas weniger zufriedenstellend ist die Darstellung von detailreichen Re-
gionen, insbesondere Personen gelungen. Im Rahmen dieser Arbeit woll-
te ich untersuchen, ob es möglich wäre, hinreichend kleine Regionen durch
Pinselstriche zu approximieren, deren Parameter sich aus den Eigenschaf-
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ten dieser Regionen ableiten (eine Idee, auf die mich die Arbeit von Gooch,
Coombe und Shirley [13] gebracht hat, nur ist meine Approximation durch
Regression eine viel simplere gewesen). Meine Annahme war, dass sich hin-
reichend kleine Segmente immer gut genug durch quadratische Regression all
ihrer Pixel approximieren lassen (und dass durch die Wahl eines passenden
Clustering-Algorithmus die Entstehung hinreichend kleiner Segmente sicher-
gestellt werden kann). Diese Annahme hat nur teilweise zum Ziel geführt: Die
Approximation funktioniert meistens gut genug, dass zumindest Personen als
solche auf dem resultierenden Bild zu erkennen sind. Jedoch versagt sie da-
bei, Personen handgemalt aussehen zu lassen. Sowohl die kantigen Haarlinien
als auch die selbst nach Randomisierung der Umrisse viel zu regelmäßig wir-
kenden bogenförmigen Pinselstriche sehen doch eher computergeneriert aus.
Dies ist ein ähnliches Problem wie das der Wasserflächen; eine Erkennung
von Personen und eine Sonderbehandlung von Regionen, die Personen ent-
halten, könnte dieses Problem lösen.

Zusammenfassend kann man sagen, dass ich das Ziel erreicht habe, wel-
ches ich mir für diese Arbeit vorgenommen habe: zu untersuchen, ob und
inwieweit es möglich wäre, Bilder, die dem Stil Afremovs ähneln, mit einem
Programm zu generieren. Zumindest für eine Untergruppe der Eingabebilder
(Landschaften, die möglichst wenige Personen enthalten), ist es über mei-
ne Erwartung hinaus gelungen. Die Merkmale, welche auf Afremovs Bildern
unsere Aufmerksamkeit als erste auf sich ziehen, sind auch auf den com-
putergenerierten Bildern wiederzufinden: die lebendigen Farben, die breiten,
schönen Pinselstriche, die einander völlig zufällig überdecken und einem har-
monisch vor den Augen tanzen.
Für Bilder, die Personen enthalten, oder Gegenstände, die einer völlig ande-
ren Behandlung bedürfen als die umgebende Landschaft, ist der hier vorge-
stellte Algorithmus ohne Anpassungen eher ungeeignet.
In der Gallerie im letzten Kapitel sind einige von diesem Algorithmus pro-
duzierte Beispielbilder zu finden.

6 Validierung

In diesem Kapitel werden die Ergebnisse eines simplen Verfahrens präsentiert,
welches zur Validierung der Ergebnisse dieser Arbeit gewählt wurde.
Bei diesem Verfahren werden drei Gruppen von Bildern mit einem auf der
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Shannon-Entropie basierenden Verfahren miteinander verglichen, und es wird
untersucht, ob nach diesem Verfahren einige dieser Gruppen eine größere
Ähnlichkeit zueinander aufweisen als andere.

6.1 Shannon-Entropie

Die Shannon-Entropie beschreibt den Informationsgehalt bzw. die Unsicher-
heit eines Ereignisses oder einer Nachricht durch eine rationale Zahl, welche
aussagt, wie viel Information in dieser Nachricht enthalten ist.
In der Informationstheorie ist die Shannon-Entropie ein Maß dafür, wie unsi-
cher der Ausgang einer Situation ist, in welcher ein Ereignis aus einer Menge
von möglichen Ereignissen gewählt wird.
Je unwahrscheinlicher ein solches Ereignis, umso mehr Information bringt es,
wenn es vorkommt. Entropie kann man also auch als ein Informationsmaß
verstehen.[24]
Shannon definierte die Entropie H einer diskreten Zufallsvariable X mit den
möglichen Werten {x1, ..., xn} und der Wahrscheinlichkeitsfunktion P (X) als:

H(X) = −K
∑

i[P (xi) · log(P (xi))]

wobei

xi - ein distinktes Ereignis in unserer Verteilung
P (xi) - Wahrscheinlichkeit, mit welcher Ereignis xi vorkommt
K - positive Konstante

In unserem Fall ist jeder mögliche Farbwert zwischen 0 und 255 ein solches
Ereignis xi, und die Wahrscheinlichkeit P (xi), dass ein solches Ereignis vor-
kommt, wird berechnet als

P (xi) =
count(xi)

imsize

wobei count(xi) die Anzahl der Vorkommen des konkreten Farbwertes xi im
Bild ist, und imsize Anzahl der Bildpixel. Die Konstante K wird gleich 1
gesetzt.
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6.2 Durchführung des Experiments

Die untersuchten Bilder wurden in drei Gruppen unterteilt:

1. Gruppe 1: Fotos, die als Eingabebilder für den Algorithmus in dieser
Arbeit verwendet wurden.

2. Gruppe 2: Bilder, die von dem in dieser Arbeit vorgestellten Algorith-
mus produziert wurden (mit Bildern aus der ersten Gruppe als Einga-
be).

3. Gruppe 3: Fotos von Gemälden Afremovs, die in der Bildergallerie auf
seiner offiziellen Webseite[25] veröffentlicht wurden.

Vorgehen:
Für jede dieser drei Gruppen wurden 4 Zahlenwerte berechnet:

• rEntropy - durchschnittliche Entropie des rot-Channels aller Bilder
einer Gruppe

• gEntropy - durchschnittliche Entropie des grün-Channels aller Bilder
einer Gruppe

• bEntropy - durchschnittliche Entropie des blau-Channels aller Bilder
einer Gruppe

• grEntropy - durchschnittliche Entropie aller Graubilder einer Gruppe

Das Experiment wurde mit jeweils 912 Bildern in jeder der 3 Gruppen durch-
geführt. Um ihre Entropie-Werte vergleichbar zu machen, wurden alle Bilder
auf die gleiche Größe gebracht, 500x500 Pixel.

6.3 Resultate des Experiments

Gruppe 1 Gruppe 2 Gruppe 3
rEntropy 7.38119516389 7.27519618364 7.80140402048
gEntropy 7.40860351111 7.42822126323 7.71538216276
bEntropy 7.19426102764 6.71987228677 7.22865966951
grEntropy 7.32791091292 7.34646118526 7.73412071998
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6.4 Interpretation der Resultate

Gruppe 3: Es fällt auf, dass die Gruppe der Afremov-Gemälde in allen un-
tersuchten Farbchannels die größte Entropie aufweist. Dies ließe sich da-
durch erklären, dass Afremov eine breite Skala an Farben verwendet, von
welchen keine viel häufiger vorkommen als andere (im Vergleich zu Fotos von
Landschaften zumindest). Die Reduktion der Farben, die dadurch zustande
kommt, dass innerhalb jedes Pinselstrichs nur ganz wenige Farben vorkom-
men, scheint hier also eher in den Hintergrund zu treten.
Gruppen 1 und 2: Einen Anstieg der Entropie-Werte beim Übergang von den
Eingabefotos der 1. Gruppe zu den Ausgabebildern der 2. Gruppe kann man
im Grün-Channel und im Grau-Bild beobachten, im Rot- und Blau-Channel
dagegen sieht man einen Abstieg. Da es sich größtenteils um Fotos von Land-
schaften handelt, in welchen der Grün-Anteil überwiegt, könnte man die Er-
gebnisse so beschreiben, dass zumindest der für die Wahrnehmung wichtigste
der drei Channels sich in die richtige Richtung zu entwickeln scheint.

Abschließend muss man aber sagen, dass all diese beobachteten Unterschiede
nur ganz marginal sind, und dieses Verfahren sich somit nur beschränkt zur
Untersuchung der Unterschiede der drei gewählten Bildergruppen eignet.

7 Ausblick

Wie im Kapitel “Resultate” geschildert, besteht vor allem bei der Behand-
lung von Personen und Wasserflächen Verbesserungspotential. Es wäre inter-
essant, zu sehen, was man erreichen könnte, wenn man die Ergebnisse dieser
Arbeit mit Verfahren kombinieren würde, die sich speziell mit diesen Pro-
blemen beschäftigen. Bei Erkennung von Personen oder Objekten würden
sich z. B. neuronale Netzwerke anbieten, und beim Ausmalen von Personen
Verfahren, die hierzu besser geeignet sind, weil sie präziser arbeiten als die
in dieser Arbeit verwendete quadratische Regression (z. B. die Technik von
Gooch, Coombe und Shirley [13], oder die von Hertzmann [5]).
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