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Abstract

Data driven medical research enables promising novel methods of clinical deci-
sion support and personalised medicine. For example machine learning (ML)
models are developed to detect unknown relationships between biomedical pa-
rameters to predict patients’ diagnosis.

However, these benefits come with concerns about patients’ privacy. Pri-
vacy protection is considered to be an important problem in ML, especially in
the health care sector, where research is based on sensitive information such
as medical histories, genomic data or clinical records. A model trained on
sensitive data may store this sensitive information during the training pro-
cess. Analysing the models parameters or output can reveal this sensitive
information. Differential privacy (DP) is a strong mathematical framework
that provides privacy guarantees in learning-based applications. Based on DP
applications in several other areas its use has been proposed to protect an
individual’s privacy in ML contexts.

The Private Aggregation of Teacher Ensembles (PATE) is a state-of-the-art
framework for private ML that is based on DP.

This thesis presents the evaluation of PATE when it is applied to medical
classification task using a small medical data set. Therefore, the PATE model
was compared to a non private baseline model. To evaluate the ML algorithms
used in the PATE framework, two logistic regression (LR) classifiers, a support
vector machine (SVM) and two neural networks (NN) were compared using
cross validation, confusion matrix, F1 — Score, receiver operating characteristic
curve (ROC), area under the ROC curve (AUC) and accuracy. Subsequently,
the number of teachers, the noise injection and the accuracy of the PATE
model trained on the medical data were evaluated.

Even with a small number of teachers the accuracy of the PATE model was
0.76. Compared to the baseline model (0.83), there is a low loss of accuracy,
but still the guarantee of a strong privacy of e = 2.16. Moreover, with a small
number of teachers, the agreement of the teachers about a predicted outcome
was higher. Nevertheless, there were also limitations due to the small data set.
Small training data sets resulted in overfitting. In addition, the model was less
robust against noise injection due to the small number of teachers.

However, this thesis gives an introduction to the application of PATE on a
health binary classification task using a small medical data set, thus providing
an initial understanding of the application of PATE in in health care.
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1 Introduction

In recent years, ML systems have become ubiquitous in society. They are
emerging in many fields such as computer vision, nature language processing,
and speech processing. On the basis of these techniques, infrastructures such
as disease prediction systems based on healthcare data [20] achieved great
success. [56] These infrastructures enable predictive, personalized medicine [34]
and increase the need for additional data in health care [47]. For example,
sharing medical data between hospitals to generate more data can benefit
many aspects of medical research. However, these benefits come with concerns
about patients’ privacy. ML models are trained on medical data usually con-
tains sensitive information about the patient such as clinical records, medical
histories or genomic data.[47] In 2018, the General Data Protection Regula-
tion (GDPR) of the European Union came into effect [2]. According to GDPR
genomic and health related data are sensitive data [33].

It was discovered that by releasing ML models trained on sensitive data
sets attackers can recover private information from model parameters [29],
[51], [37], [36], [22], [55], [52], [42]. Since the model does implicitly memorize
details about the distribution of the training data set [49], [62] the model can
be highly impacted by a single record [18]. For example overfitting [59] or
memorizing during the training process of NN [15] are potential weaknesses.
Moreover, analysing the output of a model allows attackers to reconstruct the
input data [29], [30].

Research into protecting privacy while releasing sensitive results of statistical
analysis or ML has proposed many protections such as k—anonymity [37], -
diversity [37], and t—closeness [36]. However, these techniques cannot prevent
attacks in which attackers already have information about the data set [56].

A promising approach to this problem is DP [22]. DP provides a strong
privacy guarantee by injecting noise to the statistical results computed from
the private data set [22].

DP has been widely adopted for privacy protection in ML [17], [19], [16], [58],
[48], 163], [9], [43], [10], [35]. Some research focuses on developing a DP version
of an existing ML algorithm such as DP-LR [17] or DP principal components
analysis (PCA), [19] and some of them apply DP to release data in a privacy
preserving manner [16], [58], [48]. Others developed general frameworks. Ex-
amples for these are DP stochastic gradient descent (DP-SGD) [9], which can
be applied to algorithms optimized with stochastic gradient descent (SGD),
and private aggregation teacher ensemble (PATE) [43]. PATE is based on a
teacher—student framework [43] and outperformed existing approaches [56].

In the health care sector, research about DP-ML is still at the beginning.
Researchers at the University hospital Berlin Charité developed an open source
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data anonymization tool called ARX which includes DP mechanisms and is
used in a variety of contexts such as clinical trial data sharing [1]. Eicher et
al. 2020 extended this tool with additional DP-ML features [28]. To predict
drug sensitivity based on genomic data in clinical trials, Honkela et al. 2018
developed a DP Bayesian linear regression model [33]. The researcher of [30]
provided a case study about the application of DP linear regression and DP
histogramms in clinical trials. Not focusing on ML but on statistical tests, the
application of DP to genome-wide association studies (GWAS) [3] is an other
area of the application of DP in health care [54], [61], [50].

In this work, the original PATE framework is adopted to a medical classifi-
cation problem using a small medical data set. The motivation of this thesis
is to focus on the protection of the privacy of the individual whose data was
used to train a ML model. The aim of this work is to give an introduction on
PATE regarding its capability to be used in the medical context. Accordingly,
this thesis gives a evaluation of the limitations and problems of PATE on the
limited data problem in the health sector. To evaluate the performance of
PATE, accuracy and privacy loss are the matrices.

The main contributions of this work can be summarized as follows:

o Application of PATE on a binary classification task using a small medical
data set

o Evaluation of PATE by evaluation of the number of teachers, noise in-
jection and comparison to a non private baseline model

o Discovery of limitations when applying PATE on a small data set

e Development of a PATE model with high accuracy and strong privacy

This thesis is organized as follows: The first section reviews the background
of DP. The second section explains PATE in more detail and gives a short the-
oretical background on the privacy loss of PATE. The third section describes
the methods used in the experiment followed by the experimental results re-
ported in the next section. After that, the results are discussed. Lastly, the
conclusion of this work and an outlook on future work is given.



2 Preliminary

The following chapter introduces the theoretical background on DP used in this
thesis. The fist section deals with the mathematical background on DP starting
with the original definition of DP, moving on to a more relaxed definition
which is (¢,6)-DP. Lastly, noise injection using the Laplace mechanism and
[1—sensitivity to achieve DP are explained.

2.1 Differential privacy

DP [22], [24] is a strong mathematical framework used for statistical and ML
applications to measure privacy [22]. Given a ML model and a record, it should
not be possible to determine whether this record was part of the training data
set [64], [39], [49]. Intuitively, DP requires that the information and inference
being released about a sensitive data set should be robust to any changes of
one sample [56], [57]. The definition of DP formalizes this intuition [22], [24].
However, if personal information is general statistical information, DP does
not guarantee that this information will remain private [57], [25].

2.1.1 ¢ — differential privacy

The original definition of DP is e-DP [22]. Where € represents the privacy
guarantee of a random mechanism M (Section [64]. A random mech-
anism M is applied on two neighboring data sets d and d’. Two data sets
are neighboring if they differ at most in one record. The random mechanism
M is e-DP, if it will return the output o where M(d) = o and M(d') = o
with similar probability. Because e limits the loss of privacy (Section a
smaller € results in stronger privacy guarantee and a higher € in lower privacy
guarantees.|[24]

Definition 1 e-DP. Adapted from [22] A randomized mechanism M with do-
main D and range R gives e-DP, if for any neighboring data sets (differing at
most in one record) d,d" € D and for any subsets of output S C R, it holds
that:

Pr(M(d) € S) < e Pr(M(d) € S) (2.1)

The equation also goes in the other direction.

2.1.2 (¢,0) — differential privacy

In this work, a relaxed definition of the original definition of DP (Definition
is used which is (e,d)-DP. Where § is the probability that e can not be held.
Accordingly, when 6 = 0, (¢,0)-DP and e-DP are equivalent.[26]
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Definition 2 (¢,6)-DP. Adapted from [26] A randomized mechanism M with
domain D and range R gives (€,8)-DP if for any neighboring data sets (dif-
fering at most in one record) d,d" € D, and for any subsets of outputs S C R,
it holds that:

Pr(M(d) € S) < ePr(M(d) € S) + 4. (2.2)

The equation also goes in the other direction.

2.2 Random mechanism, Laplace mechanism and sensitivity

The released information, the response or the true query answer, resp € R
from a sensitive data set d € D is first computed by a deterministic query
function f: D — R [56]. Afterwards, to the result f(d) a random mechanism
M adds noise [23]. Thus, the released information becomes a random variable
(Section [3.5.3) [56]. The random mechanism M can be defined as follows:

M(d) = f(d) +n(e, 5(f)) (2.3)

where 7(e, s(f)) denotes the noise injection. Depending on the mechanism
M, n can follow different distributions.[56] In this work, n follows the Laplace
distribution.

The probability density function of the Laplace distribution is characterized
by its location p and scale b > 0 parameters. The probability density function
of Lap(p,b) is:

Pl b) = —eap (— o “‘) (2.4

Figure |2.1) shows the Laplace distribution with p = 0.

P(X)

4 2 2 -4

Figure 2.1: Laplace distribution. Adapted from [4]. Example of the probability
density function P(X) of the Laplace distribution with parameter
pn=0.



Since, n follows the Laplace distribution, the random mechanism M is called
Laplace mechanism [25]. The Laplace mechanism belongs to the global DP
mechanisms since the data is perturbed at output time. In contrast, in local DP
mechanisms data is perturbed at input time.[26] For the Laplace mechanism
the noise injection is as follows:

€

n(e,s(f)) = Lap <S(f)> (2.5)

where S(Ef ) is the scale parameter b of the Laplace distribution (Equation
2.4). The value s(f) is the sensitivity (Definition |3) of the query function f
(Equation [2.3).[25] The sensitivity will be explained in the following.

The scale of the noise injected is controlled by the sensitivity s(f) and the
privacy parameter e [25]. Over any two neighboring data sets, the sensitivity
s(f) bounds the possible change in computing the output of the query f [56],
[22], [26]. In other words, the sensitivity s(f) is the maximum absolute distance
of f(d) and f(d’) [26]. The sensitivity s(f) of the Laplace mechanism is called
the [; - sensitivity and is defined as:

Definition 3 [; - sensitivity of Laplace mechanism. Adapted from [26] The
sensitivity s(f) of two neighboring data sets d,d’ € D differing in at most one
record and the deterministic function f : D — R is defined as:

— N ’
s(f) = max|lf(d) — f(d)]x (2.6)
Figure shows the distribution of the outcome of the Laplace mechanism
M on two neighboring data sets d and d/. In Figure the probability that
M returns an output M(d) = o and M (d') = o with the same probability is
shown at point o.

For a more detailed introduction and the mathematical background on DP
see [12].
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Figure 2.2: Probability density function of Laplace mechanism M on two neigh-
boring data sets d (blue) and d/ (yellow). Adapted from [4]. The
probability that M (d) and M (dr) return the same value is similar
for both data sets at outcome o (red). The outcome of the query
function f to data set d is f(d) (green) and to data set d7 is f(d/)

(green).



3 PATE

This chapter gives an introduction to the original PATE framework [43]. Each
section describes a key concept of PATE. This chapter starts with data por-
tioning needed to train the PATE model, followed by the explanation of a
teacher model and a student model. The next section explains the noisy maxi-
mum aggregation mechanism, which guarantees DP. Lastly, in the final section
a privacy analysis of PATE is given.

Papernot et al. introduced PATE in [43] and expanded it in [44]. PATE
is based upon a structured application of knowledge aggregation and transfer
[13] which has been explored by Nissim et al. [41], Pathak et al. [46] and
Hamm et al. [32]. Additionally, PATE is based on an ensemble of ML models
[21] which is a common technique in ML [21]. In order to overcome the privacy
concerns in ML, PATE is based on the following ideas. Firstly, the ensemble
is trained on disjoint data subsets making the predictions made by most of
the models independent of a single sensitive data point. Moreover, in order
to prevent attackers from being able to inspect or access the internals of the
learning model, the internal of the model is kept private. In addition, the
student model, which will be published, never sees the sensitive data set. [43]

Figure [3.1] shows the different aspects of PATE.

3.1 Data partitioning

In the sensitive training data set (X,Y’) of the teacher ensemble, X denotes
the set of inputs, Y the set of labels and r the number of teachers. Therefore,
having r teacher, r sub data sets are generated. However, being trained inde-
pendently, each teacher solves the same ML problem. The training set X and
the labels Y is spit into r disjoint data sub sets (X;,Y;) where ¢ € {1,...;r}.
The subsets have the same size. On each of these subsets, one single teacher
is trained separately. [43]

3.2 Teacher

The teachers, where a single teacher’s prediction is f; where i € {1,...,r}
(Section [2.2)), are classifier trained on the sensitive sub data sets (Section
. Therefore, the teachers are not published. Since PATE is agnostic to
the underlying ML models of the teachers, there are no constraints on their
training.[43]
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Not accessible by adversary Accessible by adversary

4{ Datal >  Teacher1 \
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Figure 3.1: PATE framework. Taken from [43]. Step 1: Ensemble of teach-
ers is trained on disjoint sensitive data sets (1). Step 2: Teacher
ensemble makes predictions by using the maximum aggregation
on unlabeled public training data set of the student (2). Step 3:
Student is trained on these public data using resulting labels from
noisy maximum aggregation of the teacher predictions (3). Step 4:
Student model gets published to solve ML tasks (4).

3.3 Student

The student is a classifier trained on a public data set Z and the resulting
labels from section [3.4] In this thesis, the student is trained in a supervised
way. The student asks the teacher ensemble to label its unlabeled training
data set which is done by the maximum aggregation mechanism (see section
. In this thesis, these queries of the student to the teachers are called "label
queries" or "student queries'. The total amount of the label queries is T'. As
the student is trained in a supervised way, the total amount of label queries
T is equal to the size of the training data Z of the student. After the student
is trained, the student answers predictions queries from the end users. At this
point, the privacy loss of PATE is immutable and the adversary is not able
to infer individual information of the training data by analysing the student
model or the students’ output. Therefore, the student can be published and
privacy can be maintained in terms of DP.[43]

3.4 Noisy maximum aggregation mechanism

The ensemble of r trained teachers predicts on unseen, non-sensitive data Z.
Z is the training data set of the student with size a. Each teacher makes a
prediction f;(z;) where i € {1,...,7} on input z; € Z where k < a.

Given m classes. Then, the label count n;(z;) for a given class j < m and an
input 2z, € Z is the sum of the number of teachers that assigned class j to input
2x,.J43] In this thesis, label count and vote counts are used interchangeably.

To enforce privacy, the Laplace mechanism is used (Section. This means,

random noise from the Laplace distribution Lap % is added to the vote



counts n; of the teachers on class j and input z.
Regarding the Laplace mechanism, in this thesis, the parameter p is 0 and

|

Next, the perturbed vote counts for each class j on an input 2z are compared.
The class which has the highest perturbed vote counts is the final prediction
of the PATE model on input z;.[43]

the scale parameter b is % of the Laplace distribution (Section

g(zr) = argmaa:j{nj(zk) + Lap (i) } (3.1)

where ¢ is used as the final prediction of the PATE model on input zj, v (see
section [3.5.1) is the privacy parameter for a single label query of the student
to the teachers and Lap(b) is the Laplace distribution with location parameter

i = 0 and scale parameter b = Lap % .

3.5 Privacy analysis

3.5.1 Influence of ~

The parameter v is the privacy parameter for a single label query (Equation
2.5). Therefore, it influences the privacy guarantee of PATE. The scale pa-
rameter b of the Laplace distribution is the inverse of v (Equation . Thus,
the scale of the Laplace distribution increases with a small . This results in a
strong privacy guarantee. Since the scale of the Laplace distribution decreases
with a large v, a large v leads to a weak privacy guarantee. However, a small
~v may result in worse accuracy because adding random samples from Laplace
distribution to the label votes may cause the noisy maximum to differ from
the true maximum of the label counts.[43]

3.5.2 Privacy cost of noisy maximum aggregation mechanism

For two neighboring databases d and d’ and r teacher, r-1 teachers with pre-
dictions f; where ¢ < r, get the same same training data partition of d and d’.
Teacher f; where i = r gets the sub sets of d and d’ differing in one entry.

As a result, the label counts n; for a given class j € m and an input 2, € Z
of r-S1 teachers should be the same. The label counts n; of the teachers with
predictions f; where ¢ = r for a given class j € m and an input z, differ by at
most 1 on both data sets d and d,. As a result, the sensitivity in one class is 1.
Therefore, Lap(1/v) is added to the label count n; on class j of input z; with
e = [43].

Since the label counts differ in at most two classes, the sensitivity of the max-
imum aggregation mechanism is 2 [56]. According to the Laplace mechanism,
we have ¢ = 2y (Equation [56]. Thus, the noisy maximum aggregation
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mechanism (Section is (27,0) — DP for one label querying of the student
to the teacher ensembles (Section [3.3)).[43]

3.5.3 Deriving the privacy of loss PATE
Privacy loss and privacy loss random variable

First of all, the privacy loss and the privacy loss random variable are defined.
They show the difference of the probability distribution of running M (d) and
M(d") [43].

The privacy loss € is calculated at a specific value o € R. The actual value
of the privacy loss depends on the random mechanism M (Equation .
Therefore, the actual value of the output o depends on a random phenomenon.
The function mapping the input d, d’, some auxiliary input auz and M to
the possible random output for all M(d) is the privacy loss random variable
C(M,aux,d,d"). The definition is as follows:

Definition 4 Privacy loss at outcome o. Taken form [43] Let M : D — R be
a randomized mechanism and d, d' a pair of neighboring databases . Let aux
denote an auziliary input. For outcome o € R, the privacy loss at o is defined
as:

Pr(M(auzx,d) = o)

; d,d) =1 d 3.2
c(o; M, auz, d, d) Og(PT(./\/l(aux,d’) =0) (3.2)
The privacy loss random variable C(M, auz,d,d’) is defined as
c(M(d); M, aux,d,d') i.e. the random variable defined by evaluating the pri-

vacy loss at an outcome samples from M(d)

Moments accountant

The student queries the teachers T—times to get enough labeled training data.
The noisy maximum aggregation mechanism (Section is applied once per
query (Section . Therefore, PATE is a composition of all maximum aggre-
gation mechanisms used to label each label query. To measure the total privacy
loss of PATE, strong composition theorem [27] and moments accountant [9]
have been proposed. The moments accountant method provides a more accu-
rate calculation of the privacy loss [9]. Therefore, it is used in this work. The
properties of the moments accountant method are proven and introduced by
Abadi et al. [9], building on previous work [14], [40].

The moments accountant method (Definition [5)) is based on the moment
generating function of the privacy loss random variable (Definition . Before
defining the moments accountant method, the moments of a random vari-
able and the moments generating function of a random variable are shortly
explained.

The moments of a random variable describe the characteristics of the dis-
tribution of a random variable. For example, the first moment of a random
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variable is the expectation value and the second moment is the variance of the
random variable. All moments together describe the distribution function of
the random variable.[45]

The moment generating function is used to calculate the moments of a dis-
tribution. Moreover, the distribution of summations of two random variables
is the product of the two moment generating functions. If the moment gener-
ating function exists of a random variable exists, then its’ distribution function
exists. [45]

The cumulant generating function, which is the natural logarithm of the
moment-generating function, is used to calculate the moments of a distribution.
The Ath derivative of the cumulant generating function is the A\th moment of
the random variable.[45]

The moments accountant ays(A) is the maximum of the cumulant generating
functions of the privacy loss random variables C(M, auz, d, d’) (Section [3.5.3).
The moments accountant method calculates the cumulant generating function
apm(A;auz,d,d") for each random variable of the privacy loss. By comparing
the resulting cumulant generating function, the maximum of them is chosen
as the total privacy loss. Thus, the worst case scenario of the privacy loss is
taken. As an example: calculating the first moment, which is the expectation
variable [45], and taking the maximum of all, is the largest value for the privacy
loss and the worst case scenario.

The moments accountant are defended as follows:

Definition 5 Moments accountant. Taken from [J] Let M : D — R be a
randomized mechanism and d, d' a pair of neighboring databases. Let aux
denote an auxiliary input. The moments accountant is defined as:

am(N) = maxaue aacam(N; auz, d, d') (3.3)

where ap (N aux,d,d) = In E(exp(A\C(M, aux,d,d"))) is the moment gener-
ating function of the privacy loss random variable.

The composition theorem of the moments accountant allows to bound a(M (X))
at each step of PATE and sum them up to bound the moments of PATE [9].

Theorem 1 Composability. Taken from [{3] Suppose that a mechanism M
consists of a sequence of adaptive mechanisms Mi...My where M; is

i—1
[IR,; xD— R, (3.4)

j=1
Then for any output sequence 01...0;_j and any A

k—1

am(Nd, d) =[] am, (X 01...04-1,d, ) (3.5)

=1

where ayp(A;d,d') is conditioned on M;’s output being o; fori < k.
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3.5. Privacy analysis

To convert the moments to the DP—guarantee the tail-bound is used [43].
The tail-bound maps ¢ to a given €. The theorem is as follows:

Theorem 2 Tail bound. Taken from [{3] For any e > 0, the mechanism M is
(€,0 )-DP for
0 = minyexp(am(N) — Xe) (3.6)

Over T labels queries from the student to the teachers the following privacy
loss for PATE results based on the moments accountant:

Theorem 3 Privacy loss of PATE. Taken from [43] For any v and 6, over T
steps using the aggregation mechanism with noise Lap % , which is (27,0) -

DP, satisfies (€,0) - DP, where
9 1
€ = 4T + 2927 In (3.7)

Determined by the number of queries T' made to the teachers during training
the student, the privacy loss is independent from the end-user queries made to
the student [43].
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4 Methods and Data

This chapter gives an overview of the data set, methods and libraries used to
implement and evaluate the PATE classifier. First, the most common Python
DP-libraries will be introduced. After that, the Pima Indian diabetic data
set (PID) will be described. Third, the method to split training and test
data will be shown. Then, the different classifiers, which are teachers, student
and baseline model will be introduced. Therefore, 2 NN, 2 LR and 1 SVM
were implemented. Moreover, hyper parameter tuning of the classifier using
GridSearch() and Hparams were explained. Hparams is a Tensorflow (TF)
dashboard for hyper parameter tuning of NN. The next section deals with the
evaluation of the classifier using ROC, confusion matrix and cross validation.
Then, the explanation which classifier is chosen as the baseline model is given.
The last section explains the steps to implement the PATE model, which
includes the implementation of the noisy maximum mechanism (Section ,
the calculation function of epsilon (Theorem|[3), the implementation of different
numbers of teachers and the implementation to evaluate the number teachers,
accuracy, noise injection and privacy loss.

4.1 Differential privacy library

There are three famous open-source Python libraries for DP-ML: Opacus [7],
TF Privacy [8] and PySyft [6]. Recently, the open-source library Opacus was
released by Facebook. Opacus trains DP-PyTorch models. Since this library
was not released during this work, it was not used in this work.[7] Further-
more, PySyft is a library for secure and private deep learning developted by
OpenMined community extending the libraries TF, Kreas and Pytorch. It
gives a framework for the PATE sy ft. frameworks.torch.dp.pate. Currently,
according to the developer of the PySyft library, the library is not secure and
should not be used to protect data. [6] Therefore, this library was not used in
this work. Lastly, TF Privacy was developed by Google. One of the engineers
is Nicolas Papernot who is the main researcher of PATE. Moreover, he released
his source code for PATE in the repository of the TF Privacy library which is
adapted in this work.

4.2 Pima Indian diabetic data set
The PID was collected form the National Institute of Diabetes and Digestive

and Kidney Diseases [4]. as part of the Pima Indians Diabetes data base. The
data set includes 768 patients. All patients are at least 21 years old and are
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4.2. Pima Indian diabetic data set

Table 4.1: Python libraries for DP-ML.

library producer models
Opacus [7] Facebook PyTorch models
TF Privacy [§] Google TF models

PySyft [6] OpenMined TF, Kreas and Pytorch models

total count of diabetic and healthy patients

500

400

300

total count

200

100

healthy diabetic
label

Figure 4.1: Imbalanced classes of PID. Absolute count of diabetic (red) and
non-diabetic (blue) patients included in the PID.

female Pima Indian heritage. Based on diagnostic measurements, ML models
can predict whether or not a patient has diabetes as a binary classification

problem. [5]
4.2.1 Classes

The classes are 0 if non-diabetic (negative) and 1 if diabetic (positive). The
target distribution between positives and negatives is imbalanced. This means,
that the two classes are not represented equally. Figure 4.1| shows that there
are 500 non-diabetic and 268 diabetic patients.

4.2.2 Missing values

The PID has missing values. In order to keep the already small data set at
768 data points, the missing values are replaced by the median of the class on
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the corresponding label.

4.2.3 Features

The data consists of eight medical predictor variables as features. Figure
gives an overview of the probability distribution and a description of each
feature from the data set. To get the correlation between the features, the cor-
relation matrix was plotted. Figure shows the correlation matrix between
features. If the correlation factor is closer to one the higher the correlation
between the features. The figure shows that pregnancies, Glucose and Body
mass index (BMI) have significant correlation with the outcome. Moreover, the
features of BMI and skin thickness, Insulin and Glucose, age and pregnancies
have a significant correlation with each other.

4.2.4 Split test and training data

Using the function traintestsplit() from the Python ML library Scikit Learn,
the data set was split into test and training data. 30% of the data belonged
to the test or validation set and 70% to the training set. For reproducibility,
the parameter randomstate was set to 0.

4.3 Classifier

LR, SVM and NN classifier were compared as potential base line model (Sec-
tion [4.6), teacher model and student model (Section [4.7.4).

4.3.1 Support vector machine

The SVM was created using Scikit Learns’ classifier sum.SV C(). For binary
classification a linear kernel is needed. Therefore the parameter, kernel was
set to linear.

4.3.2 Logistic regression

The LR model was created using Scikit Learns’ classifier
linearmodel.LogisticRegression().

4.3.3 Neural network

The NN was implemented using TF 2.0. The NN consisted of 1 input layer,
3 hidden layers and 1 output layer. The hidden layers had the activation
function rectified linear activation function (relu) as activation function. The
output layer had the activation function sigmoid. To get a binary classifier,
the output layer consisted of 1 neuron, binary cross entropy was used as a loss
function and a threshold of 0.5 was chosen. Values greater or equal to the
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4.3. Classifier

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

probability distribution of BloodPressure probability distribution of BMI

—— diabetic
i —— healthy

BloodPressure

(a)

probability distribution of DiabetesPedigreeFunction probability distribution of Glucose
—— diabetic 00175 —— diabetic
I — healthy —— healthy
| 00150
00125
0.0100
00075
00050
0.0025
00000
00 05 10 15 20 25
DiabetesPedigreeFunction Glucose
() (d)
probability distribution of Insulin probability distribution of Pregnancies
—— diabetic ™ —— diabetic
I —— healthy 0200 — healthy
I 0175
0150
0125
0100
0.075
0050
B 0.025
0000
o 200 400 600 800 1000 0 5 10 15 20
Insulin Pregnancies
probability distribution of SkinThickness probability distribution of Age
—— diabetic —— diabetic
l —— healthy —— healthy
010
008
006
004
002
0.00
0 2 40 60 80 100 10 20 30 40 50 60 70 80 EY
SkinThickness Age

() (h)

Figure 4.2: Probability distribution of features of the PID set. (a) Blood Pres-
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sure: Diastolic blood pressure (mm Hg), (b) BMI: Body mass index
((kGweight)/ (Mneignt)?), (¢) Diabetic Pedigree Function: scoring the
likelihood of diabetes based on family disease history, (d) Glucose:
Plasma glucose concentration, (e) Insulin: Insulin concentration
(mu U/ml), (F) Pregnancies: Number of pregnancies per person,
(g) Skin Thickness: Triceps skin fold thickness (mm), (h) Age: Age

(years)
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Figure 4.3: Correlation between features of PID where a higher correlation fac-
tor belongs to a higher correlation between two features (brighter
colours). The closer the correlation factor is to zero, the lower the
correlation between two features (darker colours).

threshold were predicted as positive, otherwise as negative. This was realised
in an extra function.

4.4 Hyper parameter tuning

4.4.1 Grid search

The function GridSearchCV () from Scikit Learn was used to optimize SVM
and LR accuracies. GridSearch() evaluates the metrics, in this work accuracy,
for each paramter partition.

Gridsearch() for SVM was done with the following parameter: the param-
meter C' was set to: 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009,
0.1, 0.2, 0.3, 0.4, 0.5, 1, 10, 100, 1000. And the kernel was set to linear.

Gridsearch() for LR was done with the following values for the parameter
for C' : 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.1, 0.2,
0.3, 0.4, 0.5, 1, 10, 100, 1000, the paramter penalty was set to 1, [2, the solver
was set to liblinear. The second GridSearch() for LR was done with: C' set
to: 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.1, 0.2, 0.3,
0.4, 0.5, 1, 10, 20, 30 ,40, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 70, 80,
90, 99, 100, 101, 102, 105, 110, 120, 1000, penalty set to [2 and solver set to
Ibfgs.
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4.6. Baseline model

4.4.2 Hparams and Tensorboard

The accuracy of the NN was optimized by using the TF plugin Hparams and
Tensorboard. Hparams was differing optimizer, number of neurons in hid-
den layers and batchsizes. The following optimizers were used: adam, sgd,
RM Sprop. In the first layer were 4, 8, in the second 4, 8, 16 and in the third
layer 4, 8, 16 neurons plagued in. The experiment was done for batchsize 25
and 32 and 100 epochs each. For each partition the accuracy was evaluated
using the test data set (Section [4.2.4).

4.5 Model evaluation

4.5.1 Cross validation

The optimized models (Section were evaluated by cross validation using
KFold() and Stratified K Fold() from Scikit Learn starting from 2 folds up to
20 folds. Additionally, for each fold size, the average accuracy and the standard
deviation was measured. Moreover, the PATE model itself was evaluated using
KFold() with 5 folds.

In order to be able to use Sikit Learns functions on the NN, a wrapper func-
tion was implemented using the KerasClassifier() from
keras.wrappers.scikitlearn. The resulting network was used for further ana-
lyzing and evaluation steps.

4.5.2 Confusion matrix

In order to choose the baseline model, and the teachers and the student model,
the confusion matrices for the optimized models were calculated. Therefore the
function con fusionmatriz() from Scikit Learn was used. By combinations of
predicted and actual values, the confusion matrix is an other measurement to
evaluate the performance of a classification model. Its outcome is the number
of true positive (TP), true negative (TN), false positive (FP), false negative
(FN).

4.5.3 Receiver operating characteristic curve

The ROC was plotted. The ROC curve visualizes the trade off between TP
rate and FP rate using different probability thresholds. However, in this work,
the probability threshold is fixed at 0.5, and the area under the curve (AUC)
of the different models is compared. The AUC value should be close to one.

4.6 Baseline model

The aim of the baseline model is to get a justified comparison with the PATE
model. To evaluate the performance of linear and non-linear classifier, LR,
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NN and SVM (Section were compared.

4.7 PATE model

4.7.1 Data set

The data sets resulting from section 4.2.2 were used to train and validate the
PATE model. The split of the test and training was 70% to 30%. The split
results from section [4.2.4.

4.7.2 Disjoint data splits for teachers and student

The training data from section 4.7.1 was split into disjoint sub training data
sets. The number of sub sets results from the sum of the number of teachers and
plus the student. Therefore, each teacher and student gets its own training
data set. Afterwards, each teacher was trained on its training data sub set

(Section [B.1], Section [3.2).

4.7.3 Noisy max aggregation votes of the teachers

Each trained teacher predicted labels for the student training data (Section
. To calculate the noisy maximum aggregation votes from of the teach-
ers, the noisymazx() function was adapted from TF Privacy [§] and was changed
to a binary classification problem. This function takes as input a list including
the predictions of the teachers and the scale value b of the Laplace distribution
(Section [2.5)). Then, the label counts (Section and the noisy maximum
aggregation of the votes is computed (Equation . Therefore, it randomly
samples from the Laplace distribution using the function random.laplace()
from Python library Numpy. Afterwards, the most frequent label for each
data point was returned.

4.7.4 PATE classifier

First of all, to evaluate the models of the teachers (Section and students
(Section [3.3)), the accuracy of the optimized models resulting from section
were compared. The model with the highest accuracy was chosen. After that,
PATE (Chapter |3) was implemented with 2, 3, 4, 5, 10 and 20 teachers. Then,
the student was trained on the data resulting from section[4.7.1 and the output
labels of the noisy maximum aggregation mechanism of the teachers (Section
. After that, the trained student is used to make predictions on unseen
data sets.

4.7.5 Evaluation of privacy loss

To calculate the privacy loss of the PATE model, the equation of Theorem
was implemented as function epsilon(). The function gets 7', v and ¢ and
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4.10. Evaluation of the number of teachers

returns the privacy loss for the PATE model as described in section [3.5.3. For
this purpose, § was fixed at 0.00001. 7' is the total amount of the students
queries to the teacher. As in this work the student learns from the teacher in
a supervised fashion, 7' is fixed and is equal to the size of the training data of

the student (Section [3.3).

4.8 Evaluation of accuracy

In the following experiment, the PATE model predicted on unseen data. The
aim was to get as high accuracy as possible and to not overfit the data while
epsilon was not considered. For this, accuracy and ~ per label query were
plotted for every number of teachers from section [4.7.4. Then, epsilon was
calculated based on section [4.7.5.

4.9 Evaluation of noise injection

In this experiment, epsilon was fixed at 2, 5, and 8. To calculate epsilon,
different values for v were inserted in the implementation of section [4.7.5.
Then, the PATE models with different numbers of teachers and differing e
predicted on unseen data. Lastly, their accuracy was evaluated.

4.10 Evaluation of the number of teachers

The aim of this experiment was to evaluate the confidence and the agreement
of the teachers about the output of the PATE model. For example, consider a
PATE model with one teacher. The output of the PATE model only depends
on the prediction of this teacher. Therefore, the teacher always agree 100%
on the outcome of the PATE model and is confident about that. In contrast,
considering a PATE model with 100 teachers, depending on the agreement of
the teachers about the output of the PATE model, a single teachers prediction
may not change the outcome of the PATE model. This may be because the
difference between the highest label count n; on an input z; and the second
highest label count n; on the same input z; differ in more than one vote.
The mean of the difference is called absolute gap gap,. A larger absolute
gap relative to the number of teachers indicates a stronger confidence of the
teachers.

To evaluate this hypothesis, the percentage gap was calculated. If the per-
centage gap is higher, then the teachers agree on their predictions and the
model is more confident about the output. To calculate the percentage gap,
the mean of the absolute gap was calculated for different numbers of teach-
ers. Then, the difference was normalized by the number of teachers r and the
multiplied by 100. This was done for 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 teachers.
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gap, = % %100 (4.1)

To give a short example, the following gives a calculation of different per-
centage gaps resulting from 6 teachers. Given 6 teachers where 5 teachers
predict outcome positive and one predicts outcome negative, the absolute gap
is 4. With the calculation from above, this results in a percentage gap of
66.66%. Additionally, if 4 teachers predict outcome positive and 2 predicts
outcome negative then the percentage gap is 33.33%. Finally, if all predict
outcome positive, the percentage gap is 100.00%. 100% means that the teach-
ers totally agree on the output. For an even number of teachers a special case
occurs where the gap is 0. For example: given a PATE model with 6 teach-

ers. 3 teachers predict outcome positive and 3 predicts outcome negative it is
00.00%
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4.10. Evaluation of the number of teachers
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5 Results

The following chapter presents the results of this thesis. First of all, the base
line model is chosen. A description of the results of the different classifiers for
the baseline model can be found in Table [5.1l The second section shows the
results for the different classifiers, which were evaluated with accuracy as the
main parameter. Firstly, two LR models with parameters (Table were
compared. Afterwards, two NN, differing in batchsizes, were evaluated (Table
[4.4.2). Lastly, by comparing the accuracy, confusion matrices, ROC curve and
K—fold cross validation up to 20 folds the LR model, the NN and the SVM
model were compared to each other. The next section shows the results of
the evaluation of the accuracy of the PATE model. Therefore, different PATE
models with 2, 3, 4, 5, 10 and 20 teachers were compared. Their accuracy
was plotted against the noise injection per label query . Moreover, for 2 to 5
teachers, the resulting privacy loss was calculated. The next section deals with
the evaluation of the noise injection. Therefore, the value for the privacy loss
was fixed at 2, 5 and 8. Delta was fixed at le — 5. The accuracy of the PATE
model with 2, 3, 4 and 5 teachers with these privacy losses were compared.
Afterwards, the number of teachers were evaluated. Therefore, the gap, which
is the average difference of the number of votes between the top most and
the second most frequented labels, were plotted. Lastly, the accuracy of the
PATE classifiers with the best performance was compared to the accuracy of
the baseline model.

5.1 Baseline model

As the baseline model, the model with the best performance of [5.2.1 was
chosen. The resulting model was NN with accuracy of 0.87013, with batchsize
25, 8 neurons in the first, 8 neurons in the second and 8 neurons in the third
layer, the RM Sprop optimizer and with [2 regularizer set to 0.01.

5.2 PATE

5.2.1 Evaluation of classifier as teachers and student model
Comparing LR

The two different models for LR models, LR 2 and LR 1 , had the same
accuracy on the test data set. Their accuracy was 0.77. Table shows the
corresponding parameter. Since both models have the same accuracy, the F1—
Score of both were compared. The F1 score for positive outcome was 0.61
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5.2. PATE

(LR 1) and 0.60 (LR 2). Therefore, LR 1 has been chosen for the following
evaluations. In the following the optimized LR is LR 1.

Table 5.1: Comparison of two LR models. Model LR 1 has a higher F1-Sore
than model LR 2. Both models have the same accuracy.

model accuracy  C  penalty solver  F1 score (positives) ‘

LR 1 0.77 0.005 12 liblinear 0.61
LR 2 0.77 0.2 12 Ibfgs 0.60

Comparing NN

Figure shows the evaluation of the different NN. Two NN for batchsize 25
and batchsize 32 were implemented. Table shows the parameters of the
NN with the highest accuracy. Since NN 1 had higher accuracy than NN 2,
NN 1 was chosen for the next evaluations. In the following the optimized NN
is NN 1.

Table 5.2: Parameter of the NN with highest accuracy with batchsize 25 (NN
1) and batchsize 32 (NN2).

’model accuracy neurons optimizer 12 regularizer batchsize‘

NN1  0.87013 8, 8,8 RMSprop 0.01 25
NN2 0.85714  4,8,8 adam 0.001 32

Accuracy of NN, SVM, LR

Table shows the test accuracy of the optimized models. The NN (using
a Kreas Wrapper (Section 4.5.1)) had the highest accuracy (0.83) followed by
SVM (0.78) followed by LR (0.77).

Cross validation

Figure and Figure show the results of cross validation of the optimized
models. The folds ranged from 2 to 20. Comparing the fold sizes, the greater
the fold size, the smaller the data sub set and the higher the variance. The
accuracy fluctuated around the test accuracy of the models in [5.2.1. This was
similar for stratified K—fold and K—fold. Comparing the models in each fold,
the NN had the highest accuracy for all fold sizes. Followed by SVM and LR
which had similar accuracy for fold sizes.
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Figure 5.1: Comparison of different batchsizes using Hparams and Tensor-
board. NN 1 had batchsize = 25 (a), NN 2 had batchsize = 32
(b), The models with the highest accuracy are shown in green.
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Figure 5.2: K—fold cross validation of LR (a), SVM (b), NN (c). Folds values
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Figure 5.3: Stratified K—fold cross validation of LR (a), SVM (b), NN (c).
Folds values ranged from 2 up to 20 folds. The variance increased
with the fold size.
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5.2. PATE

Table 5.3: Test accuracy of LR, NN and SVM. LR had parameter C' is 0.005,
penalty is 12, solver was liblinear, NN had 8 units in the first, 8
units in the second and 8 units in the third layer. The optimizer
was RM Sprop, the [2 regularizer had value 0.01 and the number of
epochs is 25. For comparison, the accuracy of the NN was evaluated
using the Kreas Wrapper (Section . SVM had parameter C'
with 0.4 and kernel was set to linear.

’ model accuracy ‘

LR 0.77
SVM 0.78
NN 0.83

Confusion matrix

Table shows the confusion matrix of LR, SVM and NN. The test set con-
sisted of 72 actual positive (P) and 159 actual negative (N) entries. The
outcome of the models included more negative predictions than there were ac-
tual negative entries in the training data set which is discussed in chapter [6]
The recall, which is TP/P, of NN is 0.71, LR is 0.60 and SVM is 0.58. The
precision, which is TP/(T'P+ FP), of NN is 0.72, SVM is 0.68 and LR is 0.63.

Table 5.4: Confusion matrix of LR (a), SVM (b), NN (c).The test set consisted
of 72 actual positive and 159 actual negative entries.
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negative | positive negative | positive
actual 134 25 actual 139 20
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predicted| predicted

negative | positive
actual 140 19
negative
actual 21 51
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Figure 5.4: ROC curve of NN, SVM, LR. NN had the largest area (0.801),
followed by SVM (0.729), followed by LR (0.720).

ROC curve

Figure [5.4] shows the ROC curves for a fixed threshold of 0.5. The closer the
area under the ROC curve to 1, the better the performance of the model. NN
had the largest area (0.801), followed by SVM (0.729), followed by LR (0.720).

According to the results in Sections [5.2.1,/5.2.1,5.2.1 the NN outperformed
the SVM and the LR. Therefore, NN was used in PATE as student and teacher
model.

5.2.2 Evaluation of accuracy

Accuracy

The results from sections [5.2.1,15.2.1, [5.2.1 showed that the NN outperformed
the SVM and the LR. Therefore, the NN was chosen as the model for the
teachers and the student.

Figure [5.5| shows the accuracy of different numbers of teachers with respect
to . Small values of 7 corresponded to a large noise amplitude. Large values
of v corresponded to a small noise amplitude (Equation .

The training accuracy of the models increased while the value of v increased.
Moreover, the higher the number of teachers was, the lower the test accuracy
and the higher the training accuracy for increasing 7. For 2 (a), 3 (b), 4
(c) and 5 (d) teachers, the validation and training accuracy increased while
increased. For 2 or 3 teachers, the validation accuracy mostly stayed higher
than the training accuracy. For 4 and 5 teachers, the training accuracy mostly
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5.2. PATE

increased more than the validation accuracy and stayed higher than the vali-
dation accuracy. For a v around 0.6 the training accuracy tended to be larger
than the test accuracy. For 10 and 20 teachers, their validation accuracy stayed
flat while v increased. Moreover, their training accuracy increased.

For validation accuracy higher than training accuracy, 2 teachers had a peak
at v = 0.2 and validation accuracy 0.79, 3 teachers had a peak at v = 0.48
and validation accuracy 0.8, 4 teachers had a peak at v = 0.38 and validation
accuracy 0.81, and 5 teachers had a peak at v = 0.65 and validation accuracy
0.83. For the next evaluation steps, 10 and 20 teachers were dropped out due
to the limited training data size which is further discussed in chapter [6]

Privacy loss

In the following, the resulting privacy loss of PATE was calculated for a -~
greater or equal 0 and a validation accuracy higher than the training accuracy.
Table [5.6[shows the results of the estimation. The accuracy increased with the
number of teachers. 5 teachers had the highest accuracy (0.83) with an e of
209.25 and 89 label queries. The lowest accuracy was identified for 2 teachers
(0.79), resulting in € of 54.32 with 179 label queries.

Table 5.6: Evaluation of accuracy. Delta is fixed at 1e — 5. The highest ac-
curacy of varying numbers of teachers where the test accuracy is
higher than the training accuracy.

teachers T gamma € accuracy

2 179 0.2 54.32 0.79
3 134 048  176.81 0.80
4 107 0.38 99.52 0.81
) 89 0.65  209.25 0.83

5.2.3 Evaluation of noise injection

Table shows the accuracy reached by the models when having a privacy
loss around 2, 5 and 8. Only 2 and 5 teachers reached an accuracy above 0.70.
4 teachers did not reach an accuracy above 0.60. In an accuracy comparison
for each teacher, 2 teachers reached the highest accuracy of 0.74 by having a
privacy loss of 8.01. The weakest performance occurred for 4 teachers with an
accuracy of 0.31 and a privacy loss of 5.06.

5.2.4 Evaluation of the number of teachers

Figure shows the percentage gap. With a smaller number of teachers, the
percentage gap increased. With a higher number of teachers, the percentage
gap decreased. 1 teacher showed a percentage gap of 100%, while 8 and 9
teachers showed the smallest percentage gap which was less than 60%.
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10 teachers (e), 20 teachers (f). Small values of v correspond to a

large noise amplitude. Large values of v corresponded to a small
noise amplitude. The training accuracy was the mean of the K—
fold cross validation using the training data set. The validation
accuracy was the accuracy resulting from applying the model on

the test data set.
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Table 5.7: Comparison of PATE classifier with 2, 3, 4 and 5 teachers. The
privacy loss is fixed around 2, 5 and 8. Delta is fixed at 1le — 5.

teachers T gamma epsilon accuracy
2 179  0.015 2.08 0.39
2 179  0.033 5.02 0.57
2 179 0.049 8.01 0.74
3 134 0.018 2.17 0.57
3 134 0.038 5.00 0.61
3 134 0.057 8.07 0.62
4 107 0.020 2.16 0.58
4 107 0.043 5.06 0.31
4 107 0.063 7.95 0.54
5 89 0.022 2.16 0.76
5 89 0.047 5.04 0.55
5 89 0.069 7.94 0.69

5.3 Comparison PATE vs baseline model

Comparing the accuracy of PATE with the accuracy of the baseline model, the
baseline model outperformed the PATE model. The base line model reached
an accuracy of 0.83 5.2l The PATE model reached an accuracy of 0.76 and a
privacy loss of 2.16. The PATE model consisted of 5 teachers and the number
of student queries was 89 (Table [5.7).
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ers agree on their predictions. Therefore, the teachers are more
confident about the outcome of the PATE model.
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6 Discussion

In this chapter, the results of this work will be discussed. The focus here will
be on aspects and possibilities for increasing the accuracy and performance
further, while comparing the results to recent literature. Therefore, the parti-
tion training data set, the number of teachers, the agreement of the teachers
and the comparisons to the baseline model will be included.

6.1 Discussion of accuracy, number of teachers, noise
injection partition of data set

According to Papernot et al. 2017, the performance of the PATE model greatly
depends on the number of teachers [43]. The researchers trained 250 teachers
in their work. This conflicts with the results of this thesis. In this thesis,
the PATE model with best performance had 5 teachers. Even with a small
number of teachers, compared to the number of teachers used in the work of
Papernot et al. 2017, an accuracy of 0.76 and a strong privacy guarantee of
2.16 were reached. Comparing the accuracy of the baseline model (0.83) and
the accuracy of PATE showed just a difference of 0.07 while introducing a
strong privacy guarantee.

Moreover, having r teachers, each teacher trains on (1/r) fraction of the data.
If r is small, the teachers are trained on larger data sets resulting in a higher
performance. This may be the reason why in this thesis a smaller number
of teachers results in a strong confidence of the teacher ensemble about the
outcome prediction.

Nevertheless, there were also some limitations due to the small data set.
First of all, a large number of teachers r ended up in training sets that were
too small. As a result, when trained with 10 and 20 teachers, the PATE
classifier ended up overfitting the test data (Figure [5.5).

Secondly, noise injection may have a greater impact on the outcome, when
training a number of teachers smaller than 10. This might also explain the
accuracy of 0.31 and 0.39 for 2 and 4 teachers (Table[5.7)). An additional expla-
nation, which does not exclude the previous, may be that an even number of
teachers can have the same amount of label counts in both classes. Therefore,
the outcome is random.

To get a better performance of PATE on small data sets, Wang et al. 2019
used transfer learning to have a large number of teachers on a small data
set. Their model extends PATE and is called "TrPATE". In transfer learning
the performance of a model is improved by training on a target domain and
transferring information from a related domain. The model is the teacher
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ensemble, the target domain is the sensitive training data set for the teachers
and the source data set, with information from a related domain, is a related
public data set. The knowledge from a related non-private data set is shared
with every teacher of the ensemble. Thus, each teacher is trained on both the
private data and the transferred knowledge.[56] Moreover, if the target data
set is significantly smaller than the source data set, learning transfer enables
training a large target network without overfitting [60].

In addition, the data set plays a crucial role for developing a high perform-
ing model [38], [31]. The Pimia Indian diabetic data set includes more nega-
tive than positive entries which may have introduced a bias towards negative
predictions in this thesis. Evidence confirming this may be that all models
predicted more entries as non-diabetic (negative) than were actually in the
training data set in order to maximize its accuracy. Additionally, the models
had a recall between 0.71 and 0.58 (Table [5.4). This shows a shift to negative
predictions. Thus, the accuracy fails to report true positive or true negative
outcomes of the models [53]. In order to meet the requirements of a good
performance measurement, the ROC curve, the confusion matrix and the F1
score were evaluated as well.

The sub data sets for the teachers were randomly sampled. Arora argues
that if the disjoint data sets are not representative and diverse, the individual
teachers are not trained efficiently. Due to this, no consensus of the teachers
is reached. To overcome this issue, Arora developed the guided PATE. The
researcher clustered data points using k-Medoids clustering, where each cluster
contains data points. The data points are added evenly and sequentially to
each sub data set of the teachers.[11]

Another method which may lead to an even a higher accuracy was developed
by Papernot et al. 2017. The researcher trained a collection of binary experts.
An expert for class 7 was trained to predict 1 if the sample was in class 7 and 0
otherwise. Using binary experts improved the student’s accuracy compared to
the student trained on arbitrary data with the same number of label queries.
However, the absolute increases in accuracy were limited between 1.5% and

2.5%.[43]

6.2 Summary of discussion

In summary, this thesis showed that the accuracy loss of the PATE model was
small on a small medical data set compared to the baseline model. Moreover,
a small number of teachers was used compared to the original implementation
of PATE [43]. This thesis is an early stage work. Several challenges remain.
However, the implementation of this thesis guarantees a strong privacy. Thus,
PATE has the capability to be used in the medical context. Therefore, an
introduction towards using PATE for private machine learning in health care
was given.
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7 Conclusion and QOutlook

In this work, the original PATE was applied to a binary classification problem
on a small medical data set.

The performance of 2 LR, a SVM and two NN was compared using cross
validation, confusion matrix, F1 Score, AUC and ROC curve and accuracy.
NN had the best performance. Therefore, PATE was implemented using NN.
Furthermore, the number of teachers, the noise injection, and the accuracy of
PATE were evaluated. Therefore a NN was used as a benchmark. The final
PATE classifier had an accuracy of 0.76 with an privacy loss of 2.16, 5 teachers
and 89 student queries.

This work demonstrated that PATE can be applied even on a small medi-
cal data set with reasonable accuracy (0.76) compared to the baseline model.
Compared to the original work of Papernot et al. 2017, in this thesis a smaller
number of teachers reached a strong privacy guarantee of 2.16. Additionally,
the potential bottlenecks for increasing the accuracy further were highlighted.
Nevertheless, PATE has the efficiency to be applied on sensitive medical learn-
ing tasks.

The results of this project may help to develop other applications of PATE
on medical learning tasks. Further work should evaluate PATE using synthetic
data. This may overcome the limited data problem in some medical tasks. In
Addition, the number of label queries of the student to the teacher ensemble
should be implemented independent from training data size of the student.
Hereby, the number of label queries will be an additional hyper parameter
which can be manipulated to get a stronger privacy. Moreover, an efficient
implementation for use in hospitals should be developed. Lastly, the semantics
of DP and PATE are complex. Their concepts should be explained such that
a non-technical audience for example ethic committees and political decision
makers are able to to understand DP. This may also help to get patients’ trust
and data.
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