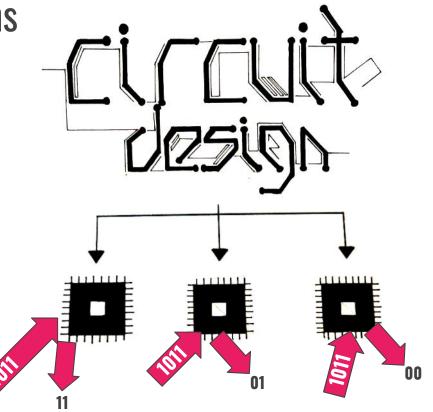


# Attacking RO-PUFs with Enhanced Challenge-Response Pairs

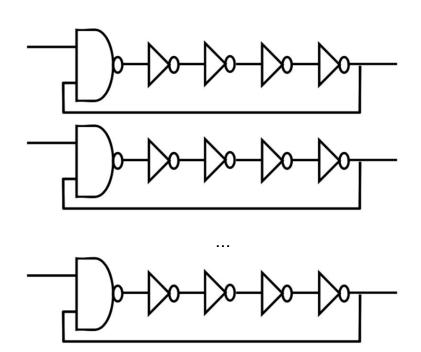
### Nils Wisiol and Marian Margraf

{firstname.lastname}@fu-berlin.de


# Outline

- Physically Unclonable Functions
- 2. Ring Oscillator PUF with Enhanced Challenge-Response Pairs
- 3. Attack
- 4. Discussion
- 5. Future Work
- 6. Q/A

## I. Physically Unclonable Functions


#### Physically Unclonable Functions

- Identical circuit design
- Behavior different on each chip
  - Formalized by a challenge-response schema
- Hard to clone, physically or otherwise
- How many challenges does it have?
  - o "Weak" PUF
  - "Strong" PUF



#### Ring Oscillator Physically Unclonable Functions

- Cheap and effective method for implementation of PUFs on FPGAs
- Ring of inverters
- Oscillates with hardware-intrinsic frequency
- One PUF has an array of n oscillators
- Challenge selects two, response tells us which one has higher frequency
- "Weak", i.e. small number of challenge-response pairs



# II. RO-PUF with Enhanced Challenge-Response Pairs

Delavar, Mahshid, Sattar Mirzakuchaki, and Javad Mohajeri. "A Ring Oscillator-based PUF with enhanced challenge-response pairs." Canadian Journal of Electrical and Computer Engineering 39.2 (2016): 174-180.

#### Enh-RO-PUF: Setup

- Choose an instance-specific **seed** S of n-1 random bits
- n ring oscillators have **frequencies**  $f_{i}$
- The comparison vectors  $\varphi(i)$  indicate for each ring, if the other rings oscillate faster or slower

The RO-PUFs secret

#### **Enh-RO-PUF: Challenge and Response**

- Challenge C is any subset  $\{c_1, c_2, ..., c_k\}$  of  $\{1, 2, ..., n\}$
- For each challenge C, we shift the seed S by  $c_1 + c_2 + ... + c_k$  bit. For the **shifted seed** we write  $\rho(C)$ Note that  $\rho(C) = \rho(C \cup \{n-1\})$
- Finally, the **response** for challenge C is

$$res(\textit{C}) = \phi(c_1) \oplus ... \oplus \phi(c_k) \oplus \rho(\textit{C})$$

$$XOR \ of \ all \ the \ comparison \ intended \ to \ vectors \ for \ mask \ the \ rings \ selected \ by \ the \ input$$

# III. Attack

#### Attack Step One: Recover $\varphi(n-1)$

- Shift operation ρ of seed S is cyclic
   ρ(C) = ρ(C ∪ {n-1})
- Choose challenges  $C_1 = \{1\}, C_2 = \{1, n-1\}$

```
\operatorname{res}(C_1) = \varphi(1) \oplus \rho(C_1)
\operatorname{res}(C_2) = \varphi(1) \oplus \varphi(n-1) \oplus \rho(C_2)
\operatorname{res}(C_1) \oplus \operatorname{res}(C_2) = \varphi(n-1) \oplus \rho(C_1) \oplus \rho(C_2)
```



#### Attack Step Two: Recover Seed S

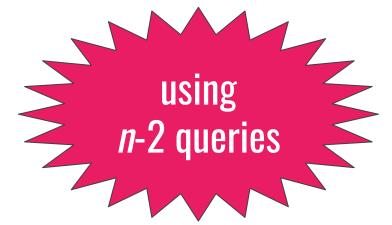
• Choose challenges  $C_3 = \{n-1\}$ 

$$res(C_3) = \varphi(n-1) \oplus \rho(C_3) = \varphi(n-1) \oplus S$$



Known from attack step one

#### Attack Step Three: Recover All Other Comparison Vectors


- $\varphi(n-1)$  known from step one
- $\varphi(1)$  known after step two: we had  $\operatorname{res}(C_1) = \varphi(1) \oplus \varphi(C_1)$
- To recover  $\varphi(i)$ , Choose challenge C =  $\{i\}$

$$\mathsf{res}(\textit{C}) = \phi(\textit{i}) \oplus \rho(\{\textit{i}\})$$

$$\qquad \qquad \mathsf{Known from}$$

$$\mathsf{attack step}$$

$$\mathsf{two}$$



# All secrets recovered after *n*+1 chosen queries

# IV. Discussion

#### **Security Implications**

- We only break one proposed design choice of Delavar et al.
- Other design choices are secured by additional crypto primitives and hence out of scope
- Attack shown for attacker-chosen challenges, but can be extended to passive attacks
- Breaks all protocols based on the primitive

#### How did This Happen?

 Some assumptions used in the security analysis do not hold, e.g.

Different challenges are not xored with unique random vectors, but with shifted versions of a single random vector

- Important design choices left open, e.g.Seed generation once or every time?
- Some conclusions used in the security analysis are not sound, e.g.

High uniqueness does not imply unclonability

# **Future Work**

#### **How to Build Secure Strong PUFs?**

- Still no secure strong PUF known
- Failed attempts:
  - Arbiter PUF by Gassend and Lim (attack also by Gassend and Lim)
  - XOR Arbiter PUF by Suh and Devadas (attack by Rührmair et al.)
  - Bistable Ring PUF by Chen et al. (attack by Xu et al.)
  - Ring Oscillator Sum PUF by Yu and Devadas (attack by Becker et al.)
- Not yet failed attempts:
  - Majority Vote XOR Arbiter PUF by myself (2017)
  - o (modified) Arbiter PUF once more by Mispan et al. (2018)
  - Coin-Flipping PUF by Tanaka et al. (2018)
  - Dual-Mode PUF by Wang et al. (2018)
- Let's turn to cryptographic constructions!



Attacking RO-PUFs with Enhanced Challenge-Response Pairs



#### Nils Wisiol

Marian Margraf

Freie Universität Berlin

http://idm.mi.fu-berlin.de
firstname.lastname@fu-berlin.de

DOI: 10.1007/978-3-319-99828-2

24th IFIP World Computer Congress, TC-11 SEC, 18. Sep 2018, Poznan, Poland