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This thesis on propositional proof systems and disjoint NP-pairs gives a survey of these fields. We

present history and motivation of both theories by giving examples for their use. The reader is

then introduced into the formal notions of the fields. Dedicated chapters present important and

outstanding results from the theories. Some results are proven, some results are given without a

proof. It follows a chapter that presents the relation of both fields with a result due to Razborov.

As for none of the assertions in this thesis the absolute truth value is known, we also survey some

oracles relative to which we know the truth value of important statements. We finally look into

open questions and suggest future work on both fields.
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1 Introduction

This thesis aims at readers that do not have a strong background in the theories of propositional

proof systems and disjoint NP pairs. It surveys important results from both and points out impor-

tant connections in between these two theories. The core of the thesis is the implication chart in

Figure 1.1 that summarizes virtually all results mentioned in this thesis.

Section 2 is split into two pieces. In 2.1, we introduce the reader to the theory of disjoint NP-pairs

based on the notion of promise problems. In 2.2, we familiarize ourselves with propositional proof

systems. Both introductions contain history, motivation and notions of the theories. In Section 2.2,

we give basic results and proofs that help the reader understanding the introduced notions. Readers

familiar with notions from both fields can safely skip this Section.

Section 3 covers important results from the field of disjoint NP-pairs. We will study the earlier

introduced reducibility of pairs in greater detail. It turns out that various definitions of reducibility

available in the literature are equivalent. Subsequently, we study refinements of the ESY-conjecture

and connections to open questions of complexity class separation.

Greater details of the theory of propositional proof systems will be covered in Section 4. We

will justify the motivation to study proof systems by establishing an equivalent formulation of

NP = coNP, before we look into sufficient and necessary conditions for their existence. These

conditions will lay the foundation for the study of different oracles in Section 6.

Section 5 finally covers the connection between both theories that was discovered by Razborov. It

presents a proof for Razborov’s theorem that uses notions of complexity theory.

We also take a look at relativized worlds in Section 6. We point the reader to oracles relative to

which optimal proof systems exist, and respectively, do not exist. Section 6.2 studies the converse

of Razborov’s theorem, for which we know oracles relative to which it holds, and relative to which

it does not hold. Finally we refer the reader to an oracle that separates different refinements of the

ESY-conjecture from each other.

We conclude the thesis with a summary of open questions and future work on the field in Section 7.
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2 Preliminaries

2.1 Disjoint NP-Pairs

The study of disjoint NP-pairs originates in the study of public-key cryptosystems (PKCS). The

interest in secure PKCS is fundamental to everyday life as well as to academia, as provably hard-

to-crack PKCS would imply NP 6= P.

To study the hardness of PKCS, Even, Selman and Yacobi [ESY84] used the notion of promise

problems rather than decision problems to model the problem of cracking a PKCS. In fact, promise

problems are a generalization of decision problems. A machine working on a promise problem is not

only given an input, but also a promise that for this input, a certain condition holds. The machine

solves the problem, if it gives the right answer on all inputs for which the promise holds. If the

promised condition does in fact not hold for a given input, then the machine can act arbitrarily.

We can define promise problems more formally, following Goldreich’s survey [Gol05]: A promise

problem is a partition of the set of all strings into three subsets:

1. The set of strings representing Yes-Instances,

2. the set of strings representing No-Instances, and

3. the set of disallowed strings.

A machine that solves such a promise problem has to accept on all Yes-Instances, to reject on all

No-Instances and act arbitrarily on all other strings. This includes that the machine might not halt

at all.

We can write this partition as a pair of two disjoint sets (A,B), where A and B represent Yes- and

No-Instances, and the set of disallowed strings is A ∪B. The promise in this setting is that a given

input string either belongs to A or B. If A ∪B = ∅, then the promise problem has no disallowed

strings and thus no promise, it is in fact a decision problem.1

Using this notation, we can define a promise problem that captures the hardness of cracking PKCS,

that is, captures the hardness of finding the plain text to a given cipher text C and public key K.
1Even, Selman and Yacobi [ESY84] used a pair (Q,R) to represent promise problems, where Q is a predicate true

for all allowed strings (the promise) and R is a predicate true for all Yes-Instances (the property). This relates with
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To crack the cryptosystem, we will conduct a binary search among all strings up to a reasonable

length. The scope for the binary search is limited, as the length of the plain text is polynomial in the

length of the cipher text. Notice that this notion captures the hardness to crack every cipher text

in a cryptosystem. While we can conclude cryptographic insecurity from an easy cracking problem,

a hard cracking problem does not imply cryptographic security, as a subset of cipher texts may be

still easy to crack.

The promise problem is defined as follows:

1. The set of Yes-Instances will be the set of strings 〈M ′, C,K〉 for which there exists a message

M , M ≤M ′, such that M encrypted with K yields cipher text C.

2. The set of No-Instances will be the set of strings 〈M ′, C,K〉 for which there exists a message

M , M > M ′, such that M encrypted with K yields cipher text C.

3. The set of disallowed strings will be all triples 〈M ′, C,K〉 such that for all plain texts M ,

encryption with K does not yield C.

With a machine solving this promise problem, we can find the plain text to any given C and K by

binary search over all messages M ′. Thus, the runtime of cracking the public-key cryptosystem is

within a logarithmic factor of the runtime of the machine solving the promise problem. Therefore,

we consider the hardness of the promise problem as a good measurement for the hardness of the

cracking problem.

But why not model the cracking problem as a decision problem? To see why a simple decision

problem does not capture the cracking problem correctly, assume we have a cryptosystem such that

the decision problem A is not efficiently computable. However, if there is an algorithm efficiently

solving the promise problem (A,B), the crypto system would still be easy to crack. On the other

hand, if the promise problem is hard, the decision problem will also be.

Goldreich’s definition as follows:

A ∪B = {w ∈ Σ∗ | Q(w)}
A = {w ∈ Σ∗ | Q(w) ∧R(w)}
B = {w ∈ Σ∗ | Q(w) ∧ ¬R(w)}

4



We call a set S for which A ⊆ S and B ⊆ S a separator. Let the set Sep(A,B) denote the set of

all separators for a given pair (A,B). A pair (A,B) that has no polynomial-time decidable set in

Sep(A,B) is called P-inseparable, otherwise it is called P-separable.

The interesting class of promise problems (A,B) is the class with promises that are not polynomial-

time decidable. In the contrary case where A ∪ B is efficiently computable, deciding the promise

problem (A,B) is polynomial-time equivalent to solving the decision problems A or B.

Assigning a hardness to PKCS immediately calls for a notion that compares the hardness of two

promise problems. Following Grollmann and Selman [GS88], we use the following reductions for

promise problems that naturally arise from the reductions of languages.

Definition 1. 1. A promise problem (A,B) is many-one-reducible in polynomial time to (C,D),

(A,B) ≤pp
m (C,D), if for every separator T ∈ Sep(C,D), there exists a separator S ∈ Sep(A,B)

such that S ≤p
m T .

2. A promise problem (A,B) is many-one-reducible in polynomial time to (C,D), (A,B) ≤pp
T

(C,D), if for every separator T ∈ Sep(C,D), there exists a separator S ∈ Sep(A,B) such that

S ≤p
T T .

3. As a generalization of the previous two, we define a promise problem (A,B) to be r-reducible

to (C,D), (A,B) ≤pp
r (C,D), if for every separator T ∈ Sep(C,D), there exists a separator

S ∈ Sep(A,B) such that S ≤r T .

4. A promise problem (A,B) is NP-hard, if for every Turing machine M that solves (A,B), the

language accepted by M is NP-hard.

A promise problem (A,B), with A,B non-empty and A,B ∈ NP is a disjoint NP-pair. We define

DisjNP to be the set of all disjoint NP-pairs. For this class, we define completeness:

Definition 2. 1. A disjoint NP-pair (A,B) is ≤pp
m -complete, if for every (C,D) ∈ DisjNP we

have (C,D) ≤pp
m (A,B).

2. A disjoint NP-pair (A,B) is ≤pp
T -complete, if for every (C,D) ∈ DisjNP we have (C,D) ≤p

T

(A,B).

5



We define ≤pp
r -completeness analogously.

Evan, Selman and Yacobi found out that if disjoint NP-pairs that are NP-hard do not exist, then

there is exist no PKCS with NP-hard cracking problems.

The assertion that there are no disjoint NP-pairs that are NP-hard to solve has many more conse-

quences and has been studied well since it was formulated as a conjecture by Even, Selman, and

Yacobi [ESY84].

Conjecture 3 (ESY). For every pair of disjoint sets in NP, there is a separator that is not Turing-

hard for NP. [ESY84]

If the conjecture holds, then no public-key cryptosystem is NP-hard to crack. The following refined

version of the ESY-conjecture can be proven to be equivalent to NP 6= coNP, see Theorem 16.

Conjecture 4 (ESY-m). For every pair of disjoint sets in NP, there is a separator that is not

many-one-hard for NP. [HPRS12]

We will study consequences of the ESY-conjectures in Section 3.2.

2.2 Propositional Proof Systems

To start with an example, we will have a look at the resolution principle, which was introduced by

Robinson [Rob65]. Consider a Boolean formula ϕ in conjunctive normal form. If ϕ is not satisfiable,

the resolution principle provides a way to find a proof for this fact. To find a proof, the resolution

principle iteratively combines two existing clauses into a new and shorter clause with equivalent

truth value. Robinson showed that the resolution principle yields the empty clause eventually

for any unsatisfiable formula, and any formula for which the principle yields the empty clause is

unsatisfiable:

Theorem 5 (Resolution Theorem [Rob65]). For a formula ϕ in conjunctive normal form, the

resolution principle yields the empty clause if and only if ϕ is not satisfiable.

As we can see from the way resolution works, there are exponentially many options how to combine

the clauses, and not every sequence of combinations will yield the empty clause. Hence, it is hard to

6



find a sequence of combinations that derive the empty clause. By Theorem 5, this sequence exists

if and only if the formula is unsatisfiable. As opposed to finding a sequence, given a sequence of

combinations, we can easily check if this sequence derives the empty clause.

Using formal terms, let f be defined by

f(〈ϕ,w〉) =


¬ϕ if combination sequence w applied to ϕ yields the empty clause,

⊥ otherwise.

The function f is polynomial-time computable. By the Resolution Theorem, f only outputs tau-

tologies, and for every tautology ¬ϕ, there is an input 〈ϕ,w〉 such that f(〈ϕ,w〉) = ¬ϕ.

Given a combination sequence w that yields the empty clause for ϕ, the function f provides a fast

way to verify ¬ϕ is a tautology. We call f a propositional proof system, and we call 〈ϕ,w〉 an

f -proof for ¬ϕ.

Definition 6. A polynomial-time computable function f that is onto the set of tautologies is called

a propositional proof system or proof system. For any w, we say w is a f -proof for x if f(w) = x. If

there is a polynomial p, such that for all x, and all f -proofs w of x, we have |w| ≤ p(|x|), then f is

polynomially-bounded.2

Cook and Reckhow started a line of research [CR79] that tries to investigate what the length of the

shortest proof of a propositional tautology relative to the length of the tautology is. The interest in

the length of the proof is motivated by the fact that the existence of polynomial-length proofs for

all tautologies characterizes the question of whether NP = coNP. (A fact we will prove in Section

4.) However, no known proof system has been proven to have proofs with length bounded by a

polynomial. To tackle the problem, Cook and Reckhow introduced the notion of simulation of proof

systems.

Definition 7. Let f and g be proof systems. We say f simulates g, if there is a function h such that

for all w, it holds that f(h(w)) = g(w) and |h(w)| ≤ p(|w|). We call h a translation function. If h is
2At this point it is worth to mention that most literature uses a generalization of this term of proof systems. A

function f is a proof system for L, if f is onto L and polynomial-time computable. Notion from the definition above
can be used accordingly. This thesis only uses the propositional proof systems for TAUT, or short, proof systems.
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polynomial-time computable, we say f p-simulates g. A proof system that simulates (p-simulates)

every other proof system is called optimal (p-optimal).

An more intuitive (and informal) way to give a definition for “f simulates g” is to say that for

every tautology ϕ, the f -proof for ϕ is at most polynomially longer than the g-proof of ϕ. An

optimal proof system then has the shortest proofs for tautologies among all proof systems, within

a polynomial factor.

However, it is not only unknown whether polynomially-bounded proof systems exist, it is also

unknown whether optimal or even p-optimal proof systems exist. To study the existence of optimal

and p-optimal proof systems, we will therefore study sufficient conditions and implications in Section

4. To become familiar with these notions, we present a strong sufficient condition for the existence

of optimal proof systems:

Theorem 8. If NP = coNP, then there is an optimal proof system.

Proof. Let N be a NP-machine deciding the set of tautologies, TAUT ∈ coNP. We define f by

f(〈i, x〉) =


x if N accepts w along path i,

⊥ otherwise.

Notice that a proof system does not have to be a total function. By definition, f outputs only

tautologies, and for every tautology there is an accepting path of N , so f is onto TAUT.

To see f is optimal, let f ′ be an arbitrary proof system. There is a function g mapping each

tautology w to an accepting path i of N . Notice that g might not by polynomial-time computable,

but is polynomially length-bounded. Let w be an f ′-proof for x. With g, we can translate w into

〈g(w), f ′(w)〉, which is an f -proof for x.

As we will see in Section 4, the existence of both optimal and p-optimal proof systems can be proven

under much weaker hypotheses.

8



3 Disjoint NP-Pairs

One of the most interesting open questions about disjoint NP-pairs is whether there are complete

pairs, either ≤pp
m - or ≤pp

T -complete. A proof of the non-existence of either one would prove NP 6=

coNP and P 6= NP, but we can also relate complete pairs to propositional proof systems. Using the

ESY-conjectures, we can also relate disjoint NP-pairs to the NP vs. coNP questions.

3.1 Reducibility of disjoint pairs

The literature contains several different definitions for the reducibility of pairs. Notice that results

from this section apply to all disjoint pairs (A,B); the sets are not required to be in NP. Additionally

to the definition 1 given above in the introduction, Grollmann and Selman [GS88] also define the

notion of uniform reductions of pairs:

Definition 9. Let (A,B) and (C,D) be disjoint pairs.

1. (A,B) is uniformly many-one reducible in polynomial time to (C,D), (A,B) ≤pp
um (C,D),

if there exists a polynomial-time computable function f such that for every separator T ∈

Sep(C,D), there exists a separator S ∈ Sep(A,B) such that S ≤p
m T via f .

2. (A,B) is uniformly Turing reducible in polynomial time to (C,D), (A,B) ≤pp
uT (C,D), if

there exists a polynomial-time oracle Turing machine M such that for every separator T ∈

Sep(C,D), there exists a separator S ∈ Sep(A,B) such that S ≤p
T T via M .

Notice that this definition requires that all separators reduce via the same function or machine. Defi-

nition 1, the definition of nonuniform reducibility, does not require this. In spite of this, surprisingly,

it turns out that the uniform and nonuniform variant of the definition are equivalent.

Razborov uses yet another definition of many-one reducibility of pairs:

Definition 10. Let (A,B) and (C,D) be disjoint pairs. (A,B) is Razborov reducible3 to (C,D),

if there exists a polynomial-time computable function λ such that λ(A) ⊆ C and λ(B) ⊆ D.
3Razborov reducible is not a term commonly used in the literature. We will use it only to prove equivalence to

many-one reducibility in Lemma 11.
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It turns out that this is equivalent to the many-one reducibility defined above as well. As a summary

of all these definitions, we obtain the following Lemmas. A comprehensive proof in in the paper of

Glaßer, Selman, Sengupta and Zhang [GSSZ03, Theorems 2.8, 2.10, 2.14].

Lemma 11. Let (A,B) and (C,D) be disjoint pairs. Then the following assertions are equivalent:

1. (A,B) ≤pp
m (C,D)

2. (A,B) ≤pp
um (C,D)

3. There exists a polynomial-time computable function λ such that λ(A) ⊆ C and λ(B) ⊆ D.

The following result shows that uniform and non-uniform Turing-reductions are equivalent. This

result was first proven by Grollmann and Selman [GS88].

Lemma 12. Let (A,B) and (C,D) be disjoint pairs. Then the following assertions are equivalent:

1. (A,B) ≤pp
T (C,D)

2. (A,B) ≤pp
uT (C,D)

Therefore, for the rest of this thesis, we will only use the notions of many-one and Turing reducibility.

3.2 ESY-conjectures

The original ESY-conjecture [ESY84] is that for every pair of disjoint sets in NP, there is a separator

that is not Turing-hard for NP. This can be refined by using many-one hardness instead of Turing-

hardness.

Definition 13. For a reduction r, we define the ESY-r conjecture as follows: For every pair of

disjoints sets in NP, there is a separator that is not r-hard for NP,

∀(A,B)∈DisjNP∃S∈Sep(A,B)∃L∈NPL �r S.

Notice, ESY-T is the original ESY conjecture.

10



The negation of the ESY-r conjecture is

∃(A,B)∈DisjNP∀S∈Sep(A,B)∀L∈NPL ≤r S,

that is, there exists a disjoint NP-pair (A,B) such that all separators are r-hard for NP. Since the

different reductions imply each other, we obtain a implication chain of ESY-conjectures:

Lemma 14. Each item implies the following item in the list:

1. ESY-m does not hold.

2. ESY-tt does not hold.

3. ESY-T (the original ESY conjecture) does not hold.

This list can be extended to other reductions as well. In this thesis, we mention these specific

reductions because there are known results that relate to these assertions.

The ESY-conjectures immediately relate to the existence of complete pairs, as we can see from the

negated ESY-r statement.

Theorem 15. If ESY-r does not hold, then there exists a r-complete disjoint NP pair.

Proof. Assume that ESY-r does not hold, then there is a pair (A,B) of disjoint sets in NP such that

every separator is r-hard for NP. We claim (A,B) is r-complete for DisjNP. Let (C,D) ∈ DisjNP,

and let S be any separator for (A,B). Then since C ∈ NP and S is r-hard for NP, we have C ≤r S.

This proves C, which is a separator of (C,D), reduces to any separator of (A,B). By definition 1,

we have (C,D) ≤pp
r (A,B) and thus (A,B) is r-complete for DisjNP.

As mentioned above, the refinements of the (original) ESY-T have interesting relations to computa-

tional complexity as well. The ESY-m conjecture is equivalent to NP 6= coNP, and ESY-tt implies

NP 6= UP.

Theorem 16. [GSSZ03]The following assertions are equivalent.

1. The ESY-m conjecture does not hold, that is, there exists a disjoint NP-pair such that all

separators are many-one-hard for NP.

11



2. NP = coNP

Proof. Assume ESY-m does not hold. Let (A,B) ∈ DisjNP such that all separators are many-one-

hard for NP. The set B is a separator of (A,B), and therefore SAT ≤p
m B. Thus, SAT ≤p

m B which

means that SAT ∈ NP. It follows by the completeness of SAT that NP = coNP.

Now assume NP = coNP. The pair (SAT, SAT) only has separators that are many-one-hard for

NP.

Theorem 17. If NP = UP, then ESY-tt does not hold, that is, there exists a disjoint NP-pair such

that all separators are truth-table-hard for NP.

For a proof please refer to the work of Hughes, Mandal, Pavan, Russell and Selman [HPRS12].

4 Propositional Proof Systems

4.1 Polynomially-bounded proof systems and NP = coNP

We will show that the existence of polynomially-bounded proof systems characterizes the statement

NP = coNP. The proof is due to Cook and Reckhow [CR79].

Theorem 18. There is a polynomially-bounded propositional proof system if and only if NP = coNP.

Proof. Assume NP = coNP and let M be an NP-machine accepting TAUT. We define a proof

system f , in which all proofs are polynomially length bounded:

f(〈ϕ,w〉) =


ϕ if w is an accepting path of M on input ϕ,

true otherwise.

Since f only considers one path in the computation of M , it is polynomial-time computable. Also,

f only outputs tautologies. Therefore, f is a proof system. As there is an accepting path in the

computation of M for every tautology ϕ, all tautologies have polynomial-length proofs.

To prove the converse, suppose there is a polynomially-bounded proof system f . Since the com-

plement of TAUT is NP-complete, it suffices to show TAUT ∈ NP. Let M be a nondeterministic

12



Turing machine such that on input ϕ, M guesses an f -proof w of polynomial length and calculates

f(w). The machine then accepts if and only if f(w) = ϕ. Hence, M is an NP-machine accepting

TAUT.

Cook and Reckhow introduced the notion of optimal proof systems in order to prove NP 6= coNP,

that is, to prove there is no polynomially-bounded proof system. We call a proof system f optimal,

if f -proofs are the shortest proofs among all proof systems (with respect to a polynomial factor).

Proving the existence of an optimal proof system with proofs that are not within polynomial length

shows NP 6= coNP.

The existence of both polynomially bounded and optimal proof systems is unknown. However, we

are able to prove some necessary and sufficient conditions for the existence of optimal proof systems.

There are oracles relative to which optimal proof systems exist and relative to which optimal proof

systems do not exist, see Section 6.1.

4.2 Sufficient Conditions for the Existence of Optimal Proof Systems

To investigate further the question of whether optimal or even p-optimal proof systems exist, first

Krajíček and Pudlák [KP89] and later Meßner and Torán proved sufficient conditions for the exis-

tence of such proof systems. The results reveal a symmetry for sufficient conditions for optimal and

p-optimal proof systems:

P = NP E = NE EE = NEE
∃ an p-optimal
proof system

NP = coNP NE = coNE NEE = coNEE
∃ an optimal
proof system

Figure 4.1: The symmetric structure of sufficient conditions for optimal and p-optimal propositional
proof systems.

We define EE to be the class of languages that can be decided in time 2O(2n). A language L is

called almost-tally, if every string in L is of the form 0∗10∗. By P(0∗10∗) we denote the class of

all almost-tally languages. Meßner and Torán use the notion of almost-tally languages to obtain an

even weaker sufficient condition than mentioned in the chart:
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Theorem 19. 1. If all almost-tally languages in NEE also belong to EE, then there exists a

p-optimal propositional proof system.

2. If all almost-tally languages in coNEE also belong to NEE, then there exists an optimal propo-

sitional proof system.

For the proof of 19.1, please refer to the original paper by Meßner and Torán [MT97].

The proof of 19.2 is based on constructing the almost-tally language T that belongs to coNEE. By

the hypothesis, we can then assume T ∈ EE and T ∈ NEE respectively and define a proof system

based on T .

Proof of 19.2. LetM1,M2, ... be an enumeration of deterministic Turing transducers such that there

is a universal Turing transducer that can simulate k steps of Mi in (ik)2 steps. Define the almost-

tally language

T = {0j10i | for all words w of length at most 22
j+1+i

:

(if Mi halts on w in at most 22
j+1+i

steps, then Mi outputs a tautology)}.

To see that T is a coNEE-language, we rewrite T as

T = {0j10i | ∀w, y ∈ Σ≤2
2j+1+i

:[
Mi(w) halts in 22

j+1+i
steps with output ϕ =⇒ ϕ(y) = true)

]
},

where the condition written in square brackets can be decided in deterministic double-exponential

time. By the hypothesis, we thus have T ∈ NEE. Let NT denote the nondeterministic Turing

machine deciding T in time 2c2
n , c ≥ 1.
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Based on NT , we will now define a proof system f ,

f(〈0j10i, 0s, α, w〉) =



Mi(w) if for l = j + 1 + i all of the following requirements are met:

(a) s ≥ 22
l
,

(b) |w| ≤ 22
l
,

(c) Mi on input w halts in at most 22
l steps,

(d) α is an accepting computation of NT on input 0j10i,

true otherwise.

First, we will show that f is a proof system. In both cases of the definition, f only outputs

tautologies. Also, for any given tautology ϕ, there is a k such that Mk outputs ϕ on any input

with length at least |ϕ|, and true for all shorter inputs. Hence, 10k ∈ T . Therefore, there is an α

such that 〈10k, 02
2k+1

, α, 0|ϕ|〉 is a f -proof for ϕ. This confirms f(Σ∗) = TAUT. As a last condition,

we need to verify f is polynomial-time computable: a machine computing f first checks if s ≥ 22
l .

If this is true, conditions (b), (c) and (d) can be verified in polynomial-time in |0s|. If the check

exceeds the polynomial-time limit, condition (a) does not hold and true will be output. Hence, f is

polynomial-time computable.

To demonstrate that f is an optimal proof system, let g be any other proof system. For a given

g-proof w, where g is computed by transducer Mi with time bound nk + k, we will see that there

is an α such that

w′ = 〈0j10i, 0s, α, w〉, where

s = 2c2
j+1+i

j = max(0,
⌈
log log

(
|w|k + k

)⌉
− i− 1)

is an f -proof for the same tautology, because the string w′ satisfies all conditions in the first case

of the definition of f , and therefore f(w′) = Mi(w) = g(w): (a) is satisfied by the choice of s, (b)
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holds in both of the following cases by choice of j.

If j > 0, 22
l ≥ 22

j
= 22
dlog log(|w|k+k)e

≥ 22
log log(|w|k+k)

= |w|k + k ≥ |w|.

If j = 0,
⌈
log log

(
|w|k + k

)⌉
− i− 1 ≤ 0 =⇒

⌈
log log

(
|w|k + k

)⌉
≤ i+ 1

=⇒ log log
(
|w|k + k

)
≤ i+ 1 =⇒ |w|k + k ≤ 22

i+1
= 22

l
=⇒ |w| ≤ |w|k + k ≤ 22

l
.

Condition (c), again, holds by choice of j: The runtime of Mi on input w is bounded by |w|k + k,

which is, as we have just seen, in both cases less or equal than 22
l . For condition (d), remember

that Mi is computing a proof system and thus only outputs tautologies, which implies 0j10i ∈ T .

Therefore, there is an α that is an accepting computation of NT on input 0j10i.

It remains to show that |w′| ≤ p(|w|). To see this, it is sufficient to show that j, i, s and |α| are

polynomially bounded in |w|. The Gödel-number i is a constant in |w|. Parameter j is double-

logarithmic, and thus s is polynomially bounded in |w|. The computation path α has double-

exponential length in i and j and is therefore polynomially bounded in |w|.

Some might wonder if the same proof technique is working for the assumption of NEEE = coNEEE.

However, in the case of triple exponential time, the output w′ of the translation function is not

within polynomial bounds of w, as the length of the computation path α is

2c2
2i+j+1

= 2c2
2(i+1)+log log log |w|

= 2c·(log |w|)
2i+1

> poly |w|.

4.3 Implications of the Existence of Optimal Proof Systems

In this section, we will present a result of Köbler, Meßner and Torán [KMT03]. In particular, we

will show that the existence of an optimal proof system implies the existence of a complete set of

NP ∩ SPARSE. Since Buhrman et al. showed the existence of an oracle such that there are no

complete sets for NP ∩ SPARSE, it follows that there are no optimal proof systems relative to this

oracle. As a further note, Krajíček and Pudlák [KP89, KMT03] directly constructed an oracle such

that there are no optimal proof systems.

We tend to believe that there are no complete sets for NP∩SPARSE, therefore the result by Köbler,
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Meßner and Torán provides evidence that there are no optimal proof systems.

Theorem 20. If there is an optimal proof system, then complete sets for NP ∩ SPARSE exist.

Proof. We define the set SP , containing descriptions of non-deterministic Turing machines that

have runtime bounded by l and accept, up to a given length n, only l different strings:

SP = {〈N, 0l, 0n〉 | (1)N is a non-deterministic Turing machine

(2) there are at most l pairs (xi, yi) such that

(a) all xi are distinct

(b) all yi are distinct

(c) |xi| ≤ n, |yi| ≤ l

(d) N accepts xi on path yi}

A tuple 〈N, 0l, 0n〉 does not belong to SP if and only if there exist l+ 1 inputs xi of length at most

n that are accepted by N , which proves that SP ∈ coNP.

We will now define subsets of SP that can be decided in deterministic polynomial time. Assume M

is a non-deterministic Turing machine with polynomial runtime q such that for every n, M accepts

at most q(n) strings of length at most n. That is, the language accepted by M , L(M) is q-sparse.

Observe that the set SPM = {〈M, 0q(n), 0n〉 | n ≥ 1} is a subset of SP , as there are at most l = q(n)

pairwise different inputs accepted by M for each n (see condition (2)(a) in the definition of SP ).

For every such M , there is a deterministic polynomial-time Turing machine TM that decides SPM :

given an input 〈N, 0l, 0n〉, it checks whether N = M and l = q(n), where M and q are coded into

TM ’s program. We will use SPM later to show the completeness.

We are going to define the set S ∈ NP∩ SPARSE, and prove it is complete for that class. The fact

that there is an optimal proof system will yield the many-one reduction. So let h be an optimal

proof system and let SP reduce to TAUT via γ, which gives us z ∈ SP ⇐⇒ γ(z) ∈ TAUT. Then
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we define

S = {〈0N , 0j , x〉 | (I) N is non-det. Turing machine

(II) there exists l and w, |w| ≤ j,

(a) h(w) = γ(〈N, 0l, 0|x|〉),

(b) N accepts x in at most l steps.}

We can see S belongs to NP because of the polynomial-time condition on the tuple. To see S is

sparse, first fix an N and j. By condition (II)(b), every x such that 〈0N , 0j , x〉 ∈ S is accepted by

N in at most l steps. Since 〈N, 0l, 0|x|〉 ∈ SP by (II)(a), we have N only accepting at most l inputs

of length at most |x|. For the fixed N and j we thus have at most l tuples 〈0N , 0j , x〉 ∈ S. By

condition (II)(a), we can relate this upper bound to the length of the tuples: since h and γ are both

polynomial length bounded, l is bounded by some polynomial in j. Therefore exist for any given N

and j only a in j polynomial number of tuples in S. By the tally encoding of N and j, there exist

only a polynomial number of different N and j for any fixed length k of tuples in S.

Now let’s see how every set in NP∩SPARSE many-one reduces to S. Let S′ be a set in NP∩SPARSE

that is accepted by M in time q. As shown before, SPM can then be decided in polynomial time.

This enables us to define a polynomial-time function

gM (x) =


γ(x) if x ∈ SPM ,

⊥ otherwise

with range TAUT. That is, gM is a proof system and thus simulated by the optimal proof system

h. Hence, there exists a translation function λ and a polynomial r such that for all gM -proofs x,

we have h(λ(x)) = gM (x) and |λ(x)| ≤ r(|x|). We can thus reduce S′ to S via the polynomial-time

function x 7→ 〈0M , 0r(|x|), x〉.

To prove this claim, assume x ∈ S′. By definition we have z = 〈M, 0q(|x|), 0|x|〉 ∈ SPM . Thus, z

is a gM -proof for γ(z), and therefore λ(z) is an h-proof for γ(z), so w = λ(z) satisfies condition

(II)(a). Condition (I) of S is fulfilled by definition. For the length bound of (II), notice |w| =

|λ(z)| ≤ r(|x|) = j. Since λ(z) is an h-proof for γ(z), we have z = 〈N, 0l, 0|x|〉 ∈ SP . We thus know

18



by definition of SP that N accepts inputs of length at most |x| in at most l steps. This satisfies

condition (II)(b). Altogether, we have 〈0M , 0r(|x|), x〉 ∈ S. The converse follows immediately from

(II)(b).

The technique of this proof can be generalized and extended to a lot of promise classes, most

interestingly UP:

Theorem 21. 1. If there is a p-optimal proof system, then UP has a many-one complete set.

2. If there is an optimal proof system, then UP has a complete set under non-uniform many-one

reducibility.

For the proof, we refer the reader to the work of Köbler, Meßner and Torán [KMT03]. Among UP,

it also contains completeness results on Few,FewP, NP ∩ SPARSE and NP ∩ coNP.

One of the most outstanding consequence of the existence of optimal proof systems is the existence

of complete NP-pairs, first proven by Razborov in 1994. The proof requires some preparation and

is demonstrated in the next section.

5 Canonical Disjoint NP-pairs for Proof Systems

Razborov found a way to relate proof systems with disjoint NP-pairs [Raz94] by defining a canonical

pair (SAT∗,REFf ) for every proof system f , where

SAT∗ = {(ϕ, 1m) | ϕ ∈ SAT and m ≥ 0},

REFf = {(ϕ, 1m) | ¬ϕ ∈ TAUT and ∃y, |y| ≤ m such that f(y) = ¬ϕ}.

Notice, if ¬ϕ ∈ TAUT then ϕ cannot by satisfied by any assignment, and there exists an f -proof

for ϕ. Hence, REFf holds pairs (ϕ, 1m) for all unsatisfiable formulas ϕ for sufficiently large m. It

is thus disjoint from SAT∗, which holds (ϕ, 1m) only for satisfiable formulas ϕ. The set REFf is

in NP because f is polynomial-time computable. We can relate REFf to the question of shortest

proofs for tautologies by finding the minimum m for a given tautology ¬ϕ.
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The notion of canonical pairs is closely related to the notion of simulation of proof systems and

yields an corollary originally due to Razborov [Raz94].

Lemma 22. For two proof systems f and g, if f simulates g, then (SAT∗,REFg) ≤pp
m (SAT∗,REFf ).

Proof. Since f simulates g, there is a function h such that for all strings w, g(w) = f(h(w)) and

|h(w)| ≤ p(|w|). Let λ : Σ∗ → Σ∗ be a function mapping (w, 0n) to (w, 0p(n)). We claim that for λ,

we have λ(SAT∗) ⊆ SAT∗ and λ(REFg) ⊆ λ(REFf ). For the first claim, if (w, 0n) ∈ SAT∗, then

for any m ∈ N we have (w, 0m) ∈ SAT∗ by definition. For the second claim, if (w, 0n) ∈ REFg,

then ¬w is a tautology and there exists a y, |y| ≤ n, such that g(y) = ¬w. Applying h to y yields

¬w = g(y) = f(h(y)) and |h(y)| ≤ p(|y|) and therefore (w, 0p(n)) ∈ REFf .

Furthermore, for any given disjoint pair (A,B), we can always find a proof system such that the

canonical pair is polynomial-time equivalent.

Lemma 23. For any (A,B) ∈ DisjNP, there exists a proof system f such that (A,B) ≡pp
m (SAT∗,REFf ).

Lemma 22 and 23 together result in the following Corollary.

Corollary 24. For an optimal proof system f , the pair (SAT∗,REFf ) is complete for DisjNP.

Proof. For any given (A,B) ∈ DisjNP, there is a proof system g such that (A,B) ≡pp
m (SAT∗,REFg)

and (SAT∗,REFg) ≤pp
m (SAT∗,REFf ). Thus, all disjoint NP reduce to (SAT∗,REFf ).

This result is an important connection of the theory of proof systems and the theory of disjoint

NP-pairs. It gives us insight in more sufficient conditions for the existence of complete pairs.

An important open question is whether the converse holds. Does the existence of a many-one

complete disjoint NP-pair imply the existence of an optimal proof system? While the answer

remains unknown, oracles for both options are known (see Section 6.2). We refer the reader to

Glaßer, Selman and Zhang [GSZ06] who provide a proof that disjoint NP-pairs and canonical pairs

for proof systems have the same degree structure.

20



6 Relativized Worlds

Lacking the ability to prove unrelativized results, a lot of open questions have been studied in detail

using oracle Turing machines. This provides some evidence for possible solutions of open problems

as well as gives a hint which proof techniques to use to study unresolved problems.

6.1 Existence Optimal and p-Optimal Proof Systems

Fortnow and respectively Meßner and Torán found oracles relative to which there is no optimal

respectively no p-optimal proof system. Previously, Meßner and Torán proved [MT97] that the

existence of p-optimal proof systems implies the existence of complete sets in UP. They also

showed that the weaker assumption of the existence of an optimal proof system is sufficient for the

existence of log-space complete set in NP ∩ SPARSE (see 4.3, in particular Theorem 21 as well as

[MT97, KMT03]). We summarize their results as follows.

Proposition 25. 1. If there is a p-optimal proof system, then UP has a many-one complete set.

2. If there is an optimal proof system, then complete sets for NP ∩ SPARSE exist.

Since Hartmanis and Hemachandra exhibited an oracle relative to which UP does not have a many-

one complete set [HH88], this immediately gives us an oracle relative to which p-optimal proof

systems do not exist. By the results we mentioned earlier for p-optimal proof systems, this also

means that relative to this oracle, E 6= NE and P 6= NP.

Buhrman, Fenner, Fortnow and van Melkebeek found an oracle relative to which NP ∩ SPARSE

does not have complete sets. Together with Proposition 25, this gives a relativized world where

optimal proof systems do not exist.

Glaßer, Selman, Sengupta and Zhang [GSSZ03, Chapter 6] construct an oracle O1 relative to which

NE = coNE and therefore, by Theorem 19, optimal proof systems do exist. This and the oracle O2

from the same paper are also interesting for the next section.
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6.2 Converse of Razborov

The oracles O1 and O2 by Glaßer, Selman, Sengupta and Zhang [GSSZ03, Chapter 6] provide insight

into the question of whether the converse of Razborov’s Theorem holds. That is, does the existence

of a complete pair in DisjNP imply the existence of an optimal proof system? The question remains

open, but Glaßer et al. proved that it cannot be answered with a relativizable proof. In particular,

for both O1 and O2 complete pairs exist, but optimal proof systems exists only for O1. For O2,

there are no optimal proof systems. It is also worth to mention that relative to both oracles, the

ESY-conjectures holds.

6.3 Separation of ESY refinements

Glaßer and Wechsung constructed an oracle D relative to which UP = NP and NP 6= coNP [GW03].

Along with the results we know about ESY-tt, which does not hold if UP = NP (see Theorem 17),

and Theorem 16, where we prove that NP 6= coNP is equivalent to ESY-m, this oracle separates

ESY-tt from ESY-m. Notice that therefore, relative to D, ESY does not hold, but ESY-m does.

7 Open Questions and Future Work

All major questions raised in this thesis remain unsolved. In particular, for all assertions shown in

Figure 1.1 it is not known if they are true or false. For any of the implications shown in the chart,

it is interesting to find oracles such that the converse of an implication holds or does not hold. For

the previously mentioned oracle D by Glaßer and Wechsung [GW03], it is an interesting question

to see if there exist many-one complete pairs relative to D, since oracle D implies that NP 6= coNP.

The most significant converse to study is the question whether the existence of many-one complete

disjoint NP-pairs implies the existence of optimal proof systems. As stated in Section 6.2, this

question can not be answered with a relativizable proof.
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