Prof. Dr. Otfried Cheong: The Reverse Kakeya Problem

22.06.2018 | 14:00 c.t.

Kolloquiumsvortrag Prof. Dr. Otfried Cheong, KAIST.

We prove a generalization of Pál's 1921 conjecture that if a convex shape P can be placed in any orientation  inside a convex shape Q in the plane, then P can also be turned continuously through 360° inside Q. We also prove a lower bound of  Omega(m n^{2}) on the number of combinatorially distinct maximal placements of a convex m-gon P in a convex n-gon Q. This matches the upper bound proven by Agarwal et al.

Zeit & Ort

22.06.2018 | 14:00 c.t.

Takustr. 9, Raum 053

Weitere Informationen

Prof. Dr. Wolfgang Mulzer