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ELLIPTIC PROBLEMS
WITH NONLOCAL BOUNDARY CONDITIONS
AND FELLER SEMIGROUPS

P. L. Gurevich UDC 517.9

Abstract. This monograph is devoted to the following interrelated problems: the solvability and
smoothness of elliptic linear equations with nonlocal boundary conditions and the existence of Feller
semigroups that appear in the theory of multidimensional diffusion processes.

CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Chapter 1. Nonlocal Elliptic Problems with Nonlinear Transformations of Variables . . . . . . 266

1. Some Definitions and Results from Linear Operators. Functional Spaces . . . . . . . . . . 266
2. The statement of the problem in a bounded domain . . . . . . . . . . . . . . . . . . . . . 269
3. Nonlinear Transformations Near the Origin . . . . . . . . . . . . . . . . . . . . . . . . . . 272
4. Fredholm Solvability of Nonlocal Problems and the Stability of the Index . . . . . . . . . 278

Chapter 2. Strong Solutions of Nonlocal Elliptic Problems in Plane Angles in Sobolev Spaces 283
5. Functional Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
6. Statement of the Nonlocal Problem in Bounded Domains . . . . . . . . . . . . . . . . . . 291
7. Nonlocal Problems in Plane Angles in Sobolev Spaces . . . . . . . . . . . . . . . . . . . . 296

Chapter 3. Strong Solutions of Nonlocal Elliptic Problems in Bounded Domains in Sobolev
Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

8. Absence of Eigenvalues of the Operator L̃(λ) on the Line Imλ = 1− l − 2m . . . . . . . . 307
9. Nonlocal Problems in Weight Spaces with a Small Weight Index . . . . . . . . . . . . . . 316

10. Regular Eigenvalues of the Operator L̃(λ) on the Line Imλ = 1− l − 2m . . . . . . . . . 320
11. Nonlocal Problems with Homogeneous Nonlocal Conditions . . . . . . . . . . . . . . . . . 323
12. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Chapter 4. Generalized Solutions of Nonlocal Elliptic Problems . . . . . . . . . . . . . . . . . 331
13. Generalized Solutions of Nonlocal Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 331
14. Fredholm Solvability of Nonlocal Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 336
15. Stability of the Index of Differential Operators under Perturbations by Minor Terms . . . 341
16. Stability of the Index under Perturbations of Nonlocal Conditions . . . . . . . . . . . . . 345
17. Instability of Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Chapter 5. Smoothness of Generalized Solutions of Nonlocal Elliptic Problems . . . . . . . . . 357
18. Preservation of Smoothness of Generalized Solutions . . . . . . . . . . . . . . . . . . . . . 357
19. “Bounded” Case. Concordance Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
20. Nonlocal Conditions of Special Form. Regular and Zero Right-Hand Sides . . . . . . . . . 371
21. Violation of Smoothness of Generalized Solutions . . . . . . . . . . . . . . . . . . . . . . . 375
22. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Chapter 6. Feller Semigroups and Two-Dimensional Diffusion Processes . . . . . . . . . . . . 385
23. Nonlocal Problems in Spaces of Continuous Functions . . . . . . . . . . . . . . . . . . . . 385
24. Bounded Perturbations of Diffusion Processes . . . . . . . . . . . . . . . . . . . . . . . . . 394

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics.
Fundamental Directions), Vol. 38, Elliptic Problems with Nonlocal Boundary Conditions and Feller Semigroups,
2010.

1072–3374/12/1823–0255 c© 2012 Springer Science+Business Media, Inc. 255



25. Unbounded Perturbations of Diffusion Processes . . . . . . . . . . . . . . . . . . . . . . . 406
26. Nonexistence of Feller Semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

INTRODUCTION

I. This monograph is based on the author’s doctoral dissertation and is devoted to the following
interrelated problems: the solvability and smoothness of elliptic linear equations with nonlocal bound-
ary conditions and the existence of Feller semigroups that appear in the theory of multidimensional
diffusion processes.

One-dimension nonlocal problems were studied by Sommerfeld [99], Il’in [45], Il’in and Moiseev [46],
Krall [55], Picone [68], Skubachevskii [97], Tamarkin [104], Shkalikov [80], and others.

In 1932, Carleman [12] studied a problem of finding a holomorphic function in a bounded domain G
that satisfies the following condition: the value of an unknown function at a point y of the bound-
ary ∂G is related to the value at each point Ω(y), where Ω : ∂G → ∂G is a smooth nondegenerate
transformation, Ω(Ω(y)) = y, y ∈ ∂G. In [12], this problem was reduced to a singular equation with a
shift. Further studies of singular integral equations with shift that maps a boundary of the domain to
itself and generates a finite group (see detailed bibliography in [62]) and studies of elliptic equations
with a shift of the domain to itself (see [4]) are related to such a statement of the problem. Beals [5],
Browder [11], Vishik [106], and Schechter [77] studied elliptic equations with nonlocal boundary condi-
tions. Conditions that guarantee the fulfillment of the coercivity inequality were imposed on abstract
operators. In some cases, restrictions were imposed on an adjoint operator.

In 1969, Bitsadze and Samarskii (see [9]) considered a completely different nonlocal elliptic problem
appearing in the theory of plasma: find a harmonic function in a bounded domain G that satisfies
nonlocal conditions, which are related to a value of the function on a manifold Γ1 ⊂ ∂G with values
on some manifold inside the domain G; the Dirichlet condition was imposed on the set ∂G \Γ1. If the
domain is rectangular, this problem was solved in [9] by reduction to a Fredholm equation of the second
type and applying the maximum principle. In the case of an auxiliary domain and general nonlocal
conditions, this problem was formulated as unsolved [75] (we specify [55], where the importance of
development of the theory of nonlocal boundary-value problems was mentioned).

Bitsadze [7, 8], Gushchin [42], Gushchin and Mikhailov [43, 44], Eidelman and Zhiratau [14], Il’in
and Moiseev [47], Kishkis [50, 51], Paneah [67], Roitberg and Sheftel’ [73, 74], Soldatov [78], and
others studied different versions and generalizations of nonlocal problems containing transformations
of variables that mapped a boundary to closure of the domain. Special attention was devoted to
the solvability nonlocal problems. Moiseev [60, 61] and Mustafin [63] considered spectral properties
of nonlocal problems in the multidimensional case. Note that, in the cited publications, the two-
dimensional case, or second-order equations, or strict conditions are imposed on the geometry of the
support of nonlocal terms (e.g., it is assumed that the support of nonlocal terms lies inside the domain
or intersects with a part of the boundary where the “local” Dirichlet condition is given).

The foundations of the theory of linear elliptic 2m-order equations with general nonlocal boundary
conditions were stated by Skubachevskii and his colleagues (see [52, 69, 70, 82, 84, 85, 87–90, 93–98]).
A classification according to a type of nonlocal conditions was conducted, a priori estimations were
proved, left and right regularizers were constructed in Sobolev and weight spaces (depending on
the type of nonlocal conditions), and asymptotic expansions of solutions near singular points were
obtained. Spectral properties and properties of indexes of the corresponding operators were studied
for some problems. In particular, it was shown that properties of a problem significantly depend on
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the geometry of the support of nonlocal terms. Let us illustrate some possible cases by the following
example.

Let G ⊂ R
n (n ≥ 2) be a bounded domain with the boundary ∂G = Γ1 ∪ Γ2 ∪ K, where Γσ are

open, connected (in the topology of ∂G), (n− 1)-dimensional manifolds of class C∞, and K = Γ1 ∩Γ2

is an (n− 2)-dimensional, connected manifold of class C∞ (if n = 2, then K = {g1, g2}, where g1 and
g2 are endpoints of the curves Γ1 and Γ2) without a boundary. Let the domain G be diffeomorphic to
an n-dimensional dihedral angle in a neighborhood of each point g ∈ K. Let us consider the following
nonlocal problem in the domain G:

Δu = f0(y), y ∈ G, (1)

u|Γσ − bσ(y)u(Ωσ(y))|Γσ = 0, σ = 1, 2. (2)

Here bσ ∈ C∞(R2); Ωσ is an infinitely differentiable, nondegenerate transformation that maps some
neighborhood Oσ of the manifold Γσ to the set Ωσ(Oσ) in such a way that Ωσ(Γσ) ⊂ G. Points of set
K are called conjugation points of nonlocal boundary conditions.

A. L. Skubachevskii proposed the following classification:

(1) Γ2 = ∅ and Ω1(Γ1) = Ω1(∂G) ⊂ G (Fig. 1);
(2) Γ2 	= ∅ and Ωσ(Γσ) ∩ K = ∅, σ = 1, 2 (Fig. 2);
(3) Γ2 	= ∅ and Ωσ(Γσ) ∩ K 	= ∅, σ = 1 or 2 (Fig. 3).

Fig. 1. Domain G with boundary ∂G = Γ1.

Fig. 2. Ωσ(Γσ) ∩ K = ∅. Fig. 3. Ωσ(Γσ) ∩ K 	= ∅.

The first type of problems (and generalizations to the case of abstract nonlocal operators in bound-
ary conditions) is the best studied because the properties of nonlocal problems are similar to the
corresponding “local” problem (when bσ(y) ≡ 0). In particular, a nonlocal problem is a Fredholm
problem in Sobolev spaces and its index equals the index of a “localized” problem; the corresponding
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problem with a spectral parameter is uniquely solvable for sufficiently large parameters (see [82, 84,
97]). If the spectrum of a local problem is discrete, then the nonlocal problem has a discrete spectrum
and the system of root functions forms an Abel basis in the corresponding Sobolev space (see [69, 70]).

The situation is substantially more difficult for the second and third types. For the second class,
a curve Ωσ(Γσ) can cross (it can also be tangent) the boundary of the domain. In the general
case, it even can partially coincide with the boundary. For problems of the third type, we assume
that nonlocal terms are not tangent to the boundary of the domain at conjugation points; this is
important for the method used. In [85, 98], it is shown that if the support of nonlocal terms crosses the
boundary of the domain, then the areas of solutions can have power singularities near a conjugation
point of the boundary conditions. This can happen even if the boundary is infinitely smooth and
the right-hand side is infinitely differentiable. Therefore, such problems were considered in special
weight spaces (they consider singularities of solutions). It turned out that Kondrat’ev spaces are the
most convenient. Kondrat’ev introduced such spaces in for the study of “local” boundary problems
in domains with corner or conical points. In [52, 85, 88, 89], the Fredholm solvability of nonlocal
problems in Kondrat’ev spaces was proved, and in [90], it was shown that if the support of nonlocal
terms does not cross conjugation points of boundary conditions (Fig. 2), then the index of nonlocal
problem is equal to the index of the corresponding local problem; otherwise (Fig. 3), this is not true.

Note that nonlocal elliptic problems with tangent approach of a curve Ωσ(Γσ) to the boundary of a
domain at conjugation points were studied in [8, 51] by methods of the theory of complex functions.
Nevertheless, the general theory of nonlocal boundary-value problems is not developed enough.

Independently of the papers mentioned above, nonlocal problems arose in the theory of multidimen-
sional diffusion processes that describe the behavior of a particle in a domain G from the point of view
of the probability theory. In [15, 16], it was shown that any one-dimensional (n = 1) diffusion process
corresponds to some nonnegative, continuous contracting semigroup in the space C(G) or in some
of its subspaces. Further, such semigroups are called Feller semigroups. Moreover, Feller obtained
necessary and sufficient conditions for a second-order ordinary differential operator to be a generator
(infinitesimal generating operator) of this semigroup. He obtained nonlocal boundary conditions that
give the domain of the operator.

In the multidimensional case (n ≥ 2), Ventsel [105] obtained a general form of a generator of a Feller
semigroup. He proved that this generator is an elliptic, second-order differential operator (possibly,
with generation), and its domain consists of continuous (once or twice continuously differentiable
depending on the process) functions satisfying nonlocal boundary conditions. A nonlocal term is an
integral of a function over a closure of a domain with respect to a nonnegative Borel measure μ(y, dη),
y ∈ ∂G.

In the most difficult case, when the measure is atomic, the nonlocal case can have form (2). They
have the following probabilistic sense: a particle hitting a point y ∈ Γσ can either hit a point Ωσ(y)
with probability bσ (0 ≤ bσ ≤ 1) (such behavior of a particle is called “jump”), or be assimilated by a
boundary with probability 1− bσ. In the latter case, the process terminates.

In the general case, boundary conditions include the derivatives of an unknown function up to the
second order. This corresponds to the assimilation and reflection of a particle from the boundary,
diffusion along the boundary, and viscosity.

The following problem is unsolved for n ≥ 2. Let an elliptic integro-differential operator be given;
its domain is described by general nonlocal boundary conditions (see [105]). Is such an operator (or
its closure) a generator of a Feller semigroup?

There are two types of nonlocal boundary conditions: transversal and nontransversal. In the
transversal case, the order of nonlocal terms is less than the order of local terms. In the nontransversal
case, these orders coincide. Sato and Ueno [76], Bony, Courrege, and Priouret [10], Watanabe [109],
Taira [101–103], Ishikawa [48], and others studied the transversal case. Skubachevskii [86, 91, 92]
proposed a method of studying the nontransversal case. This method is based on the idea of separation
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of nonlocal terms from local terms and the Hille–Yosida theorem. This idea was used earlier (see [82,
85]). Further, this method was developed in [17–20].

Let us specify important applications arising in the theory of functional-differential equations
(see [97] and the references therein), in the theory of parabolic problems with nonlocal boundary
conditions (see [79]), in modelling of multilayered plates and shells in aerospace engineering [65, 66,
97], in thermic control problems in the description of processes in chemical reactors and climate-control
systems (see [40]), in the theory of parabolic problems with nonlocal boundary conditions (see [13,
40]), and in control theory (see, e.g., [3]). In addition, let us mention a monograph of Bensoussan and
Lions (see [6]), where elliptic integro-differential operators were studied in connection with stochastic
control theory.

Lately, the theory of nonlocal nonlinear equations and inequalities and applications are being de-
veloped. Let us mention the paper [59] where differential inequalities with nonlocal terms are studied
(see also bibliography there).

II. Until now (see [24, 85, 88, 89]), in the general theory of elliptic problems with nonlocal boundary
conditions, it was assumed that transformations Ωσ near conjugation points of boundary conditions
are linear, that is, they are compositions of operators of shift, rotation, and homothety. In Chap. 1, we
consider a problem with nonlinear transformations. It turns out (see [25]) that such a problem is not a
small or compact perturbation of the corresponding problem with linear transformations. Nevertheless,
it is shown that the operator of the problem remains a Fredholm operator in Kondrat’yev weight spaces
and its index does not change after passage to nonlinear transformations. For simplicity, we assume
that n = 2; however, the corresponding results are valid in the case where n ≥ 3 (see [25]).

The problem of whether a unbounded nonlocal operator in L2(G) is a Fredholm operator when the
support of nonlocal terms approaches the boundary of a domain was studied when nonlocal conditions
were given at shifts of the boundary (see [83, 87]) or when the Dirichlet problem for a second-order
equation was nonlocally perturbed (see [42–44]). The solvability of nonlocal elliptic problems in the

Sobolev spaces W l+2m(G) =W l+2m
2 (G) (where 2m is the order of the elliptic equation, l ≥ 0) has not

yet been studied. The main difficulty is that solutions of a nonlocal problem can have singularities near
some points and, in general, do not belong to a “necessary” Sobolev space. Such problems are studied
in Chaps. 2–4. We show that the Fredholm solvability of a bounded operator in the Sobolev space
W l+2m(G) is defined by the eigenvalues of some auxiliary function L̃(λ) (they depend on a complex
parameter λ), the structure of Jordan chains corresponding to these eigenvalues, and by some algebraic
relations between the elliptic operator and operators in the nonlocal boundary conditions. We study
nonlocal boundary conditions with arbitrary right-hand sides. An unbounded operator in L2(G) given
at generalized solutions of a nonlocal problem (i.e., functions from W �(G), 0 ≤ � ≤ 2m− 1), is a

Fredholm operator for any position of eigenvalues of the operator-valued function L̃(λ). The stability
of the index of nonlocal operators in L2(G) when an elliptic equation and boundary conditions are
perturbed by minor terms has been studied via the notion of the spread between unbounded operators
(see [49]).

In [53], a 2m-order elliptic equation with the Dirichlet boundary condition was solved and a question
on the smoothness near an corner or conical point of generalized solutions from the Sobolev space
Wm(G) was considered. In particular, it is proved that solutions can be made arbitrary smooth due
to decrease of the angle. In the case of nonlocal boundary conditions, the situation is substantially
different. In [85, 98], it is shown that the smoothness of generalized solutions can be violated near
a smooth boundary or a vertex of a small angle. On the other hand, generalized solutions near a
vertex of an angle that is more than π can be smooth if there are nonlocal terms with sufficiently large
coefficients. In Chap. 5, we study the smoothness of generalized solution fromW �(G), 0 ≤ � ≤ 2m− 1,
of 2m-order elliptic equations; we consider nonlocal boundary conditions with both zero and arbitrary
right-hand sides.
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In [86, 92], the question of whether Feller semigroups in the nontransversal case exist is considered
under conditions where the coefficients of nonlocal operators decrease as the argument tends to the
boundary of the domain. In [19, 20], boundary conditions in the case where the coefficients of nonlocal
terms near conjugation points are less than 1 are considered. It is proved that a nonlocal problem
(after reducing to the boundary) can be considered as a perturbation of a “local” Dirichlet problem.
The extreme case where the coefficients of nonlocal terms equal 1 remains unstudied until now (the
coefficients cannot be more than 1; see [105]). In Chap. 6, we study nontransversal nonlocal conditions
that allow the extreme case. We obtain sufficient conditions for Borel measure μ(y, dη) (its support
is inside the closure of the domain) that guarantee that the corresponding operator is a generator of
a Feller semigroup. Both bounded and unbounded perturbations of an elliptic operator were studied.

III. Let us describe the structure of the monograph and state the main results corresponding to the
chapters.

This monograph consists of the Introduction, six chapters, and the bibliography list.
Introduce the notation

K = {y ∈ R
2 : r > 0, ω1 < ω < ω2}, γσ = {y ∈ R

2 : r > 0, ω = ωσ}, σ = 1, 2,

where ω and r are the polar coordinates of a point y, ω1 < 0 < ω2, and ω2 − ω1 < 2π.
Denote by Oε(0) the ε-neighborhood of the origin. Let us introduce the following sets:

Kε = K ∩ Oε(0), γεσ = γσ ∩ Oε(0), σ = 1, 2.

Let G ⊂ R
2 be a bounded domain with the boundary ∂G. The boundary contains the origin. We

assume that G ∩ Oε(0) = Kε for some ε > 0, and the boundary of the domain G is infinitely smooth
in a neighborhood of every point y ∈ ∂G \ {0}.

In Chaps. 1–5, we consider a nonlocal boundary-value problem

P(y,D)u = f0(y), y ∈ G, (3)

Bμu ≡ B0
μu+B1

μu+B2
μu = fμ(y), y ∈ ∂G \ {0}; μ = 1, . . . ,m, (4)

where P(y,D) is a 2m-order, properly elliptic operator in G with smooth complex-valued coefficients;

B0
μu = Bμ0(y,D)u(y)|∂G\{0}, B1

μu =

{
(Bμ1(y,D)u)(Ωσ(y))|γεσ , y ∈ γεσ, σ = 1, 2,

0, y ∈ ∂G \ Oε(0);

Bμ0(y,D) and Bμ1(y,D) aremμ-order differential operators with smooth (on ∂G\{0}) complex-valued
coefficients (as y ∈ ∂G tends to the origin, the coefficients and all their derivatives have, generally
speaking, one-sided limits); the support of the coefficients of the operators Bμ1(y,D) lies inside a suffi-
ciently small neighborhood of the origin; Ωσ are diffeomorphisms given in some neighborhood γεσ such
that Ωσ(γ

ε
σ) ⊂ G, Ωσ(0) = 0 and the curves Ωσ(γ

ε
σ) have a nontangent approach to the boundary ∂G

at the origin; B2
μu = B̃2

μ

(
u|
G\Oκ1 (0)

)
(κ1 > 0) are abstract nonlocal operators corresponding to the

nonlocal terms with supports lying outside a κ1-neighborhood of the origin; if y ∈ ∂G, the system
of operators {Bμ0(y,D)}mμ=1 satisfies the cover condition (the Lopatinskii condition) relative to the

operator P(y,D) (at the origin, the values of coefficients of operators Bμ0(y,D) are understood in the
sense of one-sided limits).

A vector

B2
1u(y) = b(y)u(Ω(y))|∂G\{0} (5)

can be an example of the operator B2
μ. Here b ∈ C∞(R2) and the restrictions of the transformation Ω

to ∂G \ {0} and γεσ (σ = 1, 2) are smooth nongenerate transformations; moreover,

Ω(∂G \ {0}) ⊂ G, Ω(∂G \ {0}) ⊂ G \ Oκ1(0).
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For any l ≥ 0 and any a ∈ R, we denote byH l
a(G) the completion of the set of infinitely differentiable

in G functions with supports in G \ {0} with respect to the norm

‖u‖Hl
a(G) =

⎛
⎝∑

|α|≤l

∫
G

ρ2(a−l+|α|)|Dαu|2dy

⎞
⎠

1/2

,

where ρ = ρ(y) = dist(y, {0}). For l ≥ 1, we denote by H
l−1/2
a (∂G \ {0}) the trace space on ∂G \ {0}

with the norm

‖ψ‖
H

l−1/2
a (∂G\{0}) = inf ‖u‖Hl

a(G), u ∈ H l
a(G) : u|∂G\{0} = ψ.

Assume that

Hl
a(G, ∂G) = H l

a(G)×
m∏
μ=1

H
l+2m−mμ−1/2
a (∂G \ {0}),

where a ∈ R and l ≥ 0 is an integer such that l + 2m−mμ ≥ 1.
In Chap. 1, we study the problem of whether the operator

L = {P(y,D), Bμ} : H l+2m
a (G) → Hl

a(G, ∂G),

is a Fredholm operator and its index is stable when we change the transformation Ωσ to Ω̂σ. Both
transformations have the same linear part near the origin.

In Sec. 1, auxiliary results from the theory of linear operators are proved and definitions of functional
spaces are given.

In Sec. 2, the statement of nonlocal problem (3), (4) is studied in weight spaces in a bounded domain
and the statement of a model problem in a plane angle is considered. We introduce a model operator

L̃(λ) :W l+2m(ω1, ω2) →W l(ω1, ω2)× C
2m, λ ∈ C,

which corresponds to a nonlocal problem near the origin. This problem should be written in the polar
coordinates ω and r (with the subsequent Mellin transformation r 
→ λ). Spectral properties of the

operator L̃(λ) play a key role in the study of the solvability and smoothness of solutions of problem (3),
(4).

In Sec. 3, we study properties of nonlocal operators with nonlinear transformations near the origin.
In Sec. 4, we prove an a priori estimate of solutions of problem (3), (4) and construct the right

regularizer in weight spaces under the condition that the straight line Imλ = a+ 1− l− 2m does not
contain eigenvalues of the operator L̃(λ). Hence,

L = {P(y,D), Bμ} : H l+2m
a (G) → Hl

a(G, ∂G)

is a Fredholm operator. In this section, we prove that the index of the operator L is determined by
the linear part of the transform Ωσ.

Chapters 2–6 are devoted to properties of solutions of problem (3), (4). In Chaps. 2 and 3 we
study strong solutions from Sobolev spaces, in Chaps. 4 and 5 we study generalized solutions from
Sobolev spaces, and in Chap. 6 we consider solutions in spaces of continuous functions. The cor-
responding results are based on the solvability of the same problem in weight spaces. Taking into
account results of Chap. 1, we consider transformations Ωσ that are linear near the origin. We prove
theorems of Chaps. 2–6 for the general case where there is a finite number of corner points on the
boundary ∂G. They divide ∂G in a finite number of parts; each part corresponds to its boundary
condition that contains, generally speaking, several nonlocal terms. In the Introduction, we restrict
ourself to problem (3), (4) in the domain G.

In Chap. 2, we study model nonlocal problems in plane angles.
In Sec. 5, we introduce functional spaces.

261



In Sec. 6, we consider the statement of the nonlocal problem (3), (4) in a bounded domain and
model problems in plane angles in Sobolev spaces. The operators of model problems in plane angles
are defined by the formulas

Lu = {P(y,D)u, Bσμ(y,D)u}, Lv = {P(D)v, Bσμ(D)v},

where
Bσμ(y,D)u = Bμ0(y,D)u|γεσ + (Bμ1(y,D)u)(Ωσ(y))|γεσ ,

Bσμ(D)v = Bμ0(D)v|γεσ + (Bμ1(D)v)(Ωσ(y))|γεσ ,
Bμ0(D) and Bμ1(D) are the principal homogeneous parts of operators Bμ0(0, D) and Bμ1(0, D).

In Chap. 2, we study properties of the operators L and L in Sobolev spaces. These properties play
a key role in the study of the solvability and smoothness of generalized solutions of nonlocal problems
in bounded domains.

In Sec. 7, we construct “solutions” of model problems in Sobolev spaces with accuracy to functions
that have a zero of certain order at the origin. We consider the following two situations: when the
straight line Imλ = a+1− l− 2m does not contain eigenvalues of operator L̃(λ) and when it contains
only a regular eigenvalue (i.e., such an eigenvalue λ0 for which there is no adjoint vectors and for any
eigenvector ϕ(ω) the function riλ0ϕ(ω) being written in rectangular coordinates y is a polynomial).
In the second case, concordance conditions (integral conditions) for coordinates are imposed on the
right-hand sides of both equation and nonlocal boundary conditions. These conditions arise since the
operators of the problem are related by certain algebraic relations. (More precisely, algebraic relations

arise between operators D
|α|
y P(D), |α| = l − 1, and D

l+2m−mμ−1
τσ Bσμ(D), where τσ is a unit vector

parallel to γεσ.)
Chapter 3 is devoted to the solvability of problem (3), (4) in a plane bounded domain in Sobolev

spaces.
We say that a function ψ belongs to the space W l−1/2(∂G \ {0}), l ≥ 1, if ψ ∈W l−1/2(∂G \ Oδ(0))

for all δ > 0 and its restriction to γεσ belongs to W l−1/2(γεσ). We assume that the operators B2
μ acts

boundedly from the space W l+2m(G \ Oκ1(0)) to the space W l+2m−mμ−1/2(∂G \ {0}) (cf. (5)). Recall
that if y ∈ ∂G tends to the origin, then the coefficients of the operators Bμ0(y,D) and Bμ1(y,D) and
all their derivatives have, generally speaking, only one-sided limits; therefore, we must consider trace
spaces given on the sets ∂G \ {0}.

Introduce the notation

W l(G, ∂G) =W l(G)×
m∏
μ=1

W l+2m−mμ−1/2(∂G \ {0}),

where l ≥ 0 is an integer such that l + 2m−mμ ≥ 1.
In Sec. 8, we prove that the bounded operator

L = {P(y,D), Bμ} :W l+2m(G) → W l(G, ∂G)

is a Fredholm operator if and only if the straight line Imλ = 1− l − 2m does not contain eigenvalues
of the operator L̃(λ).

In Sec. 9, we consider the operator

La = {P(y,D), Bμ} : H l+2m
a (G) → Hl

a(G, ∂G)�Rl
a(G, ∂G),

which acts in weight spaces with a small weight index a > 0. HereRl
a(G, ∂G) is some finite-dimensional

space of functions that have a singularity at the origin. It arises owing to the fact that if a ≤ l+2m−1,
then the inclusion u ∈ H l+2m

a (G), generally speaking, does not imply the inclusion Lau ∈ Hl
a(G, ∂G).

Indeed, one can find a function u ∈ H l+2m
a (G) for which the concordance conditions are violated, i.e.,

B2
μu belongs to W l+2m−mμ−1/2(∂G \ {0}), but it does not belong to H

l+2m−mμ−1/2
a (∂G).
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We prove that if the straight line Imλ = a + 1 − l − 2m does not contain eigenvalues of the
operator L̃(λ), then La is a Fredholm operator. In particular, it follows that if the right-hand side of
problem (3), (4) belongs to Hl

a(G, ∂G) and satisfies a finite number of orthogonality conditions, then
there exists a solution u ∈ H l+2m

a (G).
In Sec. 10, we consider the case where the straight line Imλ = 1 − l − 2m contains only regular

eigenvalue of the operator L̃(λ). In this case, by virtue of the results of Sec. 8, L : W l+2m(G) →
W l(G, ∂G) is not a Fredholm operator (its image is not closed). Hence the operator

L̂ = {P(y,D), Bμ} :W l+2m(G) → Ŝ l(G, ∂G)�Rl(G, ∂G)

is set to correspondence with problem (3), (4). Here Ŝ l(G, ∂G) is the set of right-hand sides of
problem (3), (4) from the Sobolev space W l(G, ∂G), which satisfy integral concordance conditions
near the origin (cf. Sec. 7), and Rl(G, ∂G) is a finite-dimensional subset in W l(G, ∂G). We prove that

L̂ is a Fredholm operator.
In Secs. 8–10, we prove the Fredholm property of nonlocal operators by the common scheme. The

fact that the kernel of problem (3), (4) has a finite dimension in “proper” weight spaces yields the
fact that the kernel has a finite dimension. To prove the fact that the image has a finite dimension,
we construct the right regularizer using results of Chap. 2.

In Sec. 11, we use results of Sec. 10 and show that if there is only regular eigenvalue on the straight
line Imλ = 1− l − 2m, then the problem with homogeneous boundary conditions (unlike the problem
with inhomogeneous boundary conditions) can be a Fredholm problem. Concordance conditions can
be fulfilled for any vector of right-hand sides that has a zero component corresponding to right-hand
sides of conditions. Therefore, properties of the problem can be improved.

In Sec. 12, we give examples that illustrate general theorems of Chap. 3. Here, we can observe the
following effects.

(1) Even in the case of infinitely smooth boundary, a nonlocal problem cannot be a Fredholm
problem in Sobolev spaces for arbitrary small coefficients of nonlocal terms. On the other hand,
such a problem can became a Fredholm problem.

(2) The Fredholm solvability of a nonlocal problem in the Sobolev spaces W l+2m(G) depends on
the index l. For example, a problem can be a Fredholm problem for even l and have a nonclosed
image for odd l.

Such effects are due to the following. If the coefficients of nonlocal terms and the index l are changed
in the Sobolev space W l+2m(G), then the mutual position of eigenvalues of the operator L̃(λ) and
the straight line Imλ = 1 − l − 2m, the structure of Jordan chains, and the structure of algebraic

relationships between the operators D
|α|
y P(D), |α| = l − 1, and D

l+2m−mμ−1
τσ Bσμ(D) change.

In Chap. 4, we study generalized solutions of problem (3), (4).
Let us fix an integer � such that 0 ≤ � ≤ 2m − 1. In Sec. 13, we denote a generalized solution of

problem (3), (4) as a function that belongs to W �(G) ∩W 2m(G \ Oδ(0)) for all δ > 0 and satisfies
Eq. (3) almost everywhere and the boundary conditions (4) in the sense of traces. Thus, a generalized
solution can have a singularity near the origin that is a point of conjugation of nonlocal conditions.

In Sec. 14, we prove the Fredholm solvability of the unbounded operator

P : D(P) ⊂ L2(G) → L2(G),

which acts by the formula

Pu = P(y,D)u,

u ∈ D(P) = {u ∈W �(G) ∩W 2m(G \ Oδ(0)) ∀δ > 0 : Bμu = 0, P(y,D)u ∈ L2(G)}.
In Sec. 15, we state that the index of the operator P : D(P) ⊂ L2(G) → L2(G) does not change if

we add minor terms to the elliptic equation, and in Sec. 16 we prove the stability of the index when we
add to boundary conditions nonlocal terms with coefficients that have a zero of a certain order at the
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origin. Both cases have the same difficulty. When the operator P is perturbed, its domain changes.
To prove the stability of the index, we use the notion of the spread between unbounded operators
(see [49]) and reduction to operators that act in weight spaces.

In Sec. 17, we show that if we add to boundary conditions nonlocal terms with arbitrary small
coefficients that do not equal zero at the origin, then the index of the operator P can change. We give
examples of the operator P whose spectrum occupies the whole complex plane.

Chapter 5 is devoted to the smoothness of generalized solutions u ∈ W �(G) of problem (3), (4)

under the condition that f0 ∈ L2(G) and fμ ∈W 2m−mμ−1/2(∂G \ {0}).
Let us denote the set of all eigenvalues of the operator L̃(λ) that lie in the strip 1−2m < Imλ < 1−�

by Λ (in particular, the set Λ can be empty).
In Sec. 18, we assume that the following condition holds.

Condition 1. The straight line Imλ = 1− 2m does not contain eigenvalues of the operator L̃(λ) and
all eigenvalues from the set Λ are regular.

We obtain sufficient conditions for any generalized condition of problems (3), (4) to belong to
W 2m(G). These conditions are formulated in terms of eigenvectors that correspond to eigenvalues
from the set Λ. These conditions are called “conditions on the structure of eigenvectors.”

In Sec. 19, we study the so-called borderline case. Namely, we assume that the following condition
holds.

Condition 2. The straight line Imλ = 1− 2m contains exactly one eigenvalue of the operator L̃(λ);
this eigenvalue is regular. All eigenvalues from the set Λ are also regular.

In addition to the “conditions on the structure of eigenvectors,” we obtain (integral) concordance
conditions. If the right-hand sides of fμ and the operators B0

μ, B
1
μ, and B2

μ satisfy these conditions,

then any generalized condition of problem (3), (4) belongs toW 2m(G). In Secs. 18 and 19, we consider
boundary conditions with zero and arbitrary right-hand sides.

In Sec. 20, we study nonlocal boundary conditions of a special type. For such boundary conditions,
“conditions on the structure of eigenvectors” do not affect the smoothness of generalized solutions of
problem (3), (4).

In Sec. 21, we considered the cases where the smoothness can be violated. We show that both
conditions 1 and 2 and the “conditions on the structure of eigenvectors” are substantial in the general
case.

In Sec. 22, we give an example that illustrates the results of Secs. 18–21.
In Chap. 6, we study the problem on the existence of Feller semigroups arising in the theory of

multidimensional diffusion processes, when we describe the motion of a particle in a domain in terms
of the probability theory. Let us consider a second-order elliptic differential operator P(y,D) with
smooth real coefficients such that P(y,D)1 ≤ 0 and y ∈ G. The domain of the operator P(y,D) is
given by nonlocal boundary conditions of nontransversal type (cf. (4))

u(y)− bσ(y)u(Ωσ(y))−
∫
G

u(η)β(y, dη) = 0, y ∈ γεσ, σ = 1, 2,

u(y)−
∫
G

u(η)β(y, dη) = 0, y ∈ ∂G \ Oε(0),

u(0) = 0.

(6)

Here bσ ∈ C∞(R2) are real functions such that supp bσ ⊂ Oε(0) and 0 ≤ bσ(y) ≤ 1 and β(y, ·) is a
nonnegative Borel measure.
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Nonlocal conditions (6) can also be written in the following form:

u(y)−
∫
G

u(η)μ(y, dη) = 0, y ∈ ∂G. (7)

Here μ(0, ·) = 0 and μ(y, ·) = δ(y, ·)+β(y, ·) for y ∈ ∂G\{0}; moreover, δ(y, ·) is a nonnegative atomic
measure defined by the formula

δ(y,Q) =

{
bσ(y)χQ(Ωσ(y)), y ∈ γεσ, σ = 1, 2,

0, y ∈ ∂G \ Oε(0).

Here Q is an arbitrary Borel set and χQ is the characteristic function of the set Q. The nonlocal
condition (7) is a particular case of a boundary condition obtained in [105].

In Sec. 23, we prove theorems on the unique solvability of the elliptic equation

P(y,D)u− qu = f0(y), y ∈ G, q > 0,

with nonlocal boundary conditions (6) in the case where β(y, ·) ≡ 0 in the space of continuous functions.
The study of the solvability of nonlocal problems in spaces of continuous functions is based on

theorems on the unique solvability in weight spaces (see [41]) and results on the asymptotic behavior
of solutions of nonlocal problems (see [26, 96], where results on the asymptotic behavior are generalized
to the case of systems of differential equations with nonlocal boundary conditions; these systems are
analytic in the Douglis–Nirenberg sense).

In Secs. 24 and 25, we use results of Sec. 23 and the Hille–Yosida theorem and obtained sufficient
conditions for the measure μ(y, ·) in terms of the geometrical structure of the support of the measure.
These conditions guarantee the existence of a Feller semigroup that corresponds to nonlocal boundary
conditions (6). We assume that μ(y, ·) = δ(y, ·)+β(y, ·) (see above); moreover, the measure β(y, ·) can
be represented as the sum of three nonnegative Borel measures: the first has a support separated from
the origin, the second possesses some smallness property, and the third generates a compact operator
in the corresponding spaces.

Note that in [19, 20], the conditions 0 ≤ bσ(0) < 1 or 0 ≤ bσ(0) < 1/2, σ = 1, 2, are assumed
to be fulfilled (depending on the structure of the measure β(y, ·)). In this paper, we assume that
0 ≤ bσ(0) ≤ 1, σ = 1, 2, and

b1(0) + b2(0) < 2. (8)

In Sec. 24, we obtain conditions for the measure β(y, ·) under which the unbounded operator

PB : D(PB) ⊂ CB(G) → CB(G)

defined by the formula

PBu = P(y,D)u+P1u,

u ∈ D(PB) = {u ∈ CB(G) : P(y,D)u+P1u ∈ CB(G)},
(9)

is a generator of a Feller semigroup. Here CB(G) is the set of continuous in G functions that satisfy
nonlocal conditions (6); P1 is a bounded in C(G) operator such that if a function u ∈ C(G) has a
positive maximum at a point y0 ∈ G, then P1u(y

0) ≤ 0. Then the operator P1 is a generalization of
a bounded integral operator of the form

P1u(y) =

∫
G

[u(η)− u(y)]m(y, dη), y ∈ G,

where m(y, ·) is a nonnegative Borel measure on G.

265



In Sec. 25, we study the case of an unbounded in C(G) operator P1, which generalizes the operator
of the form

P1u(y) =

∫
F

[u(y + z(y, η))− u(y)− (∇u(y), z(y, η))]m(y, η)π(dη), y ∈ G

(cf. [6, 20, 21, 102]), where F is a space with a σ-algebra F and a Borel measure π, and the vector-valued
function z(y, η) and the scalar-valued function m(y, η) are bounded and π-measured with respect to η,
m(y, η) ≥ 0, and y+z(y, η) ∈ G for all y ∈ G and η ∈ F . The operatorPB : D(PB) ⊂ CB(G) → CB(G)
of the form (9) is, generally speaking, nonclosed. We obtain conditions on the measure β(y, ·) under
which the closure of the operator PB is a generator of a Feller semigroup.

In Sec. 26, we construct examples in which some of above-mentioned conditions on the coefficients
of nonlocal conditions, the structure of transformations of variables, or the Borel measure β(y, ·) are
violated. We show that the closure of the corresponding operator PB is not a generator of a Feller
semigroup. To do this, we prove that the image of the operator PB−qI does not coincide with CB(G)
for some q > 0 and we apply the Hille–Yosida theorem.

In particular, we construct an example in which the Dirichlet condition is given in the original and
in some punctured neighborhood b1(y) = b2(y) = 1, i.e., condition (8) is violated. From the point of
view of the probability theory, this means the following: the origin is a point of process termination;
nevertheless, jumps with probability 1 from an arbitrary small neighborhood of the origin occur.

In this paper, we consider the two-dimensional case. However, we note that the results of Chap. 1
on the solvability of nonlocal problems in Kondrat’ev weight spaces are also valid in R

n, n ≥ 3,
when the boundary contains edge-type singularities. Similarly to [54], some results on the smoothness
of generalized solutions can also be generalized to the n-dimensional case. To generalize results on
the existence of Feller semigroups to the n-dimensional case, further development of the theory of
nonlocal elliptic problems is needed: the study of the asymptotic behavior of solutions near edge-type
singularities on the boundaries and the solvability in weight spaces and Sobolev spaces (based on
Lp(G), p > 2) and in Hölder spaces.

The author is deeply gratitude to Prof. A. L. Skubachevskii for his constant attention and support
for many years.

Chapter 1

NONLOCAL ELLIPTIC PROBLEMS

WITH NONLINEAR TRANSFORMATIONS OF VARIABLES

1. Some Definitions and Results from Linear Operators.
Functional Spaces

1.1. Some definitions and results from the theory of linear operators. In this section, we
recall some definitions from the theory of linear operators and we prove two lemmas that will be used
below.

Let H1 and H2 be Hilbert spaces and P : D(P) ⊂ H1 → H2 be a linear (generally speaking,
unbounded) operator, where D(P) denotes the domain of the operator P.

Definition 1.1. An operator P is called a Fredholm operator if it is closed, has a closed image, and
the dimension of its kernel kerP and the co-dimension of its image R(P) are finite. The number
indP = dimkerP− codimR(P) is called the index of the Fredholm operator P.

Let A : D(A) ⊂ H1 → H2 be a linear operator.
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Definition 1.2 (see [49, 56]). An operator A is called compact with respect to P (or simply P-
compact) if D(P) ⊂ D(A) and for any sequence un ∈ D(P) such that {un} and {Pun} are bounded,
the sequence {Aun} contains a converging sequence.

Let us introduce the notion of a spread between linear operators. Let S : D(S) ⊂ H1 → H2 be a
linear operator. Introduce the following norm in the space H1 ×H2:

‖(u, f)‖ =
(
‖u‖2H1

+ ‖f‖2H2

)1/2 ∀(u, f) ∈ H1 ×H2.

Introduce the notation
δ(P,S) = sup

u∈D(P):
‖(u,Pu)‖=1

dist
(
(u,Pu),GrS

)
,

where GrS is the graph of the operator S.

Definition 1.3 (see [49]). The number δ̂(P,S) = max{δ(P,S), δ(S,P)} is called the spread between
operators P and S.

The spread between operators allows one to evaluate the “closeness” of two unbounded operators
that have, generally speaking, different domains (see [49]).

We prove the following two auxiliary results.

Lemma 1.1. Let H, H1, and H2 be Hilbert spaces, A : H → H1 be a linear bounded operator, and
T : H → H2 be a compact operator. Assume that for some δ, c > 0, and f ∈ H, the following
inequality holds:

‖Af‖H1 ≤ δ‖f‖H + c‖Tf‖H2 . (1.1)

Then there exist operators M,F : H → H1 such that

A = M+ F,

‖M‖ ≤ 2δ, and the operator F is finite-dimensional.

Proof. As is known (see [71, Chap. 5, Sec. 85]), any compact operator is a limit in the operator norm
of a sequence of finite-dimensional operators. Thus, there exist operators M0,F0 : H → H2 such that
T = M0 + F0, ‖M0‖ ≤ c−1δ, and the operator F0 is finite-dimensional. This and (1.1) imply that

‖Af‖H1 ≤ 2δ‖f‖H + c‖F0f‖H2 ∀f ∈ H. (1.2)

Denote the orthogonal complement of the kernel of the operator F0 in H by ker(F0)
⊥. Since the finite-

dimensional operator F0 maps ker(F0)
⊥ to its image bijectively, we see that the subspace ker(F0)

⊥ is
finite-dimensional. Denote the identity operator in H by I and the orthogonal projector to ker(F0)

⊥
by P0. Obviously, AP0 : H → H1 is a finite-dimensional operator. Moreover, since I − P0 is an
orthogonal projector to ker(F0), we obtain F0(I−P0) = 0. Hence, substituting the function (I−P0)f
instead of f to (1.2), we obtain

‖A(I−P0)f‖H1 ≤ 2δ‖(I−P0)f‖H ≤ 2δ‖f‖H ∀f ∈ H.

Setting M = A(I−P0) and F = AP0, we complete the proof.

Lemma 1.2. Let H be a Hilbert space and I be a identity operator in the space H. Let Mδ and
Sδ = Uδ + Fδ and δ > 0 be families of bounded in H operators such that

‖Mδ‖ ≤ c1δ, ‖Uδ‖ ≤ c2, (1.3)

where c1 and c2 > 0 are independent of δ and the operators Fδ and S2
δ are compact. Then, for any

sufficiently small δ > 0, the operators

Lδ = I+Mδ + Sδ

are Fredholm operators.
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Proof. To prove the lemma, we construct right and left regularizers for the operator Lδ. We have

Lδ(I− (Mδ + Sδ)) = I−M2
δ −MδSδ − SδMδ − S2

δ

= (I−M2
δ −MδUδ −UδMδ)− (MδFδ + FδMδ + S2

δ).

It follows from (1.3) that

‖M2
δ +MδUδ +UδMδ‖ ≤ c3δ,

where c3 > 0 is independent of δ. This and [56, Theorem 16.2] imply that for all sufficiently small
δ > 0, the operators I−M2

δ−MδUδ−UδMδ are Fredholm operators. Then we use the compactness of
the operators Fδ and S2

δ and apply [56, Theorem 16.4]. We see that the operators Lδ(I−(Mδ+Sδ)) are
also Fredholm operators. It follows from [56, Theorem 15.2] that there exist bounded operators R1δ

and compact operators T1δ such that

Lδ(I− (Mδ + Sδ))R1δ = I+T1δ. (1.4)

Similarly, we prove the existence of bounded operators R2δ and compact operators T2δ such that

R2δ(I− (Mδ + Sδ))Lδ = I+T2δ. (1.5)

Now the lemma follows from (1.4), (1.5), and [56, Theorems 14.3 and 15.2].

1.2. Functional spaces.

1.2.1. Spaces of continuous and infinitely differentiable functions. Let X be a nonempty set in R
n,

n ≥ 1. We denote the set of continuous in X functions by C(X). If X is a compact, then C(X) is a
Banach space with the norm

‖u‖C(X) = max
y∈X

|u(y)|, u ∈ C(X).

Let X andM be closed sets and the set X be nonempty. We denote by C∞(X) the set of restrictions
to X of infinitely differentiable in R

n functions. Denote the set of infinitely differentiable in R
n

functions with compact supports in X \M by C∞
0 (X \M).

For any domain Q ⊂ R
n and any l ≥ 0 (in what follows, the number l is assumed to be integer

whenever the contrary is not stated), we denote the set of l times infinitely differentiable in Q (in Q)
functions by C l(Q) (respectively, by C l(Q)). In particular, C0(Q) = C(Q) and C0(Q) = C(Q).

1.2.2. The domain G and the angle K. Introduce the notation

K = {y ∈ R
2 : r > 0, ω1 < ω < ω2}, γσ = {y ∈ R

2 : r > 0, ω = ωσ}, σ = 1, 2,

where ω and r are the polar coordinates of a point y, ω1 < 0 < ω2, and ω2 − ω1 < 2π.
Denote the ε-neighborhood of the origin by Oε(0).
Introduce the sets

Kε = K ∩ Oε(0), γεσ = γσ ∩ Oε(0), σ = 1, 2.

In this chapter, we denote by G ⊂ R
2 a bounded domain with boundary ∂G containing the origin.

We assume that G ∩ Oε(0) = Kε for some ε > 0. Assume that in a neighborhood of any point
y ∈ ∂G \ {0}, the boundary of the domain G is infinitely smooth.
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1.2.3. Sobolev spaces. For any domain Q ⊂ R
n and any l ≥ 0, we denote the Sobolev space with the

norm

‖u‖W l(Q) =

⎛
⎝∑

|α|≤l

∫
G

|Dαu|2 dy

⎞
⎠

1/2

by W l(Q) = W l
2(Q) (for l = 0, we assume that W 0(Q) = L2(Q)). In the sequel, α = (α1, . . . , αn),

|α| = α1 + · · · + αn, D
α = Dα1

y1 . . . D
αn
yn , Dyj = −i∂/∂yj . If it is necessary to specify the variables

with respect to which we differentiate the function u, then we write Dα
y u, D

α
y′u, etc. For l ≥ 1, let us

introduce the space W l−1/2(Γ1) of traces on a smooth curve Γ1 ⊂ Q with the norm

‖ψ‖W l−1/2(Γ1)
= inf ‖u‖W l(Q), u ∈W l(Q) : u|Γ1 = ψ.

We denote by W l
loc(Q) the set consisting of all distributions u on Q such that ϕu ∈W l(Q) for any

ϕ ∈ C∞
0 (Q).

1.2.4. Kondrat’ev weight spaces. Let us consider the following cases: Q = K, Q = Kd (d > 0), and
Q = G. For any l ≥ 0 and any a ∈ R, we denote the completion of the set C∞

0 (Q \ {0}) with respect
to the norm

‖u‖Hl
a(Q) =

⎛
⎜⎝∑

|α|≤l

∫
Q

ρ2(a−l+|α|)|Dαu|2dy

⎞
⎟⎠

1/2

,

by H l
a(Q) = H l

a(Q, {0}), where ρ = ρ(y) = dist(y, {0}). For l ≥ 1, we denote the space of traces on a
smooth curve Γ1 ⊂ Q with the norm

‖ψ‖
H

l−1/2
a (Γ1)

= inf ‖u‖Hl
a(Q), u ∈ H l

a(Q) : u|Γ1 = ψ,

by H
l−1/2
a (Γ1).

2. The statement of the problem in a bounded domain

2.1. The statement of the problem. Let us consider linear differential operators P(y,D) and
Bμs(y,D) of orders 2m and mμ, respectively, with complex coefficients (μ = 1, . . . ,m; s = 0, 1).

Assume that the coefficients of the operators P(y,D) are infinitely smooth in G and the coefficients
of the operators Bμs(y,D) are infinitely smooth in (∂G \ {0}) ∪ γεσ, σ = 1, 2.

Let us formulate conditions on the operators P(y,D) and Bμ0(y,D) that correspond to a “local”
elliptic problem (see, e.g., [57, Chap. 2, Sec. 1].

Condition 2.1. The operator P(y,D) is properly elliptic on G.

Condition 2.2. For any y ∈ γεσ and any y ∈ ∂G \ Oε(0), the system of operators {Bμ0(y,D)}mμ=1

satisfies the covering condition (Lopatinskii condition) with respect to the operator P(y,D).

We emphasize that the normality of the operators Bμ0(y,D) is not provided.

Let us introduce the operators B0
μ : H l+2m

a (G) → H
l+2m−mμ−1/2
a (∂G) by the formula

B0
μu = Bμ0(y,D)u(y)|∂G.

Everywhere in this chapter, a ∈ R and l ≥ 0 is an integer such that l + 2m−mμ ≥ 1.

Define the operators that correspond to nonlocal conditions near the origin. Let Ωσ, σ = 1, 2, be
infinitely differentiable, nondegenerate transformations that map some neighborhood Oσ of a curve
γεσ to the set Ωσ(Oσ) such that Ωσ(γ

ε
σ) ⊂ G and

Ωσ(0) = 0. (2.1)
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Choose small ε (see Remark 2.2 below) such that there exists a neighborhood Oε1(0) such that
Oε1(0) ⊃ Oε(0) and

(1) G ∩ Oε1(0) = Kε1 ;
(2) Ωσ

(
Oε(0)

)
⊂ Oε1(0).

Condition 2.3. For y ∈ Oε(0), the transformation Ωσ has the form

Ωσ : y 
→ Gσy + o(|y|),
where Gσ is the composition of the rotation by the angle −ωσ about the origin and the dilation with
the center at the origin and the coefficient χσ > 0, σ = 1, 2.

Thus, the operator Gσ maps the ray γσ of the angle K to the half-line {y ∈ R
2 : r > 0, ω = 0} lying

inside the angle K.

Remark 2.1. In particular, condition 2.3 means that the curve Ωσ(γεσ) approaches the boundary ∂G
at the point 0 but does not touch it.

In this chapter, we use the notation

d1 = min
σ=1,2

{1, χσ}/2, d2 = 2 max
σ=1,2

{1, χσ}. (2.2)

Let us choose a number ε0, 0 < ε0 ≤ ε, satisfying the condition

Oε0(0) ⊂ Ωσ
(
Oε(0)

)
⊂ Oε1(0).

Let us consider a function ζ ∈ C∞(R2) such that

ζ(y) = 1 (y ∈ Oε0/2(0)), ζ(y) = 0 (y /∈ Oε0(0)). (2.3)

Introduce the bounded operators B1
μ : H l+2m

a (G) → H
l+2m−mμ−1/2
a (∂G) by the formula

B1
μu =

{
(Bμ1(y,D)(ζu))(Ωσ(y))|γεσ , y ∈ γεσ, σ = 1, 2,

0, y ∈ ∂G \ Oε(0),

where (Bμ1(y,D)v)(Ωis(y)) = Bμ1(y
′, Dy′)v(y

′)|y′=Ωσ(y).

Since B1
μu = 0 when suppu ⊂ G \ Oε0(0), we say that the operators B1

μ correspond to nonlocal
terms with supports near the origin.

Introduce the notation

Gρ = {y ∈ G : dist(y, ∂G) > ρ}.
Let us consider a bounded operator

B2
μ : H l+2m

a (G) → H
l+2m−mμ−1/2
a (∂G)

satisfying the following condition.

Condition 2.4. There exist numbers κ1 > κ2 > 0 and ρ > 0 such that the following inequalities hold:

‖B2
μu‖Hl+2m−mμ−1/2

a (∂G)
≤ c1‖u‖W l+2m(G\Oκ1 (0))

∀u ∈W l+2m(G \ Oκ1(0)), (2.4)

‖B2
μu‖W l+2m−mμ−1/2(∂G\Oκ2 (0))

≤ c2‖u‖W l+2m(Gρ) ∀u ∈W l+2m(Gρ), (2.5)

where μ = 1, . . . ,m, c1, and c2 > 0 are independent of u.

It follows from (2.4) that B2
μu = 0 if suppu ⊂ Oκ1(0). This is why we say that the operators B2

μ

correspond to nonlocal terms with supports outside the origin.

Note that we do not assume a priori the presence of any relation between the numbers κ1, κ2, and
ρ in Condition 2.4 and the number ε0 in Condition 2.3.
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We study the nonlocal elliptic problem

P(y,D)u = f0(y), y ∈ G, (2.6)

Bμu ≡ B0
μu+B1

μu+B2
μu = fμ(y), y ∈ ∂G; μ = 1, . . . ,m. (2.7)

Problem (6.9), (6.10) from Sec. 6.2 (see Chap. 2) for N = 1 can serve as an example of problem (2.6),
(2.7) (see [25] for details).

Introduce the following operator corresponding to problem (2.6), (2.7) in weight spaces:

L = {P(y,D), Bμ} : H l+2m
a (G) → Hl

a(G, ∂G), (2.8)

where

Hl
a(G, ∂G) = H l

a(G)×
m∏
μ=1

H
l+2m−mμ−1/2
a (∂G).

Remark 2.2. Let us show that the number ε0 in the definition of nonlocal operators B1
μ can be

chosen arbitrarily small.
Let the number ε̂0 be such that 0 < ε̂0 < ε0. Let us consider a function ζ̂ ∈ C∞(R2) such that

ζ̂(y) =

{
1, y ∈ Oε̂0/2(K),

0, y /∈ Oε̂0(K),

and introduce the operator B̂1
μ : H l+2m

a (G) → H
l+2m−mμ−1/2
a (∂G) by the formula

B̂1
μu =

{(
Bμ1(y,D)(ζ̂u)

)(
Ωσ(y)

)∣∣
γεσ
, y ∈ γεσ, σ = 1, 2,

B̂1
μu = 0, y ∈ ∂G \ Oε(0).

Obviously,

B0
μ +B1

μ +B2
μ = B0

μ + B̂1
μ + B̂2

μ,

where

B̂2
μ = B1

μ − B̂1
μ +B2

μ.

It is easy to see that the operator B1
μ − B̂1

μ for some κ1, κ2, and ρ satisfies Condition 2.4. Thus, we

can always choose ε0 arbitrary small (perhaps, due to a modification of the operator B2
μ and numbers

κ1, κ2, and ρ).

2.2. Reduction to model problems in plane angles. In problem (2.6), (2.7), the behavior of
solutions in a neighborhood of the origin requires special attention. Let us consider the following
model problem in a plane angle. Assume that

B2
μ = 0, μ = 1, . . . ,m. (2.9)

Then, by Condition 2.3, problem (2.6), (2.7) has the following form in a ε-neighborhood of the origin:

P(y,D)U = f0(y), y ∈ Kε, (2.10)

Bσμ0(y,D)U |γσ + (Bσμ1(y,D)U)(Ωσ(y))|γσ = fσμ(y), y ∈ γεσ, (2.11)

where σ = 1, 2; μ = 1, . . . ,m; Bσμs(y,D), s = 0, 1, are linear differential operators of order mμ with
variable coefficients of the class C∞.

We denote by P(D) and Bσμs(D) the principal homogeneous parts of the operators P(0, D) and
Bσμs(0, D) respectively. Assume that

BΩ
σμ(D)U = Bσμ0(D)U |γσ + (Bσμ1(D)U)(Ωσ(y))|γσ ,

Bσμ(D)U = Bσμ0(D)U |γσ + (Bσμ1(D)U)(Gσy)|γσ .
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Introduce the operators

LΩ = {P(D), BΩ
σμ(D)} : H l+2m

a (K) → Hl
a(K, γ),

L = {P(D), Bσμ(D)} : H l+2m
a (K) → Hl

a(K, γ),

where
Hl
a(K, γ) = H l

a(K)×Hl+2m−m−1/2
a (γ),

Hl+2m−m−1/2
a (γ) =

∏
σ=1,2

m∏
μ=1

H
l+2m−mμ−1/2
a (γσ).

We assume that the operator LΩ is defined on the set of functions with supports that are concentrated
in a neighborhood of the origin (in particular, with supports such that Ωσ(y) ∈ K for y ∈ suppU).

It is obvious that the operators LΩ and L agree with the model problems with nonlinear and
linearized transformations, respectively.

We rewrite the operators P(D) and Bσμs(D) in the polar coordinates in the following form:

P(D) = r−2mP̃(ω,Dω, rDr), Bσμ(D) = r−mμB̃σμ(ω,Dω, rDr),

where Dω = −i ∂
∂ω

, Dr = −i ∂
∂r

. Consider the following operator (it is an analytic operator-function

depending on a parameter λ ∈ C):

L̃(λ) :W l+2m(ω1, ω2) →W l(ω1, ω2)× C
2m,

defined by the formula
L̃(λ)ϕ = {P̃(ω,Dω, λ)ϕ, B̃σμ(ω,Dω, λ)ϕ}, (2.12)

where

B̃σμ(ω,Dω, λ)ϕ = B̃σμ0(ω,Dω, λ)ϕ|ω=ωσ + (χσ)
iλ−mμB̃σμ1(ω,Dω, λ)ϕ(ω − ωσ)|ω=ωσ .

Note that the set of eigenvalues of the operator L̃(λ) is discrete (see [88]).

3. Nonlinear Transformations Near the Origin

3.1. Nonlinear transformations in polar coordinates. It was shown in [25] that the operator
corresponding to a problem with nonlinear transformations of variables is not a small or compact
perturbation of an operator corresponding to the problem with linearized transformations. There-
fore, to prove the Fredholm solvability of a problem with nonlinear transformations, we first obtain
a priori estimates and construct a right regularizer. To do this, we study some properties of the
transformations Ωσ near the origin.

Applying the Taylor formula, we easily obtain the following statement, which will be used in the
proof of lemma on the representation of transformations Ω in the polar coordinates (see Lemma 3.2).

Lemma 3.1. Let h = h(r) be a function such that |Dk
rh| ≤ ck as 0 ≤ r ≤ �, k = 0, . . . , k0, where

ck > 0 is independent of r. Let f(r) = r−lh(r) for some l ∈ N. If |f | ≤ c, then |Dk
rf | ≤ Ck as

0 ≤ r ≤ �, k = 1, . . . , k0, where Ck > 0 is independent of r.

The following lemma describes the structure of nonlinear transformation Ωσ in the polar coordinates.
Such a representation is the most convenient when we deal with weight spaces.

Lemma 3.2. If � is sufficiently small, then the representation Ωσ(y)|γ�σ can be written in the polar
coordinates as follows :

(ωσ, r) 
→
(
Φσ(r), χσr +Rσ(r)

)
, r ≤ �, (3.1)

where Φσ(r) and Rσ(r) are infinitely smooth functions such that

|Φσ| ≤ c�, |Rσ| ≤ c�r, (3.2)

|Dk
rΦσ| ≤ ck, |Dk

r (Rσ/r)| ≤ ck. (3.3)
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Here k ≥ 1; c and ck > 0 are independent of �.

Proof. Let Ωσ(y) = (Ω1
σ(y),Ω

2
σ(y)). Using Eq. (2.1) and the Taylor formula in the neighborhood of

r = 0, we obtain

Ωiσ(r cosωσ, r sinωσ) =

(
∂Ωiσ
∂y1

(0) cosωσ +
∂Ωiσ
∂y2

(0) sinωσ

)
r +O(r2). (3.4)

Note that
∂Ω1

σ

∂y1
(0) cosωσ +

∂Ω1
σ

∂y2
(0) sinωσ,

∂Ω2
σ

∂y1
(0) cosωσ +

∂Ω2
σ

∂y2
(0) sinωσ

does not vanish simultaneously; this follows from the nondegeneracy of the Jacobian of the transfor-
mation y 
→ Ωσ(y) at the origin. For example, let

∂Ω1
σ

∂y1
(0) cosωσ +

∂Ω1
σ

∂y2
(0) sinωσ 	= 0. (3.5)

Then, by Eq. (3.4), if � is sufficiently small, then we have

Ω1
σ 	= 0 as r ≤ � (3.6)

and the transformation Ωσ|γ�σ has the following form in the polar coordinates:

(ωσ, r) 
→

⎛
⎝arctan

Ω2
σ

Ω1
σ

+ πl,

√∑
i=1,2

(Ωiσ)
2

⎞
⎠ . (3.7)

Here l = 0 if Ω1
σ > 0 and Ω2

σ ≥ 0; l = 1 if Ω1
σ < 0; l = 2 if Ω1

σ > 0 and Ω2
σ < 0.

Equation (3.4) and the Taylor formula yield

arctan
Ω2
σ

Ω1
σ

= arctan

∂Ω2
σ

∂y1
(0) cosωσ +

∂Ω2
σ

∂y2
(0) sinωσ

∂Ω1
σ

∂y1
(0) cosωσ +

∂Ω1
σ

∂y2
(0) sinωσ

+O(r),

√∑
i=1,2

(Ωiσ)
2 = r

√√√√∑
i=1,2

(
∂Ωiσ
∂y1

(0) cosωσ +
∂Ωiσ
∂y2

(0) sinωσ

)2

+O(r2).

Assuming that

ωkq = arctan

∂Ω2
σ

∂y1
(0) cosωσ +

∂Ω2
σ

∂y2
(0) sinωσ

∂Ω1
σ

∂y1
(0) cosωσ +

∂Ω1
σ

∂y2
(0) sinωσ

+ πl,

χσ =

√√√√∑
i=1,2

(
∂Ωiσ
∂y1

(0) cosωσ +
∂Ωiσ
∂y2

(0) sinωσ

)2

,

we obtain formula (3.1) and inequalities (3.2).
Prove the first inequality in (3.3). By (3.6),

∣∣Ω2
σ/Ω

1
σ

∣∣ ≤ c for r ≤ �. Therefore, by Eqs. (3.1)

and (3.7), it suffices to prove the boundedness of the partial derivatives Dk
r

Ω2
σ

Ω1
σ

. Let us write

Ω2
σ

Ω1
σ

=
r−1Ω2

σ

r−1Ω1
σ

.
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It follows from Eqs. (3.4) and (3.5) that r−1Ω1
σ 	= 0 for r ≤ �; therefore, it suffices to prove that

|Dk
r (r

−1Ωσ)| ≤ ck.

However, Ωσ is an infinitely smooth transformation for r ≤ �; since Ωσ(0) = 0, we have Ωσ = O(r).
Hence, |r−1Ωσ| ≤ c. Now the desired statement follows from Lemma 3.1.

Similarly, we prove the second inequality in (3.3). It follows from Eqs. (3.1) and (3.7) that

Rσ(r)

r
=

√√√√∑
i=1,2

(Ωiσ)
2

r2
− χσ.

By Eqs. (3.4) and (3.5), we have
∑
i=1,2

(Ωiσ)
2/r2 	= 0 for r ≤ �; hence, it suffices to show that

∣∣∣∣∣∣Dk
r

∑
i=1,2

(Ωiσ)
2/r2

∣∣∣∣∣∣ ≤ ck.

However,
∑
i=1,2

(Ωiσ)
2 is an infinitely smooth function if r ≤ �. Since Ωσ(0) = 0, we have that

∑
i=1,2

(Ωiσ)
2 = O(r2). Hence,

∣∣∣∣∣ ∑i=1,2
(Ωiσ)

2/r2

∣∣∣∣∣ ≤ c, and the desired statement follows from Lemma 3.1.

Introduce the notation δ = min(−ω1, ω2)/2. Let � be so small that

|Φσ| ≤ δ/2, |Rσ| ≤ χσr/2, r ≤ �/d1. (3.8)

The existence of such a � follows from Lemma 3.2.
Let us introduce infinitely differentiable functions ζi(ω) and ζσi(ω), i = 0, . . . , 4, such that

ζi(ω) = 1 for |ω| ≤ δ/2i+1, ζi(ω) = 0 for |ω| ≥ δ/2i,

ζσi(ω) = ζi(ω − ωσ).
(3.9)

Obviously, ζσi(ω) = 1 for |ω − ωσ| ≤ δ/2i+1 and ζσi(ω) = 0 for |ω − ωσ| ≥ δ/2i.

Consider the transformation Ω̃σ(y), acting in the polar coordinates by the formula

(ω, r) 
→ (ω − ωσ +Φσ(r), χσr +Rσ(r)). (3.10)

According to Lemma 3.2, we have Ω̃σ(y)|γ�σ = Ωσ(y)|γ�σ ; therefore, in the sequel, we can assume that
the transformation Ωσ(y) is defined by formula (3.10). Generally speaking, the transformation Ωσ(y)
can have a singularity at the origin since the new transformation Ωσ(y) coincides with the old Ωσ(y)
only on γ
σ.

Definition 3.1. For any function W (y), we set Ŵ (y) =W (Ωσ(G−1
σ y)).

By Lemma 3.2, the transformation Ωσ(G−1
σ y) in the polar coordinates has the form

(ω, r) 
→ (ω +Φ′
σ(r), r +R′

σ(r)), (3.11)

where Φ′
σ(r) = Φσ(χ

−1
σ r) and R′

σ(r) = Rσ(χ
−1
σ r). It is easy to see that Φ′

σ and R′
σ also satisfy

inequalities (3.2) and (3.3).
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3.2. Properties of operators containing nonlinear transformations in weight spaces.

Lemma 3.3. If � > 0 is sufficiently small, then for any functionW ∈ H l
a(K) such that suppW ⊂ K
,

we have ζ1Ŵ ∈ H l
a(K) and

‖ζ1Ŵ‖Hl
a(K) ≤ c‖W‖Hl

a(K),

where c > 0 is independent of W and �.

Proof. To prove the lemma, we use the following obvious statement:

W ∈ H l
a(K) ⇐⇒ DαW ∈ H0

a+|α|−l(K), |α| ≤ l. (3.12)

Formula (3.11) and inequalities (3.8) imply that the transformation (3.11) maps the set
K
 ∩ {y : |ω| < δ} to K. Moreover, it follows from inequalities (3.2) and (3.3) that the modulus
of the Jacobian of transformation (3.11) is bounded and nonzero in K
 ∩ {y : |ω| < δ} if � are small.
Hence, the lemma is valid for l = 0 with the function ζ0 instead of ζ1.

Let us consider functions ζp0 ∈ C∞
0 (R), p = 0, . . . , l, such that ζ00 = ζ0, ζ

l
0 = ζ1, and ζ

p−1
0 (ω) = 1 for

ω ∈ supp ζp0 , p = 1, . . . , l. Assume that the lemma is valid for l = p− 1 with the function ζp−1
0 instead

of ζ1; prove that it is valid for l = p with the function ζp0 instead of ζ1 (p ≥ 1). Let W ∈ Hp
a(K);

then
1

r

∂W

∂ω
,
∂W

∂r
∈ Hp−1

a (K). Hence, by the induction hypothesis, ζp−1
0

1̂

r

∂W

∂ω
, ζp−1

0

∂̂W

∂r
∈ Hp−1

a (K).

These inclusions, the relations

1

r

∂Ŵk

∂ω
=

1̂

r

∂W

∂ω

(
1 +

R′
σ

r

)
,

∂Ŵk

∂r
=

1̂

r

∂W

∂ω

(
1 +

R′
σ

r

)
r
∂Φ′

σ

∂r
+
∂̂W

∂r

(
1 +

∂R′
σ

∂r

)
,

(3.13)

inequalities (3.2) and (3.3), and [53, Lemma 2.1] imply that

ζp−1
0

1

r

∂Ŵ

∂ω
, ζp−1

0

∂Ŵ

∂r
∈ Hp−1

a (K). (3.14)

Moreover, the inclusion W ∈ Hp
a(K), the embedding Hp

a(K) ⊂ H0
a−p(K), and the statement of the

lemma for l = 0 yield ζp0Ŵ ∈ H0
a−p(K). This and Eqs. (3.12) and (3.14) imply that Dα(ζp0Ŵ ) ∈

H0
a+|α|−p(K), |α| ≤ p. Applying Eq. (3.12) again, we obtain the desired statement.

Thus, the operator W 
→ ζ1Ŵ is bounded in H l
a(K).

Lemma 3.4. For any function W ∈ H l
a(K) such that suppW ⊂ K
 and for any multi-index γ,

1 ≤ |γ| ≤ l, the following inequality holds :

‖ζ2DγŴ − ζ2D̂γW‖
H

l−|γ|
a (K)

≤ c�‖W‖Hl
a(K). (3.15)

Here c > 0 is independent of W and �.

Proof. Consider functions ζp1 ∈ C∞
0 (R), p = 1, . . . , l, such that ζ11 = ζ1, ζ

l
1 = ζ2, and ζ

p−1
1 (ω) = 1 for

ω ∈ supp ζp1 , p = 2, . . . , l.

Let |γ| = 1; then it suffices to prove inequality (3.15) for the case where there are operators
1

r

∂

∂ω

and
∂

∂r
instead of the operator Dγ . For example, consider the operator

1

r

∂

∂ω
(the remaining operators
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are considered similarly). The first relation in (3.13) and the Leibnitz formula yield the relation∥∥∥∥∥ζ11 1r ∂Ŵ∂ω − ζ11
1̂

r

∂W

∂ω

∥∥∥∥∥
2

Hl−1
a (K)

=

∥∥∥∥∥ζ11 1̂r ∂W∂ω R′
σ

r

∥∥∥∥∥
2

Hl−1
a (K)

≤ k1
∑

|α|≤l−1

∑
|β|≤|α|

∫
K

r2(a+|α|−(l−1))

∣∣∣∣Dα−βR′
σ

r

∣∣∣∣
2
∣∣∣∣∣Dβ

(
ζ11

1̂

r

∂W

∂ω

)∣∣∣∣∣
2

dy.

This, the last inequality in Eq. (3.2), and the last inequality in (3.3) imply that∥∥∥∥∥ζ11 1r ∂Ŵ∂ω − ζ11
1̂

r

∂W

∂ω

∥∥∥∥∥
2

Hl−1
a (K)

≤ k2�
2

∥∥∥∥∥ζ11 1̂r ∂W∂ω
∥∥∥∥∥
2

Hl−1
a (K)

. (3.16)

Estimate (3.16) and Lemma 3.3 prove the lemma for |γ| = 1 with the function ζ11 instead of ζ2.

Assume that the lemma is valid for 1 ≤ |γ| ≤ p− 1 with the function ζp−1
1 instead of ζ2. Prove that

it is valid for |γ| = p with the function ζp1 instead of ζ2 (p ≥ 2). We have

‖ζp1DγŴ − ζp1D̂
γW‖

H
l−|γ|
a (K)

≤ ‖ζp1D|γ|−1(D1Ŵ )− ζp1D
|γ|−1D̂1W‖

H
l−|γ|
a (K)

+ ‖ζp1D|γ|−1D̂1W − ζp1
̂D|γ|−1(D1W )‖

H
l−|γ|
a (K)

≤ k3

(
‖ζp−1

1 D1Ŵ − ζp−1
1 D̂1W‖Hl−1

a (K) + ‖ζp1D|γ|−1D̂1W − ζp1
̂D|γ|−1(D1W )‖

H
l−|γ|
a (K)

)
. (3.17)

Here D|γ|−1 and D1 are some generalized derivatives of orders |γ| − 1 and 1, respectively. By the
induction hypothesis, the following estimates are valid for each of the two norms on the right-hand
side of Eq. (3.17):

‖ζp−1
1 D1Ŵ − ζp−1

1 D̂1W‖Hl−1
a (K) ≤ k4�‖W‖Hl

a(K),

‖ζp1D|γ|−1D̂1W − ζp1
̂D|γ|−1(D1W )‖

H
l−|γ|
a (K)

≤ k5�‖D1W‖Hl−1
a (K) ≤ k6�‖W‖Hl

a(K).

The desired statement follows from here and Eq. (3.17).

The multiplier � appears in estimate (3.15) since both terms on the left-hand side of the inequality
contain the same transformation of variables Ωσ(G−1

σ y), but the minuend is a derivative from the
transformed function and the subtrahend is a transformation of a derivative.

Lemma 3.5. The following inequality holds for any function U ∈ H l+2m
a (K) such that suppU ⊂ K
:

‖(Bσμ1U)(Gσy)|γσ − (Bσμ1U)(Ωσ(y))|γσ‖Hl+2m−mμ−1/2
a (γσ)

≤ c
(
�‖U‖Hl+2m

a (K) + ‖ζ3U − ζ3Û‖Hl+2m
a (K)

)
, (3.18)

where c > 0 is independent of U and �.

Proof. Using the continuity of the trace operator in weight spaces, we obtain

‖(Bσμ1U)(Gσy)|γσ − (Bσμ1U)(Ωσ(y))|γσ‖Hl+2m−mμ−1/2
a (γσ)

≤ k1‖ζ4Bσμ1U − ζ4B̂σμ1U‖
H

l+2m−mμ
a (K)

≤ k1

(
‖ζ4Bσμ1U − ζ4Bσμ1Û‖

H
l+2m−mμ
a (K)

+ ‖ζ4Bσμ1Û − ζ4B̂σμ1U‖
H

l+2m−mμ
a (K)

)
. (3.19)

Let us estimate the first norm on the right-hand side of inequality (3.19):

‖ζ4Bσμ1U − ζ4Bσμ1Û‖
H

l+2m−mμ
a (K)

≤ k2‖ζ3U − ζ3Û‖Hl+2m
a (K). (3.20)
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The second norm on the right-hand side of inequality (3.19) is estimated by Lemma 3.4:

‖ζ4Bσμ1Û − ζ4B̂σμ1U‖
H

l+2m−mμ
a (K)

≤ k3�‖U‖Hl+2m
a (K). (3.21)

The statement of the lemma follows from Eqs. (3.19)–(3.21).

Note that the right-hand side of inequality (3.18) contains the norm of the difference of the non-
transformed and transformed functions. We need the following lemma to estimate such differences.

Lemma 3.6. The following inequality holds for any function W ∈ H1
a+1(K) such that suppW ⊂ K
:

‖ζ1W − ζ1Ŵ‖H0
a(K) ≤ c�‖W‖H1

a+1(K), (3.22)

where c > 0 is independent of W and �.

Proof. Writing the arguments of the functions W and Ŵ in the polar coordinates, we obtain the
inequality

‖ζ1W − ζ1Ŵ‖H0
a(K) ≤ ‖ζ1W (ω, r)− ζ1W (ω +Φ′

σ(r), r)‖H0
a(K)

+ ‖ζ1W (ω +Φ′
σ(r), r)− ζ1W (ω +Φ′

σ(r), r +R′
σ(r))‖H0

a(K). (3.23)

Let us estimate the square of the first norm on the right-hand side of Eq. (3.23), using the Schwartz
inequality:

‖ζ1W (ω, r)− ζ1W (ω +Φ′
σ(r), r)‖2H0

a(K) =

∞∫
0

r2ar dr

ω2∫
ω1

∣∣∣∣∣∣∣ζ1
ω+Φ′

σ(r)∫
ω

∂W

∂ω′ dω
′

∣∣∣∣∣∣∣
2

dω

≤
∞∫
0

r2ar dr

ω2∫
ω1

|ζ1|2|Φ′
σ(r)| ·

∣∣∣∣∣∣∣
ω+Φ′

σ(r)∫
ω

∣∣∣∣∂W∂ω′

∣∣∣∣
2

dω′

∣∣∣∣∣∣∣ dω.
Taking into consideration the restrictions on the supports of functionsW and ζ1 and inequalities (3.8),
we change the order of integrating with respect to ω and ω′; as a result, using Eq. (3.2), we obtain

‖ζ1W (ω, r)− ζ1W (ω +Φ′
σ(r), r)‖2H0

a(K)

≤ k1

∞∫
0

r2ar|Φ′
σ(r)|2 dr

ω2∫
ω1

∣∣∣∣∂W∂ω
∣∣∣∣
2

dω

≤ k2�
2

∞∫
0

r2(a+1)r dr

ω2∫
ω1

∣∣∣∣1r ∂W∂ω
∣∣∣∣
2

dω ≤ k3�
2‖W‖2H1

a+1(K).

Similarly, we estimate the square of the second norm on the right-hand side of Eq. (3.23).

Thus, the multiplier � appears in Eq. (3.22) if we increase the differentiability index by 1 (the
left-hand side of (3.22) contains the norm in H0

a(K) and the right-hand side contains the norm in
H1
a+1(K)). This happens because in this case (unlike Eq. (3.15)), we estimate the difference of two

functions, one of which does not contain a transformation of variables and the other contains it.
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4. Fredholm Solvability of Nonlocal Problems
and the Stability of the Index

4.1. A priori estimates of solutions. In this section, we prove an a priori estimate for the
operator L that guarantees the finite dimension if its kernel and closeness of its image.

Condition 4.1. The straight line Imλ = a + 1 − l − 2m does not contain eigenvalues of the opera-
tor L̃(λ).

Lemma 4.1. Let conditions 2.1–2.4 and 4.1 hold. Then

‖u‖Hl+2m
a (G) ≤ c

(
‖Lu‖Hl

a(G,∂G) + ‖u‖H0
a+1−l−2m(G)

)
∀u ∈ H l+2m

a (G).

Here c > 0 is independent of u.

Proof. Similarly to the proof of [41, Theorem 4.1], we use the principle of partition of unity and the
Leibnitz formula and reduce the proof of Lemma 4.1 to the proof of the following a priori estimate for
sufficiently small � > 0:

‖U‖Hl+2m
a (K) ≤ c‖LΩU‖Hl

a(K,γ)
∀U ∈ H l+2m

a (K), suppU ⊂ K
, (4.1)

where c > 0 is independent of U .
Let us prove Eq. (4.1). By condition 4.1 and [88, Theorem 2.1], the operator L : H l+2m

a (K) →
Hl
a(K, γ) has a bounded inverse operator. Hence applying Lemma 3.5, for U ∈ H l+2m

a (K),
suppU ⊂ K
, we obtain the following inequality:

‖U‖Hl+2m
a (K) ≤ k1‖LU‖Hl

a(K,γ)

≤ k2

(
‖LΩU‖Hl

a(K,γ)
+ �‖U‖Hl+2m

a (K) + ‖ζ3U − ζ3Û‖Hl+2m
a (K)

)
, (4.2)

where k1, k2, · · · > 0 are independent of U and �.
Let us estimate the last norm in Eq. (4.2). According to [58, Theorem 4.1], we have

‖ζ3U − ζ3Û‖Hl+2m
a (K) ≤ k3

(
‖P(D)(ζ3U − ζ3Û)‖Hl

a(K) + ‖ζ3U − ζ3Û‖H0
a−l−2m(K)

)
. (4.3)

By Lemma 3.6 and the continuity of the embedding H l+2m
a (K) ⊂ H1

a−l−2m+1(K), we have

‖ζ3U − ζ3Û‖H0
a−l−2m(K) ≤ k4�‖U‖Hl+2m

a (K). (4.4)

To estimate the first norm on the right-hand side of Eq. (4.3), we use the Leibnitz formula and
Lemmas 3.3 and 3.4:

‖P(D)(ζ3U − ζ3Û)‖Hl
a(K) ≤ k5

(
‖ζ3P(D)U‖Hl

a(K) + ‖ζ3P(D)Û‖Hl
a(K)

+
∑

|β|≤2m−1

∑
|γ|=2m−|β|

‖Dγζ3D
βU −Dγζ3D

βÛ‖Hl
a(K)

)
≤ k6

(
‖P(D)U‖Hl

a(K)

+ �‖U‖Hl+2m
a (K) +

∑
|β|≤2m−1

∑
|γ|=2m−|β|

‖Dγζ3D
βU −Dγζ3D

βÛ‖Hl
a(K)

)
. (4.5)
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Since |Dγζ3| ≤ k7r
−|γ||ζ2|, we have∑

|β|≤2m−1

∑
|γ|=2m−|β|

‖Dγζ3D
βU −Dγζ3D

βÛ‖Hl
a(K)

≤ k8
∑

|α|≤l+2m−1

‖ζ2DαU − ζ2D
αÛ‖H0

a+|α|−l−2m
(K)

≤ k9
∑

|α|≤l+2m−1

(
‖ζ2DαU − ζ2D̂αU‖H0

a+|α|−l−2m
(K)

+ ‖ζ2D̂αU − ζ2D
αÛ‖H0

a+|α|−l−2m
(K)

)
. (4.6)

Using Lemma 3.6 and the continuity of the embedding of the spaces

H l+2m
a (K) ⊂ H

1+|α|
a+1+|α|−l−2m(K)

for |α| ≤ l + 2m− 1, we obtain the inequality

‖ζ2DαU − ζ2D̂αU‖H0
a+|α|−l−2m

(K) ≤ k10�‖DαU‖H1
a+1+|α|−l−2m

(K) ≤ k11�‖U‖Hl+2m
a (K). (4.7)

Similarly, Lemma 3.4 implies that

‖ζ2D̂αU − ζ2D
αÛ‖H0

a+|α|−l−2m
(K) ≤ k12�‖U‖Hl+2m

a (K). (4.8)

Now estimate (4.1) follows from Eqs. (4.2)–(4.8) for sufficiently small �.

By virtue of the compactness of the embedding H l+2m
a (G) ⊂ H0

a+1−l−2m(G) (see [53, Lemma 3.5]),
Lemma 4.1 implies that the operator L has a finite-dimensional kernel and a closed image.

4.2. Construction of a right regularizer. Fredholm solvability of nonlocal problems. In
this case, we construct the right regularizer for the operator L. This and Lemma 4.1 allow us to prove
the Fredholm property of nonlocal boundary-value problem (2.6), (2.7).

Lemma 4.2. Let conditions 2.1–2.4 and 4.1 hold. Then there exist a bounded operator R :
Hl
a(G, ∂G) → H l+2m

a (G) and a compact operator T : Hl
a(G, ∂G) → Hl

a(G, ∂G) such that

LR = I+T,

where I is the identity operator in Hl
a(G, ∂G).

Proof. 1. Similarly to the proof of [41, Theorem 5.2], we use the principle of partition of unity and
the Leibnitz formula and reduce the proof of Lemma 4.2 to the proof of the following statement: for
all sufficiently small � > 0, there exist bounded operators R and M and a compact operator T , acting
from {f ∈ Hl

a(K, γ) : supp f ⊂ Od1
/4(0)} to H l+2m
a (K), Hl

a(K, γ), and Hl
a(K, γ), respectively, and

satisfying the conditions
LΩRf = f +Mf + T f, (4.9)

‖Mf‖Hl
a(K,γ)

≤ c�‖f‖Hl
a(K,γ)

. Here d1 is the number defined by formula (2.2), and c > 0 is indepen-
dent of � and f .

Let us construct the operators R, M and T that satisfy relation (4.9).
Introduce a function ψ
(y) = ψ(y/�), where ψ ∈ C∞(Rn), ψ(y) = 1 for |y| ≤ 1, and ψ(y) = 0 for

|y| ≥ 2. Obviously, ψ
 ∈ C∞(Rn) and ψ
(y) = 1 for |y| ≤ � and ψ
(y) = 0 for |y| ≥ 2�. Since we have

|Dαψ
| ≤ cαr
−|α|, it follows from [53, Lemma 2.1] that

‖ψ
v‖Hl+2m
a (K) ≤ c‖v‖Hl+2m

a (K) for all v ∈ H l+2m
a (K), (4.10)

where c > 0 is independent of �. Moreover, let ψ
, written in the polar coordinates, be independent
of ω.
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Let f ′ = {fσμ}. By condition 4.1 and [88, Theorem 2.1], the operator L : H l+2m
a (K) → Hl

a(K, γ)
has a bounded inverse operator. Hence we can define the operators

R0 : H
l
a(K) → H l+2m

a (K), R′ : Hl+2m−m−1/2
a (γ) → H l+2m

a (K)

by the formulas

R0f0 = ψ
L−1(f0, 0), R′f ′ = ψ
L−1(0, f ′).
Thus, the supports of the functions R0f0 and R′f ′ are located in the ball of radius 2� centered at the
origin.

Let the operators

P : H l+2m
a (K) → H l

a(K), B,BΩ : H l+2m
a (K) → Hl+2m−m−1/2

a (γ)

act by the formulas

PU = P(D)U, BU = {Bσμ(D)U}, BΩU = {BΩ
σμ(D)U}.

Let us establish the connection between the operators P, B, BΩ, and R0, R′. We use the following
property of weight spaces (see [53, Lemma 3.5]): the embedding operator

{v ∈ H l+1
a (K) : supp v ⊂ Od(0), d > 0} ⊂ H l

a(K) (4.11)

is compact for any d > 0.
It follows from the Leibnitz formula, the boundedness of the support suppψ
, and the compactness

of embedding (4.11) that

PR0f0 = ψ
f0 + T0f0, PR′f ′ = T ′f ′, (4.12)

where T0 : H l
a(K) → H l

a(K) and T ′ : Hl+2m−m−1/2
a (γ) → H l

a(K) are compact operators. Similarly,

BR′f ′ = ψ
f
′ +

{
(ψ
(χσy)− ψ
(y))(Bσμ1L−1(0, f ′))(Gσy)|γσ

}
+ T1f ′, (4.13)

where T1 is a compact operator in Hl+2m−m−1/2
a (γ), and the braces show that the expression {. . .} is

a vector whose components are defined by indices σ and μ.
Let us show that each term of the sum in Eq. (4.13) is a compact operator. Let ζi be functions

introduced by formulas (3.9). Let us introduce the functions ψ̂0, ψ̂1 ∈ C∞
0 (Rn),

ψ̂1(y) = 1 for 2d1� ≤ |y| ≤ d2�, ψ̂1(y) = 0 outside d1� ≤ |y| ≤ 2d2�,

ψ̂0(y) = 1 for d1� ≤ |y| ≤ 2d2�, ψ̂0(y) = 0 outside d1�/2 ≤ |y| ≤ 4d2�,

where d1 and d2 are the numbers defined in Eq. (2.2). Then by the continuity of the trace operator
in weight spaces, we have

‖(ψ
(χσy)− ψ
(y))(Bσμ1L−1(0, f ′))(Gσy)|γσ‖Hl+2m−mμ−1/2
a (γσ)

≤ k2‖ζ2(ψ
(y)− ψ
(χ
−1
σ y))Bσμ1L−1(0, f ′)‖

H
l+2m−mμ
a (K)

≤ k3‖ζ1ψ̂1L−1(0, f ′)‖Hl+2m
a (K). (4.14)

Since the support of the function ψ̂1 is bounded and separated from zero and the function ζ1 is zero
near rays of the angleK, we can use [57, Chap. 2, Theorem 5.1]: applying the relation PL−1(0, f ′) = 0,
we obtain from Eq. (4.14) the following inequality:

‖(ψ
(χσy)− ψ
(y))(Bσμ1L−1(0, f ′))(Gσy)|γσ‖Hl+2m−mμ−1/2
a (γσ)

≤ k4‖ψ̂0L−1(0, f ′)‖Hl+2m−1
a (K).

Since the support of the function ψ̂0 is bounded, it follows from the last inequality and the compactness
of embedding (4.11) that {

(ψ
(χσy)− ψ
(y))(Bσμ1L−1(0, f ′))(Gσy)|γσ
}
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is a compact operator in Hl+2m−m−1/2
a (γ). Together with Eq. (4.13), this yields

BR′f ′ = ψ
f
′ + T2f ′, (4.15)

where T2 is a compact operator Hl+2m−m−1/2
a (γ).

Let us obtain the following formula for the composition BΩR′ from Eq. (4.15):

BΩR′f ′ = ψ
f
′ + T2f ′ +

{
(Bσμ1R′f ′)(Ωσ(y))|γσ − (Bσμ1R′f ′)(Gσy)|γσ

}
. (4.16)

2. Let us introduce the operator R : Hl
a(K, γ) → H l+2m

a (K), acting by the formula

R(f0, f
′) = R0f0 − R̃′BΩR0f0 +R′f ′.

Here R̃′ : Hl+2m−m−1/2
a (γ) → H l+2m

a (K) is a bounded operator acting by the formula

R̃′f ′ = ψ
(d1y/2)L−1(0, f ′).

Similarly to Eqs. (4.12) and (4.16), we prove that

PR̃′f ′ = T̃ ′f ′, (4.17)

BΩR̃′f ′ = ψ
(d1y/2)f
′ + T ′

2f
′ +

{
(Bσμ1R̃′f ′)(Ωσ(y))|γσ − (Bσμ1R̃′f ′)(Gσy)|γσ

}
, (4.18)

where T̃ ′ and T ′
2 are compact operators acting in the same spaces as operators T ′, T2.

Let us show that R satisfies relation (4.9). It follows from formulas (4.12) and (4.17) that

PR(f0, f
′) = ψ
f0 + T3(f0, f ′), (4.19)

where T3 : Hl
a(K, γ) → H l

a(K) is a compact operator.
Using the fact that

ψ
(d1y/2)BΩR0f0 ≡ BΩR0f0,

and Eq. (4.18), we obtain the following relation:

BΩR(f0, f
′) = BΩR0f0 − BΩR̃′BΩR0f0 + BΩR′f ′

= −T ′
2BΩR0f0 −

{ ∑
k, q, s

(
(Bσμ1[R̃′BΩR0f0]k)Ωσ(y)|γσ

− (Bσμ1[R̃′BΩR0f0]k)(Gσy)|γσ
)}

+ BΩR′f ′. (4.20)

Using Eq. (4.16), we obtain

BΩRg = ψ
f
′ + T6(f0, f ′) +

{
(Bσμ1R′f ′)(Ωσ(y))|γσ − (Bσμ1R′f ′)(Gσy)|γσ

}
−
{
(Bσμ1R̃′BΩR0f0)Ωσ(y)|γσ − (Bσμ1R̃′BΩR0f0)(Gσy)|γσ

}
,

where T6 : Hl
a(K, γ) → Hl+2m−m−1/2

a (γ) is a compact operator.
Let us consider the relation under the sum sign on the right-hand side of Eq. (4.20). By Lemma 3.5,

we have

‖(Bσμ1R′f ′)(Ωσ(y))|γσ − (Bσμ1R′f ′)(Gσy)|γσ‖Hl+2m−mμ−1/2
a (γσ)

≤ k5

(
�‖R′f ′‖Hl+2m

a (K) + ‖ζ3R′f ′ − ζ3R̂′f ′‖Hl+2m
a (K)

)
. (4.21)
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Repeating the reasoning of Eqs. (4.3)–(4.8) for U = R′f ′, from Eqs. (4.21) and (4.12) we obtain
the following:

‖(Bσμ1R′f ′)(Ωσ(y))|γσ − (Bσμ1R′f ′)(Gσy)|γσ‖Hl+2m−mμ−1/2
a (γσ)

≤ k6

(
�‖R′f ′‖Hl+2m

a (K) + ‖PR′f ′‖Hl
a(K)

)
= k6

(
�‖ψ
L−1(0, f ′)‖Hl+2m

a (K) + ‖T ′f ′‖Hl
a(K)

)
.

This relation, inequality (4.10), and the boundedness of the operator L−1 : Hl
a(K, γ) → H l+2m

a (K)
yield

‖(Bσμ1R′f ′)(Ωσ(y))|γσ − (Bσμ1R′f ′)(Gσy)|γσ‖Hl+2m−mμ−1/2
a (γσ)

≤ k7(�‖f ′‖Hl+2m−m−1/2
a (γ)

+ ‖T ′f ′‖Hl
a(K)). (4.22)

Hence, by Lemma 1.1,

(Bσμ1R′f ′)(Ωσ(y))|γσ − (Bσμ1R′f ′)(Gσy)|γσ = Mσμf
′ + Fσμf ′,

where
Mσμ,Fσμ : Hl+2m−m−1/2

a (γ) → H
l+2m−mμ−1/2
a (γσ)

are bounded operators; moreover, ‖Mσμ‖ ≤ 2k7�, and the operator Fσμ is finite-dimensional.
Similarly, we prove that the summands in the second sum on the right-hand side of (4.20) can

be represented in the form “an operator with a small norm + a finite-dimensional operator.” This
statement, Eqs. (4.20) and (4.19), and the assumption that supp(f0, f

′) ⊂ O
(0) yield Eq. (4.9).

Now we can prove the Fredholm property of the operator L : H l+2m
a (G) → Hl

a(G, ∂G).

Theorem 4.1. Let conditions 2.1–2.4 and 4.1 hold. Then L : H l+2m
a (G) → Hl

a(G, ∂G) is a Fredholm
operator.

Proof. The Fredholm property of the operator L : H l+2m
a (G) → Hl

a(G, ∂G) follows form Lemmas 4.1
and 4.2 and [56, Theorems 7.1 and 15.2].

4.3. Stability of the index with respect to nonlinear perturbations of transformations.
Show that the index of the problem is defined only by a linear part of transformations Ωσ in a
neighborhood of the origin.

Denote transformations with the same properties as Ωσ by Ω̂σ, σ = 1, 2 (see Sec. 2). Let us consider
the operators

B̂1
μu =

{
(Bμ1(y,D)(ζu))(Ω̂σ(y))|γεσ , y ∈ γεσ, σ = 1, 2,

0, y ∈ ∂G \ Oε(0).

Introduce the operators B̂μ = B0
μ + B̂1

μ +B2
μ and

L̂ = {P(y,D), B̂μ} : H l+2m
a (G) → Hl

a(G, ∂G)

(cf. (2.8)).

Theorem 4.2. Let conditions 2.1–2.4 and 4.1 hold ; moreover, let condition 2.3 be valid for trans-
formations Ωσ and Ω̂σ with the same linear operator Gσ. Then the operators L, L̂ : H l+2m

a (G) →
Hl
a(G, ∂G) are Fredholm operators and indL = ind L̂.

Proof. Let us introduce operators Lt : H
l+2m
a (G) → Hl

a(G, ∂G) by the formula

Ltu = {P(y,D)u, Bμ + t(B̂μ −Bμ}.
Obviously, L0 = L, L1 = L̂.
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The transformations Ωσ and Ω̂σ coincide with accuracy up to infinitesimals in a neighborhood of
the origin; therefore, by Theorem 4.1, the operators Lt are Fredholm operators for all t. For any t0
and t,

‖Ltu− Lt0u‖Hl
a(G,∂G) ≤ kt0 |t− t0| · ‖u‖Hl+2m

a (G),

where kt0 > 0 is independent of t ∈ [0, 1]. Hence, by [56, Theorem 16.2], we have indLt = indLt0 for
all t from some sufficiently small neighborhood of the point t0. This neighborhoods cover the interval
[0, 1]. Extracting a finite sub-covering, we obtain indL = indL0 = indL1 = ind L̂.

Remark 4.1. The results of this chapter can be generalized to the case where the domain G contains
R
n, n ≥ 2, the boundary of the domain consists of N open and connected (in the topology of ∂G)

(n−1)-dimensional manifolds Γi of the class C
∞, and the domain G is diffeomorphic to a n-dimensional

dihedral angle (plane angle if n = 2) in a neighborhood of every point g ∈ ∂G \
N⋃
i=1

Γi. The point

g ∈ ∂G \
N⋃
i=1

Γi is not necessarily a fixed point of transformations from nonlocal conditions, but it has

a finite orbit (see [25] of details).

Chapter 2

STRONG SOLUTIONS OF NONLOCAL ELLIPTIC PROBLEMS

IN PLANE ANGLES IN SOBOLEV SPACES

5. Functional Spaces

In this section, we introduce the notation and define functional spaces that will be used in Chaps. 2–
6.

5.1. Spaces of continued functions.

5.1.1. Domain G and angles Kj. Denote byG ⊂ R
2 a bounded domain with boundary ∂G. Introduce

the set K ⊂ ∂G, consisting of N points. Assume that ∂G \ K =
N⋃
i=1

Γi, where Γi are open (in the

topology of ∂G) curves of class C∞. For simplicity, we assume that the number of points of the set K
is equal to the number of curves Γi (all results can be easily generalized to the general case). Assume
that in a neighborhood of each point gj ∈ K, the domain G coincides with a plane angle

Kj = {y ∈ R
2 : r > 0, |ω| < ωj}, j = 1, . . . , N ;

we denote the rays of this angle by

γjσ = {y ∈ R
2 : r > 0, ω = (−1)σωj}, j = 1, . . . , N, σ = 1, 2,

where ω and r are the polar coordinates with pole at the point gj , 0 < ωj < π.

5.1.2. Spaces of continuous functions. Let X and M be closed sets, where the set X is nonempty.
In addition to the spaces introduced in Sec. 1.2, we consider the spaces

CM (X) = {u ∈ C(X) : u(y) = 0, y ∈ X ∩M} (5.1)

(if X ∩M = ∅, then we assume that CM (X) = C(X)).
Let us also introduce the space of vector-valued functions

CM (∂G) =
N∏
i=1

CM (Γi)
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with the norm

‖ψ‖CM (∂G) = max
i=1,...,N

max
y∈Γi

‖ψi‖C(Γi)
, ψ = {ψi}, ψi ∈ CM (Γi).

5.2. Sobolev spaces.

5.2.1. Spaces W of scalar functions. Let us prove the following result for functions of the space
introduced in Sec. 1.2.

Lemma 5.1. Let f ∈ W l(R2) and Dαf(0) = 0, |α| ≤ l − 2, if l ≥ 2. Then there exists a sequence
{fs} ⊂ C∞

0 (R2), s = 1, 2, . . . , such that fs(y) = 0 in some neighborhood of the origin (the neighborhood
depends on s) and fs → f in W l(R2).

Proof. As is known, the set C∞
0 (R2) is dense in W l(R2). On the other hand, the set

{u ∈W l(R2) : Dαu(0) = 0, |α| ≤ l − 2}

is a closed, finite-dimensional subspace in W l(R2) by the Sobolev embedding theorem and the Riesz
theorem on the general form of linear continuous functionals in Hilbert spaces. Hence, by [56,
Lemma 8.1], the set

C∞
0 (R2) ∩ {u ∈W l(R2) : Dαu(0) = 0, |α| ≤ l − 2}

is dense in {u ∈W l(R2) : Dαu(0) = 0, |α| ≤ l − 2}. Thus, it suffices to prove the lemma for a function
f ∈ C∞

0 (R2) such that Dαf(0) = 0, |α| ≤ l − 2.
Consider a function ξ ∈ C∞

0 [0,∞) such that 0 ≤ ξ(t) ≤ 1 and ξ(t) = 1 for t < 1 and ξ(t) = 0 for
t > 2. Assume that

ξs(y) = ξ
(
− ln r

s

)
,

where r = |y| and s = 1, 2, . . . . Obviously, 0 ≤ ξs(y) ≤ 1, ξs(y) = 0 for |y| < e−2s, ξs(y) = 1 for

|y| > e−s, and |Dαξs(y)| ≤ cα/(r
|α|s) for any |α| ≥ 1, where cα > 0 is independent of s and y. It can

be directly verified that the sequence ξsf converges to f in W l(R2) as s→ ∞.

For the domain G and the part of the domain Γi described in Sec. 5.1, we introduce Sobolev spaces
of negative orders. For l ≥ 0, let us denote the space dual1 to W l(G) with respect to the extension of

the inner product in L2(G) by W
−l(G) def

= (W l(G))∗. The norm in W−l(G) is defined as follows:

‖u‖W−l(G) = sup
0	=v∈W l(G)

|〈v, u〉|
‖v‖W l(G)

.

For l ≥ 1, we denote the space dual toW l−1/2(Γi) with respect to the extension of the inner product

in L2(Γi) by W
−(l−1/2)(Γi)

def
= (W l−1/2(Γi))

∗. The norm in W−(l−1/2)(Γi) is defined as follows:

‖g‖W−(l−1/2)(Γi)
= sup

0	=ψ∈W l−1/2(Γi)

|〈ψ, g〉|
‖ψ‖W l−1/2(Γi)

.

1Do not confuse it with the space dual to W̊ l(G), where W̊ l(G) is the closure of the set C∞
0 (G) with respect to the

norm of the space W l(G).
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5.2.2. Spaces W of vector-valued functions. For any l ≥ 0 and integer miμ (0 ≤ miμ ≤ l + 2m− 1),
we introduce the following spaces of vector-valued functions:

W l+2m−m−1/2(∂G) =
N∏
i=1

m∏
μ=1

W l+2m−miμ−1/2(Γi),

W l(G, ∂G) =W l(G)×W l+2m−m−1/2(∂G)

(5.2)

(in what follows, the number m ≥ 1 is an integer).
In Sec. 22 (see Chap. 5), nonlocal perturbations of the Dirichlet problem for the Laplace operator

are considered. In this case, m = 1, mi1 = 0, and we denote spaces (5.2) as follows:

W l+3/2(∂G) =
N∏
i=1

W l+3/2(Γi), W l(G, ∂G) =W l(G)×W l+3/2(∂G). (5.3)

For any l ≥ 0 and integer mjσμ (0 ≤ mjσμ ≤ l + 2m− 1), we introduce the spaces of vector-valued
functions in plane angles

W l(K) =
N∏
j=1

W l(Kj), W l+2m−m−1/2(γ) =
N∏
j=1

∏
σ=1,2

m∏
μ=1

W l+2m−mjσμ−1/2(γjσ),

W l(K, γ) = W l(K)×W l+2m−m−1/2(γ)

and the spaces of vector-valued functions on arcs

W l(−ω, ω) =
N∏
j=1

W l(−ωj , ωj), W l[−ω, ω] =
N∏
j=1

(
W l(−ωj , ωj)× C

2m
)
,

where numbers ωj determine spreads of angles Kj .
For any set M and any d > 0, we denote by Od(M) a d-neighborhood of the set M :

Od(M) = {y ∈ R
2 : dist(y,M) < d},

where dist(y,M) = inf
η∈M

|y − η|.
For any d > 0, we set

Kd
j = Kj ∩ Od(K), γdjσ = γjσ ∩ Od(K).

For any d > 0, l ≥ 0, and integers mjσμ (0 ≤ mjσμ ≤ l + 2m − 1), we introduce the spaces of
vector-valued functions

W l(Kd) =

N∏
j=1

W l(Kd
j ), W l+2m−m−1/2(γd) =

N∏
j=1

∏
σ=1,2

m∏
μ=1

W l+2m−mjσμ−1/2(γdjσ),

W l(Kd, γd) = W l(Kd)×W l+2m−m−1/2(γd).

5.2.3. Spaces S of scalar functions. For any l ≥ 2, we denote by Sl(G) the subspace of the space
W l(G) consisting of functions f0 that satisfy the relations

Dαf0(y) = 0, y ∈ K, |α| ≤ l − 2. (5.4)

For l = 0, 1, we assume that Sl(G) =W l(G).
For each curve Γi, i = 1, . . . , N , we denote its endpoints by gi1 and gi2. Recall that in some

neighborhood of a point gi1 (respectively, gi2), the domain G coincides with a plane angle and the
curve Γi coincides with the interval Ii1 (respectively, Ii2). Let τi1 (respectively, τi2) be a unit vector,
which is parallel to the interval Ii1 (respectively, Ii2). Introduce the notation

Dτi1 = −i ∂

∂τi1
, Dτi2 = −i ∂

∂τi2
.
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For any l ≥ 0, we denote by S l+2m−m−1/2(∂G) the subspace of the space W l+2m−m−1/2(∂G) that
consists of functions {fiμ} such that

Dβ
τi1fiμ|y=gi1 = 0, Dβ

τi2fiμ|y=gi2 = 0, β ≤ l + 2m−miμ − 2. (5.5)

Assume that S l(G, ∂G) = Sl(G)× S l+2m−m−1/2(∂G).

5.2.4. Spaces S of vector-valued functions. For any l ≥ 2, we denote by S l(K) the subspace of the
space W l(K) consisting of functions {fj} such that

Dαfj |y=0 = 0, |α| ≤ l − 2. (5.6)

Assume that S l(K) = W l(K) for l = 0, 1.

For any l ≥ 0, we denote by S l+2m−m−1/2(γ) the subspace of the space W l+2m−m−1/2(γ) consisting
of functions {fjσμ} such that

Dβ
τjσfjσμ|y=0 = 0, β ≤ l + 2m−mjσμ − 2. (5.7)

Here τjσ is the unit vector that has the same direction as the ray γjσ, D
β
τjσ =

∂β

∂τβjσ
. If l+2m−mjσμ−2 <

0, then there are no corresponding conditions.
Let S l(K, γ) = S l(K)× S l+2m−m−1/2(γ).
The spaces

S l+2m−m−1/2(γd), S l(Kd), S l(Kd, γd), d > 0

are introduced similarly.

5.3. Kondrat’ev weight spaces.

5.3.1. Spaces of scalar functions. Let us consider the following cases:

(1) Q = Kj , Q = Kd
j (d > 0), or Q = R

2; we set M = {0};
(2) Q = G; we set M = K.

For any l ≥ 0 and any a ∈ R, we denote by H l
a(Q) = H l

a(Q,M) the completion of the set C∞
0 (Q \M)

with respect to the norm

‖u‖Hl
a(Q) =

⎛
⎜⎝∑

|α|≤l

∫
Q

ρ2(a−l+|α|)|Dαu|2dy

⎞
⎟⎠

1/2

,

where ρ = ρ(y) = dist(y,M). For l ≥ 1, we denote the trace space on the smooth curve Γ ⊂ Q with
the norm

‖ψ‖
H

l−1/2
a (Γ)

= inf ‖u‖Hl
a(Q), u ∈ H l

a(Q) : u|Γ = ψ,

byH
l−1/2
a (Γ). In Chap. 6, we use, in addition to the standard norms, norms in weight spaces depending

on a parameter q > 0. Assume that

|||u|||Hl
a(G) =

(
‖u‖2Hl

a(G) + ql‖u‖2H0
a(G)

)1/2
, l ≥ 0,

|||v|||
H

l−1/2
a (Γi)

=
(
‖v‖2

H
l−1/2
a (Γi)

+ ql−1/2‖v‖2H0
a(Γi)

)1/2
, l ≥ 1,

(5.8)

where

‖v‖H0
a(Γi) =

( ∫
Γi

ρ2a|v(y)|1/2dΓ
)1/2

.
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It follows form [41, Lemmas 7.1 and 7.2] that

|||u|Γi |||Hl−1/2
a (Γi)

≤ c|||u|||Hl
a(G) ∀u ∈ H l

a(G), (5.9)

where c > 0 is independent of u and q > 0.
We prove some auxiliary results on the connection between Sobolev spaces and weight Kondrat’ev

spaces. Let us fix an arbitrary index i. Let Γ = Γi and g ∈ Γ \ Γ. Without loss of generality, we
assume that g = 0 and Γ coincides with the axis Oy1 in a sufficiently small neighborhood Oε(0) of the
origin. Introduce the notation Gε = G ∩ Oε(0) and Γε = Γ ∩ Oε(0) and set H l

a(G
ε) = H l

a(G
ε, {0}).

Lemma 5.2. If u ∈W l(Gε) and l ≥ 1, then the following statements are valid :

(1) u(y) = P (y) + v(y) for y ∈ Gε, where P (y) =
∑

|α|≤l−2

pαy
α and v ∈ W l(Gε) ∩ H l

δ(G
ε) for all

δ > 0 (if l = 1, we assume that P (y) ≡ 0); in particular, u ∈ H l
l−1+δ(G

ε);
(2) Dαu|y=0 = DαP |y=0 for |α| ≤ l − 2 (if l ≥ 2);
(3)

∑
|α|≤l−2

|pα|+ ‖v‖Hl
δ(G

ε) ≤ cδ‖u‖W l(Gε), where cδ > 0 is independent of u.

The proof follows from [53, Lemma 4.9] for l = 1 and [53, Lemma 4.11] for l ≥ 2.

Lemma 5.3. If ψ ∈W l−1/2(Γε) and l ≥ 1, then the following statements hold :

(1) ψ(r) = P1(r) + ϕ(r) for 0 < r < ε, where P1(r) =
l−2∑
β=0

pβr
β and ϕ ∈ W l−1/2(Γε) ∩H l−1/2

δ (Γε)

for all δ > 0 (if l = 1, we assume P1(r) ≡ 0); in particular, ψ ∈ H
l−1/2
l−1+δ(Γ

ε);

(2) (dβψ/drβ)|r=0 = (dβP1/dr
β)|r=0 for β = 0, . . . , l − 2;

(3)
l−2∑
β=0

|pβ|+ ‖ϕ‖
H

l−1/2
δ (Γε)

≤ cδ‖ψ‖W l−1/2(Γε), where cδ > 0 is independent of ψ.

Proof. Consider a function u ∈W l(Gε) such that

u|Γε = ψ, ‖u‖W l(Gε) ≤ 2‖ψ‖W l−1/2(Γε)

and apply Lemma 5.2.

Lemma 5.4. Let ψ ∈W l−1/2(Γε), l ≥ 2, and let

dsψ

drs

∣∣∣∣
y=0

= 0, s = 0, . . . , k, (5.10)

for a fixed k ≤ l − 2. Then ψ ∈ H
l−1/2
l−2−k+δ(Γ

ε) for all δ > 0 and

‖ψ‖
H

l−1/2
l−2−k+δ(Γ

ε)
≤ cδ‖ψ‖W l−1/2(Γε), (5.11)

where cδ > 0 is independent of ψ.

Proof. It follows from Eq. (5.10) and Lemma 5.3 (items 1 and 2) that

ψ(r) =
l−2∑

β=k+1

pβr
β + ϕ(r), 0 < r < ε, (5.12)

where
ϕ ∈ H

l−1/2
δ (Γε) ⊂ H

l−1/2
l−2−k+δ(Γ

ε), δ > 0. (5.13)

If k = l− 2, then there is no sum in (5.12) and the statement of the lemma follows from Eq. (5.13)
and Lemma 5.3 (item 3).

If k ≤ l − 3, then the sum consists of summands of the form rβ, where β ≥ k + 1. It is directly

verified that rβ ∈ H
l−1/2
l−2−k+δ(Γ

ε) for the β mentioned and any δ > 0. Hence, the statement of the
lemma follows from Eqs. (5.12) and (5.13) and Lemma 5.3 (item 3).
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Lemma 5.5. Let u ∈ H
l−1/2
a+k (Γ), k, l ∈ N, a ∈ R, B ∈ C∞(Gε), DαB|y=0 = 0, and |α| ≤ k − 1. Then

‖Bu‖Hl
a(G

ε) ≤ c‖u‖
H

l−1/2
a+k (Gε)

.

Proof. It follows from the Taylor formula that |DσB| = O
(
rk−|σ|) for σ; hence,

‖Bu‖2Hl
a(G

ε) =
∑
|α|≤l

∫
Gε

r2(a+|α|−l)|Dα(Bu)|2dy

≤ c2
∑

|σ|+|ζ|≤l

∫
Gε

r2(a+|σ|+|ζ|−l)|DσB|2|Dζu|2dy

≤ c3
∑
|ζ|≤l

∫
Gε

r2(a+k+|ζ|−l)|Dζu|2dy = c3‖u‖2Hl
a+k(K)

.

The lemma is proved.

Lemma 5.6. Let ψ ∈ H
l−1/2
a+k (Γε), k, l ∈ N, a ∈ R, b ∈ C∞(Γε),

∂sb

∂rs

∣∣∣∣
r=0

= 0, and s = 0, . . . k − 1.

Then
‖bψ‖

H
l−1/2
a (Γ)

≤ c‖ψ‖
H

l−1/2
a+k (Γ)

. (5.14)

Proof. Denote the extension of the function b(y1) to R by b̂ ∈ C∞(R) and introduce a function

B(y1, y2) = b̂(y1), (y1, y2) ∈ R
2. Obviously,

B ∈ C∞(K), DσB|y=0 = 0, |σ| ≤ k − 1. (5.15)

Let u ∈ H l
a+k(G

ε) be an extension of the function ψ such that

‖u‖Hl
a+k(K) ≤ c1‖ψ‖Hl−1/2

a+k (γ)
, (5.16)

where c1 > 0 is independent of ψ. Now Eqs. (5.15) and (5.16) and Lemma 5.5 yield the statement of
the lemma.

Lemma 5.7. Let u ∈W 1(R2) and u(y) = 0 as |y| ≥ 1. Then

‖u(y)− u(G0y)‖H1
0 (R

2) ≤ c‖u‖W 1(R2),

where G0 is a composition of the operator of rotation by the angle ω0 (−π < ω0 ≤ π) and dilation
centered at the origin with coefficient χ0 > 0.

Proof. Let us write the function u in the polar coordinates (ω, r); then we have

u(y)− u(G0y) = u(ω, r)− u(ω + ω0, χ0r) = v1 + v2,

where v1(ω, r) = u(ω, r)− u(ω + ω0, r) and v2(ω, r) = u(ω + ω0, r)− u(ω + ω0, χ0r).
Consider the function v1. By [53, Lemma 4.15],

∞∫
0

r−1|v1(0, r)|2dr ≤ k1‖u‖W 1(R2).

It follows from here and [53, Lemma 4.8] that v1 ∈ H1
0 (R

2) and

‖v1‖H1
0 (R

2) ≤ k2‖u‖W 1(R2). (5.17)

It remains to show that ∫
R2

r−2|v2|2dy ≤ k3‖u‖W 1(R2). (5.18)
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For χ0 > 1 (the case where 0 < χ0 < 1 is considered similarly), we have

∫
R2

r−2|v2|2dy =

π∫
−π

dω

∞∫
0

r−1|v2(ω, r)|2dr =
π+ω0∫

−π+ω0

dω

∞∫
0

r−1dr

∣∣∣∣∣∣
χ0r∫
r

∂u(ω, t)

∂t
dt

∣∣∣∣∣∣
2

.

Using the Schwartz inequality and changing the limits of integration, we obtain estimate (5.18):

∫
R2

r−2|v2|2dy ≤ (χ0 − 1)

π+ω0∫
−π+ω0

dω

∞∫
0

dr

χ0r∫
r

∣∣∣∣∂u(ω, t)∂t

∣∣∣∣
2

dt

=
(χ0 − 1)2

χ0

π+ω0∫
−π+ω0

dω

∞∫
0

∣∣∣∣∂u(ω, t)∂t

∣∣∣∣
2

t dt ≤ (χ0 − 1)2

χ0
‖u‖2W 1(R2).

The lemma is proved.

We also will need weight spaces of negative and fractional orders. For l ≥ 1, we denote the space

dual to H
l−1/2
−a (Γi) with respect to the extension of the inner product in L2(Γi) by

H−(l−1/2)
a (Γi)

def
= (H

l−1/2
−a (Γi))

∗.

The norm in H
−(l−1/2)
a (Γi) is defined as follows:

‖g‖
H

−(l−1/2)
a (Γi)

= sup
0	=ψ∈Hl−1/2

−a (Γi)

|〈ψ, g〉|
‖ψ‖

H
l−1/2
−a (Γi)

.

Lemma 5.8. For any l ∈ Z and a ∈ R, the space H
l+1/2
a+1 (Γi) is a dense subset in H

l−1/2
a (Γi) and

‖g‖
H

l−1/2
a (Γi)

≤ c‖g‖
H

l+1/2
a+1 (Γi)

∀g ∈ H
l+1/2
a+1 (Γi),

where c > 0 is independent of g.

Proof. If l = 1, 2, . . . , then the conclusion of the lemma follows from the definition of weight spaces.
The case where l = −1,−2, . . . follows from duality considerations.

Let us consider the case where l = 0. Let g ∈ H
1/2
a+1(Γi). Using equivalent norms in weight spaces

(see [58, Lemma 1.3]), it is easy to verify that∣∣∣∣∣∣
∫
Γi

ψg dΓ

∣∣∣∣∣∣ ≤ c‖ψ‖
H

1/2
−a (Γi)

‖g‖
H

1/2
a+1(Γi)

∀ψ ∈ H
1/2
−a (Γi), g ∈ H

1/2
a+1(Γi). (5.19)

By virtue of (5.19) and the relation g ∈ H
1/2
a+1(Γi), we obtain

‖g‖
H

−1/2
a (Γi)

= sup
0	=ψ∈H1/2

−a (Γi)

|〈ψ, g〉|
‖ψ‖

H
1/2
−a (Γi)

≤ c‖g‖
H

1/2
a+1(Γi)

.

Now we prove that H
1/2
a+1(Γi) is a dense subset in H

−1/2
a (Γi). Assume the contrary. Then there

exists2 a nonzero element

g ∈ (H−1/2
a (Γi))

∗ = H
1/2
−a (Γi)

2The space H
1/2
−a (Γi) is a Hilbert space; therefore, it is reflexive.
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such that 〈ψ, g〉 = 0 for all ψ ∈ H
1/2
a+1(Γi). Hence,∫

Γi

ψg dΓ = 〈ψ, g〉 = 0 ∀ψ ∈ C∞
0 (Γi).

Taking into account the fact that C∞
0 (Γi) is dense in H

1/2
−a (Γi), we conclude that g = 0.

5.3.2. Spaces of vector-valued functions. For any l ≥ 0, a ∈ R, and integer miμ ≥ 0
(l + 2m−miμ ≥ 1), we introduce spaces of vector-valued functions

Hl+2m−m−1/2
a (∂G) =

N∏
i=1

m∏
μ=1

H
l+2m−miμ−1/2
a (Γi),

Hl
a(G, ∂G) = H l

a(G)×Hl+2m−m−1/2
a (∂G).

(5.20)

In Sec. 22 (see Chap. 5) and in Chap. 6, we consider nonlocal perturbations of the Dirichlet problem
for a second-order differential operator. In this case, m = 1 and mi1 = 0. Denote the spaces (5.20) as
follows:

Hl+3/2
a (∂G) =

N∏
i=1

H l+3/2
a (Γi), Hl

a(G, ∂G) = H l
a(G)×Hl+3/2

a (∂G). (5.21)

In Chap. 6, we will use the following norms that depend on a parameter q > 0 (along with standard
norms):

|||ψ|||Hl+3/2
a (∂G)

=

(
N∑
i=1

|||ψi|||2Hl+3/2
a (Γi)

)1/2

, ψ = {ψi},

|||(f, ψ)|||Hl
a(G,∂G) =

(
|||f |||2Hl

a(G) + |||ψ|||2Hl+3/2
a (∂G)

)1/2
,

(5.22)

where ||| · |||
H

l+3/2
a (Γi)

and ||| · |||2Hl
a(G) are norms defined in (5.8), l ≥ 0.

In Sec. 25 (see Chap. 6), we will use the following Banach spaces with norms depending on a
parameter q > 0:

• H l+2
N ,a(G) = CN (G) ∩H l+2

a (G) with the norm

|||u|||Hl+2
N ,a(G) = ‖u‖CN (G) + |||u|||Hl+2

a (G);

• H
l+3/2
N ,a (Γi) = CN (Γi) ∩H l+3/2

a (Γi) with the norm

|||v|||
H

l+3/2
N ,a (Γi)

= ‖v‖CN (Γi)
+ |||v|||

H
l+3/2
a (Γi)

;

• Hl+3/2
N ,a (∂G) =

N∏
i=1

H
l+3/2
N ,a (Γi) = CN (∂G) ∩Hl+3/2

a (∂G) with the norm

|||ψ|||Hl+3/2
N ,a (∂G)

=
N∑
i=1

|||ψi|||Hl+3/2
N ,a (Γi)

, ψ = {ψi}.

Here N is a closed subset of ∂G and l ≥ 0.
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For any l ≥ 0 and a ∈ R and integer mjσμ (0 ≤ mjσμ ≤ l + 2m − 1), we introduce the following
spaces of vector-valued functions:

Hl
a(K) =

N∏
j=1

H l
a(Kj), Hl+2m−m−1/2

a (γ) =
N∏
j=1

∏
σ=1,2

m∏
μ=1

H
l+2m−mjσμ−1/2
a (γjσ),

Hl
a(K, γ) = Hl

a(K)×Hl+2m−m−1/2
a (γ).

The spaces
Hl
a(K

d), Hl+2m−m−1/2
a (γd), Hl

a(K
d, γd), d > 0,

are introduced similarly.

6. Statement of the Nonlocal Problem in Bounded Domains

6.1. Statement of the problem. Denote by P(y,D) and Biμs(y,D) linear differential operators
with complex-valued coefficients of class C∞ of orders 2m and miμ, respectively, and by P0(y,D) and
B0
iμs(y,D) the principal homogeneous parts of the operators P(y,D) and Biμs(y,D) (i = 1, . . . , N ,

μ = 1, . . . ,m, s = 0, . . . , Si).
We formulate conditions for operators P(y,D) and Biμ0(y,D) that will correspond to a “local”

elliptic problem (see, e.g., [57, Chap. 2, Sec. 1].

Condition 6.1. The operator P(y,D) is essentially elliptic on G.

In particular, condition 6.1 means that the following estimate holds for all θ ∈ R
2 and y ∈ G:

A−1|θ|2m ≤ |P0(y, θ)| ≤ A|θ|2m, A > 0. (6.1)

Condition 6.2. For every y ∈ Γi and i = 1, . . . , N , the system {Biμ0(y,D)}mμ=1 satisfies the covering

condition the (Lopatinskii condition) with respect to the operator P(y,D).

Condition 6.2 means the following. Let y ∈ Γi. Assume, without loss of generality, that near a
given point y, the curve Γi is defined by the equation y2 = 0. Let the polynomial

B′
iμ0(y, τ) ≡

m∑
ν=1

biμν(y)τ
ν−1 ≡ B0

iμ0(y, 1, τ)
(
modM+(y, τ)

)
be the remainder after the division of B0

iμ0(y, 1, τ) by M+(y, τ), where

M+(y, τ) =
m∏
ν=1

(τ − τ+ν (y)),

τ+1 (y), . . . , τ+m(y) are the roots of the polynomial P0(y, 1, τ) with a positive imaginary part. In this
case, P0(y, 1, τ), B0

iμ0(y, 1, τ) and M+(y, τ) are considered as polynomials with respect to τ . Then
condition 6.2 means that

di(y) = det ‖biμν(y)‖mμ,ν=1 	= 0.

Since every arc Γi, i = 1, . . . , N , is compact, we see that

D = min
i=1,...,N

inf
y∈Γi

|di(y)| > 0. (6.2)

Let us emphasize that, in the general case, we do not assume the normality of the operators Biμ0(y,D)

on arcs Γi.

Consider operators

P :W l+2m(G) →W l(G), B0
iμ :W l+2m(G) →W l+2m−miμ−1/2(Γi)

defined by the formulas
Pu = P(y,D)u, B0

iμu = Biμ0(y,D)u(y)|Γi .
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In what follows, we assume that l + 2m−miμ ≥ 1.

Let us define operators that correspond to nonlocal conditions near the set K. Let Ωis (i = 1, . . . , N ,
s = 1, . . . , Si) be infinitely differentiable nondegenerate transformations that map some neighbor-

hood Oi of the curve Γi ∩ Oε(K) to the set Ωis(Oi) such that Ωis(Γi ∩ Oε(K)) ⊂ G and

Ωis(g) ∈ K for g ∈ Γi ∩ K. (6.3)

Thus, the transformations Ωis map arcs Γi ∩ Oε(K) in the domain G, and their endpoints Γi ∩ K are
mapped to endpoints.

Let us specify the structure of transformations Ωis near the set K. Denote by Ω+1
is the transformation

Ωis : Oi → Ωis(Oi) and the transformation inverse to Ωis by Ω−1
is : Ωis(Oi) → Oi. The set of all points

of the form Ω±1
iqsq

(. . .Ω±1
i1s1

(g)) ∈ K (1 ≤ sj ≤ Sij , j = 1, . . . , q) is called the orbit of a point g ∈ K and

is denoted by Orb(g). We can obtain these points sequentially applying to g the transforms Ω+1
ijsj

or

Ω−1
ijsj

that map points of the set K to K.

Obviously, for any g, g′ ∈ K, either Orb(g) = Orb(g′) or Orb(g)∩Orb(g′) = ∅. In what follows, we
assume that the set K consists of one orbit (all results are easily generalized to the general case where
K consists of a finite number of nonintersecting orbits). For simplicity, we assume that the set (orbit)
K consists of N points g1, . . . , gN .

Let us choose ε (cf. Remark 2.2) so small that there exist neighborhoods Oε1(gj) of the points
gj ∈ K such that Oε1(gj) ⊃ Oε(gj) and

(1) G ∩ Oε1(gj) = Kε1
j ;

(2) Oε1(gj) ∩ Oε1(gk) = ∅ for any gj , gk ∈ K and k 	= j;

(3) if gj ∈ Γi and Ωis(gj) = gk, then Oε(gj) ⊂ Oi and Ωis
(
Oε(gj)

)
⊂ Oε1(gk).

For any point gj ∈ Γi ∩K, we fix a transform Yj : y 
→ y′(gj), which is the composition of a shift by

a vector −−−→
Ogj and a rotation by some angle such that

Yj(Oε1(gj)) = Oε1(0), Yj(G ∩ Oε1(gj)) = Kj ∩ Oε1(0),

Yj(Γi ∩ Oε1(gj)) = γjσ ∩ Oε1(0), σ = 1 or 2.

Here the angles Kj = {y ∈ R
2 : r > 0, |ω| < ωj} and their rays γjσ = {y ∈ R

2 : r > 0, ω = (−1)σωj}
(ω and r are polar coordinates with pole at the origin, 0 < ωj < π) are the same3 as in Sec. 5.1.

Consider the following condition (see Fig. 6.1).

Condition 6.3. Let gj ∈ Γi ∩ K and Ωis(gj) = gk ∈ K. Then the transformation

Yk ◦ Ωis ◦ Y −1
j : Oε(0) → Oε1(0)

is the composition of operators of rotation and dilation centered at the origin.

Remark 6.1. Condition 6.3 and the assumption Ωis(Γi) ⊂ G imply that if g ∈ Ωis(Γi\Γi)∩Γj∩K 	= ∅,

then the curves Ωis(Γi) and Γj intersect at the point g and make at this point a nonzero angle.

Choose a number ε0, 0 < ε0 ≤ ε, satisfying the following condition: if gj ∈ Γi and Ωis(gj) = gk,
then

Oε0(gk) ⊂ Ωis
(
Oε(gj)

)
⊂ Oε1(gk).

Consider a function ζ ∈ C∞(R2) such that

ζ(y) = 1 (y ∈ Oε0/2(K)), ζ(y) = 0 (y /∈ Oε0(K)). (6.4)

3Strictly speaking, the angles Kj introduced here can be obtained from the angles Kj described in Sec. 5.1 by the

shift by the vector −−−→
Ogj and a rotation. In what follows, we will identify them.
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Fig. 6.1. Transformation Y2 ◦ Ω11 ◦ Y −1
1 : Oε(0) → Oε1(0) is the composition of a

rotation and a dilation.

Introduce bounded operators B1
iμ :W l+2m(G) →W l+2m−miμ−1/2(Γi) by the formula

B1
iμu =

Si∑
s=1

(
Biμs(y,D)(ζu)

)(
Ωis(y)

)∣∣
Γi
, y ∈ Γi ∩ Oε(K),

B1
iμu = 0, y ∈ Γi \ Oε(K);

here (
Biμs(y,D)v

)(
Ωis(y)

)
= Biμs(y

′, Dy′)v(y
′)|y′=Ωis(y).

If suppu ⊂ G \ Oε0(K), then B1
iμu = 0; we say that operators B1

iμ correspond to nonlocal terms
with supports near the set K.

As earlier, we denote
Gρ = {y ∈ G : dist(y, ∂G) > ρ}.

Let us introduce bounded operators

B2
iμ :W l+2m(G) →W l+2m−miμ−1/2(Γi)

satisfying the following condition.

Condition 6.4. There exist numbers κ1 > κ2 > 0 and ρ > 0 such that the following inequalities hold:

‖B2
iμu‖W l+2m−miμ−1/2(Γi)

≤ c1‖u‖W l+2m(G\Oκ1 (K))
∀u ∈W l+2m(G \ Oκ1(K)), (6.5)

‖B2
iμu‖W l+2m−miμ−1/2(Γi\Oκ2 (K))

≤ c2‖u‖W l+2m(Gρ) ∀u ∈W l+2m(Gρ), (6.6)

where i = 1, . . . , N , μ = 1, . . . ,m, and c1 and c2 > 0 are independent of u.

Inequality (6.5) implies that if suppu ⊂ Oκ1(K), then B2
iμu = 0. Hence we say that the operators

B2
iμ correspond to nonlocal terms with supports outside the set K.
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In Chaps. 2–5, we assume that conditions 6.1–6.4 hold; in Chaps. 4 and 5, condition 6.4 is considered
for l = 0. In Chap. 6, conditions 6.1–6.4 will be replaced by their analogs.

Note that a priori we do not suppose any relation between the number ε0 in the definition of the
operators B1

iμ and the numbers κ1, κ2, and ρ in condition 6.4.
We study the nonlocal elliptic problem

Pu ≡ P(y,D)u = f0(y), y ∈ G, (6.7)

Biμu ≡ B0
iμu+B1

iμu+B2
iμu = fiμ(y), y ∈ Γi, i = 1, . . . , N, μ = 1, . . . ,m. (6.8)

Let us introduce the following bounded operator corresponding to problem (6.7), (6.8) in the Sobolev
spaces:

L = {P, Biμ} :W l+2m(G) → W l(G, ∂G),

where W l(G, ∂G) is the space defined in Sec. 5.2.

Definition 6.1. A function u ∈W l+2m(G) is called a strong solution of problem (6.7), (6.8) with the
right-hand side {f0, fiμ} ∈ W l(G, ∂G) if the equality Lu = {f0, fiμ} holds.

In what follows, strong solutions of problem (6.7), (6.8) are called simply solutions.

6.2. Example of a nonlocal problem. We present an example of a problem with nonlocal con-
ditions that satisfy the conditions of this section.

Let the operators P(y,D) and Biμs(y,D) be as above. Denote by Ωis (i = 1, . . . , N , s = 1, . . . , Si)
nondegenerate transformations of the class C∞ that map some neighborhood Oi of a curve Γi to
Ωis(Oi) such that Ωis(Γi) ⊂ G. Note that in this case, we do not assume that relations (6.3) hold.

Consider the nonlocal problem

P(y,D)u = f0(y), y ∈ G, (6.9)

Biμ0(y,D)u(y)|Γi +

Si∑
s=1

(
Biμs(y,D)u

)(
Ωis(y)

)∣∣
Γi

= fiμ(y)

(y ∈ Γi, i = 1, . . . , N, μ = 1, . . . ,m).

(6.10)

Let us choose small ε > 0 such that for any point g ∈ K, the set Oε(g) intersects the curve Ωis(Γi) if

and only if g ∈ K ∩ Ωis(Γi).
Assume that condition 6.3 holds. By Remark 6.1, condition 6.3 is a restriction on the geometric

structure of the support of nonlocal terms near the set K. However, if Ωis(Γi \ Γi) ⊂ ∂G \ K, then no
restrictions are imposed on the geometric structure of the curves Ωis(Γi) near ∂G (cf. [85, 89]).

Introduce the notation

Pu = P(y,D)u, B0
iμu = Biμ0(y,D)u(y)|Γi ,

B1
iμu =

Si∑
s=1

(
Biμs(y,D)(ζu)

)(
Ωis(y)

)∣∣
Γi
,

B2
iμu =

Si∑
s=1

(
Biμs(y,D)((1− ζ)u)

)(
Ωis(y)

)∣∣
Γi
,

where the function ζ is defined in Eq. (6.4). Then problem (6.9), (6.10) has the form of Eqs. (6.7),
(6.8).

Similarly to the proof of [89, Lemma 2.5] (where one must replace the weight spaces by the corre-
sponding Sobolev spaces), we can show that the operators B2

iμ satisfy condition 6.4.
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6.3. Reduction to model problems in infinite angles. As in Chap. 1, we pay special attention
to the behavior of solutions near the set K consisting of conjugation points of the boundary conditions.
Consider the corresponding model problem in plane angles. We set

B2
iμ = 0, i = 1, . . . , N, μ = 1, . . . ,m. (6.11)

For y ∈ Oε1(gj), we denote u(y) by uj(y). If gj ∈ Γi, y ∈ Oε(gj), and Ωis(y) ∈ Oε1(gk), then we
denote u(Ωis(y)) by uk(Ωis(y)). Then, by assumption (6.11), the nonlocal problem (6.7), (6.8) has the
following form in a ε-neighborhood of the set K:

P(y,D)uj = f0(y), y ∈ Oε(gj) ∩G,

Biμ0(y,D)uj(y)|Oε(gj)∩Γi
+

Si∑
s=1

(
Biμs(y,D)(ζuk)

)(
Ωis(y)

)∣∣
Oε(gj)∩Γi

= fiμ(y)

(
y ∈ Oε(gj) ∩ Γi, i ∈ {1 ≤ i ≤ N : gj ∈ Γi}, j = 1, . . . , N, μ = 1, . . . ,m

)
.

Let y 
→ y′(gj) be a transformation of coordinates described above. Let us introduce functions

Uj(y
′) = uj(y(y

′)), fj(y
′) = f0(y(y

′)), y′ ∈ Kε
j ; fjσμ(y

′) = fiμ(y(y
′)), y′ ∈ γεjσ,

where σ = 1 (σ = 2) if the transformation y 
→ y′(gj) maps Γi to the ray γj1 (respectively, γj2) of the
angle Kj ; denote y

′ by y. Then, by condition 6.3, problem (6.7), (6.8) has the following form:

Pj(y,D)Uj = fj(y), y ∈ Kε
j , (6.12)

Bjσμ(y,D)U ≡
∑
k,s

(Bjσμks(y,D)Uk)(Gjσksy)|γjσ = fjσμ(y), y ∈ γεjσ, (6.13)

where j, k = 1, . . . , N , σ = 1, 2, μ = 1, . . . ,m, and s = 0, . . . , Sjσk;

Pj(y,D), Bjσμks(y,D)

are linear differential operators of orders 2m and mjσμ (l+2m−mjσμ ≥ 1) respectively with variables
of class C∞:

Pj(y,D) =
∑

|α|≤2m

pjα(y)D
α
y , Bjσμks(y,D) =

∑
|α|≤mjσμ

bjσμksα(y)D
α
y ;

Gjσks is the operator of rotation by the angle ωjσks and a dilation with scale factor χjσks > 0;
moreover, |(−1)σbj + ωjσks| < bk if (k, s) 	= (j, 0) (see Remark 6.1), and ωjσj0 = 0 and χjσj0 = 1 (i.e.,
Gjσj0y ≡ y).

Obviously,

bjσμksα(y) = 0 as |y| ≥ ε0, (k, s) 	= (j, 0). (6.14)

In Chaps. 2–6, we use the following notation:

d1 = min{χjσks}/2, d2 = 2max{χjσks}. (6.15)

We extend the coefficients of the operators Pj(y,D) and Bjσμ(y,D) to R
2 such that we obtain

compactly supported smooth functions. Consider the operator L : W l+2m(K) → W l(K, γ) defined by
the formula

LU = {Pj(y,D)Uj , Bjσμ(y,D)U |γjσ},
where W l+2m(K) and W l(K, γ) are the spaces defined in Sec. 5.2. The operator L corresponds to
problem (6.12), (6.13).

Denote the principal homogeneous parts of the operators Pj(0, D) and Bjσμks(0, D) by Pj(D) and
Bjσμks(D), respectively. In addition to problem (6.12), (6.13), we consider the following nonlocal
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model problem:

Pj(D)Uj = fj(y), y ∈ Kj , (6.16)

Bjσμ(D)U ≡
∑
k,s

(Bjσμks(D)Uk)(Gjσksy)|γjσ = fjσμ(y), y ∈ γjσ. (6.17)

Consider the operator L : W l+2m(K) → W l(K, γ) defined by the formula

LU = {Pj(D)Uj , Bjσμ(D)U |γjσ}
and corresponding to problem (6.16), (6.17) in Sobolev spaces.

Let us write the operators Pj(D) and Bjσμks(D) in the polar coordinates as follows:

Pj(D) = r−2mP̃j(ω,Dω, rDr),

Bjσμks(D) = r−mjσμB̃jσμks(ω,Dω, rDr),

where

Dω = −i ∂
∂ω

, Dr = −i ∂
∂r
.

Consider an operator (an analytic operator-valued function depending on a parameter λ ∈ C)

L̃(λ) : W l+2m(−ω, ω) → W l[−ω, ω]
defined by the formula

L̃(λ)ϕ = {P̃j(ω,Dω, λ)ϕj , B̃jσμ(ω,Dω, λ)ϕ}, (6.18)

where

B̃jσμ(ω,Dω, λ)ϕ =
∑
k,s

(χjσks)
iλ−mjσμB̃jσμks(ω,Dω, λ)ϕk(ω + ωjσks)|ω=(−1)σωj

and the spaces W l+2m(−ω, ω) and W l[−ω, ω] are introduced in Sec. 5.2.
The main definitions and facts on eigenvalues, eigenvectors, and adjoint vectors of analytic operator-

valued functions can be found in [23]. In the sequel, we extensively use the fact that the spectrum of

the operator L̃(λ) is discrete; namely, the following lemma is valid.

Lemma 6.1 (see [88, Lemma 2.1]). For any λ ∈ C, L̃(λ) is a Fredholm operator and ind L̃(λ) = 0.

The spectrum of the operator L̃(λ) is discrete. For any numbers c1 < c2, the strip c1 < Imλ < c2
contains no more than a finite number of eigenvalues of the operator L̃(λ).

7. Nonlocal Problems in Plane Angles in Sobolev Spaces

7.1. Construction of a “solution” in the case of absence of eigenvalues of the opera-
tor L̃(λ) on the line Imλ = 1− l − 2m. In this subsection, we assume that the following condition
holds.

Condition 7.1. The line Imλ = 1− l − 2m does not contain eigenvalues of the operator L̃(λ).

Let us consider the operators

D
l+2m−mjσμ−1
τjσ Bjσμ(D)U ≡ D

l+2m−mjσμ−1
τjσ

⎛
⎝∑

k,s

(Bjσμks(D)Uk)(Gjσksy)

⎞
⎠ ,

where τjσ is a unit vector in the direction of the ray γjσ. Using the chain rule for differentiation, we
write

D
l+2m−mjσμ−1
τjσ Bjσμ(D)U ≡

∑
k,s

(B̂jσμks(D)Uk)(Gjσksy), (7.1)
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where B̂jσμks(D) are homogeneous differential operator of the order l + 2m− 1 with constant coeffi-
cients. In particular,

B̂jσμj0(D) = D
l+2m−mjσμ−1
τjσ Bjσμj0(D)

since Gjσj0y ≡ y. Formally replacing nonlocal operators in Eq. (7.1) by the corresponding local
operators, we introduce operators

B̂jσμ(D)U ≡
∑
k,s

B̂jσμks(D)Uk(y). (7.2)

If l ≥ 1, then we consider the following operators (in addition to system (7.2)):

DξPj(D)Uj(y), |ξ| = l − 1. (7.3)

The system of operators (7.2) and (7.3) plays a key role in the proof of the following lemma that
allows one to reduce problems in Sobolev spaces to problems in weight spaces.

Lemma 7.1. Let condition 7.1 hold. Then there exists a linear bounded operator

A : {f ∈ S l(K, γ) : supp f ⊂ O1(0)} → S l+2m(K)

such that the function V = Af satisfies the following conditions: V = 0 as |y| ≥ 1,

‖LV − f‖Hl
0(K) ≤ c‖f‖Wl(K,γ), (7.4)

‖V ‖Hl+2m
a (K) ≤ ca‖f‖Wl(K,γ) ∀a > 0 (7.5)

for any function f = {fj , fjσμ} ∈ D(A).

Proof. 1. Introduce an operator

fjσμ 
→ Φjσμ, (7.6)

that takes each function fjσμ ∈W l+2m−mjσμ−1/2(γjσ) to its extension Φjσμ ∈W l+2m−mjσμ(R2) to R
2

such that Φjσμ = 0 for |y| ≥ 2. We also consider an extension of the function fj from Kj to R
2

such that the extended function (we denote it also by fj) equals zero for |y| ≥ 2. The corresponding
extension operators can be taken linear and bounded (see [100, Chap. 6, Sec. 3]).

Consider the following algebraic system for partial derivatives DαWj , where |α| = l + 2m − 1 and
j = 1, . . . , N :

B̂jσμ(D)W = D
l+2m−mjσμ−1
τjσ Φjσμ, (7.7)

DξPj(D)Wj = Dξfj , (7.8)

where j = 1, . . . , N , σ = 1, 2, μ = 1, . . . ,m, and |ξ| = l − 1. Each operator B̂jσμ(D) defined by
formula (7.2) is the sum of “local” operators; therefore, system (7.7), (7.8) can be considered as an
algebraic system. Assume that system (7.7), (7.8) has a unique solution for any right-hand side and
denote this solution by Wjα. It is obvious that Wjα ∈ W 1(R2) and Wjα = 0 for |y| ≥ 2. By [53,
Lemma 4.17], there exists a linear bounded operator

{Wjα}|α|=l+2m−1 
→ Vj , (7.9)

which states the correspondence between the system {Wjα}|α|=l+2m−1 ∈
∏

|α|=l+2m−1

W 1(R2) and a

function Vj ∈W l+2m(R2) such that Vj(y) = 0 for |y| ≥ 1 and

DαVj |y=0 = 0, |α| ≤ l + 2m− 2, (7.10)

DαVj −Wjα ∈ H1
0 (R

2), |α| = l + 2m− 1. (7.11)

2. Let us show that the function V = (V1, . . . , VN ) is a required function. Inequality (7.5) follows
from Eq. (7.10), Lemma 5.2, and the boundedness of operator (7.9).
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Prove Eq. (7.4). Since the functions Wjα represent a solution of algebraic system (7.7), (7.8) and
the functions Vj satisfy Eq. (7.11), we have

B̂jσμ(D)V −D
l+2m−mjσμ−1
τjσ Φjσμ ∈ H1

0 (R
2), (7.12)

Dl−1(Pj(D)Vj − fj) ∈ H1
0 (R

2). (7.13)

Further, from Eqs. (7.10) and (5.6) we obtain that

Dα(Pj(D)Vj − fj)|y=0 = 0, |α| ≤ l − 2.

Combining these equalities with Eq. (7.13) and Lemma 5.2, we see that

{Pj(D)Vj − fj} ∈ Hl
0(K).

Now let us show that

{Bjσμ(D)V − fjσμ} ∈ Hl+2m−m−1/2
0 (γ). (7.14)

We pass from the “local” operators B̂jσμ(D) to the nonlocal operatorsD
l+2m−mjσμ−1
τjσ Bjσμ(D) in (7.12).

Using Lemma 5.7, we obtain

D
l+2m−mjσμ−1
τjσ (Bjσμ(D)V − Φjσμ) ∈ H1

0 (R
2) (7.15)

from Eq. (7.12). Equation (7.15) and [53, Lemma 4.18] yield the following equality:

∞∫
0

r−1
∣∣∣Dl+2m−mjσμ−1

τjσ (Bjσμ(D)V − fjσμ)
∣∣∣2 dr
≤ k1

∥∥∥Dl+2m−mjσμ−1
τjσ (Bjσμ(D)V − Φjσμ)

∥∥∥2
H1

0 (Kj)
. (7.16)

Inequalities (7.16), Eqs. (5.6) and (7.10), and Lemma [53, Lemma 4.7] imply

∞∫
0

r1−2(l+2m−mjσμ)|Bjσμ(D)V − fjσμ|2dr ≤ k2

∥∥∥Dl+2m−mjσμ−1
τjσ (Bjσμ(D)V − Φjσμ)

∥∥∥2
H1

0 (Kj)
. (7.17)

Combining this inequality with the relation

{Bjσμ(D)V − fjσμ} ∈ W l+2m−m−1/2(γ),

we obtain (7.14) from Eq. (7.17) and [53, Lemma 4.16]. Using the boundedness of the operators in
Eqs. (7.6) and (7.9), we can easily prove estimate (7.4).

3. It remains to prove that system (7.7), (7.8) has a unique solution for any right-hand side.
Obviously, this system consists of (l + 2m)N equations with respect to (l + 2m)N variables. Hence,
it suffices to show that the corresponding homogeneous system has only trivial solution. Assume the
contrary: there exists a nontrivial set of numbers {qjα} (j = 1, . . . , N and |α| = l + 2m − 1), such
that if we replace DαWj on the left-hand sides of system (7.7), (7.8) by the numbers qjα, then its
right-hand sides vanish. Let us consider a homogeneous polynomial Qj(y) of degree l + 2m − 1 such

that DαQj(y) ≡ qjα. Then Pj(D)Qj(y) ≡ 0 (since DξPj(D)Qj(y) ≡ 0 for all |ξ| = l − 1) and

B̂jσμ(D)Q(y) ≡
∑
k,s

B̂jσμks(D)Qk(y) ≡ 0
(
Q = (Q1, . . . , QN )

)
. (7.18)

Note that B̂jσμks(D)Qk(y) ≡ const and the operators Gjσks map a constant to itself. Hence we have
the following (along with (7.18)):

D
l+2m−mjσμ−1
τjσ

(
Bjσμ(D)Q(y)

)
≡
∑
k,s

(B̂jσμks(D)Qk)(Gjσksy) ≡ 0. (7.19)
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Since Bjσμ(D)Q is a homogeneous polynomial of degree l + 2m − mjσμ − 1, we see that, by virtue
of (7.19), Bjσμ(D)Q|γjσ ≡ 0. Thus, we obtain that the vector-valued function Q = (Q1, . . . , QN ) is a
solution of problem (6.16), (6.17) with zero right-hand side. Hence,

P̃j(ω,Dω, rDr)
(
rl+2m−1Q̃j(ω)

)
≡ 0,∑

k,s

(χjσks)
(l+2m−1)−mjσμB̃jσμks(ω,Dω, rDr)

(
rl+2m−1Q̃k(ω + ωjσks)

)
|ω=(−1)σωj

≡ 0, (7.20)

where Qj(y) ≡ rl+2m−1Q̃j(ω). However, Eqs. (7.20) mean that

L̃(−i(l + 2m− 1))Q̃(ω) ≡ 0,

where Q̃ = (Q̃1, . . . , Q̃N ). This contradicts the assumptions that the line Imλ = 1− l − 2m does not

contain any eigenvalues of the operator L̃(λ).

Corollary 7.1. The function V constructed in Lemma 7.1 satisfies the inequality

‖LV − f‖Hl
0(K) ≤ c‖f‖Wl(K,γ). (7.21)

Proof. By virtue of Eq. (7.4), it suffices to estimate the differences

(Pj(y,D)− Pj(D))Vj , (Bjσμ(y,D)− Bjσμ(D))V.

The first of these differences contains terms of the form(
aα(y)− aα(0)

)
DαVj (|α| = 2m), aβ(y)D

βVj (|β| ≤ 2m− 1),

where aα and aβ are infinitely differentiable functions. Fix a number a such that 0 < a < 1. Taking
into account the fact that V = 0 for |y| ≥ 1 and using Lemma 5.5 and Eq. (7.5), we obtain

‖
(
aα(y)− aα(0)

)
DαVj‖Hl

0(Kj)
≤ k1‖

(
aα(y)− aα(0)

)
DαVj‖Hl

a−1(Kj)

≤ k2‖DαVj‖Hl
a(Kj) ≤ k3‖f‖Wl(K,γ).

Similarly, using the definition of weight spaces and Eq. (7.5), we obtain

‖aβ(y)DβVj‖Hl
0(Kj)

≤ k4‖aβ(y)DβVj‖Hl+1
a (Kj)

≤ k5‖Vj‖Hl+2m
a (Kj)

≤ k6‖f‖Wl(K,γ).

The relation (Bjσμ(y,D)− Bjσμ(D))V can be proved similarly.

7.2. Spaces Ŝ l(K, γ). Consider the case where the line Imλ = 1 − l − 2m contains eigenvalues of

the operator L̃(λ). Let λ0 be one of these eigenvalue.

Definition 7.1. We say that λ0 is a regular eigenvalue of the operator L̃(λ) if
(1) none of the eigenvectors ϕ(ω) = (ϕ1(ω), . . . , ϕN (ω)) corresponding to λ0 has adjoint vectors;
(2) for any eigenvector ϕ(ω) = (ϕ1(ω), . . . , ϕN (ω)) corresponding to λ0, the functions riλ0ϕj(ω),

j = 1, . . . , N , are polynomials with respect in the variables y1 and y2.

Eigenvalues that are not regular are said to be irregular.

Remark 7.1. The notion of a regular eigenvalue was first introduced by V. A. Kondrat’ev in [53] for
“local” elliptic boundary-value problems in domains with angular or conical points at the boundary.

Obviously, if λ0 is a regular eigenvalue, then Reλ0 = 0. Hence, the line Imλ = 1−l−2m can contain
no more than one eigenvalue. In this case, the functions riλ0ϕj(ω) are homogeneous polynomials of
degree iλ0.

In Secs. 7.2–7.4, we assume that the following condition holds.

Condition 7.2. The line Imλ = 1− l− 2m contains a unique regular eigenvalue λ0 = i(1− l − 2m).
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If this condition holds, Lemma 7.1 is invalid since the algebraic system (7.7), (7.8) can be insolvable
for some right-hand side and the system of operators (7.2), (7.3) is not linearly independent. Indeed, let
ϕ(ω) = (ϕ1(ω), . . . , ϕN (ω)) be an eigenvector corresponding to a regular eigenvalue λ0 = i(1− l−2m).
Then, by the definition of regular eigenvalues, the function Qj(y) = rl+2m−1ϕj(ω) is a homogeneous
polynomial of degree l+2m− 1 with respect to the variables y = (y1, y2). Repeating the reasoning of
the proof of Lemma 7.1, item 3, we see that if we substitute numbers qjα = DαQj instead of DαWj

on the left-hand sides of system (7.7), (7.8), then its right-hand sides vanish. Hence, system (7.2),
(7.3) is linearly dependent.

In this case, we use the spaces Ŝ l(K, γ) (to be defined below) instead of the spaces S l(K, γ). We

note that the set Ŝ l(K, γ) is not closed in topology of the space W l(K, γ).

Choose the maximal number of linearly independent operators from system (7.2) that consists of
homogeneous differential operators of order l + 2m− 1 and denote them by

B̂j′σ′μ′(D)U. (7.22)

Any operator B̂jσμ(D) that does not belong to system (7.22) can be written in the form

B̂jσμ(D)U =
∑

j′,σ′,μ′
βj

′σ′μ′
jσμ B̂j′σ′μ′(D)U, (7.23)

where βj
′σ′μ′
jσμ are some constants.

Let us consider functions f = {fj , fjσμ} ∈ W l(K, γ) satisfying the conditions

Tjσμf ≡ D
l+2m−mjσμ−1
τjσ Φjσμ −

∑
j′,σ′,μ′

βj
′σ′μ′
jσμ D

l+2m−mj′σ′μ′−1
τj′σ′ Φj′σ′μ′ ∈ H1

0 (R
2), (7.24)

where the indices j′, σ′, and μ′ correspond to operators (7.22) and the indices j, σ, and μ correspond
to operators from system (7.2) that do not belong to system (7.22); Φjσμ are some fixed extensions

of the functions fjσμ to R
2 determined by operator (7.6); βj

′σ′μ′
jσμ are constants from Eq. (7.23). If

system (7.2) is linearly dependent, then the set of conditions (7.24) is empty.
Note that the fulfillment of conditions (7.24) is independent of the choice of extensions of the func-

tions fjσμ to R
2. Indeed, let Φ̂jσμ be an extension that differs from Φjσμ. Then (Φjσμ − Φ̂jσμ)|γjσ = 0;

hence, by [53, Theorem 4.8],

D
l+2m−mjσμ−1
τjσ (Φjσμ − Φ̂jσμ) ∈ H1

0 (R
2).

Now we supplement system (7.22) by differential operators of order l+2m−1 taken from system (7.3)
such that the resulting system consists of linearly independent operators:

B̂j′σ′μ′(D)U, Dξ′Pj′(D)Uj′ (7.25)

and any operator DξPj(D)Uj that does not belong to (7.25) can be represented in the form

DξPj(D)Uj =
∑

j′,σ′,μ′
pj

′σ′μ′
jξ B̂j′σ′μ′(D)U +

∑
j′,ξ′

pj
′ξ′
jξ D

ξ′Pj′(D)Uj′ , (7.26)

where pj
′,σ′,μ′
jξ and pj

′,ξ′
jξ are some constants.

Now we expand the components fj ∈ W l(Kj) of the vector f to the whole R
2. We denote the

expanded functions by fj ∈W l(R2). Consider the functions f satisfying the conditions

Tjξf ≡ Dξfj −
∑

j′,σ′,μ′
pj

′σ′μ′
jξ D

l+2m−mj′σ′μ′−1
τj′σ′ Φj′σ′μ′ −

∑
j′,ξ′

pj
′ξ′
jξ D

ξ′fj′ ∈ H1
0 (R

2), (7.27)

where the indices j′, σ′, and μ′ and the indices j′ and ξ′ correspond to operators (7.25), and the indices

j and ξ correspond to the operators from system (7.3) that do not belong to (7.25); pj
′σ′μ′
jξ and pj

′ξ′
jξ
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are constants from Eq. (7.26). Similarly to the previous reasoning, we can show that the fulfillment
of conditions (7.27) is independent of the choice of the functions fj and fjσμ in R

2.
Note that the set of conditions (7.27) is empty if either l = 0 or l ≥ 1 and system (7.25) contains

all operators from Eq. (7.3).

Let us introduce an analog of the set S l(K, γ) in the case where Eq. 7.2 is valid. Denote the set of

functions f ∈ W l(K, γ) satisfying conditions (5.6), (5.7), (7.24), and (7.27) by Ŝ l(K, γ). The space

Ŝ l(K, γ) with the norm

‖f‖Ŝl(K,γ) =
(
‖f‖2Wl(K,γ) +

∑
j,σ,μ

‖Tjσμf‖2H1
0 (R

2) +
∑
j,ξ

‖Tjξf‖2H1
0 (R

2)

)1/2
(7.28)

is complete. (In the definition of norm (7.28), the indices j, σ, and μ and the indices j and ξ correspond
to operators that do not belong to system (7.25).) Introduce the space

Ŝ l+2m−m−1/2(γ) = {f ′ ∈ W l+2m−m−1/2(γ) : (0, f ′) ∈ Ŝ l(K, γ)}.
Obviously, the following embeddings are valid:

Ŝ l+2m−m−1/2(γ) ⊂ S l+2m−m−1/2(γ) ⊂W l+2m−m−1/2(γ),

Ŝ l(K, γ) ⊂ S l(K, γ) ⊂ W l(K, γ).
(7.29)

Let us prove some important properties of the space Ŝ l(K, γ). The following lemma shows that if a
compactly supported function U ∈ W l+2m(K) satisfies finitely many orthogonality conditions of the
form

DαU |y=0 = 0, |α| ≤ l + 2m− 2, (7.30)

then the right-hand side of the corresponding nonlocal problem belongs to Ŝ l(K, γ).
Lemma 7.2. Let condition 7.2 hold. Assume that U ∈ S l+2m(K) and suppU ⊂ Oεd1(0) (the number
d1 is defined in Eq. (6.15)). Then

‖LU‖Ŝl(K,γ) ≤ c‖U‖Wl+2m(K), ‖LU‖Ŝl(K,γ) ≤ c‖U‖Wl+2m(K). (7.31)

Proof. 1. Let f = {fj , fjσμ} = LU . It follows from assumptions of the lemma that f ∈ W l(K, γ),
supp f ⊂ Oε(0), and the functions fj and fjσμ satisfy relations (5.6) and (5.7), respectively.

Denote by Φjσμ ∈ W l+2m−mjσμ(R2) the extension of the function fjσμ defined by operator (7.6).
Let us show that

B̂jσμ(D)U −D
l+2m−mjσμ−1
τjσ Φjσμ ∈ H1

0 (R
2). (7.32)

By lemma 5.7,

B̂jσμ(D)U −D
l+2m−mjσμ−1
τjσ Bjσμ(D)U ∈ H1

0 (R
2);

thus, to prove (7.32), it suffices to show that

D
l+2m−mjσμ−1
τjσ (Bjσμ(D)U − Φjσμ) ∈ H1

0 (R
2). (7.33)

But

D
l+2m−mjσμ−1
τjσ (Bjσμ(D)U − Φjσμ) ∈W 1(R2),

D
l+2m−mjσμ−1
τjσ (Bjσμ(D)U − Φjσμ)|γjσ = 0.

Thus, relations (7.33) follow from [53, Lemma 4.8]. Relation (7.32) is proved.

The operators B̂jσμ(D)U satisfy relations (7.23); hence, by (7.32), the functions Φjσμ satisfy rela-
tions (7.24).

Similarly, it follows from Eq. (7.32), the equalities Pj(D)Uj − fj = 0, and relations (7.26) that

the function f satisfies relations (7.27). Hence f ∈ Ŝ l(K, γ) and we can easily verify that the first
inequality in Eq. (7.31) holds.
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2. Now, to prove that LU ∈ Ŝ l(K, γ), it suffices to show that

Dl−1
(
Pj(y,D)− Pj(D)

)
Uj ∈ H1

0 (R
2),

D
l+2m−mjσμ−1
τjσ

(
Bjσμ(y,D)U − Bjσμ(D)U

)
∈ H1

0 (R
2),

where Uj ∈ W l+2m(R2) is an extension of the function Uj ∈ W l+2m(Kj) to R
2 (we denote this

extension also by Uj). These relations consist of terms of the form(
aα(y)− aα(0)

)
DαUj , |α| = l + 2m− 1, aβ(y)D

βUj , |β| ≤ l + 2m− 2,

where aα and aβ are infinitely differentiable functions.

Since Uj ∈W l+2m(R2), we see that DαUj ∈ H1
1 (R

2). This and Lemma 5.5 imply that(
aα(y)− aα(0)

)
DαUj ∈ H1

0 (R
2).

The function aβD
βUj (|β| ≤ l+2m−2) belongs toW 2(R2). This and relations (7.30) and Lemma 5.2

imply that
aβD

βUj ∈ H2
a(R

2) ⊂ H1
a−1(R

2), a > 0.

Let 0 < a < 1; then, by virtue of the compactness of supports of functions Uj , we obtain an embedding

aβD
βUj ∈ H1

0 (R
2). Hence, as we can easily verify, the second inequality in Eq. (7.31) is valid.

The following lemma shows that the set Ŝ l(K, γ) is not closed in the topology of the space W l(K, γ).

Lemma 7.3. Let condition 7.2 hold. Then there exists a family of functions f δ ∈ Ŝ l(K, γ), δ > 0,

such that supp f δ ⊂ Oε(0) and f
δ converges to a function f0 /∈ Ŝ l(K, γ) in W l(K, γ) as δ → 0.

Proof. 1. As was shown above, if a number λ0 = i(1− l − 2m) is a regular eigenvalue of the operator

L̃(λ), then system (7.2), (7.3) is linearly dependent. The two cases are possible: (a) either system (7.2)
is linearly dependent, (b) or system (7.2) is linearly independent, but system (7.2), (7.3) is linearly
dependent.

2. First, we assume that system (7.2) is linearly dependent. Then the set of conditions (7.24) is not
empty. In this case, norm (7.28) contains the corresponding term ‖Tjσμf‖H1

0 (R
2) for some j, σ, and μ;

we fix these values of j, σ, and μ. Without loss of generality, we assume that γjσ corresponds to the axis

Oy1. Introduce functions f δ = {0, f δj1σ1μ1} (0 ≤ δ ≤ 1) such that f δj1σ1μ1 = 0 for (j1, σ1, μ1) 	= (j, σ, μ)
and

f δjσμ(y1) = ψ(y1)y
l+2m−mjσμ−1+δ
1 ,

where ψ ∈ C∞
0

(
[0,∞)

)
and ψ(y1) = 1 for 0 ≤ y1 ≤ ε/2 and ψ(y1) = 0 for y1 ≥ 2ε/3. Obviously,

Φ̂δjσμ(y) = ψ(r)y
l+2m−mjσμ−1
1 rδ

is an extension of the function f δjσμ to R
2. Moreover, the extension operator defined on functions f δjσμ

(0 ≤ δ ≤ 1) is a bounded operator from the spaceW l+2m−mjσμ−1/2(γjσ) to the spaceW l+2m−mjσμ(R2).

This follows from the estimates ‖f δjσμ‖W l+2m−mjσμ−1/2(γjσ)
≥ c1 and ‖Φ̂δjσμ‖W l+2m−mjσμ (R2)

≤ c2. Here

c1, c2 > 0 are independent of 0 ≤ δ ≤ 1.
Thus, for 0 < δ ≤ 1 we have

‖f δ‖2Wl(K,γ) = ‖f δjσμ‖2W l+2m−mjσμ−1/2(γjσ)
,

‖f δ‖2Ŝl(K,γ)
≈ ‖f δjσμ‖2W l+2m−mjσμ−1/2(γjσ)

+
∥∥∥Dl+2m−mjσμ−1

y1 Φ̂δjσμ

∥∥∥2
H1

0 (R
2)

(7.34)

(a direct calculation shows that norms (7.34) are finite for δ > 0). Here the symbol “≈” means that the

corresponding norms are equivalent. Further, we verify directly that Φ̂δjσμ → Φ̂0
jσμ inW l+2m−mjσμ(R2)

as δ → 0. Hence, f δjσμ → f0jσμ inW l+2m−mjσμ−1/2(γjσ) as δ → 0. However, the corresponding function

f0 = {0, f0jσμ} does not belong to Ŝ l(K, γ). Indeed, let us assume the contrary. Then by Eq. (7.34)
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we have that D
l+2m−mjσμ−1
y1 Φ̂0

jσμ ∈ H1
0 (R

2). This is invalid because the function D
l+2m−mjσμ−1
y1 Φ̂0

jσμ

equals a nonzero constant near the origin.
3. Now we assume that system (7.2) is linearly independent. Then system (7.2), (7.3) is linearly

dependent. In this case, there are no conditions (7.24), but the set of conditions (7.27) is not empty.
Hence, norm (7.28) contains the corresponding term ‖Tjξf‖H1

0 (R
2) for some j and ξ. We fix these

values of j and ξ and introduce functions f δ = {f δj1 , 0} (0 ≤ δ ≤ 1) such that f δj1 = 0 for j1 	= j and

f δj = ψ(r)yξrδ. It can be directly verified that f δj → f0j in W l(R2) as δ → 0, but f0 = {f0j , f0jσμ} /∈
Ŝ l(K, γ) since Dξf0j /∈ H1

0 (R
2).

7.3. Construction of a “solution” in the case of a regular eigenvalue of the operator L̃(λ)
on the line Imλ = 1− l− 2m. Prove an analog of Lemma 7.1 in the case where condition 7.2 holds.

Lemma 7.4. Let condition 7.2 hold. Then there exists a bounded operator

Â : {f ∈ Ŝ l(K, γ) : supp f ⊂ O1(0)} → S l+2m(K)

such that for any f = {fj , fjσμ} ∈ D(Â), the function V = Âf satisfies the following conditions:
V = 0 for |y| ≥ 1,

‖LV − f‖Hl
0(K) ≤ c‖f‖Ŝl(K,γ), (7.35)

and inequality (7.5) holds.

Proof. 1. Similarly to the proof of Lemma 7.1, we consider the following algebraic system with respect
to all partial derivatives DαWj , |α| = l + 2m− 1, j = 1, . . . , N :

B̂j′σ′μ′(D)W = D
l+2m−mj′σ′μ′−1
τj′σ′ Φj′σ′μ′ ,

Dξ′Pj′(D)Wj′ = Dξ′fj′ ,
(7.36)

where Φj′σ′μ′ and fj′ are the extensions of the functions fj′σ′μ′ and fj′ to R
2 described in the proof of

Lemma 7.1. Now the left-hand side of system (7.36) contains only operators from system (7.25). The
matrix of system (7.36) consists of (l + 2m)N columns and q (q < (l + 2m)N) linearly independent
rows. Choose q linearly independent columns and assume that the unknowns DαWj corresponding to
the remaining (l+2m)N − q columns are equal to zero; then we obtain the system of q equations with
respect to q variables, which has a unique solution. Thus, we define a linear bounded operator

(W 1(R2))q �
{
D
l+2m−mj′σ′μ′−1
τj′σ′ Φj′σ′μ′ , D

ξ′fj′
}

→ {DαWj} ≡ {Wjα} ∈ (W 1(R2))(l+2m)N . (7.37)

Moreover, Wjα(y) = 0 for |y| ≥ 2. Using the functions DαWj and operators (7.9), we obtain functions
Vj , j = 1, . . . , N , satisfying relations (7.10) and (7.11). We show that the function V = (V1, . . . , VN )
is as required.

2. Similarly to the proof of Lemma 7.1, we prove estimate (7.5) for all functions V . Prove inequal-
ity (7.35). Since {Wjα} is a solution of system (7.36) and the functions Vj satisfy conditions (7.11),
we have

B̂j′σ′μ′(D)V −D
l+2m−mj′σ′μ′−1
τj′σ′ Φj′σ′μ′ ∈ H1

0 (R
2), (7.38)

Dξ′(Pj′(D)Vj′ − fj′) ∈ H1
0 (R

2). (7.39)
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Consider an arbitrary operator B̂jσμ(D), which does not belong to system (7.25). Using (7.23), we
have

B̂jσμ(D)V −D
l+2m−mjσμ−1
τjσ Φjσμ

=
∑

j′,σ′,μ′
βj

′σ′μ′
jσμ

(
B̂j′σ′μ′(D)V −D

l+2m−mj′σ′μ′−1
τj′σ′ Φj′σ′μ′

)

+
∑

j′,σ′,μ′
βj

′σ′μ′
jσμ D

l+2m−mj′σ′μ′−1
τj′σ′ Φj′σ′μ′ −D

l+2m−mjσμ−1
τjσ Φjσμ. (7.40)

However, f ∈ Ŝ l(K, γ); hence, conditions (7.24) hold. This and Eqs. (7.38) and (7.40) imply that the
following relations hold for all j, σ, and μ:

B̂jσμ(D)V −D
l+2m−mjσμ−1
τjσ Φjσμ ∈ H1

0 (R
2). (7.41)

We can similarly consider the operators DξPj(D) that do not belong to system (7.25). Using rela-
tions (7.23) and (7.24), (7.26) and(7.27), and (7.38) and (7.39), we prove the relations

Dξ(Pj(D)Vj − fj) ∈ H1
0 (R

2) (7.42)

for all j and ξ. Equations (7.41) and (7.42) and the proof of Lemma 7.1 yield estimate (7.35).

Similarly to Corollary 7.1, we prove the following corollary of Lemma 7.4.

Corollary 7.2. The function V constructed in Lemma 7.4 satisfies the inequality

‖LV − f‖Hl
0(K) ≤ c‖f‖Ŝl(K,γ). (7.43)

Consider a bounded operator La : Hl+2m
a (K) → Hl

a(K, γ) defined by the formula

LaU = {Pj(D)Uj , Bjσμ(D)U}, (7.44)

where Hl+2m
a (K) and Hl

a(K, γ) are the spaces introduced in Sec. 5.3. The operator La corresponds to
problem (6.16), (6.17) in weight spaces. It follows from [88, Theorem 2.1] that the operator La has a
bounded inverse operator if and only if the line Imλ = a + 1 − l − 2m does not contain eigenvalues
of the operator L̃(λ). Using the invertibility of the operator La and the following lemma, we obtain a
solution of problem (6.16), (6.17) in Sobolev spaces.

Lemma 7.5. Let W ∈ Hl+2m
a (K) for some a > 0 and f = LaW ∈ Hl

0(K, γ). Assume that the closed
strip 1 − l − 2m ≤ Imλ ≤ a + 1 − l − 2m contains a unique eigenvalue λ0 = i(1 − l − 2m) of the

operator L̃(λ) and this is a regular eigenvalue. Then

‖Dl+2mW‖H0
0(K) ≤ c‖f‖Hl

0(K,γ)
. (7.45)

Lemma 7.5 will be proved in Sec. 7.4. Now we study the solvability of problems (6.16), (6.17)
and (6.12), (6.13).

Lemma 7.6. Let condition 7.2 hold. Then for any function f ∈ Ŝ l(K, γ) such that supp f ⊂ Oε(0),
there exists a solution U of problem (6.16), (6.17) such that U ∈ S l+2m(Kd) for any d > 0 and the
following inequalities hold :

‖U‖Wl+2m(Kd) ≤ cd‖f‖Ŝl(K,γ), (7.46)

‖U‖Hl+2m−1
0 (Kd) ≤ cd‖f‖Wl(K,γ). (7.47)

Proof. 1. Fix a number a, 0 < a < 1, for which the line

1− l − 2m < Imλ ≤ a+ 1− l − 2m

does not contain eigenvalues of the operator L̃(λ). The existence of such a number a follows from the

discontinuity of the spectrum of the operator L̃(λ) (see Lemma 6.1). By the definition of the space
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Ŝ l(K, γ), relations (5.6) and (5.7) hold for functions f = {fj , fjσμ} that satisfy the conditions of the
lemma. Therefore, using Lemma 5.2, we have

‖f‖Hl
a(K,γ)

≤ k1‖f‖Wl(K,γ). (7.48)

Consider the function f − LV , where V = Âf ∈ W l+2m(K) ∩ Hl+2m
a (K) is a function defined in

Lemma 7.4. By inequalities (7.5) and (7.48), we see that

‖f − LV ‖Hl
a(K,γ)

≤ k2‖f‖Wl(K,γ). (7.49)

Hence, the function f − LV ∈ Hl
a(K, γ) belongs to the domain of the operator L−1

a . Introducing the
notation W = L−1

a (f − LV ), we see that U = V +W is a solution of problem (6.16), (6.17).
2. Prove inequality (7.47). By virtue of the boundedness of the operator L−1

a and inequality (7.49),
we have

‖W‖Hl+2m
a (K) ≤ k3‖f‖Wl(K,γ). (7.50)

Now estimate (7.47) follows from inequalities (7.50) and (7.5) and the boundedness of the embedding

Hl+2m
a (K) ⊂ Hl+2m−1

0 (Kd).
3. Prove (7.46). By virtue of the boundedness of the operator

Â : Ŝ l(K, γ) → W l+2m(K)

and inequality (7.50), it suffices to estimate the functions Dl+2mW . Lemma 7.4 implies that

f − LV ∈ Hl
0(K, γ)

and estimate (7.35) holds. Hence, applying Lemma 7.5 to the function W = L−1
a (f − LV ) and using

Eq. (7.35), we obtain

‖Dl+2mW‖H0
0(K) ≤ k4‖f − LV ‖Hl

0(K,γ)
≤ k5‖f‖Ŝl(K,γ).

Since H0
0 (Kj) = L2(Kj), inequality (7.46) is proved.

7.4. Proof of Lemma 7.5. First, we assume thatW ∈
N∏
j=1

C∞
0 (Kj \{0}). Then fj ∈ C∞

0 (Kj \{0})

and fjσμ ∈ C∞
0 (γjσ), where f = {fj , fjσμ} = LW . Denote the functions Wj(y) and fj(y) written in

the polar coordinates by Wj(ω, r) and fj(ω, r), respectively. We denote the Fourier transformations of

the functions Wj(ω, e
τ ), e2mτfj(ω, e

τ ), and emjσμτfjσμ(e
τ ) with respect to the variable τ by W̃j(ω, λ),

f̃j(ω, λ), and f̃jσμ(λ). Assume that f̃ = {f̃j , f̃jσμ}. Then λ 
→ f̃(λ) is a function analytic on the whole
complex plane; moreover, if |Reλ| → ∞ in the strip | Imλ| ≤ const, then this function tends to zero
uniformly with respect to ω and λ and faster than any power of |λ|.

By [88, Lemma 2.1], there exists a finitely meromorphic operator-valued function R̃(λ) such that

R̃(λ) =
(
L̃(λ)

)−1
for any number λ, which is not an eigenvalue of the operator L̃(λ). Moreover, if the

line Imλ = a + 1 − l − 2m does not contain eigenvalues of the operator L̃(λ), then, as was shown in
the proof of [88, Theorem 2.1], the solution W can be represented in the form

W (ω, eτ ) =

+∞+i(a+1−l−2m)∫
−∞+i(a+1−l−2m)

eiλτ R̃(λ)f̃(λ) dλ. (7.51)

Consider the derivative Dl+2mW (y) of order l+2m of the function W with respect to the variables y1
and y2. Let us write the operator Dl+2m in the polar coordinates as follows: r−(l+2m)M̃(ω,Dω, rDr).
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After the substitution r = eτ , the operator Dl+2m has the form e−(l+2m)τM̃(ω,Dω, Dτ ), where Dτ =
−i ∂∂τ . It follows from Eq. (7.51) that the function Dl+2mW (y) can be obtained from the function

e−(l+2m)τ

+∞+i(a+1−l−2m)∫
−∞+i(a+1−l−2m)

eiλτM̃(ω,Dω, λ)R̃(λ)f̃(λ) dλ (7.52)

by the substitution τ = ln r and the passage to Cartesian coordinates. Let us show that the operator-
valued function M̃(ω,Dω, λ)R̃(λ) is analytic near the point λ0 = i(1− l− 2m). Since λ0 is a (regular)

eigenvalue of the operator L̃(λ), by [23] we have the following:

R̃(λ) =
A−1

λ− λ0
+ Γ(λ),

where Γ(λ) is an analytic near λ0 operator-valued function and the image of the operator A−1 coincides

with the span of eigenvectors corresponding to λ0. Hence, for any function f̃ ∈ W l[−ω, ω] we have
the following:

M̃(ω,Dω, λ)R̃(λ)f̃ =
M̃(ω,Dω, λ)A−1f̃

λ− λ0
+ M̃(ω,Dω, λ)Γ(λ)f̃ .

By the definition of regular eigenvalues, the function rl+2m−1A−1f̃ is a vector Q(y) =
(Q1(y), . . . , QN (y)), where Qj(y) are polynomials of order l+ 2m− 1 with respect to the variables y1
and y2. Hence,

M̃(ω,Dω, λ)A−1f̃ = r1−l−2mM̃(ω,Dω, rDr)(r
l+2m−1A−1f̃) = rDl+2mQ(y) = 0.

Thus, the operator-valued function M̃(ω,Dω, λ)R̃(λ) is analytic near λ0 = i(1− l − 2m) and, hence,
in the closed strip 1− l − 2m ≤ Imλ ≤ a+ 1− l − 2m.

Further, for | Imλ| ≤ const, if |Reλ| → ∞, then the norm ‖M̃(ω,Dω, λ)R̃(λ)‖Wl[−ω,ω]→W0(−ω,ω)
does not increase faster than some power of |λ| (see [88, Lemma 2.1]), while ‖f̃(λ)‖Wl[−ω,ω] tends to
zero faster than any power of |λ|. Hence, we can integrate Eq. (7.52) over the line Imλ = 1− l − 2m
instead of Imλ = a+ 1− l − 2m. Thus, the function Dl+2mW (y) can be obtained from the function

e−(l+2m)τ

+∞+i(1−l−2m)∫
−∞+i(1−l−2m)

eiλτM̃(ω,Dω, λ)R̃(λ)f̃(λ) dλ (7.53)

by the substitution τ = ln r and the passage to the Cartesian coordinates. Estimate the norm of the
function Dl+2mW :

‖Dl+2mW‖2H0
0(K) =

∑
j

∫
Kj

|Dl+2mWj |2dy

=
∑
j

ωj∫
−ωj

dω

+∞∫
−∞

e−2(l+2m−1)τ

∣∣∣∣∣∣∣
+∞+i(1−l−2m)∫

−∞+i(1−l−2m)

eiλτM̃(ω,Dω, λ)R̃(λ)f̃(λ) dλ

∣∣∣∣∣∣∣
2

dτ.

The following equality can be obtained from here and the complex analog of the Parseval inequality:

‖Dl+2mW‖2H0
0(K) =

+∞+i(1−l−2m)∫
−∞+i(1−l−2m)

‖M̃(ω,Dω, λ)R̃(λ)f̃(λ)‖2W0(−ω,ω)dλ. (7.54)
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Estimate the norm in the integral on the right-hand side. For this, we introduce equivalent norms
depending on a parameter λ 	= 0:

|||Ũj |||2W k(−ωj ,ωj)
= ‖Ũj‖2W k(−ωj ,ωj)

+ |λ|2k‖Ũj‖2L2(−ωj ,ωj)
,

|||f̃ |||2Wl[−ω,ω] =
∑
j

(
|||f̃j |||2W l(−ωj ,ωj)

+
∑
σ,μ

|λ|2(l+2m−mjσμ−1/2)|f̃jσμ|2
)
.

By the interpolation inequality (see. [1, Chap. 1])

|λ|l+2m−k‖Ũj‖W k(−ωj ,ωj) ≤ ck|||Ũj |||W l+2m(−ωj ,ωj), 0 < k < l + 2m,

and [88, Lemma 2.1], there exists a constant C > 0 such that the following estimate holds for any
λ ∈ C satisfying the conditions Imλ = 1− l − 2m and |Reλ| > C:

‖M̃(ω,Dω, λ)R̃(λ)f̃(λ)‖2W0(−ω,ω) ≤ k1|||f̃(λ)|||2Wl[−ω,ω]. (7.55)

Since the operator-valued function

M̃(ω,Dω, λ)R̃(λ) : W l[−ω, ω] → W0(−ω, ω)
is analytic in the interval {λ ∈ C : Imλ = 1− l− 2m, |Reλ| ≤ C}, we see that inequality (7.55) holds
on the whole line Imλ = 1− l − 2m. Equations (7.54) and (7.55) yield the inequality

‖Dl+2mW‖2H0
0(K) ≤ k1

+∞+i(1−l−2m)∫
−∞+i(1−l−2m)

|||f̃(λ)|||2Wl[−ω,ω]dλ.

Estimate (7.45) follows from here and [53, (1.9), (1.10)]. Since the set C∞
0 (Kj \ {0}) is dense in

Hk
a (Kj) for any a and k, we see that estimate (7.45) holds for W ∈ Hl+2m

a (K) and f ∈ Hl
0(K, γ).

Chapter 3

STRONG SOLUTIONS OF NONLOCAL ELLIPTIC PROBLEMS

IN BOUNDED DOMAINS IN SOBOLEV SPACES

8. Absence of Eigenvalues of the Operator L̃(λ) on the Line Imλ = 1− l − 2m

In this section, we use results of Sec. 7.1 (see Chap. 2) for the construction of a right regularizer for
the operator

L = {P, B0
iμ +B1

iμ +B2
iμ} :W l+2m(G) → W l(G, ∂G)

(see Sec. 6.1, Chap. 2), corresponding to problem (6.7), (6.8) in Sobolev spaces. It follows from the
existence of a right regularizer that the operator L is closed and its co-kernel is finite-dimensional. To
prove the fact that the kernel of the operator L has a finite dimension, we reduce the operator L to
an operator acting in weight spaces and having a finite-dimensional kernel.

Introduce the notation Bk = {Bk
iμ}i,μ, k = 0, . . . , 2; B = B0 +B1 +B2, C = B0 +B1. In addition

to the operator L = {P, B}), we consider the following bounded operators:

L0 = {P, B0} :W l+2m(G) → W l(G, ∂G),

L1 = {P, C} :W l+2m(G) → W l(G, ∂G).

First, we study the operator L1 (i.e., we assume that B2
iμ = 0); then we study the operator L in

the general case B2
iμ 	= 0. In this section, we assume that condition 7.1 holds.
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8.1. Construction of a right regularizer in the case where B2
iμ = 0. Here we consider the

case B2
iμ = 0, i.e., we assume that the support of nonlocal terms is located near the set K.

Assume that δ = ε0/d1, where ε0 determines the diameter of the support of the function ζ (see
Eq. (6.4)), from the definition of nonlocal operators B1

iμ, and the number d1 is defined in Eq. (6.15).

Consider functions ψ, ξ ∈ C∞
0 (R2) such that 0 ≤ ψ, ξ ≤ 1, ψ(y) = 1 for y ∈ Oδ(K), suppψ ⊂ O2δ(K);

ξ(y) = 1 for y ∈ O2δ(K), supp ξ ⊂ O4δ(K).

Lemma 8.1. Let condition 7.1 hold. Then for any sufficiently small ε0 > 0, there exist bounded
operators

RK : S l(G, ∂G) → Sl+2m(G), MK,SK : S l(G, ∂G) → S l(G, ∂G),
such that

L1RKf = ψf +MKf + SKf, (8.1)

‖MK‖ ≤ c1ε0, ‖SK‖ ≤ c2, and the squared operator SK is compact ; moreover, the operator SK can
be represented in the form SK = UK + FK, where ‖UK‖ ≤ c3, and the operator FK is compact ; the
constants c1, c2, c3 > 0 are independent of ε0.

Proof. Let us perform the change of variables y → y′ described in Sec. 6.1 in a neighborhood of the
set K and denote y′ by y. We also denote the functions ψ, ξ, and f written in the new coordinates by
the same symbols.

By Lemma 7.1, we see that ψf − LA(ψf) ∈ Hl
0(K, γ). Hence,

L−1
0 (ψf − LA(ψf)) ∈ Hl+2m

0 (K),

where L0 : Hl+2m
0 (K) → Hl

0(K, γ) is an operator defined in Eq. (7.44) for a = 0. Assume that

RKf = ξU, U = L−1
0 (ψf − LA(ψf)) +A(ψf).

Let us show that the operator RK is as required. Using the boundedness of the embedding op-
erator Hl+2m

0 (K) ⊂ W l+2m(K) defined on compactly supported functions, inequality (7.4), and the
boundedness of the operator A, we see that the operator RK is bounded.

Prove relation (8.1). Since Pj(D)Uj = ψfj and ξψfj = ψfj , we have

Pj(y,D)(ξUj)− ψfj = [Pj(y,D), ξ]Uj + ξ(y)
(
Pj(y,D)− Pj(D)

)
Uj , (8.2)

where [·, ·] denotes the commutator. This and Lemma 1.1 imply that

PRKf − ψf0 = (M0 + T0)f, (8.3)

where the operator M0 is “small” (i.e., ‖M0‖ ≤ k1ε0), the operator T0 : S l(G, ∂G) → W l(G) is
compact, and k1, k2, . . . > 0 are independent of ε0.

Taking into account the fact that Bjσμ(D)U = ψfjσμ and ξψfjσμ = ψfjσμ, we obtain

Bjσμ(y,D)(ξU)− ψfjσμ = [Bjσμ(y,D), ξ]U + ξ(y)
(
Bjσμ(y,D)− Bjσμ(D)

)
U. (8.4)

Let B(y) be an arbitrary coefficient of the operator Bjσμks(y,D), (k, s) 	= (j, 0). By Eq. (6.14),
according to the choice of the function ψ, we have

B(Gjσksy) = 0 for |y| ≥ ε0/χjσks,

ξ(Gjσksy) = ξ(y) = 1 for |y| ≤ ε0/χjσks.

Thus, for any function v, we have

(Bvξ)(Gjσksy) ≡ ξ(y)(Bv)(Gjσksy). (8.5)

Obviously, if (k, s) = (j, 0), then Eq. (8.5) also holds. Hence, the commutator on the right-hand side
of formula (8.4) does not contain higher derivatives; this means that it is a compact operator. Minor
derivatives from the second term of the right-hand side of formula (8.4) also form a compact operator.
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Consider an arbitrary term containing a higher derivative of order α, |α| = mjσμ, as (k, s) 	= (j, 0); it
has the form

ξ(y)
(
ζ(Gjσksy)b(Gjσksy)− b(0)

)
(DαU)(Gjσksy)|γjσ

= ξ(y)ζ(Gjσksy)
(
b(Gjσksy)− b(0)

)
(DαU)(Gjσksy)|γjσ

+ ξ(y)
(
ζ(Gjσksy)− 1

)
b(0)(DαU)(Gjσksy)|γjσ , (8.6)

where b(y) is an infinitely smooth function. Using Lemma 1.1, we can represent the first difference
on the right-hand side of Eq. (8.6) as the sum of “small” and compact operators. Moreover, if
(k, s) = (j, 0), then there is no second differences on the right-hand side of Eq. (8.6). Thus,

(B0
iμ +B1

iμ)RKf − ψfiμ = (Miμ + Tiμ + Siμ)f, (8.7)

where ‖Miμ‖ ≤ k2ε0, the operator Tiμ is compact, and the operator Siμ consists of terms that have
the following form in the coordinates y′:

Sjσμf = ξ(y′)
(
ζ(Gjσksy

′)− 1
)
b(0)(DαU)(Gjσksy

′)|γjσ , (k, s) 	= (j, 0).

Let S = {0, Siμ}. The representation of the operator S in the form of

S = UK + F,

where ‖UK‖ ≤ k3, and the operator F is compact, follows from Lemma 1.1. Let us prove that the
squared operator {0, Sjσμ} : W l(K, γ) → W l(K, γ) is compact.

Introduce the notation

Φ = {Φ0,Φjσμ} = {0, Sjσμf}, V = L−1
0 (ψΦ− LA(ψΦ)) +A(ψΦ).

Since the function ζ has a compact support and is equal to 1 near the origin, we see that the support
of the function ζ(Gjσksy′) − 1 is bounded and separated from the origin. Hence, using [57, Chap. 2,
Theorem 4.3] (about an a priori estimate of solutions of elliptic equations) and taking into account
the fact that Pj(D)Vj = ψΦ0 = 0, we obtain the inequality

‖SjσμΦ‖W l+2m−mjσμ−1/2(γjσ)
≤ k4‖Vk‖W l+2m−1(Qk)

, (8.8)

where Qk are bounded domains such that Qk ⊂ Kk. Equation (8.8) and the compactness of the
embedding W l+2m(Qk) ⊂ W l+2m−1(Qk) imply that the operator {0, Sjσμ}2 is compact. This means
that the operator S2 = {0, Siμ}2 is also compact. The statement of the lemma with operators MK =
{M0,Miμ}, SK = {T0, Tiμ}+S, and FK = {T0, Tiμ}+F follows from here and Eqs. (8.3) and (8.7).

Lemma 8.2. Let condition 7.1 hold. Then for sufficiently small ε0, there exist a bounded operator
R1 : S l(G, ∂G) → Sl+2m(G) and a compact operator T1 : S l(G, ∂G) → S l(G, ∂G) such that

L1R1 = I1 +T1, (8.9)

where I1 is the identity operator in S l(G, ∂G).

Proof. 1. According to the general theory of elliptic boundary-value problems in domains with a
smooth boundary (see, e.g., [108]), there exist a bounded operator

R0 : W l(G, ∂G) → {u ∈W l+2m(G) : suppu ⊂ G \ Oδ/2(K)} ⊂ Sl+2m(G)

and a compact operator T0 : W l(G, ∂G) → W l(G, ∂G) such that

L0R0(1− ψ)f = (1− ψ)f +T0f. (8.10)

For any f ∈ S l(G, ∂G), let R̂1f = RK(ψf) + R0(1 − ψ)f , where RK is the operator defined in
Lemma 8.1. Then by virtue of Lemma 8.1 and Eq. (8.10), we have

L1R̂1f = f +MKf + (SK +T0)f + {0,B1R0(1− ψ)f}. (8.11)

309



Since the embedding suppR0(1−ψ)f ⊂ G\Oε0(K) is valid, from the definition of the operator B1 we

obtain B1R0(1− ψ)f = 0. Then Eq. (8.11) and Lemma 1.2 imply that L1R̂1 : S l(G, ∂G) → S l(G, ∂G)
is a Fredholm operator and, therefore, it has a right regularizer, i.e., there exist a bounded operator
R′

1 : S l(G, ∂G) → S l(G, ∂G) and a compact operator T1 : S l(G, ∂G) → S l(G, ∂G) such that

L1R̂1R
′
1 = I1 +T1,

where I1 is the identity operator in the space S l(G, ∂G). Denoting R1 = R̂1R
′
1, we complete the

proof.

8.2. Construction of a right regularizer in the case where B2
iμ 	= 0. Here we assume that

the number ε0 is fixed and consider the operator L in the case where B2
iμ 	= 0. In other words, we

assume that the support of nonlocal terms is located not only near the set K but also outside it.
Let ξ and ψ be functions defined before Lemma 8.1; now we assume that δ > 0 is arbitrary (in

particular, it is independent of ε0).
To construct a right regularizer for the operator L, we need a “right regularizer”R′

K for the operator

L1, which is defined on functions f ′ = {fiμ} ∈ S l+2m−m−1/2
1 (∂G)) and for which the diameter of the

support of the function R′
Kf

′, which is located near the set K1, can be made arbitrary small.

Lemma 8.3. Let condition 7.1 hold. Then for any δ, 0 < δ < 1, there exist bounded operators

R′
K : S l+2m−m−1/2(∂G) → Sl+2m(G), M′

K,T
′
K : S l+2m−m−1/2(∂G) → S l(G, ∂G)

such that
L1R′

Kf
′ = ψ{0, f ′}+M′

Kf
′ +T′

Kf
′, (8.12)

where ‖M′
K‖ ≤ cδ, the operator T′

K is compact, and c > 0 is independent of δ.

Proof. Let us perform the change of variables y → y′ from Sec. 6.1 in a neighborhood of the set K
and denote y′ by y. We denote the functions ψ, ξ, and f ′ written in the new coordinates by the same
symbols.

Let f = (0, f ′) ∈ S l(G, ∂G). By virtue of Lemma 7.1, we see that ψf−LA(ψf) ∈ Hl
0(K, γ). Hence,

L−1
0 (ψf − LA(ψf)) ∈ Hl+2m

0 (K),

where L0 : Hl+2m
0 (K) → Hl

0(K, γ) is the operator defined in Eq. (7.44) for a = 0. Let

R′
Kf

′ = ξU, U = L−1
0 (ψf − LA(ψf)) +A(ψf).

We show that the operator R′
K is as required. Using the boundedness of the embedding oper-

ator Hl+2m
0 (K) ⊂ W l+2m(K) defined on compactly supported functions, inequality (7.4), and the

boundedness of the operator A, we obtain that the operator R′
K is bounded.

Prove relation (8.12). Similarly to the proof of Lemma 8.1, we have

Pj(y,D)(ξUj) = [Pj(y,D), ξ]Uj + ξ(y)
(
Pj(y,D)− Pj(D)

)
Uj , (8.13)

Bjσμ(y,D)(ξU)− ψfjσμ = [Bjσμ(y,D), ξ]U + ξ(y)
(
Bjσμ(y,D)− Bjσμ(D)

)
U. (8.14)

Equation (8.13) and Lemma 1.1 yield the equality

PR′
Kf

′ = (M ′
0 + T ′

0)f
′, (8.15)

where the operator M ′
0 is “small” (i.e., ‖M ′

0‖ ≤ k1δ), the operator T0 : S l+2m−m−1/2(∂G) → W l(G)
is compact, and k1, k2, . . . > 0 are independent of δ.

The commutator on the right-hand side of (8.4) contains minor derivatives of the function U and
operators of the form

Uk 
→ Jjσμks =
(
ξ(Gjσksy)− ξ(y)

)(
Bjσμks(y,D)Uk

)(
Gjσksy

)∣∣
γjσ
, (k, s) 	= (j, 0). (8.16)

Since the function ξ has a compact support and is equal to 1 near the origin, we see that the support of
the function ξ(Gjσksy)− ξ(y) is bounded and separated from the origin. Therefore, using [57, Chap. 2,
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Theorem 4.3] (on a priori estimates of solutions of elliptic equations) and taking into account the
relation Pj(D)Uj = 0, we obtain the inequality

‖Jjσμks‖W l+2m−mjσμ−1/2(γjσ)
≤ k2‖Uk‖W l+2m−1(Qk)

, (8.17)

where Qk is a bounded domain such that Qk ⊂ Kk. Equation (8.17) and the compactness of the
embedding W l+2m(Qk) ⊂ W l+2m−1(Qk) imply that operator (8.16) is compact. This means that the
commutator in (8.4) is also compact.

Minor derivatives from the second term on the right-hand side of formula (8.4) also form a compact
operator. Consider an arbitrary term containing a higher derivative of order α, |α| = mjσμ, as
(k, s) 	= (j, 0); it has the following form:

ξ(y)
(
ζ(Gjσksy)b(Gjσksy)− b(0)

)
(DαU)(Gjσksy)|γjσ

= ξ(y)ζ(Gjσksy)
(
b(Gjσksy)− b(0)

)
(DαU)(Gjσksy)|γjσ

+ ξ(y)
(
ζ(Gjσksy)− 1

)
b(0)(DαU)(Gjσksy)|γjσ . (8.18)

Using Lemma 1.1, we can represent the first difference on the right-hand side in Eq. (8.18) as the sum
of “small” and compact operators. Moreover, if (k, s) = (j, 0), then there is no second difference on
the right-hand side on Eq. (8.18). Thus,

(B0
iμ +B1

iμ)R
′
Kf

′ − ψf ′ = (M ′
iμ + T ′

iμ + S′
iμ)f

′, (8.19)

where ‖M ′
iμ‖ ≤ k3δ, the operator T ′

iμ is compact, and the operator S′
iμ consists of terms that can be

written in the following form in the coordinates y′:

S′
jσμf

′ = ξ(y′)
(
ζ(Gjσksy

′)− 1
)
b(0)(DαUk)(Gjσksy

′)|γjσ .
Since the function ζ has a compact support and is equal to 1 near the origin, we see that the

support of the function ζ(Gjσksy′)−1 is bounded and is separated from the origin. Using [57, Chap. 2,
Theorem 4.3] (on a priori estimates of solutions of elliptic equations) again and taking into account
the fact that Pj(D)Uj = 0, we obtain the inequality

‖S′
jσμf

′‖
W l+2m−mjσμ−1/2(γjσ)

≤ k3‖Uk‖W l+2m−1(Qk)
, (8.20)

where Qk are bounded domains such that Qj ⊂ Kk. Equation (8.20) and the compactness of the

embedding W l+2m(Qk) ⊂ W l+2m−1(Qk) imply that the operator S′
jσμ is compact. This means that

the operator S′
iμ is compact. From here and Eqs. (8.15) and (8.19), we obtain the statement of the

lemma.

Consider a δ/2-neighborhood Oδ/2(g) of every point g ∈ ∂G\O2δ(K). All these neighborhoods with
the set O2δ(K) form a covering ∂G. Let us choose a finite sub-covering O2δ(K), Oδ/2(gj), j = 1, . . . , J ,

J = J(δ), of the boundary ∂G. Let ψ, ψ′
j ∈ C∞

0 (R2), j = 1, . . . , J , be a partition of unit subordinated

to this covering (we assume that the function ψ from Lemma 8.3 coincides with the function ψ from
this partition of unit).

According to the general theory of elliptic boundary-value problems in domains with smooth bound-
aries (see, e.g., [108]), there exist bounded operators

R′
0j : {f ′ ∈ W l+2m−m−1/2(∂G), supp f ⊂ Oδ/2(gj)} → {u ∈W l+2m(G) : suppu ⊂ Oδ(gj)}

and compact operators

T′
0j : {f ′ ∈ W l+2m−m−1/2(∂G) : supp f ⊂ Oδ/2(gj)} → {f ∈ W l(G, ∂G) : supp f ⊂ Oδ(gj)}

such that

L0R′
0jf

′ = {0, f ′}+T′
0jf

′.
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For any function f ′ ∈ S l+2m−m−1/2(∂G), we assume that

R′
1f

′ = R′
Kf

′ +
J∑
j=1

R′
0j(ψ

′
jf

′). (8.21)

Similarly to the proof of Lemma 8.2 (applying Lemma 8.3 instead of Lemma 8.1), we can show that

L1R′
1f

′ = {0, f ′}+M′
1f

′ +T′
1f

′, (8.22)

where M′
1,T

′
1 : S l+2m−m−1/2(∂G) → S l(G, ∂G) are bounded operators such that ‖M′

1‖ ≤ cδ, where
c > 0 is independent of δ, and the operator T′

1 is compact.
Using the operators R1 (see Lemma 8.2) and R′

1 (see (8.21)), we construct a right regularizer for
the operator L in the case where B2

iμ 	= 0.

Let us introduce the set

S lB(G, ∂G) = {f ∈ S l(G, ∂G) : Φ = B2R1f and B2R′
1Φ belong S l+2m−m−1/2(∂G)}.

The Sobolev embedding theorem and the Riesz theorem on the general form of a linear continu-
ous functional in a Hilbert space imply that S lB(G, ∂G) is a closed finite-dimensional subspace in

W l(G, ∂G). Obviously, S lB(G, ∂G) ⊂ S l(G, ∂G).

Lemma 8.4. Let condition 7.1 hold. Then there exist a bounded operator

R : W l(G, ∂G) →W l+2m(G)

and a compact operator T : W l(G, ∂G) → W l(G, ∂G) such that

LR = I+T, (8.23)

where I is the identity operator in W l(G, ∂G).

Proof. 1. Let Φ = B2R1f , where f = {f0, f ′} ∈ S lB(G, ∂G). Then, by the definition of the space

S lB(G, ∂G), the functions Φ and B2R′
1Φ belong to the domain of the operator R′

1. Hence we can

introduce a bounded operator RS : S lB(G, ∂G) →W l+2m(G) by the formula

RSf = R1f −R′
1Φ+R′

1B
2R′

1Φ.

We show that the operator RS is the inverse operator for L with accuracy up to the sum of small
and compact perturbations. For simplicity, we denote different operators (acting in the corresponding
spaces) whose norms do not exceed cδ by the same letter M . Similarly, we denote different compact
operators by the same letter T .

By Eqs. (8.9) and (8.22), we have

PRSf = PR1f −PR′
1(Φ−B2R′

1Φ)

= f0 + Tf0 −M(Φ−B2R′
1Φ)− T (Φ−B2R′

1Φ) = f0 +Mf + Tf, (8.24)

CRSf = CR1f −CR′
1Φ+CR′

1B
2R′

1Φ

= (f ′ + Tf ′)− (Φ +MΦ+ TΦ) + (B2R′
1Φ+MB2R′

1Φ+ TB2R′
1Φ)

= f ′ − Φ+B2R′
1Φ+Mf + Tf. (8.25)

Applying the operator B2 to the function RSf , we obtain the equality

B2RSf = Φ−B2R′
1Φ+B2R′

1B
2R′

1Φ. (8.26)

Adding Eqs. (8.25) and (8.26), we obtain the inequality

BRSf = f ′ +Mf + Tf +B2R′
1B

2R′
1Φ. (8.27)
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Let us show that

B2R′
1B

2R′
1Φ = 0 (8.28)

for sufficiently small δ = δ(κ1,κ2, ρ), where κ1, κ2, and ρ are constants from condition 6.4. Note that
δ is independent of ε0.

By (8.21), we have suppR′
1Φ ⊂ G \G4δ. Let δ be so small that 4δ < ρ. Then Eq. (6.6) implies that

suppB2R′
1Φ ⊂ Oκ2(K).

Further, let δ be small that 4δ < κ1 and κ2 + 3δ/2 < κ1. Then, applying (8.21) again, we see that
suppR′

1B
2R′

1Φ ⊂ Oκ1(K). This relation and Eq. (6.5) yield Eq. (8.28).
It follows from Eqs. (8.24), (8.27), and (8.28) that

LRS = IS +M + T,

where IS ,M, T : S lB(G, ∂G) → W l(G, ∂G) are bounded operators such that ISf = f , ‖M‖ ≤ cδ (c > 0
are independent of δ), and the operator T is compact.

3. Since the subspace S lB(G, ∂G) is finite-dimensional in W l(G, ∂G), we see that IS is a Fredholm
operator. Hence, by [56, Theorems 16.2, 16.4], IS +M + T is also a Fredholm operator for sufficiently

small δ. Now it follows from [56, Theorem 15.2] that there exist a bounded operator R̃ and a compact
operator T such that they act from W l(G, ∂G) to S lB(G, ∂G) and to W l(G, ∂G), respectively, and

(IS +M + T )R̃ = I+T. Denoting R = RSR̃ : W l(G, ∂G) →W l+2m(G), we obtain Eq. (8.23).

8.3. Fredholm solvability of nonlocal problems. Here we prove the following result on the
solvability of problem (6.7), (6.8) in bounded domains in Sobolev spaces.

Theorem 8.1. Let condition 7.1 hold. Then L : W l+2m(G) → W l(G, ∂G) is a Fredholm operator
and indL = indL1.

Conversely, let L :W l+2m(G) → W l(G, ∂G) be a Fredholm operator. Then condition 7.1 holds.

Below, we show that if condition 7.1 is violated, then the image of the operator L is not closed (see
Lemma 8.7). This statement, Theorem 8.1, and [56, Theorem 7.1] yield the following result.

Corollary 8.1. Condition 7.1 is necessary and sufficient for the fulfillment of the following a priori
estimate:

‖u‖W l+2m(G) ≤ c
(
‖Lu‖Wl(G,∂G) + ‖u‖L2(G)

)
,

where c > 0 is independent of u.

8.3.1. Proof of Theorem 8.1. Sufficiency. Let us show that the kernel of the operator L is finite-
dimensional. For this, we consider problem (6.7), (6.8) in weight spaces.

Introduce the operator

La = {P, B} : H l+2m
a (G) → Hl

a(G, ∂G), a > l + 2m− 1,

which corresponds to Problem (6.7), (6.8) in weight spaces. Note that, by Eq. (6.5) and Lemma 5.3,
for a > l + 2m− 1, we have

B2
iμu ∈W l+2m−miμ−1/2(Γi) ⊂ H

l+2m−miμ−1/2
a (Γi)

for any function u ∈ H l+2m
a (G) ⊂W l+2m(G \ Oκ1(K)). Since the functions B0

iμu and B1
iμu belong to

H
l+2m−miμ−1/2
a (Γi), we see that the operator La is well defined.
Thus, the operators L and La correspond to the same nonlocal problem (6.7), (6.8), which is

considered in Sobolev spaces and in weight spaces respectively.

Lemma 8.5. The kernel of the operator L is finite-dimensional.
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Proof. Lemma 6.1 and [89, Theorem 3.2]4 imply that La is a Fredholm operator for almost all a >
l + 2m− 1. Let us fix a > l + 2m− 1 for which La is a Fredholm operator. By Lemma 5.2, we have
W l+2m(G) ⊂ H l+2m

a (G); hence, kerL ⊂ kerLa. Since kerLa is finite-dimensional for the chosen a, we
see that kerL is also finite-dimensional.

Remark 8.1. Emphasize that the kernel of the operator L is finite-dimensional independently of the
location of eigenvalues of the operator L̃(λ).

By virtue of [56, Theorem 15.2] and Lemma 8.4, the image of the operator L is closed and has a
finite codimension. This and Lemma 8.5 imply that L is a Fredholm operator.

We show that indL = indL1. Introduce an operator

Ltu = {Pu, Cu+ (1− t)B2u}.

Obviously, L0 = L and L1 = L1.
As was proved above, the operators Lt are Fredholm operators for all t. Further, for all t0 and t,

the following estimate holds:

‖Ltu− Lt0u‖Wl(G,∂G) ≤ kt0 |t− t0| · ‖u‖W l+2m(G),

where kt0 > 0 is independent of t. Hence, by [56, Theorem 16.2], we have indLt = indLt0 for all t from
a sufficiently small neighborhood of the point t0. Since t0 is arbitrary, we see that these neighborhoods
cover the interval [0, 1]. Choosing a finite subcovering, we obtain

indL = indL0 = indL1 = indL1.

The sufficiency of condition 7.1 in Theorem 8.1 is proved.

8.3.2. Proof of Theorem 8.1. Necessity. Let d = d(�) = 2d2�, where d2 is defined in (6.15).

Lemma 8.6. Let the image of the operator L be closed. Then for all sufficiently small � > 0 and
U ∈ W l+2m(Kd), the following estimate holds:

‖U‖Wl+2m(K�) ≤ c

⎛
⎝‖LU‖Wl(K2�,γ2�) +

N∑
j=1

‖Pj(D)Uj‖W l(Kd
j )

+ ‖U‖Wl+2m−1(Kd)

⎞
⎠ . (8.29)

Proof. 1. Since the image of the operator L is closed, it follows from Lemma 8.5, the compactness of
the embedding operator W l+2m(G) ⊂W l+2m−1(G), and [56, Theorem 7.1] that

‖u‖W l+2m(G) ≤ c
(
‖Lu‖Wl(G,∂G) + ‖u‖W l+2m−1(G)

)
. (8.30)

Let us substitute in Eq. (8.30) a function u ∈W l+2m(G) such that suppu ⊂ O2
(K), 2� < min{ε0,κ1}.
By virtue of Eq. (6.5) we have that B2u = 0 for such a function u. Hence, using [57, Chap. 2,
Lemma 3.2], we obtain the estimate

‖U‖Wl+2m(K) ≤ c
(
‖LU‖Wl(K,γ) + ‖U‖Wl+2m−1(K)

)
, (8.31)

which is valid for U ∈ W l+2m(K) such that suppU ⊂ O2
(0), where � is sufficiently small.
2. Now we omit the restriction suppU ⊂ O2
(0) and show that estimate (8.29) holds for any

function U ∈ W l+2m(Kd).

4Theorem 3.2 in [89] is formulated for the case where the operators B2
iμ have the same form as in Sec. 6.2 (see Chap. 2).

However, the proof of [89, Theorem 3.2] is based on inequalities (6.5) and (6.6) and is independent of the explicit form
of the operators B2

iμ (see also [41]).
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Let us introduce a function ψ ∈ C∞
0 (R2) such that ψ(y) = 1 for |y| ≤ �, suppψ ⊂ O2
(0) and

ψ is independent of the polar angle ω. Applying inequality (8.31) and the Leibnitz formula to the
functions U ∈ W l+2m(Kd), we obtain the inequality

‖U‖Wl+2m(K�) ≤ ‖ψU‖Wl+2m(K) ≤ k1

(
‖L(ψU)‖Wl(K,γ) + ‖ψU‖Wl+2m−1(K)

)

≤ k2

⎛
⎝‖ψLU‖Wl(K,γ) +

∑
j,σ,μ

∑
(k,s) 	=(j,0)

‖Jjσμks‖W l+2m−mjσμ−1/2(γjσ)
+ ‖U‖Wl+2m−1(K2�)

⎞
⎠ , (8.32)

where
Jjσμks =

(
ψ(Gjσksy)− ψ(y)

)(
Bjσμks(D)Uk

)(
Gjσksy

)∣∣
γjσ
.

Similarly to Eq. (8.17), we obtain the inequality

‖Jjσμks‖W l+2m−mjσμ−1/2(γjσ)
≤ k4

(
‖Pk(D)Uk‖W l({d1
/2<|y|<2d2
})

+ ‖Uk‖W l+2m−1({d1
/2<|y|<2d2
})
)
. (8.33)

Now estimate (8.29) follows from (8.32) and (8.33).

Lemma 8.7. Assume that there exists an eigenvalue of the operator L̃(λ) lying on the line Imλ =
1− l − 2m. Then the image of the operator L is not closed.

Proof. 1. Assume that the image of the operator L is closed. The following two cases are possible:
(a) either the line Imλ = 1− l− 2m contains an irregular eigenvalue, (b) or the line Imλ = 1− l− 2m
contains only a regular eigenvalue λ0 = i(1− l − 2m) (see Definition 7.1).

2. First, we assume that there is an irregular eigenvalue λ = λ0 at the line. Let us show that
estimate (8.29) is violated in this case. Let us denote an eigenvector and adjoint vectors (a Jordan

chain of the length κ ≥ 1), corresponding to the eigenvalue λ0 (see [23]) by ϕ(0)(ω), . . . , ϕ(κ−1)(ω).

The vectors ϕ(k)(ω) belong to W l+2m(−ω, ω), and, by [26, Lemma 2.1], we have

LV k = 0, (8.34)

where

V k = riλ0
k∑
s=0

1

s!
(i ln r)kϕ(k−s)(ω), k = 0, . . . ,κ − 1.

Since λ0 is an irregular eigenvalue, we see that the function V k(y) is not a vector-valued polynomial

for some k ≥ 0. For simplicity, assume that V 0 = riλ0ϕ(0)(ω) is not a vector-valued polynomial (the
case k > 0 is similar).

Introduce a sequence U δ = rδV 0/‖rδV 0‖Wl+2m(K�). For any δ > 0, the denominator is finite, but

‖rδV 0‖Wl+2m(K�) → ∞ as δ → 0 since V 0 is not a vector-valued polynomial. However,

‖rδV 0‖Wl+2m−1(Kd) ≤ c,

where c > 0 is independent of δ ≥ 0; hence,

‖U δ‖Wl+2m−1(Kd) → 0 as δ → 0. (8.35)

Moreover, from relation (8.34) we have

Pj(D)U δ =

rδPj(D)V 0 +
∑

|α|+|β|=2m,|α|≥1

pjαβD
αrδ ·DβV 0

j

‖rδV 0‖Wl+2m(K�)

=

∑
|α|+|β|=2m,|α|≥1

pjαβD
αrδ ·DβV 0

j

‖rδV 0‖Wl+2m(K�)

,

where pjαβ are some complex constants. Hence,

|DξPj(D)U δ| ≤ cjξδr
l−1−|ξ|+δ/‖rδV 0‖Wl+2m(K�), |ξ| ≤ l,
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and we obtain the relation

‖Pj(D)U δ‖W l(Kd
j )

→ 0 as δ → 0. (8.36)

Similarly, using (8.34), we can prove that

‖Bjσμ(D)U δ|γjσ‖W l+2m−mjσμ−1/2(γ2�jσ)
→ 0 as δ → 0. (8.37)

To prove Eq. (8.37), we additionally need to estimate the relation∑
(k,s) 	=(j,0)

‖(χδjσks − 1)rδ(Bjσμks(y,D)V 0)(Gjσksy)|γjσ‖W l+2m−mjσμ−1/2(γ2�jσ)

‖rδV 0‖Wl+2m(K�)

,

which converges to zero as δ → 0 (according to inequality |χδjσks − 1| ≤ k6δ).

However, statements (8.35)–(8.37) contradict estimate (8.29) since ‖U δ‖Wl+2m(K�) = 1.
3. It remains to prove the case where the line Imλ = 1− l− 2m contains only a regular eigenvalue

λ0 = i(1− l− 2m) of the operator L̃(λ). In this case, we cannot repeat the above reasonings since V 0

is a vector-valued polynomial and the norms ‖rδV 0‖Wl+2m(K�) are homogeneously bounded as δ → 0.

We use the results from Sec. 7.3 (see Chap. 2). According to Lemma 7.3, there exists a sequence

f δ ∈ Ŝ l(K, γ), δ > 0, such that supp f δ ⊂ O
(0) and f δ converges to the function f0 /∈ Ŝ l(K, γ) as

δ → 0 in W l(K, γ). By Lemma 7.6, for every function f δ, there exists a function U δ ∈ W l+2m(Kd)
such that

LU δ = f δ, (8.38)

‖U δ‖Wl+2m−1(Kd) ≤ c‖f δ‖Wl(K,γ) (8.39)

(c > 0 is independent of δ) and U δ satisfies relations (7.30). Inequalities (8.29) and (8.39), rela-
tion (8.38), and the convergence of f δ in the space W l(K, γ) imply that the sequence U δ is a Cauchy
sequence in W l+2m(K
). Hence, the sequence U δ converges in W l+2m(K
) as δ → 0 to some func-
tion U . Moreover, the limit function U also satisfies relations (7.30). According to the boundedness
of the operator

L : W l+2m(K
) → W l(K2d1
, γ2d1
),

the following equality holds:

LU = f0 as y ∈ O2d1
(0).

Consider a function ψ ∈ C∞
0 (R2) such that ψ(y) = 1 for |y| ≤ d21� and suppψ ⊂ O2d21


(0). Obviously,

ψU ∈ W l+2m(K), ψU satisfies relations (7.30), and suppL(ψU) ⊂ O2d1
(0). Hence,

L(ψU) = ψf0 + f̂ ,

where f̂ ∈ W l(K, γ) and the support f̂ is compact and is separated from the origin. Hence, the function

ψf0 + f̂ , as well as f0, does not belong to Ŝ l(K, γ). However, this contradicts Lemma 7.2.

Now the necessity of condition 7.1 of Theorem 8.1 follows from Lemma 8.7.

9. Nonlocal Problems in Weight Spaces with a Small Weight Index

9.1. Statement of the main result. In Sec. 8.3, we introduced the operator

La = {P, B} : H l+2m
a (G) → Hl

a(G, ∂G), a > l + 2m− 1. (9.1)

As was stated above, by virtue of Lemma 6.1 and [89, Theorem 3.2], La is a Fredholm operator for
almost all a > l + 2m− 1.

Here, we study problem (6.7), (6.8) in weight spaces with weight index a > 0. As earlier, in this case,

B2
iμu ∈ W l+2m−miμ−1/2(Γi) for all u ∈ H l+2m

a (G) ⊂W l+2m(G \ Oκ1(K)). However, now the function
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B2
iμu may not belong to the space H

l+2m−miμ−1/2
a (Γi). Then the operator La defined in Eq. (9.1) is

not well defined.

Let us introduce the set

Sl+2m
a (G) =

{
u ∈ H l+2m

a (G) : functions B2
iμu satisfy conditions (5.5)

}
.

Using Eq. (6.5), we obtain the inequality

‖B2
iμu‖W l+2m−miμ−1/2(Γi)

≤ k1‖u‖W l+2m(G\Oκ1 (K))
≤ k2‖u‖Hl+2m

a (G)

for all u ∈ H l+2m
a (G). This, the Sobolev inequality, and the Riesz theorem on the general form of

linear continuous functionals in a Hilbert space imply that Sl+2m
a (G) is a closed finite-dimensional

subspace in H l+2m
a (G).

On the other hand, by Lemma 5.2, we have B2
iμu ∈ H

l+2m−miμ−1/2
a (Γi) for any function u ∈

Sl+2m
a (G), a > 0. Since the functions B0

iμu and B1
iμu belong to the space H

l+2m−miμ−1/2
a (Γi) for all

a ∈ R and u ∈ Sl+2m
a (G) (and even for u ∈ H l+2m

a (G)), we see that

{Pu, Bu} ∈ Hl
a(G, ∂G) ∀u ∈ Sl+2m

a (G), a > 0.

Thus, there exists a finite-dimensional space Rl
a(G, ∂G) (contained in {0} ×

∏
i,μ
H
l+2m−miμ−1/2
a′ (Γi),

a′ > l + 2m− 1) such that

{Pu, Bu} ∈ Hl
a(G, ∂G)�Rl

a(G, ∂G) ∀u ∈ H l+2m
a (G), a > 0.

Hence we can define a bounded operator

La = {P, B} : H l+2m
a (G) → Hl

a(G, ∂G)�Rl
a(G, ∂G), a > 0.

Obviously, we can assume that Rl
a(G, ∂G) = {0} for a > l + 2m− 1.

Theorem 9.1. Let a > 0, and let the line Imλ = a + 1 − l − 2m not contain eigenvalues of the
operator L̃(λ). Then La : H

l+2m
a (G) → Hl

a(G, ∂G)�Rl
a(G, ∂G) is a Fredholm operator.

Conversely, let La : H l+2m
a (G) → Hl

a(G, ∂G) �Rl
a(G, ∂G) be a Fredholm operator. Then the line

Imλ = a+ 1− l − 2m does not contain eigenvalues of the operator L̃(λ).

Note that if f ∈ Hl
a(G, ∂G), then

‖f‖Hl
a(G,∂G)�Rl

a(G,∂G) = ‖f‖Hl
a(G,∂G).

This relation, Theorem 9.1, and the Riesz theorem on the general form of linear continuous functionals
in a Hilbert space yield the following result.

Corollary 9.1. Let a > 0, and let the line Imλ = a + 1 − l − 2m not contain eigenvalues of the
operator L̃(λ). Then there exist functions f q ∈ Hl

a(G, ∂G), q = 1, . . . , q1, such that if the right-hand
side f of problem (6.7), (6.8) belongs to Hl

a(G, ∂G) and

(f, f q)Hl
a(G,∂G) = 0, q = 1, . . . , q1,

then problem (6.7), (6.8) has a solution u ∈ H l+2m
a (G).

Corollary 9.1 shows that the inclusion u ∈ H l+2m
a (G), generally speaking, does not yield the in-

clusion Lau ∈ Hl
a(G, ∂G) for 0 < a ≤ l + 2m − 1; however, if we impose a finite number of orthog-

onality conditions on the right-hand side f ∈ Hl
a(G, ∂G), then problem (6.7), (6.8) has a solution

u ∈ H l+2m
a (G).

9.2. Proof of the main result.
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9.2.1. Proof of Theorem 9.1. Sufficiency.

Lemma 9.1. The kernel of the operator La is finite-dimensional.

Proof. Since H l+2m
a (G) ⊂ H l+2m

a′ (G) for a ≤ a′, we see that the proof of this lemma is similar to the
proof of Lemma 8.5.

Now we pass to the construction of a right regularizer for the operator La.

As was noted above, the functionsB0
iμu andB1

iμu belong toH
l+2m−miμ−1/2
a (Γi) for all u ∈ H l+2m

a (G)
and a ∈ R. Hence, we can define a bounded operator

L1
a = {P, C} : H l+2m

a (G) → Hl
a(G, ∂G).

It is proved in [89, Sec. 3] that there exist a bounded operator

Ra,1 : Hl
a(G, ∂G) → H l+2m

a (G)

and a compact operator

Ta,1 : Hl
a(G, ∂G) → Hl

a(G, ∂G)

such that

L1
aRa,1 = Ia +Ta, (9.2)

where Ia is the identity operator in Hl
a(G, ∂G).

Let us formulate an analog of Lemma 8.3 in wight spaces.
Let ξ and ψ be the functions defined before Lemma 8.1, but now we assume that δ > 0 is arbitrary

(in particular, it is independent of ε0).

Lemma 9.2. Let the line Imλ = a+ 1− l − 2m not contain eigenvalues of the operator L̃(λ). Then
for any δ, 0 < δ < 1, there exist bounded operators

R′
a,K : Hl+2m−m−1/2

a (∂G) → H l+2m
a (G),

M′
a,K,T

′
a,K : Hl+2m−m−1/2

a (∂G) → Hl
a(G, ∂G),

such that ‖M′
a,K‖ ≤ cδ, where c > 0 is independent of δ, the operator T′

a,K is compact, and

L1
aR

′
a,Kf

′ = ψ{0, f ′}+M′
a,Kf

′ +T′
a,Kf

′.

Proof. It follows from [88, Theorem 2.1] that the operator La defined in (7.44) has a bounded inverse
operator. Let

R′
a,Kf

′ = ξU, U = L−1
a (ψ{0, f ′}),

where ξ and ψ are the same functions as in the proof of Lemma 8.3. The further proof is similar to
the proof of Lemma 8.3.

For any function f ′ ∈ Hl+2m−m−1/2
a (∂G), we set

R′
a,1f

′ = R′
a,Kf

′ +
J∑
j=1

R′
0j(ψ

′
jf

′), (9.3)

where the functions ψ′
j and the operators R′

0j are the same as in Sec. 8.2.
It can be directly verified by Lemma 9.2 that

L1
aR

′
a,1f

′ = {0, f ′}+M′
a,1f

′ +T′
a,1f

′, (9.4)

where

M′
a,1,T

′
a,1 : Hl+2m−m−1/2

a (∂G) → Hl
a(G, ∂G)

are bounded operators such that ‖M′
a,1‖ ≤ cδ, where c > 0 is independent of δ, and the operator T′

a,1

is compact.
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Using the operators Ra,1 and R′
a,1, we construct a right regularizer for problem (6.7), (6.8) in weight

spaces in the case where B2
iμ 	= 0.

Let us introduce the following space for a > 0:

S la(G, ∂G) = {f ∈ Hl
a(G, ∂G) : Φ = B2Ra,1f and B2R′

a,1Φ belong to S l+2m−m−1/2(∂G)}.
First, we show that S la(G, ∂G) is a closed subspace in Hl

a(G, ∂G) with finite codimension. Indeed,
using inequality (6.5), we obtain that

‖Φiμ‖W l+2m−miμ−1/2(Γi)
≤ k1‖Ra,1f‖W l+2m(G\Oκ1 (K))

≤ k2‖Ra,1f‖Hl+2m
a (G) ≤ k3‖f‖Hl

a(G,∂G). (9.5)

Since the function Φiμ satisfies condition (5.5), we see from Eq. (9.5) and Lemma 5.2 that

Φ ∈ Hl+2m−m−1/2
a (∂G)

and
‖Φiμ‖

H
l+2m−miμ−1/2
a (Γi)

≤ k4‖f‖Hl
a(G,∂G). (9.6)

Hence, the expression B2R′
a,1Φ is well defined. Similarly, using Eqs. (9.6) and (5.5), we obtain

inequalities

‖B2R′
a,1Φ‖Wl+2m−m−1/2(∂G) ≤ k5‖f‖Hl

a(G,∂G), (9.7)

‖B2R′
a,1Φ‖Hl+2m−m−1/2

a (∂G)
≤ k6‖f‖Hl

a(G,∂G). (9.8)

It follows from Eqs. (9.5) and (9.7), the Sobolev embedding theorem, and the Riesz theorem on
the general form of linear continuous functionals in a Hilbert space that S la(G, ∂G) is a subspace of a
finite co-dimension in Hl

a(G, ∂G). Hence,

Hl
a(G, ∂G)�Rl

a(G, ∂G) = S la(G, ∂G)� R̂l
a(G, ∂G), (9.9)

where R̂l
a(G, ∂G) is a finite-dimensional space.

Now we prove the following result.

Lemma 9.3. Let a > 0, and let the line Imλ = a + 1 − l − 2m not contain eigenvalues of the
operator L̃(λ). Then there exist a bounded operator

Ra : Hl
a(G, ∂G)�Rl

a(G, ∂G) → H l+2m
a (G)

and a compact operator

Ta : Hl
a(G, ∂G)�Rl

a(G, ∂G) → Hl
a(G, ∂G)�Rl

a(G, ∂G)

such that
LaRa = Îa +Ta, (9.10)

where Îa is the identity operator in Hl
a(G, ∂G)�Rl

a(G, ∂G).

Proof. 1. Let Φ = B2Ra,1f , where f ∈ S la(G, ∂G). It follows from Eqs. (9.6) and (9.8) that the

functions {0,Φ} and {0,B2R′
a,1Φ} belong to Hl

a(G, ∂G). Hence, the functions Φ and B2R′
a,1Φ belong

to the domain of the operator R′
a,1, and we can introduce the operator

Ra,S : S la(G, ∂G) → H l+2m
a (G)

by the formula
Ra,Sf = Ra,1f −R′

a,1Φ+R′
a,1B

2R′
a,1Φ.

Similarly to the proof of Lemma 8.4, applying inequalities (9.2) and (9.4), we can show that

LaRa,S = Ia,S +M + T,

where
Ia,S ,M, T : S la(G, ∂G) → Hl

a(G, ∂G)�Rl
a(G, ∂G)
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are bounded operators such that Ia,Sf = f and ‖M‖ ≤ cδ (c > 0 is independent of δ), and the operator
T is compact.

2.By Eq. (9.9), the subspace S la(G, ∂G) has finite codimension in the space Hl
a(G, ∂G)�Rl

a(G, ∂G);
hence, Ia,S is a Fredholm operator. By [56, Theorems 16.2, 16.4], Ia,S +M + T is also a Fredholm
operator for a sufficiently small δ. It follows from [56, Theorem 15.2] that there exist a bounded

operator R̃a and a compact operator Ta acting from Hl
a(G, ∂G) � Rl

a(G, ∂G) to S la(G, ∂G) and to
Hl
a(G, ∂G)�Rl

a(G, ∂G), respectively. In addition, these operators are such that

(Ia,S +M + T )R̃a = Îa +Ta.

Introducing the notation

Ra = Ra,SR̃a : Hl
a(G, ∂G)�Rl

a(G, ∂G) → H l+2m
a (G),

we obtain Eq. (9.10).

By [56, Theorem 15.2] and Lemma 9.3, the image of the operator La, a > 0, is closed and has finite
codimension. The first item of Theorem 9.1 follows from here and Lemma 9.1.

9.2.2. Proof of Theorem 9.1. Necessity.

Lemma 9.4. Let a > 0, and let the line Imλ = a+ 1− l− 2m contain an eigenvalue of the operator
L̃(λ). Then the image of the operator La is not closed.

Proof. 1. Let d = d(�) = 2d2�, where d2 is defined in Eq. (6.15). Assume that the image of the
operator La is closed. Then, similarly to the proof of Lemma 8.6, we use Lemma 9.1, the compactness
of the embedding operator H l+2m

a (G) ⊂ H l+2m−1
a (G), and [56, Theorem 7.1] and show that

‖U‖Hl+2m
a (K�) ≤ c

(
‖LU‖Hl

a(K
2�,γ2�) +

N∑
j=1

‖Pj(D)Uj‖Hl
a(K

d
j )

+ ‖U‖Hl+2m−1
a (Kd)

)
(9.11)

for all U ∈ Hl+2m
a (Kd) and sufficiently small �.

2. Let λ0 be an eigenvalue of the operator L̃(λ) belonging to the line Imλ = a + 1 − l − 2m, and

ϕ(0)(ω) be a corresponding eigenvector. The vector ϕ(0)(ω) belongs to W l+2m(−ω, ω), and, by [26,
Lemma 2.1], we have

LV 0 = 0, (9.12)

where V 0 = riλ0ϕ(0)(ω).
Let us substitute the sequence U δ = rδV 0/‖rδV 0‖Hl+2m

a (K�), δ > 0, to Eq. (9.11) and let δ → 0.

Similarly to the proof of Lemma 8.7, it is easy to verify (using Eq. (9.12)) that the right-hand side
of inequality (9.11) tends to zero when the left-hand side is equal to 1. The contradiction obtained
proves the lemma.

Now the second item of Theorem 9.1 follows from Lemma 9.4.

10. Regular Eigenvalues of the Operator L̃(λ) on the Line Imλ = 1− l − 2m

In the previous sections, we have proved the Fredholm solvability of problem (6.7), (6.8) in the cases

where there are no eigenvalues of the operator L̃(λ) on the corresponding line on the complex plane.
In this section, we use results of Sec. 7.3 (see Chap. 2) and study the situation where only a regular

eigenvalue λ0 = i(1− l−2m) of the operator L̃(λ) lies on the line Imλ = 1− l−2m. In other words, we
assume that condition 7.2 holds. In this case, by virtue of Theorem 8.1, L :W l+2m(G) → W l(G, ∂G)
is not a Fredholm operator (its image is not closed). Hence we introduce an operator corresponding
to problem (6.7), (6.8) but acting in other spaces and prove that it is a Fredholm operator.
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10.1. Construction of the right regularizer in the case where B2
iμ = 0. Introduce functions

ψ̂ ∈ C∞
0 (R2) such that ψ̂(y) = 1 for y ∈ Oε/2(K) and supp ψ̂ ⊂ Oε(K). Let the vector F = {fj , fjσμ}

of the right-hand sides of problem (6.12), (6.13) correspond to the vector ψ̂f = {ψ̂f0, ψ̂fiμ} of the
right-hand sides of problem (6.7), (6.8). Obviously, suppF ⊂ Oε(0).

Consider the space Ŝ l(G, ∂G) with the norm

‖f‖Ŝl(G,∂G) =
(
‖(1− ψ̂)f‖2Wl(G,∂G) + ‖F‖2Ŝl(K,γ)

)1/2
. (10.1)

Introduce the space

Ŝ l+2m−m−1/2(∂G) = {f ′ ∈ W l+2m−m−1/2(∂G) : (0, f ′) ∈ Ŝ l(G, ∂G)}.

Obviously, the following embeddings hold (cf. (7.29)):

Ŝ l+2m−m−1/2(∂G) ⊂ S l+2m−m−1/2(∂G) ⊂W l+2m−m−1/2(∂G),

Ŝ l(G, ∂G) ⊂ S l(G, ∂G) ⊂ W l(G, ∂G).

By Lemma 7.3, the set Ŝ l(G, ∂G) is not closed in the topology of the space W l(G, ∂G).

On the other hand, by Lemma 7.2, if u ∈ Sl+2m(G), then {Pu, Cu} ∈ Ŝ l(G, ∂G) (the operator
C = B0 +B1 is defined in Sec. 8).

Let us consider the operator

L̂1 = {P, C} : Sl+2m(G) → Ŝ l(G, ∂G).

By Lemma 7.2, the operator L̂1 is bounded.
Let ψ and ξ be functions defined before Lemma 8.1.

Theorem 10.1. Let condition 7.2 hold. Then for any sufficiently small ε0 > 0, there exist bounded
operators

R̂K : Ŝ l(G, ∂G) → Sl+2m(G), M̂K, ŜK : Ŝ l(G, ∂G) → Ŝ l(G, ∂G)
such that

L1R̂Kf = ψf + M̂Kf + ŜKf, (10.2)

‖M̂K‖ ≤ c1ε0, ‖ŜK‖ ≤ c2, and the squared operator ŜK is compact. Moreover, the operator ŜK can be

written in the form ŜK = ÛK + F̂K, where ‖ÛK‖ ≤ c3, and the operator F̂K is compact ; the constants
c1, c2 and c3 > 0 are independent of ε0.

Proof. The idea of the proof is similar to the idea of the proof of Lemma 8.1. We explain how to
construct the operator R̂K. We perform the change of variables y → y′ from Sec. 6.1 in a neighborhood
of the set K and denote y′ = y. We denote the functions ψ, ξ, and f written in the new coordinates by
the same symbols. Then the operator R̂K is defined by the formula R̂Kf = ξU , where U ∈ W l+2m(Kd)
(for any d > 0) is a solution of problem (6.16), (6.17) with the right-hand side ψf (see Lemma 7.6).

The proof of the following lemma is similar to the proof of Lemma 8.2 (but we must use Lemma 10.1
instead of Lemma 8.1).

Lemma 10.1. Let condition 7.2 hold. Then there exists a bounded operator R̂1 : Ŝ l(G, ∂G) → Sl+2m(G)

and a compact operator T̂1 : Ŝ l(G, ∂G) → Ŝ l(G, ∂G) such that

L̂1R̂1 = Î+ T̂1, (10.3)

where Î is the identity operator in the space Ŝ l(G, ∂G).
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10.2. Construction of the right regularizer in the case where B2
iμ 	= 0. Let ξ and ψ be

the functions defined before Lemma 8.1, but now we assume that the number δ > 0 is arbitrary (in
particular, it is independent of ε0).

The proof of the following lemma is similar to the proof of Lemma 8.3.

Lemma 10.2. Let condition 7.2 hold. Then for any δ, 0 < δ < 1, there exist bounded operators

R̂′
K : Ŝ l+2m−m−1/2(∂G) → Sl+2m(G), M̂′

K, T̂
′
K : Ŝ l+2m−m−1/2(∂G) → Ŝ l(G, ∂G)

such that

L1R̂′
Kf

′ = ψ{0, f ′}+ M̂′
Kf

′ + T̂′
Kf

′, (10.4)

where ‖M̂′
K‖ ≤ cδ, the operator T̂′

K is compact, and c > 0 is independent of δ.

For any function f ′ ∈ Ŝ l+2m−m−1/2(∂G), assume that

R̂′
1f

′ = R̂′
Kf

′ +
J∑
j=1

R′
0j(ψ

′
jf

′),

where the functions ψ′
j and the operator R′

0j are the same as in Sec. 8.2.
Using Lemma 10.2, it easy to verify that

L̂1R̂′
1f

′ = {0, f ′}+ M̂′
1f

′ + T̂′
1f

′, (10.5)

where

M̂′
1, T̂

′
1 : Ŝ l+2m−m−1/2(∂G) → Ŝ l(G, ∂G)

are bounded operators such that ‖M̂′
1‖ ≤ cδ, where c > 0 is independent of δ, and the operator T̂′

1 is
compact.

Using the operators R̂1 and R̂′
1, we construct a right regularizer for problem (6.7), (6.8) in the case

where B2
iμ 	= 0. For this, we need the following concordance condition.

Condition 10.1. For any function u ∈ Sl+2m(G), we have B2u ∈ Ŝ l+2m−m−1/2(∂G) and

‖B2u‖Ŝl+2m−m−1/2(∂G) ≤ c‖u‖W l+2m(G).

Remark 10.1. According to (6.5), the operator B2 corresponds to nonlocal terms with supports
lying outside the set K. Hence, if condition 10.1 holds for the functions u ∈ Sl+2m(G), then it is also

fulfilled for the functions u ∈W l+2m(G \ Oκ1(K)).

Remark 10.2. Using the example from Subsec. 6.2 (see Chap. 2), we explain how to achieve the
fulfillment of condition 10.1.

Consider problem (6.9), (6.10) and assume, in addition, that the transformations Ωis in this problem
correspond to condition (6.3) (i.e., the restriction on the structure of transformations Ωis). Then, by
virtue of the continuity of Ωis, we have Ωis

(
Oδ(g)

)
⊂ Oε0/2(K) for any point g ∈ Γi ∩ K if δ > 0 is

sufficiently small. Hence, for any function u ∈W l+2m(G \ Oκ1(K)), we have

B2
iμu(y) = 0 for y ∈ Oδ(K), (10.6)

since 1− ζ(Ωis(y)) = 0 for y ∈ Oδ(K). Obviously, condition 10.1 holds in this case.
Instead of condition (6.3), we can assume the following: if Ωis(g) /∈ K (where g ∈ Γi ∩ K), then

the coefficients of the operators Biμs(y,D) vanish at the points Ωis(g). This also guarantees that

B2u ∈ Ŝ l+2m−m−1/2(∂G) for any function u ∈W l+2m(G \ Oκ1(K)).

By virtue of Lemma 7.2 and condition 10.1, we have

{Pu, Bu} ∈ Ŝ l(G, ∂G) ∀u ∈ Sl+2m(G).
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Hence the operator
L̂S = {P, B} : Sl+2m(G) → Ŝ l(G, ∂G)

is well defined and bounded.

Lemma 10.3. Let conditions 7.2 and 10.1 hold. Then there exist a bounded operator R̂ : Ŝ l(G, ∂G) →
Sl+2m(G) and a compact operator T̂ : Ŝ l(G, ∂G) → Ŝ l(G, ∂G) such that

L̂SR̂ = Î+ T̂. (10.7)

Proof. Assume that Φ = B2R̂1f , where f = {f0, f ′} ∈ Ŝ l(G, ∂G), and R̂1 is a operator from for-

mula (10.3). Then, according to condition 10.1, the functions Φ and B2R̂′
1Φ belong to the domain of

the operator R̂′
1. Hence we can define a bounded operator R̂S : Ŝ l(G, ∂G) → Sl+2m(G) by the formula

R̂Sf = R̂1f − R̂′
1Φ+ R̂′

1B
2R̂′

1Φ.

It is easy to verify (similarly to the proof of Lemma 8.4 by using inequalities(10.3) and (10.5)) that

L̂SR̂S = Î+M + T,

whereM,T : Ŝ l(G, ∂G) → Ŝ l(G, ∂G) are bounded operators such that ‖M‖ ≤ cδ (c > 0 is independent
of δ) and the operator T is compact.

The operator Î +M : Ŝ l(G, ∂G) → Ŝ l(G, ∂G) is invertible if δ ≤ 1/(2c). Hence, introducing the

notation R̂ = R̂S(Î+M)−1 and T = T (Î+M)−1, we obtain (10.7).

10.3. Fredholm solvability of nonlocal problems. Since the subspace Sl+2m(G) has a finite
dimension in W l+2m(G), then there exists a finite-dimensional subspace Rl(G, ∂G) of the space
W l(G, ∂G) such that

{Pu, Bu} ∈ Ŝ l(G, ∂G)�Rl(G, ∂G) ∀u ∈W l+2m(G).

Hence we can define a bounded operator

L̂ = {P, B} :W l+2m(G) → Ŝ l(G, ∂G)�Rl(G, ∂G).

Theorem 10.2. Let conditions 7.2 and 10.1 hold. Then L̂ is a Fredholm operator.

Proof. It follows from Lemmas 8.5 and 10.3 and [56, Theorem 15.2] that L̂S : Sl+2m(G) → Ŝ l(G, ∂G)
is a Fredholm operator. Since the domain W l+2m(G) of the operator L̂ is an extension of the domain

Sl+2m(G) of the operator L̂S to a finite-dimensional subspace and L̂ coincides with L̂S on Sl+2m(G),

we see that L̂ is also a Fredholm operator.

11. Nonlocal Problems with Homogeneous Nonlocal Conditions

In this section, we study operators corresponding to problem (6.7), (6.8) with homogeneous bound-
ary conditions. Using the results of Sec. 10, we show that if the line Imλ = 1− l − 2m consists of
only a regular eigenvalue, then this operator, unlike L, is a Fredholm operator, if certain algebraic
relations between the operators P, B0, and B1 at points of the set K are fulfilled.

11.1. The absence of eigenvalues of the operator L̃(λ) on the line Imλ = 1− l− 2m or the
presence of a irregular eigenvalue. Let us introduce the space

W l+2m
B (G) = {u ∈W l+2m(G) : Bu = 0}.

Obviously, W l+2m
B (G) is a closed subspace in W l+2m(G). Consider a bounded operator LB :

W l+2m
B (G) →W l(G) defined by the formula

LBu = Pu, u ∈W l+2m
B (G).

To study problem (6.7), (6.8) with homogeneous nonlocal conditions, we need the following condition
for the operators Biμs(y,D) (see e.g., [57, Chap. 2, Sec. 1]).
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Condition 11.1. For all i = 1, . . . , N , the system of operators {Biμ0(y,D)}mμ=1 is normal on Γi and

orders of the operators Biμs(y,D), s = 0, . . . , Si, do not exceed 2m− 1.

In this subsection, we will prove the following result.

Theorem 11.1. Let condition 7.1 hold. Then LB is a Fredholm operator.
Let the line Imλ = 1 − l − 2m contain an irregular eigenvalue λ0 of the operator L̃(λ) and let

condition 11.1 hold. Then the image of the operator LB is not closed (and hence LB is not a Fredholm
operator).

The following lemma allows one to reduce nonlocal problems with inhomogeneous boundary condi-
tions to problems with homogeneous boundary conditions.

Lemma 11.1. Let condition 11.1 hold. Then for functions

fjσμ ∈ H
l+2m−mjσμ−1/2
a (γjσ)

such that supp fjσμ ⊂ Oε′(0) (ε′ > 0 is fixed), there exists a function V ∈ Hl+2m
a (K) such that

suppV ⊂ O2ε′(0) and

Bjσμ(y,D)V = fjσμ, (11.1)

‖V ‖Hl+2m
a (K) ≤ cε′‖{fjσμ}‖Hl+2m−m−1/2

a (γ)
, (11.2)

where cε′ > 0 is independent of fjσμ.

Proof. 1. Similarly to the proof of [58, Lemma 3.1], we construct functions Vjσ ∈ H l+2m
a (Kj) such

that

Bjσμj0(y,D)Vjσ|γjσ = fjσμ, (11.3)

‖Vjσ‖Hl+2m
a (Kj)

≤ k2‖{fjσμ}‖Hl+2m−m−1/2
a (γ)

. (11.4)

Since supp fjσμ ⊂ Oε′(0), we can assume that suppVjσ ⊂ O2ε′(0).
2. Let us denote

δ = min |(−1)σωj + ωjσks ± ωk|/2, j, k = 1, . . . , N, σ = 1, 2, s = 1, . . . , Sjσk

and introduce functions ζjσ ∈ C∞
0 (R2) such that ζjσ(ω) = 1 for |(−1)σωj − ω| < δ/2 and ζjσ(ω) = 0

for |(−1)σωj − ω| > δ. Since the functions ζjσ are the multipliers in the space H l+2m
a (Kj), it fol-

lows from (11.3) and (11.4) that the function V = (ζ11V11 + ζ12V12, . . . , ζN1VN1 + ζN2VN2) satisfies
conditions (11.1) and (11.2).

Remark 11.1. Similar reasonings are not valid in Sobolev spaces since the functions ζjσ are not multi-

pliers in W l+2m(Kj). Moreover, we can construct functions fjσμ from the space W l+2m−mjσμ−1/2(γjσ)

(j = 1, . . . , N , σ = 1, 2, μ = 1, . . . ,m), for which there is no a function V ∈ W l+2m(K) satisfying
conditions (11.1). Therefore, a problem with homogeneous nonlocal conditions is not equivalent to a
problem with inhomogeneous boundary conditions (e.g., a situation is possible where the first problem
is a Fredholm problem but the second is not).

As earlier, assume that d = d(�) = 2d2�, where d2 is defined in Eq. (6.15). To study the image of
the operator LB, we use the following result (cf. Lemma 8.6).

Lemma 11.2. Let condition 11.1 hold and let the image of the operator LB be closed. Then for
sufficiently small � > 0 and all U ∈ S l+2m(Kd) such that

Bjσμ(D)U |
γ2�jσ

= 0, j = 1, . . . , N, σ = 1, 2, μ = 1, . . . ,m, (11.5)
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the following estimate holds5:

‖U‖Wl+2m(K�) ≤ c
(
‖{Pj(D)Uj}‖Wl(Kd

j )
+ ‖U‖Hl+2m−1

0 (Kd)

)
. (11.6)

Proof. 1. Since the image of the operator LB is closed, by Lemma 8.5, by the compactness of the
embedding W l+2m(G) ⊂W l+2m−1(G), and [56, Theorem 7.1], we have

‖u‖W l+2m(G) ≤ c(‖P(y,D)u‖W l(G) + ‖u‖W l+2m−1(G)) (11.7)

for all u ∈ W l+2m
B (G). Let us substitute in (11.7) a function u ∈ W l+2m

B (G) such that suppu ∈
O2
1(K), 2�1 < min{ε0,κ1} into (11.7). By Eq. (6.5), for such functions we have B2u = 0. Hence,
using [57, Ch. 2, Lemma 3.2], we see that for sufficiently small �1, the estimate

‖U‖Wl+2m(K) ≤ k1
(
‖{Pj(D)Uj}‖Wl(K) + ‖U‖Wl+2m−1(K)

)
(11.8)

holds for all U ∈ W l+2m(K) such that suppU ⊂ O2
1(0) and

Bjσμ(y,D)U = 0, j = 1, . . . , N, σ = 1, 2, μ = 1, . . . ,m. (11.9)

2. Let us show that if �2 < �1d1 is sufficiently small, then estimate (11.8) is valid for all U ∈
S l+2m(K) such that suppU ⊂ O2
2(0) and

Bjσμ(D)U = 0, j = 1, . . . , N, σ = 1, 2, μ = 1, . . . ,m. (11.10)

Assume that Φjσμ = Bjσμ(y,D)U |γjσ . Obviously,

suppΦjσμ ⊂ O
2/d1(0) ⊂ O
1(0). (11.11)

We fix a, 0 < a < 1, and prove that

‖{Φjσμ}‖Hl+2m−m−1/2
0 (γ)

≤ k2�
1−a
2 ‖U‖Wl+2m(K). (11.12)

By Eq. (11.10) and the compactness of the trace operator in weight spaces, it suffices to estimate
summands of the form(

aα(y)− aα(0)
)
DαUj , |α| = mjσμ, aβ(y)D

βUj , |β| ≤ mjσμ − 1,

where aα and aβ are infinitely differentiable functions. Using the restriction to the support of the
functions Uj and Lemmas 5.5 and 5.2, we obtain that

‖
(
aα(y)− aα(0)

)
DαUj‖

H
l+2m−mjσμ
0 (Kj)

≤ k3�
1−a
2 ‖

(
aα(y)− aα(0)

)
DαUj‖

H
l+2m−mjσμ
a−1 (Kj)

≤ k4�
1−a
2 ‖DαUj‖

H
l+2m−mjσμ
a (Kj)

≤ k5�
1−a
2 ‖Uj‖W l+2m(Kj).

Similarly, using Lemma 5.2, we have

‖aβ(y)DβUj‖
H

l+2m−mjσμ
0 (Kj)

≤ k6�
1−a
2 ‖Uj‖Hl+2m−1

a−1 (Kj)
≤ k7�

1−a
2 ‖Uj‖W l+2m(Kj).

Thus, estimate (11.12) is proved.
Now, by virtue of Eq. (11.11) and Lemma 11.1, there exists a function

V = (V1, . . . , VN ) ∈ Hl+2m
0 (K)

such that suppV ⊂ O2
1(0) and

Bjσμ(y, D)V |γjσ = Φjσμ, (11.13)

‖V ‖Hl+2m
0 (K) ≤ c
1‖{Φjσμ}‖Hl+2m−m−1/2

0 (γ)
, (11.14)

where c
1 is independent of �2.

5In assumptions of the lemma, according to Lemma 5.2, we have U ∈ Hl+2m
a (Kd) for any a > 0. Hence,

U ∈ Hl+2m−1
0 (Kd), and the right-hand side of inequality (11.6) is finite.
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Using Eq. (11.8) to estimate U − V and inequalities (11.14) and (11.12), we have

‖U‖Wl+2m(K) ≤ ‖U − V ‖Wl+2m(K) + ‖V ‖Wl+2m(K)

≤ k8
(
‖{Pj(D)Uj}‖Wl(K) + ‖U‖Wl+2m−1(K) + �1−a2 ‖U‖Wl+2m(K)

)
.

Now, choosing sufficiently small �2, we obtain the estimate (11.8), which is valid for all U ∈ W l+2m(K)
such that suppU ⊂ O2
2(0), and relations (7.30) and (11.10) hold.

3. Now we omit the restriction suppU ⊂ O2
2(0) and prove the estimate (11.6) for � < �2d1 and

any U ∈ W l+2m(Kd) satisfying Eqs. (7.30) and (11.5).
Introduce a function ψ ∈ C∞

0 (R2) such that ψ(y) = 1 for |y| ≤ �, suppψ ⊂ O2
(0) and ψ is
independent of the polar angle ω.

Assume that Ψjσμ = Bjσμ(D)(ψU)|γjσ . Obviously,

suppΨjσμ ⊂ O
/d1(0) ⊂ O
2(0). (11.15)

Let us show that

‖Ψjσμ‖
H

l+2m−mjσμ−1/2

0 (γjσ)
≤ k9

N∑
k=1

(
‖Pk(D)Uk‖W l(Kd

k)
+ ‖Uk‖Hl+2m−1

0 (Kd
j )

)
. (11.16)

Taking into account Eq. (11.5), we represent the function Ψjσμ in the form

Ψjσμ =
∑
k,s

Ψjσμks +
∑

(k,s) 	=(j,0)

Jjσμks, (11.17)

where
Ψjσμks =

(
[Bjσμks(D), ψ]Uk

)(
Gjσksy

)∣∣
γjσ
,

Jjσμks =
(
ψ(Gjσksy)− ψ(y)

)(
Bjσμks(D)Uk

)(
Gjσksy

)∣∣
γjσ
,

where [·, ·] denotes the commutator.
Since the expression for Ψjσμks contains derivatives of the functions Uk of order not greater than

mjσμ − 1, we have that

‖Ψjσμks‖
H

l+2m−mjσμ−1/2

0 (γjσ)
≤ k10‖U‖Hl+2m−1

0 (Kd). (11.18)

Now we repeat the reasonings of item 1 of the proof of Lemma 8.7 and obtain the inequality

‖Jjσμks‖
H

l+2m−mjσμ−1/2

0 (γjσ)

≤ k11

(
‖Pk(D)Uk‖W l({d1
/2<|y|<2d2
}) + ‖Uk‖W l+2m−1({d1
/2<|y|<2d2
})

)
. (11.19)

Equation (11.16) follows from Eqs. (11.17), (11.18). and (11.19).
4. By virtue of Eq. (11.15) and Lemma 11.1 (applied to the operators Bjσμ(D)), there exists a

function V = (V1, . . . , VN ) ∈ Hl+2m
0 (K) such that suppV ⊂ O2
2(0) and

Bjσμ(D)V = Ψjσμ, (11.20)

‖V ‖Hl+2m
0 (K) ≤ k12‖{Ψjσμ}‖Hl+2m−m−1/2

0 (γ)
. (11.21)

Using (11.8) to estimate ψU − V , the Leibnitz inequality, and inequalities (11.21) and (11.16), we
obtain

‖U‖Wl+2m(K�) ≤ ‖ψU‖Wl+2m(K) ≤ ‖ψU − V ‖Wl+2m(K) + ‖V ‖Wl+2m(K)

≤ k11

(
‖{Pj(D)Uj}‖Wl(Kd) + ‖U‖Hl+2m−1

0 (Kd)

)
.

The lemma is proved.
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Lemma 11.2 allows one to prove that if the line Imλ = 1− l− 2m contains an irregular eigenvalue,
then LB, as L, is not a Fredholm operator.

Lemma 11.3. Let the line Imλ = 1− l− 2m contain an irregular eigenvalue λ0 of the operator L̃(λ)
and let condition 11.1 hold. Then the image of the operator LB is not closed.

Proof. 1. Assume that the image of the operator LB is closed. Denote an eigenvector and adjoint
vectors corresponding to the eigenvalue λ0 (see [23]) by ϕ(0)(ω), . . . , ϕ(κ−1)(ω). The vectors ϕ(k)(ω)
belong to W l+2m(−ω, ω) and satisfy the relations

Pj(D)V k
j = 0, Bjσμ(D)V k = 0, (11.22)

where

V k = riλ0
k∑
s=0

1

s!
(i ln r)kϕ(k−s)(ω), k = 0, . . . ,κ − 1.

Since λ0 in an irregular eigenvalue, we see that the function V k(y) is not a vector-valued polynomial

for some k ≥ 0. For simplicity, we assume that V 0 = riλ0ϕ(0)(ω) is not a vector-valued polynomial
(the case where k > 0 is similar).

Let � and d = d(�) be the same constants as in Lemma 11.2. Let us consider the sequence

U δ = rδV 0/‖rδV 0‖Wl+2m(K�).

The denominator of the fraction is finite for any δ > 0, but

‖rδV 0‖Wl+2m(K�) → ∞ as δ → 0

since V 0 is not a vector-valued polynomial. Nevertheless,

‖rδV 0‖Hl+2m−1
0 (Kd) ≤ c,

where c > 0 is independent of δ ≥ 0; hence,

‖U δ‖Hl+2m−1
0 (Kd) → 0 as δ → 0. (11.23)

Using (11.22), we can verify (similarly to the proof of Lemma 8.7) that

‖{Pj(D)U δj }‖Wl(Kd) → 0 as δ → 0, (11.24)

‖{Bjσμ(D)U δ}‖Hl+2m−m−1/2
0 (γ3�)

→ 0 as δ → 0. (11.25)

2. Introduce a functions ψ ∈ C∞
0 (R2) such that ψ(y) = 1 for y ∈ O2
(0) and suppψ ⊂ O3
(0).

Applying Lemma 11.1 to the operators Bjσμ(D) and the functions fjσμ = ψBjσμ(D)U δ|γjσ (note that

supp fjσμ ⊂ O3
(0)), we construct a function W δ ∈ Hl+2m
0 (K) (δ > 0) such that suppW δ ⊂ O6
(0)

and

Bjσμ(D)W δ|
γ2�jσ

= Bjσμ(D)U δ|
γ2�jσ
, (11.26)

‖W δ‖Hl+2m
0 (K6�) ≤ k1

∑
j,σ,μ

‖{Bjσμ(D)U δ}‖Hl+2m−m−1/2
0 (γ3�)

. (11.27)

Moreover, the function U δ −W δ satisfies relations (7.30); hence, we can apply Lemma 11.2 to the

function U δ −W δ. Then estimate (11.6), the boundedness of the embedding operator H l+2m
0 (K6


j ) ⊂
W l+2m(K6


j ), and inequality (11.27) imply the following inequality:

‖U δ‖Wl+2m(K�) ≤ ‖U δ −W δ‖Wl+2m(K�) + ‖W δ‖Wl+2m(K�)

≤ k2

(
‖{Pj(D)U δj }‖Wl(Kd) + ‖{Bjσμ(D)U δ}‖Hl+2m−m−1/2

0 (γ3�)
+ ‖U δ‖Hl+2m−1

0 (Kd)

)
. (11.28)

Nevertheless, relations (11.23)–(11.25) contradict estimate (11.28) since ‖U δ‖Wl+2m(K�) = 1.
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Proof of Theorem 11.1. The first item of Theorem 11.1 follows from Theorem 8.1; the second item
follows from Lemma 11.3.

11.2. A regular eigenvalue of the operator L̃(λ) on the line Imλ = 1− l − 2m. It remains to
consider the case where the line Imλ = 1− l−2m contains only a regular eigenvalue. Let condition 7.2
hold. Prove that in this case, LB is a Fredholm operator for fixed l ≥ 1 if the following condition
holds.

Condition 11.2. If l ≥ 1, system (7.25) contains all the operators DξPj(D), |ξ| = l−1, j = 1, . . . , N .

Theorem 11.2. Let conditions 7.2 and 10.1 hold. Then

(1) LB :W 2m
B (G) → L2(G) is a Fredholm operator ;

(2) if l ≥ 1 and condition 11.2 holds, then LB :W l+2m
B (G) →W l(G) is a Fredholm operator ;

(3) if l ≥ 1 and condition 11.2 is violated but condition 11.1 holds, then the image of the operator

LB :W l+2m
B (G) →W l(G) is not closed (and hence the operator LB is not a Fredholm operator).

Proof. 1. By Lemma 8.5, the kernel of the operator LB is finite-dimensional. Let us study the image
R(LB) of the operator LB.

2. First, we assume that l ≥ 1 and condition 11.2 holds. We show that the set{
f0 ∈W l(G) : {f0, 0} ∈ Ŝ l(G, ∂G)

}
(11.29)

is a closed finite-dimensional subspace in W l(G). Indeed, let ψ̂ be a function from the definition of

the space Ŝ l(G, ∂G) (see Sec. 10.1). Then the vector {fj , 0} of right-hand sides of problem (6.12),

(6.13) corresponds to the vector of right-hand sides {ψ̂f0, 0} of problem (6.7), (6.8). Obviously,
Tjσμ{fj , 0} = 0. Moreover, by virtue of condition 11.2, relations (7.27) are absent. Thus, by virtue

of (10.1), the norm of the function {f0, 0} ∈ Ŝ l(G, ∂G) in Ŝ l(G, ∂G) is equivalent to the function f0
in W l(G) and set (11.29) is a subset in W l(G) consisting of functions satisfying condition (5.4). In
other words, set (11.29) coincides with the space Sl(G).

Now, since

Ŝ l(G, ∂G) ⊂ Ŝ l(G, ∂G)�Rl(G, ∂G),

the set {
f0 ∈W l(G) : {f0, 0} ∈ Ŝ l(G, ∂G)�Rl(G, ∂G)

}
(11.30)

(containing set (11.29)) is also a closed subspace with finite codimension in W l(G). On the other

hand, f0 ∈ R(LB) if and only if {f0, 0} ∈ R(L̂), where L̂ is operator defined in Sec. 10.3. This and the

fact that L̂ is a Fredholm operator imply that the image of the operator LB is closed and has finite
dimension.

3. Now assume that l ≥ 1 and condition 11.2 is violated. Let us prove (using the results of Sec. 7.3,
Chap. 2) that the image R(LB) of the operator LB is not closed. Assume the contrary: let the image
R(LB) be closed.

Since condition 11.2 is violated, we see that the set (7.27) is not empty; this means that for some j
and ξ, norm (7.28) contains the corresponding term ‖Tjξf‖H1

0 (R
2). Similarly to the proof of Lemma 7.3,

this implies that there exists a sequence f δ = {f δj , 0} ∈ Ŝ l(K, γ), δ > 0, such that supp f δ ⊂ Oε(0)

and f δ converges in W l(K, γ) to f0 /∈ Ŝ l(K, γ) for δ → 0.
By virtue of Lemma 7.6, for any function f δ we can find a function U δ ∈ W l+2m(Kd) such that

Pj(D)U δj = f δj , Bjσμ(D)U δ = 0, (11.31)

‖U δ‖Hl+2m−1
0 (Kd) ≤ c‖f δ‖Wl(K,γ) (11.32)

(c > 0 is independent of δ) and U δ corresponds to relations (7.30). By virtue of the second relation
in (11.31) and relations (7.30), we can apply Lemma 11.2 to the function U δ. Using estimate (11.6),
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the convergence of the sequence f δ to f0 /∈ Ŝ l(K, γ), and inequality (11.32), we obtain a contradiction
(cf. the proof of Lemma 8.7).

4. In the case where l = 0, the set of conditions (7.27) is empty since these conditions arise only if
l ≥ 1. Similarly to item 2 of the proof, we obtain the conclusion of the theorem.

12. Examples

We present two examples that illustrate the results of Chaps. 2 and 3 (detailed proofs can be
found in [33]). In these examples, the set K consists of several orbits and hence we must use obvious
generalizations of the theorems from previous sections to this case.

12.1. Example 1.

12.1.1. Problem with homogeneous nonlocal conditions. Let ∂G \ K =
2⋃
i=1

Γi, where Γi are open in

the topology of the boundary curves of class C∞, K = Γ1 ∩ Γ2 = {g1, g2}, g1 and g2 are endpoints
of the curves Γ1 and Γ2. Assume that the domain G coincides with a plane angle of spread π in
neighborhoods of the points g1 and g2.

Consider the nonlocal problem

Δu = f0(y), y ∈ G, (12.1)

u|Γi + biu
(
Ωi(y)

)∣∣
Γi

= fi(y) y ∈ Γi, i = 1, 2, (12.2)

where b1, b2 ∈ R, Ωi is an infinitely smooth transformation mapping a neighborhood Oi of the curve
Γi onto Ω(Oi) such that Ω(Γi) ⊂ G, Ωi(gj) = gj , j = 1, 2, and the transformation Ωi is a rotation by
the angle π/2 inwards the domain G near the points g1 and g2 (see Fig. 12.1).

Fig. 12.1. The domain G with the boundary ∂G = Γ1 ∪ Γ2.

Consider the operator L :W l+2(G) → W l(G, ∂G) acting by the formula

Lu = (Δu, u|Γ1 + b1u, u|Γ2 + b2u)

and corresponding to problem (12.1), (12.2). Using Theorem 8.1, we obtain the following result.
Let l be even. Then L :W l+2(G) → W l(G, ∂G) is a Fredholm operator if and only if b1 + b2 	= 0.
Let l be odd. Then L :W l+2(G) → W l(G, ∂G) is not a Fredholm operator for any b1, b2 ∈ R.
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12.1.2. Problem with homogeneous nonlocal conditions. Let us denote

W l+2
B (G) =

{
u ∈W l+2(G) : u|Γi + biu

(
Ωi(y)

)∣∣
Γi

= 0, i = 1, 2
}

and introduce the operator LB :W l+2
B (G) →W l(G) by the formula

LBu = Δu, u ∈W l+2
B (G).

Using Theorems 8.1 and 11.2, we obtain the following result.
Let l be even. Then LB :W l+2

B (G) →W l(G) is a Fredholm operator for any b1, b2 ∈ R.

Let l be odd and l = 4k + 1, k = 0, 1, 2, . . . . Then LB : W l+2
B (G) → W l(G) is a Fredholm operator

if and only if b1 = b2 < 1.
Let l be odd and l = 4k + 3, k = 0, 1, 2, . . . . Then LB : W l+2

B (G) → W l(G) is a Fredholm operator
if and only if b1 = b2 > −1.

12.2. Example 2.

12.2.1. Problem with inhomogeneous nonlocal conditions. Let the boundary ∂G ∈ C∞ of the domain
G coincide with the boundary of the square (0, 4/3)× (0, 4/3) outside circles O1/8((4i/3, 4j/3)), i, j =
0, 1. Introduce the notation Γ1 = {y ∈ ∂G : y1 < 1/3, y2 < 1/3}, Γ2 = {y ∈ ∂G : y1 > 1, y2 > 1}. Let
Γ3 and Γ4 be the connected components of the set ∂G\(Γ1∪Γ2). In this case, we have K = {g1, . . . , g4},
where g1 = (1/3, 0), g2 = (0, 1/3), g3 = (4/3, 1), and g4 = (1, 4/3) (see Fig. 12.2).

Fig. 12.2. The domain G with the smooth boundary ∂G =
4⋃
i=1

Γi.

Let us consider the nonlocal problem

Δu = f0(y), y ∈ G, (12.3)

u(y)|Γi + biu(y + hi)|Γi = fi(y), y ∈ Γi, i = 1, 2,

u(y)|Γj = fj(y), y ∈ Γj , j = 3, 4,
(12.4)
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where h1 = (1, 1), h2 = (−1,−1), and b1, b2 ∈ R. Obviously, the set K consists of two orbits Orb1 and
Orb2, where the orbit Orb1 contains the points g1 and g3 = g1 + h1 and the orbit Orb2 contains the
points g2 and g4 = g2 + h2.

Consider the operator L :W l+2(G) → W l(G, ∂G) acting by the formula

Lu =
(
Δu, u(y)|Γ1 + b1u(y + h1)|Γ1 , u(y)|Γ2 + biu(y + h2)|Γ2 , u(y)|Γ3 , u(y)|Γ4

)
and corresponding to problem (12.3), (12.4). Using Theorems 8.1, we obtain the following result.

Let l be even. Then L :W l+2(G) → W l(G, ∂G) is a Fredholm operator if and only if b1b2 > 0.
Let l be odd. Then L :W l+2(G) → W l(G, ∂G) is not a Fredholm operator for any b1, b2 ∈ R.

12.2.2. Problem with homogeneous nonlocal conditions. Let us denote

W l+2
B (G) =

{
u ∈W l+2(G) : u|Γi + biu(y + hi)|Γi = 0, i = 1, 2; u|Γj = 0, j = 3, 4

}
and introduce the operator LB :W l+2

B (G) →W l(G) by the formula

LBu = Δu, u ∈W l+2
B (G).

Applying Theorems 8.1 and 11.2, we obtain the following result.
Let l be even. Then LB : W l+2

B (G) → W l(G) is a Fredholm operator if and only if either b1b2 > 0,
or b1 = b2 = 0.

Let l be odd. Then LB :W l+2
B (G) →W l(G) is a Fredholm operator if and only if b1 = b2 = 0.

Chapter 4

GENERALIZED SOLUTIONS OF NONLOCAL ELLIPTIC PROBLEMS

13. Generalized Solutions of Nonlocal Problems

13.1. Generalized solutions. As in previous chapters, we assume that conditions 6.1–6.4 hold
(with l = 0 in the last condition). We also assume that the orders miμ of the operators Biμs(y,D)
satisfy the inequalities

miμ ≤ 2m− 1.

Here and in the next chapter, we will study so-called generalized solutions (see Definitions 13.2
and 13.3) of nonlocal boundary-value problem (6.7), (6.8):

P(y,D)u = f0(y), y ∈ G, (13.1)

B0
iμu+B1

iμu+B2
iμu = fiμ(y) y ∈ Γi, i = 1, . . . , N, μ = 1, . . . ,m. (13.2)

Let us introduce the notion of the generalized solution of problem (13.1), (13.2). First, like in [72],
we state the corresponding definition for a “local” problem, i.e., in the case whereB1

iμ = 0 andB2
iμ = 0.

Further, we assume that the number � is fixed such that

0 ≤ � ≤ 2m− 1.

Since C∞(Γi) ⊂ H
2m−k+1/2
2m (Γi), by virtue of Lemma 5.8, we have C∞(Γi) ⊂ H

�−k+1/2
� , k = 1, . . . , 2m.

Hence the norm

‖u‖W	(G) =

(
‖u‖2W 	(G) +

N∑
i=1

2m∑
k=1

∥∥∥Dk−1
νi u

∥∥∥2
H

	−k+1/2
	 (Γi)

)1/2

(13.3)
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is finite for any function u ∈ C∞(G), where νi is an outward normal to the part Γi of the boundary
and

Dk−1
νi u = (−i)k−1∂

k−1u

∂νk−1
i

∣∣∣∣
Γi

.

Denote by W�(G) the completion of the set C∞(G) with respect to the norm6 (13.3).
It follows from (13.3) that the closure S of the operator

u 
→ {u|G, Dk−1
νi u}, u ∈ C∞(G),

states an isometric correspondence between W�(G) and a subspace of the direct product

W �(G)×
N∏
i=1

2m∏
k=1

H
�−k+1/2
� (Γi).

We identify the element u ∈ W�(G) with the element Su = {u, uik} and write

u = {u, uik} ∈ W�(G).

Note that if � ≥ 1, {un} ⊂ C∞(G), and un → u in W�(G) as n→ ∞, then un → u in W �(G). Hence,

Dk−1
νi un → Dk−1

νi u in W �−k+1/2(Γi) ⊂ H
�−k+1/2
� (Γi) for k = 1, . . . , �. Thus, the components uik are

uniquely defined by the component u for k = 1, . . . , �:

uik = Dk−1
νi u, i = 1, . . . , N, k = 1, . . . , �.

However, generally speaking, the components uik, k = �+1, . . . , 2m, are not defined by the component
u (cf. [72, Sec. 2.2]). Therefore, the spaces W�(G) and W �(G) are substantially different.

Let us also note that if �1 and �2 are integers, 0 ≤ �1, �2 ≤ 2m − 1, and �1 < �2, then the space
W�2(G) is a closed subspace of the space W�1(G) and

‖u‖W	1 (G) ≤ c‖u‖W	2 (G) ∀u ∈ W�2(G),

where c > 0 is independent of u. This follows from Lemma 5.8.

Let us consider the family of functions {ϕδ}δ>0 ⊂ C∞(G) such that ϕδ(y) = 1 for y ∈ G \ Oδ(K)

and ϕδ(y) = 0 fpr y ∈ Oδ/2(K) and |Dαϕδ| ≤ cαδ
−|α|, where cα > 0 is independent of δ. It easy to see

that
‖ϕδu− u‖Hl

a(G) → 0 as δ → 0, u ∈ H l
a(G), l ≥ 0, a ∈ R,

‖ϕδψ − ψ‖
H

l−1/2
a (Γi)

→ 0 as δ → 0, ψ ∈ H l−1/2
a (Γi), l ≥ 1, a ∈ R.

(13.4)

Assume that for sufficiently small δ > 0 (in particular, for δ > 0, when G ∩ Oδ(g), g ∈ K coincides
with an angle), the function ϕδ(y) depends only on dist(y,K) if y ∈ Oδ(K). This property implies
that

Dl
νiϕδ|Γi = 0, i = 1, . . . , N, l ≥ 1. (13.5)

Lemma 13.1. Let u = {u, uik} ∈ W�(G). Then ϕδu = {ϕδu, ϕδuik}, i.e., the operator S commutes
with the operator of multiplication by ϕδ.

Proof. Let {un} ⊂ C∞(G) and un → u in W�(G). On the one hand, this means that

lim
n→∞ϕδu

n = ϕδu in W�(G). (13.6)

On the other hand, we have

lim
n→∞ϕδu

n = ϕδu in W �(G) (13.7)

6If � = 2m, then the norms in the spaces W	(G) and W 	(G) are equivalent and these spaces can be identified, but
we consider the case � ≤ 2m− 1.
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and, by virtue of Eq. (13.5),

lim
n→∞Dk−1

νi (ϕδu
n) = lim

n→∞ϕδD
k−1
νi un = ϕδuik in H

�−k+1/2
� (Γi). (13.8)

It follows from (13.7) and (13.8) that

lim
n→∞ϕδu

n = {ϕδu, ϕδuik} in W�(G). (13.9)

Combining Eqs. (13.6) and (13.9), we complete the proof.

It follows from [72, Lemma 2.3.1] that7

‖ϕδP(y,D)u‖W 	−2m(G) ≤ c1δ‖u‖W	(G) ∀u ∈ C∞(G),

‖ϕδB0
iμu‖W 	−miμ−1/2(Γi)

≤ c2δ‖u‖W	(G) ∀u ∈ C∞(G),

where c1δ and c2δ > 0 are independent of u. Hence, for all δ > 0 the closure L0
δ = {ϕδP(y,D), ϕδB

0
iμ}

of the operator
u 
→ {ϕδP(y,D)u, ϕδB

0
iμu}, u ∈ C∞(G),

is a bounded operator that maps the whole space W�(G) to the space W �−2m(G) ×W�−m−1/2(∂G),
where

W�−m−1/2(∂G) =
N∏
i=1

m∏
μ=1

W �−miμ−1/2(Γi).

Introduce the notation

W �(G,K) = {g0 : ϕδg0 ∈W �(G) ∀δ > 0},
W�−m−1/2(∂G,K) = {{giμ} : ϕδgiμ ∈W �−miμ−1/2(Γi) ∀δ > 0}.

Definition 13.1. Let the number � be fixed (0 ≤ � ≤ 2m − 1). The function u ∈ W�(G) is called a
strong generalized solutions of the local problem

P(y,D)u = g0(y), y ∈ G, (13.10)

B0
iμu = giμ(y) y ∈ Γi, i = 1, . . . , N, μ = 1, . . . ,m, (13.11)

with the right-hand side {g0, giμ} ∈W �−2m(G,K)×W�−m−1/2(∂G,K), if

L0
δu = ϕδ{g0, giμ} ∀δ > 0.

Assume that {f0, fiμ} ∈ W0(G, ∂G) and define a strong generalized solution u = {u, uik} ∈ W�(G)
of problem (13.1), (13.2). First, we assume that the function u satisfies the relation

ϕδP(y,D)u = ϕδf0 in W �−2m(G) ∀δ > 0. (13.12)

It follows from Eq. (13.12) and [72, Theorem 7.2.2] (theorem on the local increasing of smoothness)
that u ∈W 2m

loc (G) and
P(y,D)u = f0(y), a.e. y ∈ G.

Moreover,

B1
iμu

def
= B1

iμu ∈W 2m−miμ−1/2(Γi \ Oδ(K)) ∀δ > 0 (13.13)

and, by virtue of Eq. (6.6) (for l = 0),

B2
iμu

def
= B2

iμu ∈W 2m−miμ−1/2(Γi \ Oκ2(K)). (13.14)

It follows from Eqs. (13.13) and (13.14) that

fiμ −B1
iμu−B2

iμu ∈W 2m−miμ−1/2(Γi \ Oκ2(K)). (13.15)

7Since the function ϕδ vanishes near the set K, we can replace the space W 	−miμ−1/2(Γi) in the second inequality by

H
	−miμ−1/2
a (Γi) for any a ∈ R.
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Assume that

L0
κ2
u = ϕκ2{f0, fiμ −B1

iμu−B2
iμu}.

It follows from this equation, Eq. (13.15), and [72, Theorem 7.2.1] (theorem on the local increasing of

smoothness) that u ∈W 2m(G \ Oκ1(K)). Hence, using Eq. (6.5) (for l = 0), we have

B2
iμu

def
= B2

iμu ∈W 2m−miμ−1/2(Γi). (13.16)

Equations (13.13) and (13.16) yield the embedding

fiμ −B1
iμu−B2

iμu ∈W 2m−miμ−1/2(Γi \ Oδ(K)) ∀δ > 0. (13.17)

Now we can state the following definition.

Definition 13.2. Let the number � be fixed, 0 ≤ � ≤ 2m − 1. The function u ∈ W�(G) is called
a strong generalized solution of nonlocal problem (13.1), (13.2) with the right-hand side {f0, fiμ} ∈
W0(G, ∂G) if this function is a strong generalized solution of the local problem (13.10), (13.11) with
the right-hand side {f0, fiμ −B1

iμu−B2
iμu}.

It follows from Definition 13.2, Eq. (13.17), and [72, Theorem 7.2.1] (theorem on the local increasing
of smoothness) that if u = {u, uik} is a strong generalized solution of problem (13.1), (13.2) with the

right-hand side {f0, fiμ} ∈ W0(G, ∂G), then u ∈W 2m(G \ Oδ(K)) for all δ > 0,

(ϕδu)ik = Dk−1
νi (ϕδu) ∀δ > 0 (in H

�−k+1/2
� (Γi), k = 1, . . . , 2m) (13.18)

and

P(y,D)u = f0(y) a.e. y ∈ G, (13.19)

B0
iμu+B1

iμu+B2
iμu = fiμ(y) in W 2m−miμ−1/2(Γi \ Oδ(K)) ∀δ > 0,

i = 1, . . . , N, μ = 1, . . . ,m.
(13.20)

Thus, we see that the component u of the strong generalized solution u is a generalized solution in
the following case.

Definition 13.3. Let the number � be fixed, 0 ≤ � ≤ 2m − 1. A function u is called a generalized
solution of problem (13.1), (13.2) with the right-hand side {f0, fiμ} ∈ W0(G, ∂G) if

u ∈W �(G) ∩W 2m(G \ Oδ(K)) ∀δ > 0 (13.21)

and u satisfies Eqs. (13.19) and (13.20).

Moreover, for any δ > 0 and an integer l ≥ 0, we can prove the existence of a number δ1, 0 < δ1 < δ,
such that for any generalized solution u (in the sense of Definition 13.3) of problem (13.1), (13.2), the
following estimate holds:

‖u‖
W l+2m(G\Oδ(K))

≤ cδ

(
‖f0‖W l(G\Oδ1

(K))
+ ‖{fiμ}‖Wl+2m−m−1/2(∂G\Oδ1

(K))
+ ‖u‖

L2(G\Oδ1
(K))

)
,

(13.22)
where cδ > 0 is independent of the functions u, f0, and fiμ.

Remark 13.1. We have shown that if u = {u, uiμ} ∈ W�(G) is a strong generalized solution of
problem (13.1), (13.2), then its component u is a generalized solution of the same problem. Let us show
that the converse statement is also valid. Let u be a generalized solution of problem (13.1), (13.2) with
the right-hand side {f0, fiμ} ∈ W0(G, ∂G). Lemma 14.2 (see below) implies that u ∈W �(G)∩H2m

2m (G).

Hence, using Lemma 5.8, we obtain Dk−1
νi u ∈ H

2m−k+1/2
2m (Γi) ⊂ H

�−k+1/2
� (Γi), i.e.,

u = {u,Dk−1
νi u} ∈ W�(G).

Moreover, it is easy to verify that u is a strong generalized solution of problem (13.1), (13.2).
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Let us show that if the function

v = {u, vik} ∈ W�(G)

(with the same first component u) is a strong generalized solution of problem (13.1), (13.2), then

vik = Dk−1
νi u in H

�−k+1/2
� (Γi), k = 1, . . . , 2m, (13.23)

i.e., the generalized solution uniquely defines the strong generalized solution. Indeed, since v is a
strong generalized solution, we have (by Eq. (13.18))

(ϕδv)ik = Dk−1
νi (ϕδu) ∀δ > 0 (in H

�−k+1/2
� (Γi), k = 1, . . . , 2m). (13.24)

From Eqs. (13.24) and (13.5) and Lemma 13.1 we obtain that

ϕδvik = (ϕδv)ik = Dk−1
νi (ϕδu) = ϕδD

k−1
νi u in H

�−k+1/2
� (Γi), k = 1, . . . , �.

Since δ is arbitrary, it follows from Eq. (13.4) that vik = Dk−1
νi u in H

�−k+1/2
� (Γi), k = 1, . . . , �.

Let k = �+ 1, . . . , 2m. Let us consider an arbitrary function ψ ∈ C∞
0 (Γi) and choose ϕδ such that

ϕδ(y) = 1 for y ∈ suppψ. Using Lemma 13.1 and Eqs. (13.24) and (13.5), we have

〈vik −Dk−1
νi u, ψ〉 = 〈ϕδvik − ϕδD

k−1
νi u, ψ〉 = 〈(ϕδv)ik −Dk−1

νi (ϕδu), ψ〉 = 0.

Since the set C∞
0 (Γi) is dense in H

−(�−k+1/2)
−� (Γi), we see that vik = Dk−1

νi u in the set H
�−k+1/2
� (Γi),

k = �+ 1, . . . , 2m. Thus, Eq. (13.23) is proved and u = v.

Remark 13.1 states a bijective correspondence between generalized solutions and strong generalized
solutions of the same nonlocal problem. In what follows, we will consider generalized solutions and
hence it is convenient to use Definition 13.3.

In this chapter, we study problem (13.1), (13.2) with the following boundary conditions:

P(y,D)u = f0(y), y ∈ G, (13.25)

Biμu ≡ B0
iμu+B1

iμu+B2
iμu = 0, y ∈ Γi, i = 1, . . . , N, μ = 1, . . . ,m, (13.26)

where f0 ∈ L2(G).
Let us consider an unbounded operator P : D(P) ⊂ L2(G) → L2(G) acting by the formula

Pu = P(y,D)u,

u ∈ D(P) = {u ∈ L2(G) : u satisfies Eq. (13.21), Biμu = 0, P(y,D)u ∈ L2(G)}.

By Definition 13.3, the operator P corresponds to problem (13.25), (13.26).
Let us formulate the main result; it will be proved in Sec. 14.

Theorem 13.1. The operator P is a Fredholm operator.

Note that, unlike the case of a bounded operator LB (see Sec. 11) corresponding to problem (13.25),
(13.26), the Fredholm property of an unbounded operator P depends neither on spectral properties

of the operator L̃(λ) nor on algebraic relations among operators P(y,D), B0
iμ, and B1

iμ at points of
the set K.

13.2. Nonlocal problems near the set K. As earlier, we pay special attention to the behavior
of solutions in a neighborhood of the set K of conjugation point of nonlocal conditions. Let us write
out corresponding model problems.
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Let us denote by uj(y) the function u(y) for y ∈ Oε1(gj). If gj ∈ Γi, y ∈ Oε(gj), and Ωis(y) ∈
Oε1(gk), then we denote u(Ωis(y)) by uk(Ωis(y)). Then nonlocal problem (13.25), (13.26) in a ε-
neighborhood of the set (orbit) K has the form

P(y,D)uj = f0(y), y ∈ Oε(gj) ∩G,

Biμ0(y,D)uj(y)|Oε(gj)∩Γi
+

Si∑
s=1

(
Biμs(y,D)(ζuk)

)(
Ωis(y)

)∣∣
Oε(gj)∩Γi

= fiμ(y),

y ∈ Oε(gj) ∩ Γi, i ∈ {1 ≤ i ≤ N : gj ∈ Γi}, j = 1, . . . , N, μ = 1, . . . ,m,

where fiμ = −B2
iμu.

Let y 
→ y′(gj) be transformations of coordinates described in Sec. 6.1. Introduce the functions

Uj(y
′) = uj(y(y

′)), fj(y
′) = f0(y(y

′)), y′ ∈ Kε
j ; fjσμ(y

′) = fiμ(y(y
′)), y′ ∈ γεjσ,

where σ = 1 (σ = 2) if a transformation y 
→ y′(gj) maps Oε(gj) ∩ Γi to a side γj1 (respectively, γj2)
of the angle Kj . Let us re-denote y′ by y. Then, by condition 6.3, problem (13.25), (13.26) has the
form (cf. (6.12), (6.13))

Pj(y,D)Uj = fj(y), y ∈ Kε
j , (13.27)

Bjσμ(y,Dy)U ≡
∑
k,s

(Bjσμks(y,D)Uk)(Gjσksy)|γjσ = fjσμ(y), y ∈ γεjσ. (13.28)

Note that if B2
iμ = 0, then the right-hand side of problem (13.27), (13.28) coincides with the right-hand

side of problem (6.12), (6.13).

14. Fredholm Solvability of Nonlocal Problems

14.1. Finite dimension of the kernel. Here, we prove that the kernel of the operator P has finite
dimension. For this, we study the smoothness of generalized solutions of problem (13.25), (13.26) near
the set K.

Let u be a generalized solution of problem (13.25), (13.26), and Uj(y
′) = uj(y(y

′)), j = 1, . . . , N , be
functions corresponding to the set (orbit) K and satisfying problem (13.27), (13.28) with the right-hand
side {fj , fjσμ}.

By Eq. (13.21), we have

Uj ∈W 2m(Kd2ε
j \ Oδ(0)) ∀δ > 0, (14.1)

where d2 is defined in Eq. (6.15). It follows from the embedding Uj ∈W �(Kd2ε
j ) and Lemma 5.2 that

Uj ∈ H0
a−2m(K

d2ε
j ), (14.2)

where a > 2m − 1. Finally, fj ∈ L2(K
ε
j ) and, by virtue of Eq. (13.21) and embedding (6.5), where

l = 0, we have fjσμ ∈W 2m−mjσμ−1/2(γεjσ). Hence, by Lemma 5.2,

fj ∈ H0
a(K

ε
j ), fjσμ ∈ H

2m−mjσμ−1/2
a (γεjσ), (14.3)

where a > 2m− 1.

Using the following two lemmas, we show that the embedding Uj ∈ H2m
a (K

ε/d32
j ) is implied by

Eqs. (14.1)–(14.3).

Let us denote Kjq = Kj ∩ {εd−3
2 d4−q1 /2 < |y| < εd−3

2 d4−q2 }, where q = 0, . . . , 4.
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Lemma 14.1. The following estimate holds for all U ∈
∏
j
W 2m(Kj0):

∑
j

‖Uj‖W 2m(Kj4) ≤ c
∑
j

{
‖Pj(y,D)Uj‖L2(Kj1)

+
∑
σ,μ

‖Bjσμ(y,D)U |γjσ∩Kj1
‖
W 2m−mjσμ−1/2(γjσ∩Kj1)

+ ‖Uj‖L2(Kj1)

}
, (14.4)

where c > 0 is independent of U .

Proof. It follows from the general theory of elliptic operators that

‖Uj‖W 2m(Kj4) ≤ k1
(
‖Pj(y,D)Uj‖L2(Kj3)

+
∑
σ,μ

‖Bjσμj0(y,D)Uj |γjσ∩Kj3
‖
W 2m−mjσμ−1/2(γjσ∩Kj3)

+ ‖Uj‖L2(Kj3)). (14.5)

Let (k, s) 	= (j, 0). In this case, we see that Gjσks(γjσ)∩Kk2 is located inside the domain Kk1. There-
fore, we can use the continuity of the trace operator in Sobolev spaces and (similarly to Eq. (14.5))
we obtain the inequality

‖Bjσμks(y,D)Uk(Gjσksy)|γjσ∩Kj3
‖
W 2m−mjσμ−1/2(γjσ∩Kj3)

≤ k2‖Bjσμks(y,D)Uk|Gjσks(γjσ)∩Kk2
‖
W 2m−mjσμ−1/2(Gjσks(γjσ)∩Kk2)

≤ k3(‖Pj(y,D)Uk‖L2(Kk1) + ‖Uk‖L2(Kk1)). (14.6)

Estimates (14.5) and (14.6) yield Eq. (14.4).

Remark 14.1. Assume that the norms in C0(Kj1) of the coefficients pjα of the operators Pj(y,D)

and the norms in C2m−mjσμ(Kj0) of the coefficients bjσμksα of the operators Bjσμks(y,D) are bounded

by a constant C. Let this constant C bound norms in C1(Kj1) of the coefficients pjα, |α| = 2m, and
the coefficients of higher derivatives in the operators Pj(y,D). Then the constant c in inequality (14.4)
depends only on C, the constant A in (6.1), and the constant D in (6.2).

Lemma 14.2. Fix arbitrary a > 0. Assume that a function U satisfies Eqs. (14.1) and (14.2) and is
a solution of problem (13.27), (13.28) with the right-hand side {fj , fjσμ}, which satisfies Eq. (14.3).

Then U ∈
∏
j
H2m
a (K

ε/d32
j ) and

∑
j

‖Uj‖
H2m

a (K
ε/d32
j )

≤ c
∑
j

{
‖fj‖H0

a(K
ε
j )
+
∑
σ,μ

‖fjσμ‖
H

2m−mjσμ−1/2
a (γεjσ)

+ ‖Uj‖H0
a−2m(Kε

j )

}
, (14.7)

where c > 0 is independent of U .

Proof. Let us denote

Ks
jq = Kj ∩ {εd−3

2 d4−q1 2−s−1 < |y| < εd−3
2 d4−q2 2−s}, s = 0, 1, 2, . . . .

Obviously,
∞⋃
s=0

Ks
j1 = Kε

j ,
∞⋃
s=0

Ks
j4 = K

ε/d32
j . (14.8)

Assume that U sj (y
′) = Uj(2

−sy′). We perform the change of variables y = 2−sy′ in the equation

Pj(y,D)Uj ≡
∑

|α|≤2m

pjα(y)D
α
yUj(y) = fj(y), y ∈ Ks

j1,
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and in the nonlocal conditions∑
k,s

∑
|α|≤mjσμ

bjσμksα(x)D
α
xUj(x)|x=Gjσksy = fjσμ(y), y ∈ γjσ ∩Ks

j1.

Multiplying both parts of the first equality by 2−s·2m and both parts of the second equality by 2−s·mjσμ ,
we have ∑

|α|≤2m

psjα(y
′)2s(|α|−2m)Dα

y′U
s
j (y

′) = 2−s·2mfsj (y
′), y′ ∈ K0

j1, (14.9)

∑
k,s

∑
|α|≤mjσμ

bsjσμksα(x
′)2s(|α|−mjσμ)Dα

x′U
s
j (x

′)|x′=Gjσksy′ = 2−s·mjσμfsjσμ(y
′), y′ ∈ γjσ ∩K0

j1, (14.10)

where psjα(y
′) = pjα(2

−sy′), bsjσμksα(x
′) = bjσμksα(2

−sx′), fsj (y
′) = fj(2

−sy′), and fsjσμ(y
′) =

fjσμ(2
−sy′). Applying Lemma 14.1 to problem (14.9), (14.10) we obtain the inequality∑

j

‖U sj ‖W 2m(K0
j4)

≤ k1
∑
j

{
‖2−s·2mfsj ‖L2(K0

j1)

+
∑
σ,μ

‖2−s·mjσμfsjσμ‖W 2m−mjσμ−1/2(γjσ∩K0
j1)

+ ‖U sj ‖L2(K0
j1)

}
, (14.11)

where the constant k1 is independent of s by Remark 14.1.

Let us denote by Φjσμ ∈ H
2m−mjσμ
a (Kj) the function satisfying the following conditions: Φjσμ|γεjσ =

fjσμ and

‖Φjσμ‖
H

2m−mjσμ
a (Kε

j )
≤ 2‖fjσμ‖

H
2m−mjσμ−1/2
a (γεjσ)

. (14.12)

Then

Φsjσμ|γjσ∩K0
j1

= fsjσμ,

where Φsjσμ(y
′) = Φjσμ(2

−sy′). Hence, Eq. (14.11) yields the inequality∑
j

‖U sj ‖W 2m(K0
j4)

≤ k1
∑
j

{
‖2−s·2mfsj ‖L2(K0

j1)

+
∑
σ,μ

‖2−s·mjσμΦsjσμ‖W 2m−mjσμ (K0
j1)

+ ‖U sj ‖L2(K0
j1)

}
. (14.13)

Conducting the inverse change of variables y′ = 2sy in inequality (14.13), we obtain the inequality∑
j

∑
|α|≤2m

‖2−s|α|Dα
yUj‖L2(Ks

j4)
≤ k1

∑
j

{
‖2−s·2mfj‖L2(Ks

j1)

+
∑
σ,μ

∑
|α|≤2m−mjσμ

‖2−s(|α|+mjσμ)Φjσμ‖L2(Ks
j1)

+ ‖Uj‖L2(Ks
j1)

}
. (14.14)

Multiplying inequality (14.14) by 2−s(a−2m), summing over s, and taking into account Eqs. (14.12)
and (14.8), we obtain (14.7).

Lemma 14.2 and Eq. (13.21) yield u ∈ H2m
a (G), a > 2m − 1, where u is an arbitrary generalized

solution of problem (13.25), (13.26) with the right-hand side f0 ∈ L2(G).
It follows from Lemma 6.1 and [89, Theorem 3.2] that the set of solutions from H2m

a (G) of prob-
lem (13.25), (13.26) with the right-hand side f0 = 0 form a finite-dimensional subspace for almost all
a > 2m− 1. Thus, we proved the following result.

Lemma 14.3. The kernel of the operator P is finite-dimensional.
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14.2. Closedness of the operator and its image. Finite dimension of the cokernel. To
prove that the operator P is a Fredholm operator, we consider problem (13.25), (13.26) in spaces with
weight a such that 0 < a ≤ 1. The following difficulty arises: if u ∈ H2m

a (G), then, generally speaking,

it is not necessary that B2
iμu belongs to H

2m−miμ−1/2
a (Γi); therefore, the sum

Biμu = B0
iμu+B1

iμu+B2
iμu

may not belong to H
2m−miμ−1/2
a (Γi). We only can guarantee that Biμu ∈ H

2m−miμ−1/2
a′ (Γi), a

′ >
2m − 1 (this follows from the relation Biμu ∈W 2m−miμ−1/2(Γi) and Lemma 5.2). However, it is
proved in Sec. 9 that

{P(y,D)u, Biμu} ∈ H0
a(G, ∂G)�R0

a(G, ∂G) ∀u ∈ H2m
a (G), a > 0,

where R0
a(G, ∂G) is a finite-dimensional subspace embedded in {0} ×

∏
i,μ
H

2m−miμ−1/2
a′ (Γi) for any

a′ > 2m− 1, i.e., the space R0
a(G, ∂G) contains only functions of the form

{0, fiμ}, fiμ ∈ H
2m−miμ−1/2
a′ (Γi), fiμ /∈ H

2m−miμ−1/2
a (Γi).

We fix a number a′ > 2m− 1. Then any function

{f0, fiμ} ∈ H0
a(G, ∂G)�R0

a(G, ∂G)

can be uniquely represented in form

{f0, fiμ} = {f0, f1iμ}+ {0, f2iμ},
where

{f0, f1iμ} ∈ H0
a(G, ∂G), {0, f2iμ} ∈ R0

a(G, ∂G),

and its norm is

‖{f0, fiμ}‖H0
a(G,∂G)�R0

a(G,∂G) =
(
‖{f0, f1iμ}‖2H0

a(G,∂G) +
∑
i,μ

‖f2iμ‖2
H

2m−miμ−1/2

a′ (Γi)

)1/2
.

Moreover, by Theorem 9.1,

La = {P(y,D), Biμ} : H2m
a (G) → H0

a(G, ∂G)�R0
a(G, ∂G), a > 0, (14.15)

is a Fredholm operator for almost all a > 0. Using the operator La, we prove the following result.

Lemma 14.4. The operator P is closed, the image R(P) is closed, and codimR(P) <∞.

Proof. 1. Let us consider an auxiliary unbounded operator

Pa : D(Pa) ⊂ L2(G) → L2(G), 0 < a ≤ 1.

This operator acts by the formula

Pau = P(y,D)u, u ∈ D(Pa) = {u ∈ H2m
a (G) : Biμu = 0, P(y,D)u ∈ L2(G)}.

We fix a, 0 < a ≤ 1, such that La is a Fredholm operator. We prove that Pa is also a Fredholm
operator.

The Fredholm property of La, the compactness of the embedding H2m
a (G) ⊂ H0

a(G) (see [53,
Lemma 3.5]), and [56, Theorem 7.1] imply that

‖u‖H2m
a (G) ≤ k1(‖Lau‖H0

a(G,∂G)�R0
a(G,∂G) + ‖u‖H0

a(G)) (14.16)

for all u ∈ H2m
a (G). Now let u ∈ D(Pa). Then

Lau = {P(y,D)u, 0}, P(y,D)u ∈ L2(G) ⊂ H0
a(G)

and hence
‖Lau‖H0

a(G,∂G)�R0
a(G,∂G) = ‖P(y,D)u‖H0

a(G).
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This relation, Eq. (14.16), and the continuity of the embedding L2(G) ⊂ H0
a(G) for a > 0 yield the

inequality

‖u‖H2m
a (G) ≤ k2(‖P(y,D)u‖H0

a(G) + ‖u‖H0
a(G)) ≤ k3(‖P(y,D)u‖L2(G) + ‖u‖L2(G)), (14.17)

where u ∈ D(Pa). It follows from inequality (14.17) that the operator Pa is closed. Hence, us-
ing (14.17) and [56, Theorem 7.1] again, we obtain dimkerPa < ∞ (clearly, kerPa = kerLa) and
R(Pa) is closed.

Consider an arbitrary function f0 ∈ L2(G). Obviously, f0 ∈ H0
a(G). By Corollary 9.1, there exist

functionals F1, . . . , Fq0 from the dual space H0
a(G, ∂G)

∗ such that if 〈{f0, 0}, Fq〉 = 0, q = 1, . . . , q0,
then problem (13.25), (13.26) has a solution u ∈ H2m

a (G). Since

|〈{f0, 0}, Fq〉| ≤ k4‖f0‖H0
a(G) ≤ k5‖f0‖L2(G),

we see by the Riesz theorem on the general form of linear continuous functionals in Hilbert spaces
that there exist functions f1, . . . , fq0 ∈ L2(G) such that 〈{f0, 0}, Fq〉 = (f0, fq)L2(G), q = 1, . . . , q0.
Hence codimR(Pa) ≤ q0. Thus, Pa is a Fredholm operator.

2. Since H2m
a (G) ⊂ H2m−1

a−1 (G) ⊂ W �(G) for a ≤ 1 and 0 ≤ � ≤ 2m − 1, we have the following
relation:

Pa ⊂ P. (14.18)

It follows from Eq. (14.18) that the image R(P) is closed and codimR(P) ≤ codimR(Pa) ≤ q0.
It remains to prove that P is closed8. Let us denote the basis in the space

R(Pa)
⊥ = R(P)�R(Pa)

by h1, . . . , hk. Then there exist functions v1, . . . , vk ∈ D(P) such that Pvj = hj , j = 1, . . . , k. Since
hj /∈ R(Pa), we have vj /∈ D(Pa). It is also clear that the functions v1, . . . , vk are linearly independent
since the functions h1, . . . , hk are linearly independent.

Consider a finite-dimensional space

N = Span(v1, . . . , vk, kerP)� kerPa.

It is easy to see that N ∩D(Pa) = {0}. Indeed, if u ∈ N ∩D(Pa), then

u =
k∑
i=1

αivi + v,

where αi are some constants, v ∈ kerP. Then, taking into account Eq. (14.18), we have

k∑
i=1

αihi = Pu = Pau ∈ R(Pa).

Hence, αi = 0, i = 1, . . . , k, and, consequently, u = v. Using Eq. (14.18) again, we see that
u = v ∈ kerPa. It follows from here and the definition of the space N that u = 0.

Denote the graph of the operator P (Pa) by GrP (respectively, GrPa). As is known, the operator
P (Pa) is closed if and only if its graph GrP (GrPa) is closed in L2(G)× L2(G).

Since GrPa is closed (as the graph of a closed operator) and GrPa ⊂ GrP and the spaces N and
R(Pa)

⊥ are finite-dimensional, we see that to prove that the operator P is closed, it suffices to show
that

GrP ⊂ GrPa � (N ×R(Pa)
⊥). (14.19)

8Note that the closedness of an operator P, generally speaking, is not implied by the closedness of its image in a
Hilbert space and the finite dimension of its kernel and cokernel; this can be shown by using reasoning similar to that
given, e.g., in [2, Chap. 2, Sec. 18]. However, if, in addition, we assume that P is an extension of a Fredholm operator,
then we will see that P will be closed.

340



Obviously, the sum in Eq. (14.19) is a direct product: if

(u, f) ∈ GrPa ∩ (N ×R(Pa)
⊥),

then u ∈ D(Pa) ∩N = {0} and hence (u, f) = (u,Pau) = (0, 0).
Further, let (u, f) ∈ GrP, i.e., u ∈ DP and f = Pu. Let us represent the function f in the form

f = f1 + f2,

where f1 ∈ R(Pa) and f2 ∈ R(Pa)
⊥. We choose an element u1 ∈ D(Pa) such that Pau1 = f1. Then

u2 = u− u1 ∈ D(P) and Pu2 = f2. Without loss of generality, we can assume that

u2⊥ kerPa; (14.20)

if this relation does not hold, then we consider the projection u2a of the function u2 to kerPa and
replace u1 by u1+u2a and u2 by u2−u2a. Obviously, (u1, f1) ∈ GrPa; taking into account Eq. (14.20),
we have (u2, f2) ∈ N ×R(Pa)

⊥. Thus, we have proved relation (14.19) and the lemma itself.

Theorem 13.1 follows from Lemmas 14.3 and 14.4.

15. Stability of the Index of a Differential Operator
under Perturbations by Minor Terms

15.1. Passage to weight spaces. Let us introduce the operator

P ′(y,D) =
∑

|α|≤2m−1

p′α(y)D
α (15.1)

corresponding to minor terms, where p′α ∈ C∞(R2). Consider the perturbed operator

P′ : D(P′) ⊂ L2(G) → L2(G)

acting by the formula

P′u = P(y,D)u+ P ′(y,D)u,

u ∈ D(P′) = {u ∈ L2(G) : u satisfies Eq. (13.21), Biμu = 0, P(y,D)u+ P ′(y,D)u ∈ L2(G)}.
According to Theorem 13.1, the unbounded operator P′ is a Fredholm operator (as well as P). Let

us formulate the main result of this section (see the proof in Sec. 15.2).

Theorem 15.1. indP′ = indP.

Thus, minor terms in Eq. (13.25) do not affect the index of the unbounded operator P. The
difficulty is that, generally speaking, minor terms are neither compact perturbations nor P-compact
perturbations in the sense of Definition 1.2. If � = 2m− 1, then the embedding u ∈ D(P) yields only
u ∈ W 2m−1(G). This guarantees the P-boundedness of the perturbation but not its P-compactness.
However, if � < 2m− 1, then the embedding u ∈ D(P) does not yield the embedding u ∈W 2m−1(G),
and the perturbation is not even P-bounded. Moreover, in this case, D(P′) 	= D(P).

To overcome this difficulty, we introduce the operator Q : D(Q) ⊂ L2(G) → H0
a(G) acting by the

formula

Qu = P(y,D)u,

u ∈ D(Q) = {u ∈ L2(G) : u satisfies (13.21), Biμu = 0, P(y,D)u ∈ H0
a(G)},

(15.2)

where 0 ≤ 2m − � − 1 < a < 2m − �. We prove that indQ = indP. On the other hand, we show
that the operator P ′(y,D) is a Q-compact perturbation and hence it does not affect the index of the
operators Q and P.

Lemma 15.1. Let the line Imλ = a+ 1− 2m (2m− �− 1 < a < 2m− �) not contain eigenvalues of

the operator L̃(λ). Then Q is a Fredholm operator and indQ = indP.
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Proof. 1. Consider the operator La defined by the formula (14.15) for 2m − � − 1 < a < 2m − �.
According to Theorem 9.1, this operator is a Fredholm operator. Hence, by virtue of the compactness
of the embedding H2m

a (G) ⊂ L2(G) (see [53, Lemma 3.5]), taking into account [56, Theorem 7.1], we
have

‖u‖H2m
a (G) ≤ k1

(
‖Lau‖H0

a(G,∂G)�R0
a(G,∂G) + ‖u‖L2(G)

)
. (15.3)

2. Let us introduce an unbounded operator Q̇ : D(Q̇) ⊂ L2(G) → H0
a(G) acting by the formula

Q̇u = P(y,D)u, u ∈ D(Q̇) = {u ∈ H2m
a (G) : Biμu = 0}. (15.4)

Since H2m
a (G) ⊂W �(G) for a < 2m− �, we see that Q̇ is a reduction of the operator Q, i.e., Q̇ ⊂ Q.

First, let us prove that Q̇ is a Fredholm operator. Let u ∈ D(Q̇). Then u ∈ D(La) = H2m
a (G),

P(y,D)u ∈ H0
a(G), and Biμu = 0. Hence, Eq. (15.3) takes the form

‖u‖H2m
a (G) ≤ k1

(
‖Q̇u‖H0

a(G) + ‖u‖L2(G)

)
∀u ∈ D(Q̇). (15.5)

It follows from (15.5) that the operator Q̇ is closed, dimker Q̇ <∞, and R(Q̇) = R(Q̇) (to obtain
the last two properties, one should apply [56, Theorem 7.1]).

Let us prove that codimR(Q̇) <∞. Since L is a Fredholm operator, there exist linearly independent
functions F1, . . . , Fd ∈ H0

a(G) such that the function f ∈ H0
a(G) belongs to the image of the operator

Q̇ if and only if (f, Fj)H0
a(G) = 0, j = 1, . . . , d. Thus, Q̇ is a Fredholm operator.

3. Now we prove that Q is a Fredohlm operator. Since kerQ = kerP and P is a Fredholm operator,
we obtain

dimkerQ = dimkerP <∞. (15.6)

On the other hand, Q is an extension of the Fredholm operator Q̇; hence,

R(Q) = R(Q), codimR(Q) <∞. (15.7)

Thus, Q is an extension of the Fredholm operator Q̇ and Eqs. (15.6) and (15.7) hold. Reasoning
similar to that of item 2 of the proof of Lemma 14.4 shows that Q is a Fredholm operator.

4. By virtue of (15.6), we must prove that codimR(Q) = codimR(P).
Let codimR(Q) = d1, where d1 ≤ d. Let us consider f ∈ L2(G). Then f ∈ R(P) if and only

if f ∈ R(Q), owing to L2(G) ⊂ H0
a(G). However, the embedding f ∈ R(Q) is equivalent to the

expressions (f, Fj)H0
a(G) = 0, j = 1, . . . , d1, where F1, . . . , Fd1 ∈ H0

a(G) are linearly independent

functions. Using the Schwartz inequality, the boundedness of the embedding L2(G) ⊂ H0
a(G), and

the Riesz theorem, we see that these expressions are equivalent to the following: (f, fj)L2(G) = 0,
j = 1, . . . , d1, where fj ∈ L2(G). Moreover, the functions f1, . . . , fd1 are linearly independent. (In the
opposite case, some linear combination of the functions F1, . . . , Fd1 is orthogonal to any function from
L2(G) in H0

a(G). This is impossible since F1, . . . , Fd1 are linearly independent and L2(G) is dense
in H0

a(G).) Thus, we have proved that codimR(P) = d1.

Let us introduce the perturbed operator Q′ : D(Q′) ⊂ L2(G) → H0
a(G) acting by the formula

Q′u = P(y,D)u+ P ′(y,D)u,

u ∈ D(Q′) = {u ∈ L2(G) : u satisfies Eq. (13.21), Biμu = 0, P(y,D)u+ P ′(y,D)u ∈ H0
a(G)}.

In the next subsection, we will show that indQ′ = indQ if there are no eigenvalues of the operator
L̃(λ) on the line Imλ = a + 1 − 2m. Then, we will prove Theorem 15.1 by using the discreteness of

the spectrum of the operator L̃(λ) and Lemma 15.1.
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15.2. Compactness of minor terms in weight spaces.

Lemma 15.2. Let the line Imλ = a+ 1− 2m (2m− �− 1 ≤ a ≤ 2m− �) not contain eigenvalues of

the operator L̃(λ). Then

‖u‖W 	(G) ≤ c
(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
∀u ∈ D(Q).

Proof. Obviously, we must prove only the case where � ≥ 1. Consider an unbounded operator Q̂ :
D(Q̂) ⊂ W �(G) → H0

a(G) acting by the formula Q̂u = P(y,D)u, u ∈ D(Q̂) = D(Q). Since Q is a

Fredholm operator, then Q̂ is also a Fredholm operator. Hence, the required estimate follows from
the embedding W �(G) ⊂ L2(G) (� ≥ 1) and [56, Theorem 7.1].

Introduce a function ψj ∈ C∞
0 (R2) that is equal to 1 in a small neighborhood of the point gj ∈ K and

vanishes outside a larger neighborhood of the point gj . The following lemma describes the behavior
of the functions u ∈ D(Q) near the set K.

Lemma 15.3. Let 2m− �− 1 < a < 2m− � and a number a be sufficiently close to 2m− �. Then for
any function u ∈ D(Q), we have

u(y) =
N∑
j=1

Pj(y) + v(y), (15.8)

where
Pj(y) = ψj(y)

∑
|α|≤�−1

pjα(y − gj)
α, pjα ∈ C, (15.9)

and v ∈ H2m
2m−�(G) (if � = 0, then we assume that Pj(y) ≡ 0); moreover,∑

j,α

|pjα|+ ‖v‖H2m
2m−	(G) ≤ c

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
. (15.10)

Proof. 1. It follows from inequality (13.22) that

‖u‖
W 2m(G\Oδ(K))

≤ k1δ
(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
∀δ > 0, (15.11)

where k1δ is independent of u. Hence, it suffices to study the behavior of u near the set K.
2. Let Uj(y

′) = uj(y(y
′)), j = 1, . . . , N , be functions corresponding to the set (orbit) K and

satisfying Eqs. (13.27), (13.28) with the right-hand side {fj , fjσμ}.
By virtue of (15.11) and (6.5) (for l = 0), we have {fjσμ} ∈ W2m−m−1/2(γε). Since {fj} ∈ H0

a(K
ε),

we have
{fj} ∈ H0

2m(K
ε), {fjσμ} ∈ H2m−m−1/2

2m (γε),

‖{fj}‖H0
2m(Kε) + ‖{fjσμ}‖H2m−m−1/2

2m (γε)
≤ k2

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
.

(15.12)

Then U ∈ W�(Kε1) and hence
U ∈ H0

0(K
ε1). (15.13)

It follows from (15.11)–(15.13) and Lemma 14.2 that

U ∈ H2m
2m(K

ε1),

‖U‖H2m
2m(Kε1 ) ≤ k3

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
.

(15.14)

Assume that � ≥ 1 (the case where � = 0 is obvious). We prove that

U = Q+ Û ,

where Û ∈ H2m
2m−�(K

ε) and Q = (Q1, . . . , QN ) is a vector-valued polynomial of degree �− 1 (if � = 0,
then there is no vector-valued polynomial Q). Inequality (15.10) follows from inequalities in (15.12)
and (15.14) and the continuous dependence of the coefficients in asymptotic expansions below and the

norm ‖Û‖H2m
2m−	(K

ε1 ) on the norms ‖U‖H2m
2m(Kε1 ) and ‖{fj}‖H0

2m(Kε) and ‖{fjσμ}‖H2m−m−1/2
2m (γε)

.
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3. Let δ = 2m − � − a. Obviously, 0 < δ < 1. By Lemma 5.3, for every func-
tion fjσμ ∈ W2m−mjσμ−1/2(γεjσ), there exists a polynomial Pjσμ(r) of degree 2m − mjσμ − 2 (if

mjσμ = 2m− 1, then Pjσμ(r) ≡ 0) such that

{fjσμ − Pjσμ} ∈ H2m−m−1/2
2m−�−δ (γε)

(in this expression, the number 2m − � − δ can be substituted by any positive number). Using [26,
Lemma 4.3], we construct a function

W 1 =

�−1∑
s=0

l1∑
l=0

rs(i ln r)lϕ1
sl(ω) ∈ H2m

2m(K
ε), (15.15)

where ϕ1
sl ∈ W2m(−ω, ω), such that

{Pj(y,D)W 1
j } ∈ H0

2m−�−δ(K
ε), {Bjσμ(y,D)W 1 − Pjσμ} ∈ H2m−m−1/2

2m−�−δ (γε).

Hence,

{Pj(y,D)(Uj −W 1
j )} ∈ H0

2m−�−δ(K
ε), {Bjσμ(y,D)(Uj −W 1)} ∈ H2m−m−1/2

2m−�−δ (γε).

It follows from (15.14) and (15.15) that U − W 1 ∈ H2m
2m(K

ε). By virtue of Lemma 6.1, we can

choose a number δ, 0 < δ < 1, such that there are no eigenvalues of the operator L̃(λ) in the strip
1− �− δ ≤ Imλ < 1− �. Then, using [26, Theorem 2.2, Lemma 4.3 ], we obtain the following equality:

U −W 1 =W 2 + Û ,

where

W 2 =

n0∑
n=1

l2∑
l=0

riμn(i ln r)lϕ2
nl(ω),

{μ1, . . . , μn0} is the set of all eigenvalues that are located in the strip 1− � ≤ Imλ < 1 (actually, one
should take eigenvalues from the strip 1− �− δ ≤ Imλ < 1, but according to the choice of δ, the strip
1−�−δ ≤ Imλ < 1−� does not contain any eigenvalue), ϕ2

nl ∈ W2m(−ω, ω) and Û ∈ H2m
2m−�−δ(K

ε) ⊂
H2m

2m−�(K
ε).

Since s ≤ � − 1 (in the formula for W 1), Re iμn ≤ � − 1 (in the formula for W 2), and

W 1 +W 2 = U − Û ∈ W�(Kε), we see, by virtue of [53, Lemma 4.20], that the function W 1 + W 2

is a vector-valued polynomial of degree �− 1.

The following result follows from Lemma 15.3.

Corollary 15.1. Let a number a satisfy the conditions of Lemma 15.3 and let P ′(y,D) be a differential
operator of order 2m− 1 of the form (15.1). Then

‖P ′(y,D)u‖H1
2m−	(G) ≤ c

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
∀u ∈ D(Q). (15.16)

Then we can prove that minor terms in Eq. (13.25) do not affect the index of the operator Q.

Lemma 15.4. Let a number a satisfy the conditions of Lemma 15.1 and 15.3. Then the operators Q
and Q′ are Fredholm operators and indQ′ = indQ.

Proof. By Lemma 15.1, Q and Q′ are Fredholm operators.
Introduce the operator P ′ : D(P ′) ⊂ L2(G) → H0

a(G) acting by the formula P ′u = P ′(y,D)u,
u ∈ D(P ′) = D(Q). It follows from Corollary 15.1 and the compactness of the embedding H1

2m−�(G) ⊂
H0
a(G) (see [53, Lemma 3.5]) that Q′ = Q + P ′ and P ′ is a Q-compact operator. Hence, according

to [49, Chap. 4, Theorem 5.26], we have indQ′ = indQ.
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Proof of Theorem 15.1. Lemma 6.1 implies that the spectrum of the operator L̃(λ) is discrete. Thus,
there is a number a satisfying the conditions of Lemma 15.3. Then, by virtue of Lemmas 15.1 and 15.4,
indP′ = indQ′ = indQ = indP.

16. Stability of the Index under Perturbations of Nonlocal Conditions

16.1. Statement of the main result. In this section, we study the stability of the index of
nonlocal operators under perturbations of nonlocal conditions. They are perturbed by operators of
the same type as B1

iμ and B2
iμ. This situation is more complicated than the situation considered in

Sec. 15 since nonlocal perturbations explicitly change the domains of the corresponding unbounded
operators. Hence, these perturbations cannot be considered as relatively compact. We offer a different
approach based on the notion of a spread between closed operators.

Consider miμ-ordered differential operators Ciμs(y,D), i = 1, . . . , N , μ = 1, . . . ,m, s = 1, . . . , S′
i, of

the same order as the operators Biμs and acting by the formula

Ciμs(y,D)u =
∑

|α|≤miμ

ciμsα(y)D
αu,

where ciμsα ∈ C∞(R2). Introduce the operator C1
iμ by the formula

C1
iμu =

S′
i∑

s=1

(
Ciμs(y,D)(ζu)

)(
Ω′
is(y)

)
, y ∈ Γi ∩ Oε(K), C1

iμu = 0, y ∈ Γi \ Oε(K),

where ζ and ε are the same as in the definition of the operators B1
iμ, and Ω′

is are the C∞-

diffeomorphisms with the same properties as Ωis (in particular, they satisfy Condition 6.3, where
Si and Ωis must be replaced by S′

i and Ω′
is).

Consider the operators C2
iμ satisfying condition 6.4 with l = 0; here B2

iμ must be replaced by C2
iμ.

Assume that

Ciμ = C1
iμ +C2

iμ.

In this section, we assume that the number a satisfies the conditions of Lemma 15.3. In particular,

2m− �− 1 < a < 2m− �.

We prove a theorem on the stability of the index under the following auxiliary conditions (see,
e.g., [57, Chap. 2, Sec. 1]) that are assumed to be valid everywhere in this section (including the
conditions of lemmas).

Condition 16.1. The system {B0
iμ}mμ=1 is normal on Γi, i = 1, . . . , N .

Let gi1, gi2, τi1, τi2, D
β
τi1 , and D

β
τi2 have the same sense as in Sec. 5.2.

Condition 16.2. If � ≥ miμ − |α|+ 1 (|α| ≤ miμ), then

Dσciμsα(gi1) = Dσciμsα(gi2) = 0, |σ| = 0, . . . , (�− 1)− (miμ − |α|).

Condition 16.3. If � ≥ miμ+1, then for any function u ∈W 2m(G\Oκ1(K)), the following relations
hold :

Dβ
τi1(C

2
iμu)|y=gi1 = 0, Dβ

τi2(C
2
iμu)|y=gi2 = 0, β = 0, . . . , �− 1−miμ.

Remark 16.1. If we increase the index �, then conditions 16.2 and 16.3 become stricter. If, for
example, we consider a nonlocal perturbation of the Dirichlet problem for the second-order equation
(i.e., m = 1, miμ = 0, and μ = 1) and find generalized solutions from L2(G) (i.e., � = 0), then
conditions 16.2 and 16.3 are satisfied automatically for any operators C1

iμ and C2
iμ.
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Lemma 16.1. Let conditions 16.2 and 16.3 hold. Then

‖C1
iμu‖H2m−miμ−1/2

a (Γi)
≤ c1‖u‖H2m

a+	(G), (16.1)

‖C2
iμu‖H2m−miμ−1/2

a (Γi)
≤ c2‖u‖W 2m(G\Oκ1 (K))

. (16.2)

Proof. 1. For any function u ∈ H2m
a+�(G), we have

(Dαu)
(
Ω′
is(y)

)∣∣
Γi

∈ H
2m−|α|−1/2
a+� (Γi) ⊂ H

2m−miμ−1/2

a+�−(miμ−|α|)(Γi).

Hence, by virtue of condition 16.2 and Lemma 5.6 we have

(ciμsαD
αu)

(
Ω′
is(y)

)∣∣
Γi

∈ H
2m−miμ−1/2
a (Γi).

Estimate (16.1) follows from the boundedness of the mentioned embeddings and inequality (5.14).

2. Condition 6.4 (concerning C2
iμ) implies that C2

iμu ∈W 2m−miμ−1/2(Γi) if the expression

u ∈W 2m(G \ Oκ1(K))

is valid. Now it follows from condition 16.3 and Lemma 5.4 that

C2
iμu ∈ H

2m−miμ−1/2
a (Γi).

Estimate (16.2) follows from Inequality (6.5) (that is applied to C2
iμ as l = 0) and from (5.11).

Consider the operators Pt : D(Pt) ⊂ L2(G) → L2(G), t ∈ C, acting by the formula

Ptu = P(y,D)u,

u ∈ D(Pt) = {u ∈ L2(G) : u satisfies (13.21), (B0
iμ +B1

iμ + tCiμ)u = 0, P(y,D)u ∈ L2(G)}.
Let us formulate the main result of this section (the proof will be given in Sec. 16.2).

Theorem 16.1. Let conditions 16.1–16.3 hold. Then indPt = const for all t ∈ C.

16.2. Spread between nonlocal operators in weight spaces. As in Sec. 15, we first study the
operators Qt : D(Qt) ⊂ L2(G) → H0

a(G) acting by formula

Qtu = P(y,D)u,

u ∈ D(Qt) = {u ∈ L2(G) : u satisfies (13.21), (B0
iμ +B1

iμ + tCiμ)u = 0, P(y,D)u ∈ H0
a(G)},

where t ∈ C. The operators Pt and Qt correspond the following problem:

P(y,D)u = f(y), y ∈ G, (16.3)

(B0
iμ +B1

iμ + tCiμ)u = 0, y ∈ Γi, i = 1, . . . , N, μ = 1, . . . ,m. (16.4)

Remark 16.2. In the definition of the operator L̃(λ) (see Sec. 6.3), we considered the principal
homogeneous parts of the operators P(y,D) and Biμs(y,D) at points of the set K. By virtue of 16.2,
the principal homogeneous parts of the operators Ciμs(y,D) vanish at these points. Hence, for any t,

the same operator L̃(λ) corresponds to problem (16.3), (16.4).

It follows from Remark 16.2 and Lemma 15.1 that Qt is a Fredholm operator for chosen a. Hence,
its graph GrQt is a closed subset in the Hilbert space L2(G) ×H0

a(G); we equip this space with the
following norm:

‖(u, f)‖ =
(
‖u‖2L2(G) + ‖f‖2H0

a(G)

)1/2
∀(u, f) ∈ L2(G)×H0

a(G).

Assume

δ(Qt,Qt+s) = sup
u∈D(Qt):‖(u,Qtu)‖=1

dist
(
(u,Qtu),GrQt+s

)
. (16.5)
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By Definition 1.3, the number

δ̂(Qt,Qt+s) = max{δ(Qt,Qt+s), δ(Qt+s,Qt)}
is the spread between the operators Qt and Qt+s.

The proof of the theorem on the stability of the index is based on [49, Chap. 4, Theorem 5.17] and
the following result (it will be proved below).

Theorem 16.2. Let conditions 16.1–16.3 hold. Assume that the lines Imλ = a + 1 − 2m and
Imλ = a+ 1 + �− 2m do not contain eigenvalues of the operator L̃(λ). Then

δ̂(Qt,Qt+s) ≤ cts, |s| ≤ st, (16.6)

where st > 0 is sufficiently small and ct > 0 is independent of s.

First, let us prove some auxiliary statements.

Lemma 16.2. Let the line Imλ = a+1+ �− 2m not contain eigenvalues of the operator L̃(λ). Then

‖u‖H2m
a+	(G) ≤ ct‖(u,P(y,D)u)‖ ∀u ∈ D(Qt+s), (16.7)

where ct > 0 is independent of s and u, under the condition that |s| is sufficiently small.

Proof. 1. Consider the bounded operator

Mt = {P(y,D),B0
iμ +B1

iμ + tCiμ} : H2m
a+�(G) → H0

a+�(G, ∂G). (16.8)

If v ∈ H2m
a+�(G), then

(B0
iμ +B1

iμ + tC1
iμ)v ∈ H

2m−miμ−1/2
a+� (Γi),

C2
iμv ∈W 2m−miμ−1/2(Γi) ⊂ H

2m−miμ−1/2
a+� (Γi)

(this follows condition 6.4 and item 1 of Lemma 5.3). Thus, the operator Mt is well defined.
By virtue of Theorem 9.1 and Remark 16.2, Mt is a Fredholm operator for any t ∈ C. Hence,

using [56, Theorem 7.1] and taking into account the compactness of the embedding H2m
a+� ⊂ L2(G) for

a < 2m− � (see [53, Lemma 3.5]), we obtain the following inequality:

‖u‖H2m
a+	(G) ≤ k1

(
‖Mtu‖H0

a+	(G,∂G) + ‖u‖L2(G)

)
∀u ∈ H2m

a+�(G), (16.9)

where k1 > 0 can depend on t, but is independent of s and u.
2. Now we consider a function u ∈ D(Qt+s). By Lemma 15.3, u ∈ H2m

a+�(G). By virtue of

inequality (16.9), estimate (6.5) (with l = 0 for C2
iμ) and the boundedness of the embedding

W 2m−miμ−1/2(Γi) ⊂ H
2m−miμ−1/2
a+� (Γi)

(see item 1 of Lemma 5.3), we have

‖u‖H2m
a+	(G) ≤ k1

(
‖P(y,D)u‖H0

a+	(G) + ‖u‖L2(G)

)
+ k2|s| · ‖u‖H2m

a+	(G) ∀u ∈ D(Qt+s),

where k2 > 0 can depend on t but is independent of s and u. Choosing |s| ≤ 1/2k2 and using the
boundedness of the embedding H0

a(G) ⊂ H0
a+�(G), we obtain (16.7).

The next result follows from Lemmas 16.1 and 16.2.

Corollary 16.1. Let the line Imλ = a + 1 + � − 2m not contain eigenvalues of the operator L̃(λ).
Then

‖Ciμu‖
H

2m−miμ−1/2
a (Γi)

≤ ct‖(u,P(y,D)u)‖ ∀u ∈ D(Qt+s), (16.10)

where ct > 0 is independent of s and u, under the condition that |s| is sufficiently small.
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The following lemma allows one to reduce problems with inhomogeneous nonlocal conditions to
problems with homogeneous nonlocal conditions; here we use 16.1.

Lemma 16.3. Let fiμ ∈ H
2m−miμ−1/2
a (Γi). Then for any t ∈ C and |s| ≤ 1, there exists a function

u ∈ H2m
a (G) such that

(B0
iμ +B1

iμ + (t+ s)Ciμ)u = fiμ, (16.11)

‖u‖H2m
a (G) ≤ ct

∑
i,μ

‖fiμ‖
H

2m−miμ−1/2
a (Γi)

, (16.12)

where ct > 0 is independent of fiμ and s.

Proof. Using Lemma 11.1 and the method of the partition of unity, we construct a function
v ∈ H2m

a (G) such that

supp v ⊂ G \Gρ, (16.13)

B0
iμv = fiμ, B1

iμv = 0, C1
iμv = 0, (16.14)

‖v‖H2m
a (G) ≤ k1

∑
i,μ

‖fiμ‖
H

2m−miμ−1/2
a (Γi)

, (16.15)

where k1 > 0 is independent of fiμ, t, and s.
By virtue of (16.13) and (6.6) (with the operator C2

iμ instead of B2
iμ and l = 0),

suppC2
iμv ⊂ Oκ2(K).

Moreover, by Lemma 16.1,

C2
iμv ∈ H

2m−miμ−1/2
a (Γi).

Hence, applying Lemma 11.1 and the method of partition of unity, we can construct a function
w ∈ H2m

a (G) such that

suppw ⊂ Oκ1(K), (16.16)

B0
iμw = −(t+ s)C2

iμv, B1
iμw = 0, C1

iμw = 0, (16.17)

‖w‖H2m
a (G) ≤ k1

∑
i,μ

‖(t+ s)C2
iμv‖H2m−miμ−1/2

a (Γi)
.

Since |s| ≤ 1, we can apply inequalities (16.2) and (16.15); from the last inequality we obtain

‖w‖H2m
a (G) ≤ k1

∑
i,μ

(|t|+ 1)‖C2
iμv‖H2m−miμ−1/2

a (Γi)

≤ k2‖v‖H2m
a (G) ≤ k2k1

∑
i,μ

‖fiμ‖
H

2m−miμ−1/2
a (Γi)

, (16.18)

where k2 > 0 can depend on t but is independent of fiμ and s.
By virtue of (16.16) and (16.2), C2

iμw = 0. This and Eqs. (16.14) and (16.17) imply that u = v+w

satisfies relations (16.11). Inequality (16.12) follows from inequalities (16.15) and (16.18).

Remark 16.3. It is easy to see that if (C2
iμv)(y) = 0 for y ∈ Oκ(K) for some κ > 0 and any

v ∈W 2m(G \ Oκ1(K)), then Lemma 16.3 is valid for all a ∈ R.

Proof of Theorem 16.2. 1. We prove inequalities that are similar to inequality (16.6), where

δ̂(Qt,Qt+s) must be replaced by δ(Qt,Qt+s) and δ(Qt+s,Qt). Let us prove the inequality

δ(Qt,Qt+s) ≤ ct|s|, |s| ≤ st. (16.19)

The proof of the corresponding inequality for δ(Qt+s,Qt) is similar.
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Fix an arbitrary number t and consider the function u ∈ D(Qt). According to Definition (16.5), it
suffices to find a function vs ∈ D(Qt+s) (depending on u) such that

‖u− vs‖L2(G) + ‖P(y,D)u−P(y,D)vs‖H0
a(G) ≤ k1|s| · ‖(u,P(y,D)u)‖, (16.20)

where |s| is sufficiently small, and k1, k2, . . . > 0 can depend on t but are independent of u and s.
Let us find vs ∈ D(Qt+s) in the form

vs = u+ ws, (16.21)

where ws ∈ H2m
a (G) is a solution of problem

P(y,D)ws =

Js∑
j=1

βsjf
s
j , (B0

iμ +B1
iμ + (t+ s)Ciμ)ws = −sCiμu; (16.22)

let us define numbers Js and β
s
j and functions fsj ∈ H0

a(G) such that a solution ws ∈ H2m
a (G) exists.

2. To solve problem (16.22), we note that, by virtue of the Corollary 16.1, we have Ciμu ∈
H

2m−miμ−1/2
a (Γi). Hence, applying Lemma 16.3, we can construct a function Ws ∈ H2m

a (G) such that

(B0
iμ +B1

iμ + (t+ s)Ciμ)Ws = −sCiμu, (16.23)

‖Ws‖H2m
a (G) ≤ k2|s|

∑
i,μ

‖Ciμu‖
H

2m−miμ−1/2
a (Γi)

. (16.24)

From (16.24) and (16.10) we obtain the following inequality:

‖Ws‖H2m
a (G) ≤ k3|s| · ‖(u,P(y,D)u)‖. (16.25)

Obviously, Problem (16.22) is equivalent to the following problem:

P(y,D)Ys = −P(y,D)Ws +

Js∑
j=1

βsjf
s
j , (B0

iμ +B1
iμ + (t+ s)Ciμ)Ys = 0, (16.26)

where

Ys = ws −Ws ∈ H2m
a (G). (16.27)

3. To solve problem (16.26), we consider the bounded operator

Lt = {P(y,D),B0
iμ +B1

iμ + tCiμ} : H2m
a (G) → H0

a(G, ∂G). (16.28)

Note that, by Lemma 16.1, C2
iμv ∈ H

2m−miμ−1/2
a (Γi) for any v ∈ H2m

a (G); therefore, in the definition

of the operator Lt, we can write H0
a(G, ∂G) instead of H0

a(G, ∂G) � R0
a(G, ∂G). It follows from

Theorem 9.1 and Remark 16.2 that Lt is a Fredholm operator for any t ∈ C.
Let us decompose the space H2m

a (G) into the orthogonal sum H2m
a (G) = kerLt ⊕ Et, where Et is

a closed subspace in H2m
a (G). It is obvious that

L′
t = {P(y,D),B0

iμ +B1
iμ + tCiμ} : Et → H0

a(G, ∂G) (16.29)

is a Fredholm operator and its kernel is trivial. This implies that

‖u‖H2m
a (G) ≤ k4‖L′

tu‖H0
a(G,∂G) ∀u ∈ Et. (16.30)

Let J = codimR(L′
t). Lemma 16.1 and [56, Sec. 16] imply that the operator

L′
ts = {P(y,D),B0

iμ +B1
iμ + (t+ s)Ciμ} : Et → H0

a(G, ∂G)

is also a Fredholm operator, its kernel is trivial, and codimR(L′
ts) = J under the condition |s| ≤ st,

where st > 0 is sufficiently small. Moreover, using estimates (16.30), (16.1), and (16.2), we have for
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all u ∈ Et

‖u‖H2m
a (G) ≤ k4

⎛
⎝‖L′

tsu‖H0
a(G,∂G) + st

∑
i,μ

‖Ciμu‖
H

2m−miμ−1/2
a (Γi)

⎞
⎠

≤ k5
(
‖L′

tsu‖H0
a(G,∂G) + st‖u‖H2m

a (G)

)
. (16.31)

Choosing st ≤ 1/(2k6), we obtain the inequality

‖u‖H2m
a (G) ≤ k6‖L′

tsu‖H0
a(G,∂G) ∀u ∈ Et. (16.32)

Since L′
ts is a Fredholm operator, we see that the set {f ∈ H0

a(G) : (f, 0) ∈ R(L′
ts)} is closed and

has a finite codimension Js in H
0
a(G). It is easy to see that Js ≤ J .

Let fs1 , . . . , f
s
Js

be an orthonormal basis in the space

H0
a(G)� {f ∈ H0

a(G) : (f, 0) ∈ R(L′
ts)}.

Assume that βsj = (P(y,D)Ws, f
s
j )H0

a(G). Then problem (16.26) has a unique solution Ys ∈ Et; by

virtue of (16.32) and (16.25), we have

‖Ys‖H2m
a (G) ≤ k6

⎛
⎝‖P(y,D)Ws‖H0

a(G) +

Js∑
j=1

|βsj |

⎞
⎠

≤ k7|s| · ‖(u,P(y,D)u)‖+ k6J max{βs1, . . . , βsJs}. (16.33)

Applying the Schwartz inequality for estimating βsj = (P(y,D)Ws, f
s
j )H0

a(G), and using (16.25), we
obtain

|βsj | ≤ ‖P(y,D)Ws‖H0
a(G) ≤ k8|s| · ‖(u,P(y,D)u)‖.

Hence the inequality follows from here and (16.33):

‖Ys‖H2m
a (G) ≤ k9|s| · ‖(u,P(y,D)u)‖. (16.34)

4. Taking into account Eqs. (16.27), we obtain the inequalities

‖ws‖L2(G) ≤ k10‖ws‖H2m
a (G) ≤ k11|s| · ‖(u,P(y,D)u)‖, (16.35)

‖P(y,D)ws‖H0
a(G) ≤ k12‖ws‖H2m

a (G) ≤ k12k11|s| · ‖(u,P(y,D)u)‖, (16.36)

where ws = Ys +Ws is a solution of problem (16.22) from Eqs. (16.25) and (16.34).
The boundedness of the embedding H2m

a (G) ⊂ Wm(G) implies that the function vs defined
in (16.21) belongs to Wm(G); moreover, by virtue of the second relation in (16.22), we have
vs ∈ D(Qt+s). From (16.21), (16.35), and (16.36) we obtain the required inequality (16.20).

Proof of Theorem 16.1. Let us fix two arbitrary numbers t1 and t2 ∈ C. By virtue of lemma 15.1 and
Remark 16.2, Qt are Fredholm operators for all t from an interval It1t2 ⊂ C with endpoints t1 and
t2. Covering every point of the interval It1t2 by a circle of a sufficiently small radius, choosing a finite
subcover, and applying Theorem 16.2 and [49, Chap. 4, Theorem 5.17], we see that

indQt1 = indQt2 .

This and Lemma 15.1 imply that

indPt1 = indPt2 .

Theorem 16.1 is proved.

17. Instability of Index

17.1. Intersection of the support of nonlocal terms with conjugation points of boundary
conditions.
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17.1.1. Statement of the problem. Let G be a bounded domain in R
2 and let ∂G\{g1, g2} = Γ1∪Γ2,

where Γi are open (in ∂G topology) smooth curves, Γ1 ∩ Γ2 = {g1, g2}, g1 and g2 are the endpoints of
the curves Γ1 and Γ2. Assume that the domain G coincides with a plane angle of nonzero spread in
some neighborhood of the points gj . We also assume that the domain G coincides with a plane angle
of spread 2ω0 in a neighborhood Oε(gj), where 0 < ω0 < π. Consider the following nonlocal problem
in the domain G:

Δu = f(y), y ∈ G, (17.1)

u|Γ1 − (1 + t)u(Ω1(y))|Γ1 = 0, u|Γ2 − (1− t)u(Ω2(y))|Γ2 = 0, (17.2)

where t ∈ C is a parameter and Ωi is a C∞-diffeomorphism defined in a neighborhood of the curve
Γi. Assume that Ωi(Γi) ⊂ G, Ωi(g1) = g1, Ωi(g2) = g2, and the transform Ωi in neighborhoods Oε(g1)
and Oε(g2) of the points g1 and g2 is a rotation by an angle ω0 inwards the domain G (see Fig. 17.1).

Fig. 17.1. Problem (17.1), (17.2)

Consider the unbounded operator Pt : D(Pt) ⊂ L2(G) → L2(G) acting by the formula

Ptu = Δu, u ∈ D(Pt),

D(Pt) = {u ∈W 1(G) ∩W 2(G \ Oδ(K)) ∀δ > 0 : Δu ∈ L2(G) and u satisfies (17.2)}.
By Theorem 13.1 (more precisely, by virtue of its generalization to the case where the set K consists
of several orbits), Pt is a Fredholm operator for any t ∈ C.

Let us prove the following result.

Theorem 17.1. There exists a number t0 > 0 such that indP0 > indPt = const for 0 < |t| ≤ t0.

17.1.2. Proof of Theorem 17.1. Consider a model problem near the point g1. For this, we take the
coordinate system with origin at the point g1 and the axis Ox1 coinciding with the bisector of the
angle made by the boundary of the domain near g1. The model nonlocal problem with a parameter
λ ∈ C has the form (cf. (6.18))

ϕ′′ − λ2ϕ = 0, |ϕ| < ω0, (17.3)

ϕ(−ω0)− (1 + t)ϕ(0) = 0, ϕ(ω0)− (1− t)ϕ(0) = 0, (17.4)

where ϕ(ω) = ũ(ω, λ) for a fixed λ. Obviously, the same model problem will correspond to the point g2.
We see that the eigenvalues of problem (17.3), (17.4) are independent of t and have the form

λk =
πk

ω0
i, k = 0,±1,±2, . . . . (17.5)

Now we are interested in the location of the eigenvalues relative to the strip −1 ≤ Imλ ≤ 0. Since
0 < ω0 < π, we see that there is a unique eigenvalue λ0 = 0 in this strip; it corresponds to a unique
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(up to a constant factor) eigenvector

ϕ0(ω) = − t

ω0
ω + 1 (17.6)

and a unique (up to an eigenvector) adjoint vector9 ϕ1(ω) = 0.

Lemma 17.1. There exists a number t0 > 0 such that

codimR(P0) ≤ codimR(Pt) = const

as 0 < |t| ≤ t0.

Proof. 1. Consider the operator Nt : H
2
0 (G) → H0

0(G, ∂G) acting by the formula

Nt = (Δu, u|Γ1 − (1 + t)u(Ω1(y))|Γ1 , u|Γ2 − (1− t)u(Ω2(y))|Γ2).

Since there are no eigenvalues of problem (17.3), (17.4) on the line Imλ = −1, according to [85,
Theorem 3.4], Nt is a Fredholm operator for all t. Since, on the one hand, the operator u 
→ u(Ωj(y))|Γj

is bounded fromH2
0 (G) toH

3/2
0 (Γj) and, on the other hand, small perturbations of Fredholm operators

do not change their indices (see [56, Sec 16]), we have indNt = const for all t from a sufficiently small
neighborhood of any fixed point t′ ∈ C. Hence

indNt = const, t ∈ C. (17.7)

2. Let us prove that
codimR(Nt) = const, |t| ≤ t0, (17.8)

where t0 > 0 is sufficiently small. By virtue of (17.7) it suffices to show that

dimkerNt = 0, |t| ≤ t0. (17.9)

Let t = 0 and u ∈ kerN0. It follows from (13.22) that the function u is infinitely differentiable
outside an arbitrarily small neighborhood of the set {g1, g2}. On the other hand, u ∈ H2

0 (G) ⊂W 2
2 (G);

hence, by the Sobolev embedding theorem, u ∈ C∞(G) ∩ C(G) and
u(g1) = u(g2) = 0. (17.10)

Since for t = 0 the coefficients of the problem are real, we can assume, without loss of generality,
that the function u(y) is real-valued. If the function |u(y)| has a maximum inside the domain G, then,
by the maximum principle, u = const in G; hence, by virtue of (17.10) we have that u = 0. If |u(y)|
has a maximum at a part of the boundary Γi, then, according to nonlocal conditions (17.2), which
have the following form:

u|Γ1 = u(Ω1(y))|Γ1 , u|Γ2 = u(Ω2(y))|Γ2

for t = 0, the function |u(y)| also has a maximum inside the domain G; then u = 0 by the above.
Finally, if |u(y)| has a maximum at the point g1 or g2, then, by virtue (17.10), we have u = 0.

Thus, we have proved that dimkerN0 = 0. It follows from [56, Sec 16] that
dimkerNt ≤ dimkerN0 = 0 for sufficiently small |t|; Eq. (17.9) follows from here; hence, (17.8) is
proved.

3. We prove that

R(Pt) = {f ∈ L2(G) : (f, 0, 0) ∈ R(Nt)}, 0 	= t ∈ C. (17.11)

Since any solution u ∈ H2
0 (G) of problem (17.1), (17.2) with the right-hand side f ∈ L2(G) belongs

to W 1(G), we have
R(Pt) ⊃ {f ∈ L2(G) : (f, 0, 0) ∈ R(Nt)}, t ∈ C. (17.12)

9If λ0 ∈ C is an eigenvalue of problem (17.3), (17.4) and ϕ0(ω) is a corresponding eigenvector, then an adjoint vector

ϕ1(ω) can be found as a solution (perhaps, zero) of the equation ϕ′′
1 − λ2

0ϕ1 +
d

dλ
(ϕ′′

0 − λ2ϕ0)
∣
∣
∣
λ=λ0

= 0 with nonlocal

conditions (17.4). Thus, if λ0 = 0, then the adjoint vector ϕ1(ω) is a solution of the equation ϕ′′
1 = 0 with nonlocal

conditions (17.4).
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To prove the inverse embedding for t 	= 0, consider an arbitrary function f ∈ R(Pt). Let u ∈W 1(G)
be a solution of problem (17.1), (17.2) with the right-hand side f . Using Lemma 14.2 we obtain
u ∈ H2

a+1(G) for any a > 0. By virtue of (17.5), we can find a sufficiently small a > 0 such that there
is a unique eigenvalue λ0 = 0 of problem (17.1), (17.2) in the strip −1 ≤ Imλ < a. It follows from [85,
Theorem 3.3] (theorem on the asymptotic behavior of solutions of nonlocal problems) that

u(y) = cjϕ0(ω) + djϕ0(ω) ln r + vj(y), y ∈ G ∩ Oε(gj), (17.13)

where (ω, r) are the polar coordinates with pole at the point gj , ϕ0(ω) is given by Eq. (17.6), and
vj ∈ H2

0 (G ∩ Oε(gj)). Note that

u ∈W 1
2 (G ∩ Oε(gj)), vj ∈W 1

2 (G ∩ Oε(gj)),

but
ϕ0(ω) /∈W 1

2 (G ∩ Oε(gj)), ϕ0(ω) ln r /∈W 1
2 (G ∩ Oε(gj))

for t 	= 0. Hence, cj = dj = 0 in Eq. (17.13); thus, u ∈ H2
0 (G). Therefore, we have proved that

(f, 0, 0) ∈ R(Nt), i.e.,

R(Pt) ⊂ {f ∈ L2(G) : (f, 0, 0) ∈ R(Nt)}, 0 	= t ∈ C. (17.14)

Equation (17.11) follows from Eqs. (17.12) and (17.14).
4. Let us prove that

codim{f ∈ L2(G) : (f, 0, 0) ∈ R(Nt)} = codimR(Nt), t ∈ C. (17.15)

In Eq. (17.15), the codimension of the subspace

{f ∈ L2(G) : (f, 0, 0) ∈ R(Nt)}
is calculated in the space H0

0 (G) and the codimension of the subspace R(Nt) is calculated in the space

H0
0 (G)×H

3/2
0 (Γ1)×H

3/2
0 (Γ2).

We fix t ∈ C and assume that

J1 = codim{f ∈ L2(G) : (f, 0, 0) ∈ R(Nt)}, J2 = codimR(Nt).

Let f ∈ L2(G) and (f, 0, 0) ∈ R(Nt). This is equivalent to the following relations:(
(f, 0, 0), Fj

)
H0

0(G,∂G)
= 0, j = 1, . . . , J2,

where Fj are functions that form a basis in the orthogonal complement to the subspace R(Nt) of the
space H0

0(G, ∂G). By virtue of the Riesz theorem on the general form of linear continuous functionals
in Hilbert spaces, these relations are equivalent to the following:

(f, f̂j)L2(G) = 0, j = 1, . . . , J2,

where f̂j are some functions from the space L2(G). Thus,

J1 ≤ J2 (17.16)

(the equality holds if and only if the functions f̂j are linearly independent).
Let us prove the inverse embedding. Let F = (f, f1, f2) be an arbitrary function from R(Nt). Then

there exists a function u ∈ H2
0 (G) such that

Δu = f(y), y ∈ G,

u|Γ1 − (1 + t)u(Ω1(y))|Γ1 = f1, u|Γ2 − (1− t)u(Ω2(y))|Γ2 = f2.

Using [58, Lemma 3.1], we construct a function v ∈ H2
0 (G) such that

v|Γ1 − (1 + t)v(Ω1(y))|Γ1 = f1, v|Γ2 − (1− t)v(Ω2(y))|Γ2 = f2,

‖v‖H2
0 (G) ≤ k1

(
‖f1‖H3/2

0 (Γ1)
+ ‖f2‖H3/2

0 (Γ2)

)
, (17.17)

where k1 > 0 is independent of f1 and f2.
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Obviously, the function w = u− v ∈ H2
0 (G) is a solution of the problem

Δw = f(y)−Δv, y ∈ G,

w|Γ1 − (1 + t)w(Ω1(y))|Γ1 = 0, w|Γ2 − (1− t)w(Ω2(y))|Γ2 = 0.

Hence,

f −Δv ∈ L2(G), (f −Δv, 0, 0) ∈ R(Nt).

This is equivalent to the relations

(f −Δv, f ′j)L2(G) = 0, j = 1, . . . , J1,

where f ′j ∈ L2(G) are functions that form a basis in the orthogonal complement of the subspace

{f ∈ L2(G) : (f, 0, 0) ∈ R(Nt)} in the space L2(G). By virtue of the Riesz theorem on the general form
of linear continuous functionals in Hilbert spaces and estimate (17.17), these relations are equivalent
to

(F, F ′
j)H0

0(G,∂G) = 0, j = 1, . . . , J1,

where F ′
j are some functions from the space H0

0(G, ∂G). Thus,

J2 ≤ J1; (17.18)

the equality holds if and only if functions F ′
j are linearly independent.

Equation (17.15) follows from inequalities (17.16) and (17.18).
The following equality follows from relations (17.15) and (17.8):

codim{f ∈ L2(G) : (f, 0, 0) ∈ R(Nt)} = const, |t| ≤ t0. (17.19)

Combining (17.11), (17.12) for t = 0, and (17.19), we complete the proof.

Lemma 17.2. Let a number t0 > 0 be the same as in Lemma 17.1. Then

dimkerP0 > dimkerPt = 0

for 0 < |t| ≤ t0.

Proof. 1. Let 0 < |t| ≤ t0 and u ∈ kerPt. Similarly to item 3 of the proof of Lemma 17.1, we can
show that u ∈ H2

0 (G); hence, u ∈ kerNt. By virtue of Eq. (17.9), we have u = 0; thus, dimkerPt = 0.
2. Let t = 0. Then u = const belongs to kerP0.

Proof of Theorem 17.1. Applying Lemmas 17.2 and 17.1, we obtain

indP0 = dimkerP0 − codimR(P0) > − codimR(P0) ≥ − codimR(Pt) = indPt, 0 < |t| ≤ t0.

Theorem 17.1 is proved.

17.1.3. Nonlocal terms with supports in small neighborhoods of conjugation points. Now we show
that the index of an operator can change even if the supports of nonlocal terms are concentrated in
an arbitrary small neighborhood of a conjugation point of the boundary conditions.

Let G, Γi, and gj be the same as above. Consider the following nonlocal problem in the domain G:

Δu = f(y), y ∈ G, (17.20)

u|Γ1 − (1 + t)ξ(y)u(Ω1(y))|Γ1 = 0, u|Γ2 − (1− t)ξ(y)u(Ω2(y))|Γ2 = 0, (17.21)

where ξ ∈ C∞(R2), the support of the function ξ is concentrated in an arbitrarily small neighborhood
of the points g1 and g2, and ξ(y) = 1 near these points (see Fig. 17.2).

Consider the unbounded operator P′
t : D(P′

t) ⊂ L2(G) → L2(G) acting by the formula

P′
tu = Δu, u ∈ D(P′

t),

D(P′
t) = {u ∈W 1(G) ∩W 2(G \ Oδ(K)) ∀δ > 0 : Δu ∈ L2(G) and u satisfies (17.21)}.
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Fig. 17.2. Problem (17.20), (17.21)

By Theorem 13.1 (more precisely, by virtue of its generalization to the case where the set K consists
of several orbits), Pt is a Fredholm operator for any t ∈ C.

Let us formulate the main result of this subsection.

Theorem 17.2. There exists a number t0 > 0 such that indP′
0 > indP′

t = const for 0 < |t| ≤ t0.

Proof. Nonlocal conditions (17.2) differ from nonlocal conditions (17.21) by the operators

u 
→ (1 + t)(1− ξ(y))u(Ω1(y))|Γ1 , u 
→ (1− t)(1− ξ(y))u(Ω2(y))|Γ2 .

Since the coefficients (1± t)(1− ξ(y)) of the nonlocal terms vanish near the points g1 and g2, we have
indP′

t = indPt for all t ∈ C (by virtue of Theorem 16.1), and the statement of the theorem follows
from Theorem 17.1.

17.2. Case where there are no conjugation points in the support of nonlocal terms. In
this subsection, we show that the index of an operator can change if and only if the support of nonlocal
terms does not intersect with the set of conjugation points of the boundary conditions (and even lies
inside the domain).

17.2.1. Statement of the problem. Let G, Γi, and gj be as above. Assume that

0 < ω0 < π/2

and consider the following problem in the domain G:

Δu = f(y), y ∈ G, (17.22)

u|Γ1 + tu(Ω(y))|Γ1 = 0, u|Γ2 = 0, (17.23)

where t ∈ R and Ω is a C∞-diffeomorphism defined in a neighborhood of the curve Γ1. Assume that
Ω(Γ1) ⊂ G (see Fig. 17.3).

Consider the unbounded operator Pt : D(Pt) ⊂ L2(G) → L2(G) acting by the formula

Ptu = Δu, u ∈ D(Pt),

D(Pt) = {u ∈W 1(G) ∩W 2(G \ Oδ(K)) ∀δ > 0 : Δu ∈ L2(G) and u satisfies (17.23)}.

By Theorem 13.1 (more precisely, by virtue of its generalization to the case where the set K consists
of several orbits), Pt is a Fredholm operator for any t ∈ C.

Let us formulate the main result of this subsection.

Theorem 17.3. There exists a number t0 > 0 such that 0 = indP0 > indPt as 0 < |t| ≤ t0.
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Fig. 17.3. Problem (17.22), (17.23)

17.2.2. Proof of Theorem 17.3. As is known, the local operator P0 is an isomorphism and hence

indP0 = 0. (17.24)

Let us study the operators Pt. The same (local, since the support of nonlocal terms lies outside
the set {g1, g2}) model problem with a parameter λ ∈ C corresponds to each point g1, g2:

ϕ′′ − λ2ϕ = 0, |ϕ| < ω0, (17.25)

ϕ(−ω0) = ϕ(ω0) = 0. (17.26)

It can be directly verified that the eigenvalues of this problem have the form

λk =
πk

2ω0
i, k = ±1,±2, . . . . (17.27)

Lemma 17.3. dimkerPt = 0 as 0 < |t| ≤ 1.

Proof. Let u ∈ kerPt. Since 0 < ω0 < π/2, it follows from Eq. (17.27) that there are no eigenvalues of
problem (17.25), (17.26) in the bound −1 ≤ Imλ < 0. In Sec. 18 (see Theorem 18.1), we show that in
this case u ∈W 2

2 (G). It follows from Eq. (13.22) that the function u is infinitely differentiable outside
an arbitrary neighborhood of the set {g1, g2}; by the Sobolev embedding theorem, u ∈ C∞(G)∩C(G).

Since t ∈ R, we see that all coefficients of problem (17.22), (17.23) are real; therefore, without loss
of generality, we assume that the function u(y) is real-valued. If the function |u(y)| has a maximum
inside the domain G, then by the maximum principle, u = const in G; then, by virtue of the second
condition in Eq. (17.23), we see that u = 0. If |u(y)| has a maximum on Γ1, then it follows from
the first condition in Eq. (17.23) and from the relation |t| ≤ 1 that |u(y)| has a maximum inside the
domain G; by the above, we see that u = 0. Finally, if |u(y)| has a maximum on Γ2, by virtue of the
continuity and the second condition in Eq. (17.23), we obtain u = 0.

Lemma 17.4. There exists a number t0 > 0 such that codimR(Pt) > 0 for 0 < |t| ≤ t0.

Proof. 1. Consider the operator Mt : H
2
a+1(G) → H0

a+1(G∂G), a > 0, acting by the formula

Mt = (Δu, u|Γ1 + tu(Ω(y))|Γ1 , u|Γ2).

Since the embedding operator W
3/2
2 (Γ1) ⊂ H

3/2
a+1(Γ1) is bounded (by Lemma 5.3) and Ω(Γ1) ⊂ G, we

have
‖u(Ω(y))‖

H
3/2
a+1(Γ1)

≤ k1‖u(y′)‖W 3/2
2 (Ω(Γ1))

≤ k2‖u‖H2
a+1(G). (17.28)

Hence, if u ∈ H2
a+1(G) and a > 0, we see thatMtu ∈ H0

a+1(G, ∂G). Thus, the operator Mt is well
defined.

According to [58, Theorem 10.5], the local operator M0 is an isomorphism if

0 < a < π/(2ω0). (17.29)
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Let us fix a number a satisfying (17.29). Since M0 is an isomorphism and estimate (17.28) holds, we
see that the operator Mt is also an isomorphism for 0 ≤ |t| ≤ t0, where t0 = t0(a) is sufficiently small.

2. Construct a function u ∈ H2
a+1(G) satisfying nonlocal conditions (17.23) such that

u(Ω(g1)) = 1.

For this, we consider a function v ∈ C∞(G) such that v(y) = 1 for y ∈ Ω(Γ1) and supp v ⊂ G. In this

case, v(Ω(y)) = 1 for y ∈ Γ1; hence v(Ω(y))|Γ1 ∈ H
3/2
a+1(Γ1).

Now we consider a function w ∈ H2
a+1(G) such that

w|Γ1 = −tv(Ω(y))|Γ1 , w|Γ2 = 0, suppw ∩ Ω(Γ1) = ∅

(it exists by [58, Lemma 3.1]). It is easy to see that u = v + w is a desired function (see Fig. 17.3).
3. We approximate the function f = Δu ∈ H0

a+1(G) by functions fn ∈ L2(G), n = 1, 2, . . . , in the

space H0
a+1(G):

‖fn − f‖H0
a+1(G) → 0, n→ ∞. (17.30)

If codimR(Pt) = 0 for 0 < |t| ≤ t0, then for any function fn ∈ L2(G), there exists a general solution
un ∈ W 1(G) of problem (17.22), (17.23) with the right-hand side fn; by Lemma 17.3, this solution is
unique. Moreover, by Lemma 14.2, we obtain that un ∈ H2

a+1(G).
The fact that Mt is an isomorphism and Eq. (17.30) implies that

‖un − u‖H2
a+1(G) ≤ k3‖fn − f‖H0

a+1(G) → 0, n→ ∞.

Hence, by the Sobolev embedding theorem, we have

un(Ω(g1)) → u(Ω(g1)) = 1, n→ ∞. (17.31)

On the other hand, there are no eigenvalues of problem (17.25), (17.26) in the strip −1 ≤ Imλ < 0.
In Sec. 18 (see Theorem 18.1), we will show that in this case un ∈W 2

2 (G). By the Sobolev embedding
theorem, we obtain that un ∈ C(G); by the second relation in Eq. (17.23), we see that un(g1) = 0.
Then from the first relation in Eq. (17.23) we obtain that un(Ω(g1)) = 0 (for t 	= 0). This contradicts
Eq. (17.31). Thus, we have proved that codimR(Pt) > 0.

Theorem 17.3 follows from Eq. (17.24) and Lemmas 17.3 and 17.4.

Remark 17.1. Let I be a unique operator in L2(G) and λ ∈ C. By Lemma 15.1, minor terms in an
elliptic equation do not affect the index of the unbounded nonlocal operator Pt. Thus,

ind(Pt − λI) = indPt < 0

for 0 < |t| ≤ t0, where t0 > 0 is sufficiently small. Therefore, if 0 < |t| ≤ t0, then the spectrum of the
operator Pt coincides with the whole complex plane.

Chapter 5

SMOOTHNESS OF GENERALIZED SOLUTIONS

OF NONLOCAL ELLIPTIC PROBLEMS

18. Preservation of Smoothness of Generalized Solutions

18.1. Statement of the problem. As in previous chapters, we assume that conditions 6.1–6.4
hold (condition 6.4 holds with l = 0). As in Chap. 4, we assume that the orders miμ of the differential
operators Biμs(y,D) satisfy the inequalities

miμ ≤ 2m− 1.
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We study the smoothness of generalized solutions (see Definition 13.3) of a nonlocal boundary
problem (6.7), (6.8):

P(y,D)u = f0(y), y ∈ G, (18.1)

B0
iμu+B1

iμu+B2
iμu = fiμ(y) y ∈ Γi, i = 1, . . . , N, μ = 1, . . . ,m. (18.2)

We say that the smoothness of generalized solutions is preserved if any generalized solution of
problem (18.1), (18.2) (with any right-hand side {f0, fiμ} from some subset of the space W0(G, ∂G);
this subset can be defined by different ways in different cases) belongs to W 2m(G). If there exists a
generalized solution of problem (18.1), (18.2) that does not belong to W 2m(G), then we say that the
smoothness of generalized solutions is violated.

Let us consider a model problem that corresponds the set (orbit) K.
Denote the function u(y) for y ∈ Oε1(gj) by uj(y). If gj ∈ Γi, y ∈ Oε(gj), and Ωis(y) ∈ Oε1(gk),

then we denote the function u(Ωis(y)) by uk(Ωis(y)). In this notation, nonlocal problem (18.1), (18.2)
in a ε-neighborhood of the set (orbit) K has the form

P(y,D)uj = f0(y), y ∈ Oε(gj) ∩G,

Biμ0(y,D)uj(y)|Oε(gj)∩Γi
+

Si∑
s=1

(
Biμs(y,D)(ζuk)

)(
Ωis(y)

)∣∣
Oε(gj)∩Γi

= ψiμ(y),

y ∈ Oε(gj) ∩ Γi, i ∈ {1 ≤ i ≤ N : gj ∈ Γi}, j = 1, . . . , N, μ = 1, . . . ,m,

where

ψiμ = fiμ −B2
iμu.

Let y 
→ y′(gj) be the change of variables described in Sec. 6.1 (see Chap. 2). Introduce the functions

Uj(y
′) = u(y(y′)), fj(y

′) = f0(y(y
′)), y′ ∈ Kε

j ;

fjσμ(y
′) = fiμ(y(y

′)), Bu
jσμ(y

′) = (B2
iμu)(y(y

′)),

ψjσμ(y
′) = fjσμ(y

′)−Bu
jσμ(y

′), y′ ∈ γεjσ,

(18.3)

where σ = 1 (σ = 2) if the transformation y 
→ y′(gj) maps Oε(gj) ∩ Γi to the side γj1 (respectively,
γj2) of the angle Kj . Let us denote y′ by y again. Then, by virtue of condition 6.3, problem (18.1),
(18.2) has the following form (cf. (6.12), (6.13) and (13.27), (13.28)):

Pj(y,D)Uj = fj(y), y ∈ Kε
j , (18.4)

Bjσμ(y,D)U ≡
∑
k,s

(Bjσμks(y,D)Uk)(Gjσksy) = ψjσμ(y), y ∈ γεjσ. (18.5)

Note that the right-hand side of problem (18.4), (18.5) coincides with the right-hand side of prob-
lem (13.27), (13.28), if fiμ = 0. If, moreover, B2

iμ = 0, then the right-hand side of problem (18.4),

(18.5) coincides with the right-hand side of problem (6.12), (6.13).

18.2. Statement of the main result. Here we study the case where the following condition holds.

Condition 18.1. The line Imλ = 1− 2m does not contain eigenvalues of the operator L̃(λ).

Recall that the index � in the definition of the generalized solution is fixed and satisfies the inequal-
ities

0 ≤ � ≤ 2m− 1.

Denote by Λ the set of eigenvalues of the operator L̃(λ) that lie in the strip 1 − 2m < Imλ < 1 − �
(this set can be empty). Let us also denote iΛ = {iλ : λ ∈ Λ}.

Condition 18.2. All eigenvalues from the set Λ are regular.
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Recall that the notion of a regular eigenvalue was introduced in Definition 7.1.
Condition 18.2 means that if � = 2m− 1 (e.g., if � = m = 1), then Λ = ∅ and if � ≤ 2m− 2, then

iΛ ⊂ {�, . . . , 2m− 2}.
In the case where � ≤ 2m− 2, we need additional conditions.
Let W−2m(−ωj , ωj) be the space dual to W 2m(−ωj , ωj). Let us introduce the space

W−2m(−ω, ω) =
N∏
j=1

W−2m(−ωj , ωj).

Consider the operator

(L̃(λ))∗ : W0[−ω, ω] → W−2m(−ω, ω)
conjugated to the operator

L̃(λ) : W2m(−ω, ω) → W0[−ω, ω].
The operator (L̃(λ))∗ maps an element {ζj , χjσμ} ∈ W0[−ω, ω] to (L̃(λ))∗{ζj , χjσμ} by the following
rule:

〈ϕ, (L̃(λ))∗{ζj , χjσμ}〉 =
∑
j

(
P̃j(ω,Dω, λ)ϕj , ζj

)
L2(−ωj ,ωj)

+
∑
j,σ,μ

B̃jσμ(ω,Dω, λ)ϕχjσμ

for all ϕ ∈ W2m(−ω, ω), where 〈 ·, · 〉 denotes a sesquilinear form on a corresponding pair of dual
spaces.

For any number s ∈ {�, . . . , 2m− 2}, we denote by Js the set of all indices (j′, σ′, μ′), for which

s ≤ mj′σ′μ′ − 1 (18.6)

(i.e., indices corresponding to differential operators of sufficiently high order (namely, order ≥s+ 1)
in the boundary conditions). Let us also denote the space consisting of vectors {cjσμ} (cjσμ ∈ C)
satisfying the following relations:

cj′σ′μ′ = 0, (j′, σ′, μ′) ∈ Js.

by Cs.

Condition 18.3. If � ≤ 2m− 2, then for any s ∈ iΛ, the following conditions hold :

(1) Js 	= ∅;

(2) 〈{0, cjσμ}, ψ〉 = 0 for all {cjσμ} ∈ Cs and ψ ∈ ker(L̃(−is))∗;
(3) let ϕc ∈ W2m(−ω, ω) be a solution of the equation L̃(−is)ϕc = {0, cjσμ}, where {cjσμ} ∈ Cs (this

solution exists by item 2 and is defined with accuracy of an element ϕ0 ∈ ker L̃(−is)). Then for
any vector {cjσμ} ∈ Cs, the function rsϕc(ω) is a homogeneous polynomial (of order s).

Remark 18.1. 1. Item 1 in condition 18.3 is necessary for the fulfillment of item 2. Indeed, consider
an eigenvalue λs = −is ∈ Λ and assume that Js = ∅. Then Cs =

∏
j,σ,μ

C. Thus, if item 2 is valid, then

the equation L̃(λs)ϕc = {0, cjσμ} is solvable for any cjσμ ∈ C. It is easy to see that in this case the

equation L̃(λs)ϕ = {f̃j , cjσμ} is also solvable for any {f̃j , cjσμ} ∈ W0[−ω, ω]. Hence, by Lemma 6.1,

the operator L̃(λs) is an isomorphism; this is impossible since λs is an eigenvalue;
2. Item 2 is a necessary and sufficient condition for the existence of solutions ϕc for all {cjσμ} ∈ Cs

from item 3.

Remark 18.2. Assume that condition 18.2 holds. If item 3 of condition 18.3 holds for some solution
ϕc, then it holds for any solution ϕc + ϕ0, where ϕ0 ∈ ker L̃(−is) since −is is a regular eigenvalue of

the operator L̃(λ).
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Condition 18.4. If � ≤ 2m− 2, then the following statement holds for any s ∈ {�, . . . , 2m− 2} \ iΛ.
Let ϕc ∈ W2m(−ω, ω) be a solution10 of the equation L̃(−is)ϕc = {0, cjσμ}, where {cjσμ} ∈ Cs. Then
for any vector {cjσμ} ∈ Cs, the function rsϕc(ω) is a homogeneous polynomial of (order s).

Remark 18.3. Assume that condition 18.2 holds.
1. If conditions 18.3 and 18.4 hold, then the problem

Pj(D)V = 0, Bjσμ(D)V = cjσμr
s−mjσμ (18.7)

has a solution V (y), which is a homogeneous polynomial of order s for any vector {cjσμ} ∈ Cs,
s = �, . . . , 2m − 2. Indeed, substituting the function V = rsϕc(ω) into Eq. (18.7), we obtain the

equation L̃(−is)ϕs = {0, cjσμ}. By conditions 18.3 and 18.4, this equation has a solution ϕc such that
the function V = rsϕc(ω) is a homogeneous polynomial of order s.

2. If either condition 18.3 or condition 18.4 is violated, then one can find a vector {cjσμ} ∈ Cs for
which problem (18.7) has a solution of the form

V = rsϕc(ω) + rs(i ln r)
J∑
n=1

cnϕ
(n)(ω), (18.8)

where s ∈ {�, . . . , 2m− 2}, cn ∈ C, ϕc, ϕ
(n) ∈ W2m(−ω, ω) and J = J(s); moreover, the function V is

not a polynomial with respect to variables y1 and y2.
Indeed, if condition 18.4 is violated, then the statement is obvious (with c1 = · · · = cJ = 0). Assume

that condition 18.3 is violated. If items 1 and 2 of condition 18.4 hold and item 3 is violated, then
the statement is obvious again (with c1 = · · · = cJ = 0). Assume that either item 1 or item 2 is
violated. In both cases, item 2 is also violated (see Remark 18.1). In other words, there exist a regular
eigenvalue λs = −is ∈ Λ and a numerical vector {cjσμ} ∈ Cs such that the element {0, cjσμ} is not

orthogonal to the kernel ker(L̃(λs))∗.
Let us denote a basis in ker L̃(λs) by ϕ(1), . . . , ϕ(J) (J ≥ 1). Since λs is a regular eigenvalue, we

see that no eigenvector ϕ(n) has adjoint vectors. Let us substitute a function V of the form (18.8) in
Eqs. (18.7). As a result, we obtain

L̃(λs)ϕc = {0, cjσμ} −
J∑
n=1

cn
dL̃(λ)
dλ

∣∣∣∣
λ=λs

ϕ(n). (18.9)

Note that by Lemma 6.1

dimker(L̃(λs))∗ = dimker L̃(λs) = J.

Let ψ(1), . . . , ψ(J) be a basis in the space ker(L̃(λs))∗. By [26, Lemma 3.2], the matrix∥∥∥∥∥
〈
dL̃(λ)
dλ

∣∣∣∣
λ=λs

ϕ(n), ψ(k)

〉∥∥∥∥∥
n,k=1,...,J

is nondegenerate. Hence we can choose constants cn such that the right-hand side of Eq. (18.9) will

be orthogonal to the kernel ker(L̃(λs))∗; hence, a solution ϕc of Eqs. (18.9) exists. Moreover, since

the element {0, cjσμ} is not orthogonal to the kernel ker(L̃(λs))∗, we see that the vector (c1, . . . , cJ)
is nonzero. Thus, the function V of the form (18.8) is not a polynomial with respect to variables y1
and y2.

Let us formulate the main result of this section.

Theorem 18.1. Let conditions 18.1–18.4 hold and let u be a generalized solution of problem (18.1),
(18.2) with the right-hand side {f0, fiμ} ∈ W0(G, ∂G). Then u ∈W 2m(G).

10This solution exists and is unique since −is is not an eigenvalue of the operator L̃(λ).
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Remark 18.4. By Theorem 18.1, any generalized solution of problem (18.1), (18.2) belongs to

W 2m(G). The right-hand sides fiμ in the nonlocal conditions belong to W 2m−miμ−1/2(Γi) (this is
natural). However, we do not impose any additional restrictions (as concordance conditions at points
of the set K) on the behavior of the functions fiμ and the coefficients of nonlocal operators. In fact,

the functions fiμ ∈ W 2m−miμ−1/2(Γi) are not quite arbitrary. For example, if m = 1, mi1 = 0, and
B1
i1 = 0, B2

i1 = 0 (i.e., a “local” Dirichlet problem) and the solution u belongs to W 2(G), then, by the
Sobolev embedding theorem, we have

fi1(g) = fj1(g), g ∈ Γi ∩ Γj 	= ∅. (18.10)

Theorem 18.1 shows that if conditions 18.1–18.4 hold, then the existence of a general solution guar-
antees the fulfillment of relations of the form (18.10). In Sec. 19, we prove that if condition 18.1 is
violated, then for any generalized solution be smooth, we must impose special concordance conditions
on the right-hand sides fiμ.

18.3. Statement of the main results. Let Uj(y
′) = uj(y(y

′)), j = 1, . . . , N , be the functions
corresponding to the set (orbit) K and satisfying relations (18.4) and (18.5) with the right-hand sides
{fj , ψjσμ}.

It follows from the proof of Lemma 15.3 that

U = Q+ Û , (18.11)

where Û ∈ H2m
2m−�(K

ε), and Q = (Q1, . . . , QN ) is a vector-valued polynomial of order �− 1 (if � = 0,
then there is no polynomial Q). Using this fact, we prove the following lemma.

Lemma 18.1. Let conditions 18.2–18.4 hold. Then

U =W + U ′, (18.12)

where W = (W1, . . . ,WN ) is a vector-valued polynomial of order 2m−2, U ′ ∈ H2m
δ (Kε) (δ is such that

0 < δ < 1 and the strip 1−2m < Imλ ≤ 1−2m+δ does not contain eigenvalues of the operator L̃(λ))
and

{Pj(y,D)U ′
j} ∈ H0

0(K
ε),

{Bjσμ(y,D)U ′} ∈ H2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε).

(18.13)

Proof. 1. The function Û from Eq. (18.11) belongs to H2m
2m−�(K

ε) and, by Eqs. (18.4), (18.5), and
(18.11), is a solution of the following problem:

Pj(y,D)Ûj = fj −Pj(y,D)Qj , y ∈ Kε
j ,

Bjσμ(y,D)Û = ψjσμ −Bjσμ(y,D)Q, y ∈ γεjσ.
(18.14)

Since {fj} ∈ W0(Kε) and Q is a vector-valued polynomial, we see that

{fj −Pj(y,D)Qj} ∈ H0
0(K

ε). (18.15)

Further, ψjσμ −Bjσμ(y,D)Q ∈ W 2m−mjσμ−1/2(γεj ). Hence, by Lemma 5.3, there exists a polynomial

Pjσμ(r) of order 2m−mjσμ − 2 (if mjσμ = 2m− 1, then Pjσμ(r) ≡ 0) such that

{ψjσμ −Bjσμ(y,D)Q− Pjσμ} ∈ H2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε) (18.16)

for any 0 < δ < 1. Moreover, since

{ψjσμ −Bjσμ(y,D)Q} = {Bjσμ(y,D)Û} ∈ H2m−m−1/2
2m−� (γε),

we see that any polynomial Pjσμ(r) consists of monomials of order max(0, �−mjσμ), . . . , 2m−mjσμ−2
(in particular, if � = 2m− 1, then there is no polynomial Pjσμ(r)).

2. Let us write the polynomial Pjσμ(r) in the form

Pjσμ(r) = cjσμr
�−mjσμ + c′jσμr

�−mjσμ+1 + . . . , (18.17)
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where, in particular, cjσμ = 0 for all j, σ, and μ such that � ≤ mjσμ − 1 (cf. (18.6) as s = �). Hence
{cjσμ} ∈ C�.

Consider the following auxiliary problem:

Pj(D)W � = 0, Bjσμ(D)W � = cjσμr
�−mjσμ . (18.18)

By conditions 18.3 and 18.4 (see Remark 18.3), problem (18.18) has a solution W �(y), which is a
homogeneous vector-valued polynomial of order �.

Using (18.17) and (18.18) and expanding the coefficients of operators Bjσμ(y,D) in the Taylor
series, we obtain the embeddings

{Pj(y,D)W �
j } ∈ H0

0(K
ε),

{Bjσμ(y,D)W � − Pjσμ + P ′
jσμ} ∈ H2m−m−1/2

δ (γε) ∩W2m−m−1/2(γε),
(18.19)

where P ′
jσμ(r) is a polynomial consisting of monomials of order max(0, �−mjσμ+1), . . . , 2m−mjσμ−2.

It follows from (18.15), (18.16), and (18.19) that

{fj −Pj(y,D)(Qj +W �
j )} ∈ H0

0(K
ε),

{ψjσμ −Bjσμ(y,D)(Q+W �)− P ′
jσμ} ∈ H2m−m−1/2

δ (γε) ∩W2m−m−1/2(γε).
(18.20)

3. Repeating the procedure from item 2 of the proof finitely many times (every time we use
conditions 18.3 and 18.4), we obtain the embeddings

{fj −Pj(y,D)(Qj +W �
j + · · ·+W 2m−2

j )} ∈ H0
0(K

ε),

{ψjσμ −Bjσμ(y,D)(Q+W � + · · ·+W 2m−2)} ∈ H2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε),

(18.21)

where W s is a homogeneous vector-valued polynomial of order s, s = �, . . . , 2m− 2. (Let us note that
a homogeneous vector-valued polynomial of order 2m− 1 belongs to H2m

δ (Kε).) If � = 2m− 1, then
there are no polynomials W s in Eq. (18.21); in this case, the second relation in Eq. (18.21) follows
from Eq. (18.16), where Pjσμ = 0.

Equations (18.14) and (18.21) yield the embeddings

{Pj(y,D)(Ûj −W �
j − · · · −W 2m−2

j )} ∈ H0
0(K

ε),

{Bjσμ(y,D)(Û −W � − · · · −W 2m−2)} ∈ H2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε).

(18.22)

4. Since the line Imλ = 1 − 2m + δ does not contain eigenvalues of the operator L̃(λ) and rela-
tions (18.22) hold, we see that it follows from [26, Theorem 2.2, Lemma 4.3] and conditions 18.2–18.4

that the function Û + W � + · · · + W 2m−2 belongs to the space H2m
δ (Kε) with accuracy up to a

vector-valued polynomial. This vector-valued polynomial consists of vector-valued monomials of order
min
s∈iΛ

s, . . . , 2m− 2 (this vector-valued polynomial is absent if � = 2m− 1). In other words, there exists

a vector-valued polynomial Ŵ consisting of vector-valued monomials of orders l, . . . , 2m− 2 such that

Û + Ŵ ∈ H2m
δ (Kε),

{Pj(y,D)(Ûj + Ŵj)} ∈ H0
0(K

ε),

{Bjσμ(y,D)(Û + Ŵ )} ∈ H2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε).

(18.23)

Now the conclusion of the lemma follows from Eqs. (18.11) and (18.23).

Lemma 18.2. Let conditions 18.1–18.4 hold. Then U ∈ W2m(Kε).
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Proof. It follows from Eq. (18.13), Lemma 7.1, and Corollary 7.1 that there exists a function V ∈
H2m
δ (K) ∩W2m(K) such that

{Pj(y,D)(U ′
j − Vj)} ∈ H0

0(K
ε),

{Bjσμ(y,D)(U ′ − V )} ∈ H2m−m−1/2
0 (γε).

(18.24)

By virtue of Eq. (18.24) and the fact that the strip 1−2m ≤ Imλ ≤ 1−2m+δ does not contain the

eigenvalues of the operator L̃(λ), we can apply [26, Theorem 2.2] (theorem on the asymptotic behavior
of solutions of nonlocal problems). Thus, we obtain the embedding U ′ − V ∈ H2m

0 (Kε) ⊂ W2m(Kε).
The conclusion of the lemma follows from here and Lemma 18.1.

Theorem 18.1 follows from (13.21) and Lemma 18.2.

19. “Bounded” Case. Concordance Condition

19.1. Behavior of generalized solution near conjugation points. Let Λ be the same set of
eigenvalues as in Sec. 18. In this section, we assume that the following condition holds (instead of
Condition 18.1).

Condition 19.1. The line Imλ = 1−2m contains a unique eigenvalue λ = i(1− 2m) of the operator

L̃(λ), and this eigenvalue is regular.

The fundamental difference of results obtained in this section from results of Sec. 18 is in the
behavior of generalized solutions near the set (orbit) K. Lemma 18.1 is still valid if condition 19.1

holds. However, Lemma 18.2 becomes invalid since, if there is an eigenvalue of the operator L̃(λ)
on the line Imλ = 1 − 2m, then we cannot apply Lemma 7.1 and Corollary 7.1 from Sec. 7.1 (see
Chap 2). Therefore, we will use results of Secs. 7.2 and 7.3 (see Chap. 2). Moreover, we impose
special concordance conditions on the behavior of the functions fiμ and the coefficients of the nonlocal
operators near the set (orbit) K.

Let τjσ and Dβ
τjσ are the same as in Sec. 5.2 (see Chap. 2). Consider the operators

D
2m−mjσμ−1
τjσ Bjσμ(D)U ≡ D

2m−mjσμ−1
τjσ

⎛
⎝∑

k,s

(Bjσμks(D)Uk)(Gjσksy)

⎞
⎠ .

Using the chain rule for differentiation, we have

D
2m−mjσμ−1
τjσ Bjσμ(D)U ≡

∑
k,s

(B̂jσμks(D)Uk)(Gjσksy), (19.1)

where B̂jσμks(D) are homogeneous differential operators of order 2m − 1 with constant coefficients.
Formally replacing nonlocal operators in Eq. (19.1) by the corresponding local operators, we obtain

B̂jσμ(D)U ≡
∑
k,s

B̂jσμks(D)Uk(y), (19.2)

which coincides with the operators in Eq. (7.2) for l = 0.
It was shown in Sec. 7.2 (see Chap. 2) that if condition 19.1 holds, then the system of operators (19.2)

is linearly independent. Denote the maximal linearly subsystem of system (19.2) by

{B̂j′σ′μ′(D)}. (19.3)

Then any operator B̂jσμ(D), which does not belong to system (19.3), can be represented in form

B̂jσμ(D) =
∑

j′,σ′,μ′
βj

′σ′μ′
jσμ B̂j′σ′μ′(D), (19.4)

where βj
′σ′μ′
jσμ are some constants.
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Introduce the notion of a concordance condition. Let {Zjσμ} ∈ W2m−m−1/2(γε) be a vector con-
sisting of functions defined on intervals γεjσ. Consider the functions

Z0
jσμ(r) = Zjσμ(y)|y=(r cosωj , r(−1)σ sinωj).

Every function Z0
jσμ belongs to W 2m−mjσμ−1/2(0, ε).

Definition 19.1. Let βj
′σ′μ′
jσμ be constants from relations (19.4). If the relations

ε∫
0

r−1

∣∣∣∣∣∣D
2m−mjσμ−1
r Z0

jσμ −
∑

j′,σ′,μ′
βj

′σ′μ′
jσμ D

2m−mj′σ′μ′−1
r Z0

j′σ′μ′

∣∣∣∣∣∣
2

dr <∞ (19.5)

are valid for all indices j, σ, and μ that correspond to the operators of system (19.2), which do not
belong to system (19.3), then we say that functions Zjσμ satisfy concordance condition (19.5).

Remark 19.1. The relation {Zjσμ} ∈ H2m−m−1/2
0 (γε) is sufficient (but is not necessary) for functions

Zjσμ to satisfy Eqs. (19.5). This follows from [53, Lemma 4.8].

Remark 19.2. In terms of Chap. 2, the concordance condition has the form

D
2m−mjσμ−1
τjσ Zjσμ −

∑
j′,σ′,μ′

βj
′σ′μ′
jσμ D

2m−mj′σ′μ′−1
τj′σ′ Zj′σ′μ′ ∈ H1

0 (R
2), (19.6)

where Zjσμ ∈W 2m−mjσμ(R2) is an extension of the function Zjσμ to R
2, which has a compact support

(the corresponding theorems on extension of functions defined in domains with angular points can be
found in [100]). It is easy to show that Eq. (19.5) is equivalent to Eq. (19.6).

Let us show that the following condition is necessary and sufficient condition for some fixed gener-
alized solution u to belong to W 2m(G).

Condition 19.2. Let u be a generalized solution of problem (18.1), (18.2), ψjσμ be the right-hand
sides in nonlocal conditions (18.5), and W be a vector-valued polynomial from Lemma 18.1. Then the
functions ψjσμ −Bjσμ(y,D)W satisfy concordance condition (19.5).

Remark 19.3. 1. The fulfillment of Condition 19.2 depends on the behavior of the function B2
iμu

near the set (orbit) K. By virtue of Eq. (6.5) (for l = 0), the values of the function B2
iμu near the set

K depend on the values of the function u in G \ Oκ1(K). Therefore, the smoothness of a generalized
solution u near the set K depends on the behavior of u outside the set K.

2. Let us clarify how the fulfillment of condition 19.2 depends on the behavior of the functions
u(y), fiμ(y), (B

2
iμu)(y) and the coefficients of the operators B0

iμ and B1
iμ near the set K. On the one

hand, the vector W from 18.1 is defined by the behavior of the solution u(y) near the set K. On the
other hand, the coefficients of the operators B0

iμ and B1
iμ at points of the set K and operators Gjσks

define the constants βj
′σ′μ′
jσμ from Eq. (19.4) and, hence, the constants from Eq. (19.5). Finally, the

derivatives of the functions fiμ(y), (B
2
iμu)(y) and the coefficients of the operators B0

iμ and B1
iμ must

be coordinated near the set K in such a way that the absolute values of the corresponding linear
combinations of derivatives (of order 2m−mjσμ− 1) of the functions ψjσμ−Bjσμ(y,D)W are square
integrable (with weight r−1) near the origin.

Theorem 19.1. Let conditions 19.1 and 18.2–18.4 hold and let u be a generalized solution of prob-
lem (18.1), (18.2) with the right-hand side {f0, fiμ} ∈ W0(G, ∂G). Then u ∈ W 2m(G) if and only if
condition 19.2 holds.

Proof. 1. Necessity. Let u ∈ W 2m(G). Consider the function U = (U1, . . . , UN ) corresponding to the
set (orbit) K. Obviously, U ∈ W2m(Kε). By Lemma 18.1, we have U =W+U ′, where U ′ ∈ H2m

δ (Kε),
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0 < δ < 1. Since U ′ = U−W ∈ W2m(Kε), by the Sobolev embedding theorem, we have DαU ′|y=0 = 0,
|α| ≤ 2m − 2. This and Lemma 7.2 imply that the functions ψjσμ −BjσμW = Bjσμ(y,D)U ′ satisfy
concordance condition (19.5).

2. Sufficiency. Let condition 19.2 hold. It follows from Eq. (18.13), Lemma 7.4, and Corollary 7.2
that there exists a function V ∈ H2m

δ (K) ∩W2m(K) (δ is the same as in Lemma 18.1) such that

{Pj(y,D)(U ′
j − Vj)} ∈ H0

0(K
ε),

{Bjσμ(y,D)(U ′ − V )} ∈ H2m−m−1/2
0 (γε).

(19.7)

By virtue of Eq. (19.7) and the fact that the strip 1−2m ≤ Imλ ≤ 1−2m+δ contains only the regular

eigenvalue i(1 − 2m) of the operator L̃(λ), we can apply Lemma 7.5. By this lemma, all derivatives
of order 2m of the function U ′ − V belong to W0(Kε). This and the relations

U ′ − V ∈ H2m
δ (Kε) ⊂ H2m−1

0 (Kε) ⊂ W2m−1(Kε)

imply that U ′−V ∈ W2m(Kε). Combining this relation with Lemma 18.1, we complete the proof.

Note that Theorem 19.1 allows one to determine whether a given fixed solution u is smooth near
the set K only in the case where the asymptotic behavior of the solution u of form (18.12) near the
set K is known (i.e., if we have a vector-valued polynomial W ). Theorem 19.1 clarifies the factors
that affect the smoothness of generalized solutions. Below, we will obtain necessary and sufficient
conditions of the fact that every generalized condition belongs to W 2m(G).

19.2. Problem with nonlocal conditions. In this subsection, we formulate necessary and suf-
ficient conditions for the preservation of smoothness of generalized solutions. First, we show that
the right-hand sides of fiμ cannot be arbitrary functions from W 2m−miμ−1/2(Γi); they must satisfy
concordance conditions.

Denote the set consisting of functions {fiμ} ∈ W2m−m−1/2(∂G) such that the functions fjσμ
(see (18.3)) satisfy concordance condition (19.5) by S̃2m−m−1/2(∂G). Introduce the space

S̃0(G, ∂G) = L2(G)× S̃2m−m−1/2(∂G).

Obviously,

S2m−m−1/2(∂G) ∩ S̃2m−m−1/2(∂G) = Ŝ2m−m−1/2(∂G) ⊂ S̃2m−m−1/2(∂G) ⊂ W2m−m−1/2(∂G),

S0(G, ∂G) ∩ S̃0(G, ∂G) = Ŝ0(G, ∂G) ⊂ S̃0(G, ∂G) ⊂ W0(G, ∂G).

The smoothness of generalized solutions of problem (18.1), (18.2) can be violated if the right-hand
sides in nonlocal conditions (18.2) do not satisfy the concordance condition.

Theorem 19.2. Let conditions 19.1 and 18.2–18.4 hold. Then there exist functions {f0, fiμ} ∈
W0(G, ∂G), {fiμ} /∈ S̃2m−m−1/2(∂G), and u ∈ W 2m−1(G) such that u is a generalized solution of
problem (18.1), (18.2) with the right-hand side {f0, fiμ} and u /∈W 2m(G).

Prove the following auxiliary result. Let

ε′ = d1min(ε,κ2), (19.8)

where d1 is defined in Eq. (6.15).

Lemma 19.1. Let condition 19.1 hold and a function {Zjσμ} ∈ W2m−m−1/2(γε) be such that

supp{Zjσμ} ⊂ Oε/2(0), D
β
τjσZjσμ|y=0 = 0, β ≤ 2m − mjσμ − 2, and functions Zjσμ do not satisfy

concordance condition (19.5). Then there exists a function U ∈ H2m
δ (K) ⊂ W2m−1(K), where δ > 0

is arbitrary, such that suppU ⊂ Oε′(0), U /∈ W2m(Kε), and U satisfies the relations

{Pj(y,D)Uj} ∈ W0(Kε), {Bjσμ(y,D)U − Zjσμ} ∈ H2m−m−1/2
0 (γε). (19.9)
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Proof. By Lemma 5.1, there exists a sequence of functions {Znjσμ} ∈ W2m−m−1/2(γ), n = 1, 2, . . . , such

that suppZnjσμ ⊂ Oε(0), Z
n
jσμ vanish near the origin (hence, they satisfy concordance condition (19.5)),

and {Znjσμ} → {Zjσμ} in W 2m−m−1/2(γ). Taking into account Lemma 5.4, we see that {Znjσμ} →
{Zjσμ} in H

2m−m−1/2
δ (γ), δ > 0 is arbitrary. Now we apply Lemma 7.6. By this lemma, there exists

a sequence V n = (V n
1 , . . . , V

n
N ) satisfying the following conditions: V n ∈ W2m(Kd) ∩ H2m

δ (Kd) for
every d > 0,

Pj(D)V n
j = 0, y ∈ Kj , Bjσμ(D)V n = Znjσμ(y), y ∈ γjσ, (19.10)

and the sequence V n converges to the function V ∈ H2m
δ (Kd) in H2m

δ (Kd) for every d > 0. Passing

to the limit in Eq. (19.10) (in the spaces H0
δ(K

d) and H2m−m−1/2
δ (Kd), respectively), we obtain the

equalities
Pj(D)Vj = 0, y ∈ Kj , Bjσμ(D)V = Zjσμ(y), y ∈ γjσ. (19.11)

Consider a patch function ξ ∈ C∞
0 (Oε′(0)), which is equal to 1 near the origin. Let U = ξV .

Obviously, suppU ⊂ Oε′(0) and

U ∈ H2m
δ (K) ⊂ W2m−1(K).

2. Let us show that the function U is as required. Indeed, using the Leibnitz formula, rela-
tions (19.11), and Lemmas 5.5 and 5.6, we derive Eq. (19.9).

It remains to show that U /∈ W2m(Kε). Suppose the contrary: let U ∈ W2m(Kε). Then by virtue
of the Sobolev embedding theorem and the relation U ∈ H2m

δ (Kε) (δ > 0 is arbitrary), we have
DαU |y=0 = 0, |α| ≤ 2m − 2. It follows from here and Lemma 7.2 that the functions Bjσμ(y,D)U
satisfy concordance condition (19.5). However, in this case, the functions Bjσμ(y,D)U − Zjσμ do not
satisfy concordance condition (19.5). This contradicts (19.9) (see Remark 19.1).

Proof of Theorem 19.2. 1. Let us construct a generalized solution u /∈W 2m(G) with the support near
the set K; in this case, by Eq. (6.5), B2

iμu = 0 (for l = 0).

It was proved in Lemma 7.3 that there exists a function {Zjσμ} ∈ W2m−m−1/2(γ) such that

suppZjσμ ⊂ Oε/2(0), D
β
τjσZjσμ|y=0 = 0, β ≤ 2m − mjσμ − 2, and the functions Zjσμ do not sat-

isfy concordance condition (19.5). By Lemma 19.1, there exists a function U ∈ H2m
δ (K) ⊂ W2m(K)

such that suppU ⊂ Oε′(0), U /∈ W2m(K), and U satisfies relations (19.9). Hence

{Pj(y,D)Uj} ∈ W0(Kε), {Bjσμ(y,D)U} ∈ W2m−m−1/2(γε),

and the functions Bjσμ(y,D)U do not satisfy concordance condition (19.5).
2. Introduce a function u(y) such that u(y) = Uj(y

′(y)) for y ∈ Oε′(gj) and u(y) = 0 for y /∈ Oε′(K),
where y′ 
→ y(gj) is the change of variables, which is inverse to y 
→ y′(gj) (see Sec. 6.1, Chap. 2).
Since suppu ⊂ Oκ1(K), we have B2

iμu = 0. Hence u(y) is a desired generalized solution of prob-

lem (18.1), (18.2).

Theorem 19.2 shows us that it is necessary for the right-hand sides {f0, fiμ} to belong to the space

S̃0(G, ∂G) if we want that any generalized solution of problem (18.1), (18.2) be smooth.

Let v be an arbitrary function from W 2m(G \Oκ1(K)). Consider the change of variables y 
→ y′(gj)
from Sec. 6.1 (see Chap. 2). Introduce the functions

Bv
jσμ(y

′) = (B2
iμv)(y(y

′)), y′ ∈ γεjσ (19.12)

(cf. functions (18.3)). Let us prove that the following condition is necessary and sufficient for any
generalized solution to be smooth.

Condition 19.3. (1) For any v ∈W 2m(G \ Oκ1(K)), the functions Bv
jσμ satisfy concordance con-

dition (19.5).
(2) For any vector-valued polynomial W of degree 2m− 2, the functions Bjσμ(y,D)W satisfy con-

cordance condition (19.5).
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Note that the fulfillment of condition 19.3 (unlike Condition 19.2) is independent of a special
generalized solution. It depends only on the operators B0

iμ, B
1
iμ, and B2

iμ and on the geometry of
the domain G near the set K. This is natural since here we study the smoothness of all generalized
solutions (while in Sec. 19.1, we studied the smoothness of a fixed solution).

Theorem 19.3. Let conditions 19.1 and 18.2–18.4 hold. Then the following statements hold.

(1) If condition 19.3 is valid and u is a generalized solution of problem (18.1), (18.2) with the

right-hand side {f0, fiμ} ∈ S̃0(G, ∂G), then u ∈W 2m(G).

(2) If condition 19.3 is violated, then there exist a right-hand side {f0, fiμ} ∈ S̃0(G, ∂G) and a
generalized solution u of problem (18.1), (18.2) such that u /∈W 2m(G).

Proof. 1. Sufficiency. Let condition 19.3 be valid and let u be an arbitrary generalized solution of
problem (18.1), (18.2) with the right-hand side {f0, fiμ} ∈ S̃0(G, ∂G). By Eq. (13.21), we have u ∈
W 2m(G\Oκ1(K)). Hence the functions Bu

jσμ (by condition 19.3) satisfy concordance condition (19.5).
LetW be a vector-valued polynomial of degree 2m−2 from Lemma 18.1. Using condition 19.3, we see
that the functions Bjσμ(y,D)W satisfy concordance condition (19.5). Since {fiμ} ∈ S̃2m−m−1/2(∂G),
we see that the functions fjσμ satisfy concordance condition (19.5). Hence, the functions ψjσμ =
fjσμ−Bu

jσμ and Bjσμ(y,D)W satisfy condition 19.2. Applying Theorem 19.1, we obtain u ∈W 2m(G).

2. Necessity. Let condition 19.3 hold. Then there exist a function v ∈W 2m(G \ Oκ1(K)) and a
vector-valued polynomial W = (W1, . . . ,WN ) of degree 2m− 2 such that the functions Bv

jσμ+BjσμW

do not satisfy concordance condition (19.5) (we can consider either v = 0, W 	= 0, or v 	= 0, W = 0).
Let us extend the function v to the domain G such that v(y) = 0 for y ∈ Oκ1/2(K) and v ∈W 2m(G).

By Lemma 5.3, there exist polynomials f ′jσμ(r) of degree 2m −mjσμ − 2 (if mjσμ = 2m− 1, then

f ′jσμ(r) ≡ 0) such that

{Bv
jσμ +Bjσμ(y,D)W − f ′jσμ} ∈ H2m−m−1/2

δ (γε) ∩W2m−m−1/2(γε),

where δ > 0 is arbitrary. Hence

Dβ
τjσ(B

v
jσμ +Bjσμ(y,D)W − f ′jσμ)(0) = 0, β ≤ 2m−mjσμ − 2.

Since D
2m−mjσμ−1
r f ′jσμ(r) ≡ 0, we see that the functions f ′jσμ satisfy concordance condition (19.5).

Then the functions Bv
jσμ +Bjσμ(y,D)W − f ′jσμ do not satisfy concordance condition (19.5).

By Lemma 19.1, there exists a function U ′ ∈ H2m
δ (K) ⊂ W2m−1(K) such that suppU ′ ⊂ Oε′(0),

U ′ /∈ W2m(Kε) and

{Pj(y,D)U ′
j} ∈ W0(Kε), (19.13)

{Bjσμ(y,D)U ′ − (f ′jσμ −Bv
jσμ −Bjσμ(y,D)W ))} ∈ H2m−m−1/2

0 (γε).

We can rewrite the last relation as follows:

{Bjσμ(y,D)(U ′ +W ) +Bv
jσμ − f ′jσμ} ∈ H2m−m−1/2

0 (γε). (19.14)

Introduce a function u′(y) such that u′(y) = U ′
j(y

′(y)) + ξj(y)Wj for y ∈ Oε′(gj) and u
′(y) = 0 for

y /∈ Oε′(K), where y′ 
→ y(gj) is the change of variables inverse to the change y 
→ y′(gj) from Sec. 6.1
(see Chap. 2), ξj ∈ C∞

0 (Oε′(gj)), ξj(y) = 1 for y ∈ Oε′/2(gj) and ε′ is defined in Eq. (19.8). Let us

prove that the function u = u′ + v is as required. Obviously, u ∈ W 2m−1(G), u /∈ W 2m(G), and u
satisfies relations (13.21). It follows from v ∈W 2m(G) and Eqs. (19.13) that

P(y,D)u ∈ L2(G).

Consider the functions fiμ = B0
iμu + B1

iμu + B2
iμu. It follows from v ∈ W 2m(G), Eqs. (13.21),

and inequality (6.5) (with l = 0) that fiμ ∈ W 2m−miμ−1/2
(
Γi \ Oδ(K)

)
for any δ > 0. Consider
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the behavior of fiμ near the set K. Note that, by virtue of (6.5) (with l = 0), we have B2
iμu

′ = 0.

Moreover, B0
iμv +B1

iμv = 0 for y ∈ Oκ1/d2(K). Hence,

fiμ = B0
iμu

′ +B1
iμu

′ +B2
iμv, y ∈ Oκ1/d2(K). (19.15)

Introduce the functions fjσμ(y
′) = fiμ(y(y

′)), where y 
→ y′(gj) is the change of variables from

Sec. 6.1 (see Chap. 2). Equations (19.15) and (19.14) yield {fjσμ − f ′jσμ} ∈ H2m−m−1/2
0 (γε). Hence,

{fjσμ} ∈ W2m−m−1/2(γε) and the functions fjσμ (as well as f ′jσμ) satisfy concordance condition (19.5).

Thus, {fiμ} ∈ S̃2m−m−1/2(∂G).

19.3. Problem with regular nonlocal conditions.

Definition 19.2. A function v ∈ W 2m(G \ Oκ1(K)) is said to be admissible if there exists a vector-
valued polynomial W = (W1, . . . ,WN ) of degree 2m− 2 such that

Dβ
τjσ(B

v
jσμ +Bjσμ(y,D)W )|y=0 = 0,

β ≤ 2m−mjσμ − 2, j = 1, . . . , N, σ = 1, 2, μ = 1, . . . ,m. (19.16)

Any vector W of degree 2m − 2 satisfying relations (19.16) is called an admissible vector-valued
polynomial corresponding to the function v.

Remark 19.4. The set of admissible functions is linear. Obviously, the function v = 0 is admissible
and W = 0 is the admissible vector corresponding to it.

The set of admissible vector-valued polynomials that correspond to an admissible function v form
an affine space of the form{

W + W̃ : W̃ is a vector-valued polynomial of degree 2m− 2,

Dβ
τjσBjσμ(y,D)W̃ |y=0 = 0, β ≤ 2m−mjσμ − 2

}
, (19.17)

where W is a fixed, admissible vector-valued polynomial that corresponds to v.

Definition 19.3. The right-hand sides fiμ in nonlocal conditions (18.2) are said to be regular if

(1) condition 18.1 holds and {fiμ} ∈ S2m−m−1/2(∂G) or

(2) condition 19.1 holds and {fiμ} ∈ Ŝ2m−m−1/2(∂G).

The right-hand sides ψjσμ in nonlocal conditions (18.5) are said to be regular if

(1) condition 18.1 holds and {ψjσμ} ∈ S2m−m−1/2(γε) or

(2) condition 19.1 holds and {ψjσμ} ∈ Ŝ2m−m−1/2(γε).

Thus, the regular right-hand sides fiμ (ψjσμ) have a zero of a certain order near the set K
(respectively, near the origin). In particular, the right-hand sides {fiμ} ∈ H2m−m−1/2

0 (∂G) and

{ψjσμ} ∈ H2m−m−1/2
0 (γε) are regular by virtue of the Sobolev embedding theorem and Remark 19.1.

If the right-hand sides fiμ from nonlocal conditions (18.2) are regular, we also say that the right-hand
side {f0, fiμ} of problem (18.1), (18.2) is regular.

We prove that the following statement is necessary and sufficient for any generalized solution of
problem (18.1), (18.2) with a regular right-hand side {fiμ} ∈ Ŝ2m−m−1/2(∂G) to be smooth.

Condition 19.4. The functions Bv
jσμ+Bjσμ(y,D)W satisfy concordance condition (19.5) for any ad-

missible function v and any admissible vector-valued polynomial W (of degree 2m−2) that corresponds
to v.

Note that condition 19.4 is weaker than condition 19.3.

Theorem 19.4. Let conditions 19.1 and 18.2–18.4. Then the following conditions hold.
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(1) If condition 19.4 holds and a function u is a generalized solution of problem (18.1), (18.2) with

a regular right-hand side {f0, fiμ} ∈ Ŝ0(G, ∂G), then u ∈W 2m(G).
(2) If condition 19.4 is violated, then there exists a right-hand side {f0, fiμ} ∈ H0

0(G, ∂G) and a
generalized solution u of problem (18.1), (18.2) such that u /∈W 2m(G).

Proof. 1. Sufficiency. Let condition 19.4 hold, and let u be a generalized solution of problem (18.1),

(18.2) with a regular right-hand side {f0, fiμ} ∈ Ŝ0(G, ∂G). By virtue of Eq. (13.21), we have

u ∈W 2m(G \ Oκ1(K)).
It follows from the conditions on the functions fiμ that the right-hand sides in nonlocal condi-

tions (18.5) have the following form:

ψjσμ = fjσμ −Bu
jσμ, (19.18)

where {fjσμ} ∈ W2m−m−1/2(γε),

Dβ
τjσfjσμ|y=0 = 0, β ≤ 2m−mjσμ − 2, (19.19)

and fjσμ satisfies concordance condition (19.5).
Further, let U =W +U ′, where U ′ ∈ H2m

δ (Kε) and W is a function and a vector-valued polynomial
(of degree 2m− 2) from Lemma 18.1. Equations (18.5) and (19.18) yield

Bjσμ(y,D)U ′ = fjσμ − (Bu
jσμ +Bjσμ(y,D)W ).

Since

{Bu
jσμ +Bjσμ(y,D)W − fjσμ} ∈ W2m−m−1/2(γε), U ′ ∈ H2m

δ (Kε),

we have

{Bu
jσμ +Bjσμ(y,D)W − fjσμ} = {−Bjσμ(y,D)U ′} ∈ H2m−m−1/2

δ (γε) ∩W2m−m−1/2(γε).

It follows from here and Eq. (19.19) that

Dβ
τjσ(B

u
jσμ +Bjσμ(y,D)W )|y=0 = 0, β ≤ 2m−mjσμ − 2,

i.e., u is an admissible function and W is an admissible vector-valued polynomial corresponding to u.
Hence, by virtue of Eq. (19.18) and condition 19.4, condition 19.2 holds. Thus Theorem 19.1 implies
that u ∈W 2m(G).

2. Necessity. Let condition 19.4 be violated. Then there exist a function v ∈W 2m(G \ Oκ1(K))
and a vector-valued polynomial W = (W1, . . . ,WN ) of degree 2m− 2 such that

Dβ
τjσ(B

u
jσμ +Bjσμ(y,D)W )|y=0 = 0, β ≤ 2m−mjσμ − 2,

and the functions Bv
jσμ +Bjσμ(y,D)W do not satisfy concordance condition (19.5).

We must obtain a function u ∈W �(G) satisfying relations (13.21) and such that u /∈W 2m(G) and

P(y,D)u ∈ L2(G), {B0
iμu+B1

iμu+B2
iμu} ∈ H2m−m−1/2

0 (∂G).

For this, it suffices to repeat the reasoning of the proof of statement 2 of Theorem 19.3 assuming that
v is the above-mentioned function, W be the above-mentioned polynomial, and f ′jσμ(y) ≡ 0; this is
possible by virtue of the relation

Bv
jσμ +Bjσμ(y,D)W ∈ H2m−m−1/2

δ (γε) ∩W2m−m−1/2(γε),

where δ > 0 is arbitrary.
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19.4. Homogeneous nonlocal conditions. Violation of smoothness of generalized solu-
tions. Here, we consider some situations where the violation of condition 19.4 leads to the violation
of smoothness of generalized solutions even in the case of homogeneous conditions.

As well as in Sec. 11 (see Chap. 3) and Sec. 16 (see Chap. 4), we assume that the “local” operators
form a normal system (see, e.g., [57, Chap. 2, Sec. 1]).

Condition 19.5. Thr system of operators {B0
iμ}mμ=1 is normal Γi, i = 1, . . . , N .

Lemma 19.2. If condition 19.5 holds, then the following assertions are valid.

(1) Let {fiμ} ∈ H2m−m−1/2
0 (∂G). Then there exists a function u0 ∈ H2m

0 (G) such that

suppu0 ⊂ Oκ1(K),

B0
iμu0 = fiμ(y), y ∈ Γi ∩ Oκ2(K),

B1
iμu0 = B2

iμu0 = 0. (19.20)

(2) Let {fiμ} ∈ H2m−m−1/2
0 (∂G) and supp fiμ ⊂ Oκ2(K). Then there exists a function u0 ∈ H2m

0 (G)
such that

suppu0 ⊂ Oκ2(K),

B0
iμ = fiμ(y), y ∈ Γi,

and relations (19.20) hold.

Proof. 1. Using Lemma 11.1, the partition of unity, and the corresponding patch functions supported
in Oκ1(K), we construct a function u0 ∈ H2m

0 (G) such that

suppu0 ⊂ Oκ1(K), (19.21)

B0
iμu0 = fiμ(y), y ∈ Γi ∩ Oκ2(K), (19.22)

B1
iμu0 = 0.

Equations (19.21) and (6.5) (as l = 0) yield B2
iμu0 = 0. Hence, u0 is a required function.

2. If supp fiμ ⊂ Oκ2(K), then we can assume that suppu0 ⊂ Oκ2(K). In this case Eqs. (19.22) are
valid for y ∈ Γi.

First, we consider the violation of smoothness if the right-hand sides in the nonlocal conditions
vanish near the set K.

Corollary 19.1. Let conditions 19.1, 19.5, and 18.2–18.4 hold. If condition 19.4 is violated, then
there exist a right-hand side {f0, fiμ} ∈ H0

0(G, ∂G), where fiμ(y) = 0 for y ∈ Γi ∩ Oκ2(K), and a
generalized solution u of problem (18.1), (18.2) such that u /∈W 2m(G).

Proof. The proof of this corollary follows from statement 2 of Theorem 19.4, statement 1 of
Lemma 19.2, and the embedding H2m

0 (G) ⊂W 2m(G).

Now we study the violation of smoothness in the case where the right-hand sides in the nonlocal
conditions vanish on the whole boundary of the domain.

Statement 2 of Theorem 19.4 yields the following assertion.

Corollary 19.2. Let conditions 19.1 and 18.2–18.4 hold, but let condition 19.4 be violated. Let
{f0, fiμ} ∈ H0

0(G, ∂G) be a function from statement 2 of Theorem 19.4. Assume that there exists
a function u0 ∈W 2m(G) such that

B0
iμu0 +B1

iμu0 +B2
iμu0 = fiμ(y), y ∈ Γi. (19.23)

Then there exist a right-hand side {f0, 0}, where f0 ∈ L2(G), and a generalized solution u of prob-
lem (18.1), (18.2) such that u /∈W 2m(G).
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In the general case, this corollary does not give us constructive algorithms of construction of function
u0 satisfying relations (19.23). However, we can prove the existence of such a function (in some
particular cases described in Corollaries 19.3 and 19.4; see also Sec. 22.2).

Corollary 19.3. Assume that the operators B2
iμ satisfy the condition

‖B2
iμv‖W 2m−miμ−1/2(Γi)

≤ c‖v‖W 2m(Gρ) ∀v ∈W 2m(Gρ) (19.24)

for some ρ > 0. Let conditions 19.1, 19.5, and 18.2–18.4 hold, but let condition 19.4 be violated. Then
Corollary 19.2 is valid.

The proof follows from Corollary 19.2, the embedding H2m
0 (G) ⊂W 2m(G), and the next lemma.

Lemma 19.3. Let condition 19.5 hold. Let the operators B2
iμ satisfy condition (19.24) and let {fiμ} ∈

H2m−m−1/2
0 (∂G). Then there exists a function u0 ∈ H2m

0 (G) satisfying (19.23).

Proof. Using Lemma 11.1 and the partition of unity, we construct a function u0 ∈ H2m
0 (G) such that

suppu0 ⊂ G \Gρ, (19.25)

B0
iμu0 = fiμ, B1

iμu0 = 0.

By virtue of Eq. (19.25) and (19.24), we have B2
iμu0 = 0. Hence, u0 satisfies (19.23).

Remark 19.5. Condition (19.24) (which is stricter than condition 6.4) means that the operators B2
iμ

correspond to nonlocal terms supported inside the domain G.

Corollary 19.4. Let conditions 19.1, 19.5, and 18.2–18.4 hold. Let condition 19.4 be violated for an
admissible function v such that

supp(B0
iμv +B1

iμv +B2
iμv) ⊂ Γi ∩ Oκ2(K). (19.26)

Then Corollary 19.2 is valid.

Proof. If

supp(B0
iμv +B1

iμv +B2
iμv) ⊂ Γi ∩ Oκ2(K),

then the function

{fiμ} = {B0
iμu+B1

iμu+B2
iμu} ∈ H2m−m−1/2

0 (∂G)

constructed in the proof of statement 2 of Theorem 19.4 (see also proof of statement 2 of Theorem 19.3)
has support lying in Oκ2(K). Hence, applying statement 2 of Lemma 19.2, we obtain the function u0
satisfying Eq. (19.23). Using Corollary 19.2, we complete the proof.

20. Nonlocal Conditions of Special Form.
Regular and Zero Right-hand Sides

In this section, we show that, in some cases, the preservation of the smoothness of generalized
solutions of problem (18.1), (18.2) is independent of conditions 18.3 and 18.4. We consider regular
(see Definition 19.3) or, in particular, zero right-hand sides in the nonlocal conditions. If the right-hand
sides are irregular (and � ≤ 2m− 2), then conditions 18.3 and 18.4 are necessary for the preservation
of smoothness of generalized solutions (see Theorem 21.2 in Sec. 21.2). Obviously, if � = 2m− 1, then
conditions 18.3 and 18.4 are absent; in this case, the results of this section follow from the results of
the previous sections.
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20.1. Nonlocal conditions of a special form. Auxiliary results. Assume that one of the
following two conditions holds.

Condition 20.1. (1) � ≤ 2m− 2;
(2) Bjσμ(y,D) = Bjσμ(D) for y ∈ γεjσ;

(3) the set Λ contains only regular eigenvalues of the operator L̃(λ).
Item 2 in condition 20.1 means that the operators Biμs(y,D) are homogeneous and have constant

coefficients near the set K.

Condition 20.2. (1) � ≤ 2m− 2;
(2) if � ≥ 1, Q is a homogeneous polynomial of degree not higher than �− 1, and

Bjσμ(D)Q|γjσ = 0

for all j, σ, μ, then Q = 0;
(3) the set Λ is empty.

Remark 20.1. Item 2 in condition 20.1 holds, for example, in the case of a “local” Dirichlet problem.
In this case, if we search for solutions in the space W �(G) for � ≤ m, then item 2 in condition 20.2
also holds. Thus, the results of this section generalize results of Kondrat’ev (see [53, Sec. 5]).

Finally, assume that the abstract nonlinear operators B2
iμ “have a zero of a certain order” at points

of the set K.

Condition 20.3. Dβ
τjσB

v
jσμ|y=0 = 0, β ≤ 2m −mjσμ − 2, for any function v ∈ W 2m(G \ Oκ1(K)),

where Bv
jσμ(y) are functions defined in Eq. (19.12) (if mjσμ = 2m−1, then the corresponding relations

are absent).

We prove the following analog of Lemma 18.1.

Lemma 20.1. Let either condition 20.1 or 20.2 hold. Let U ∈ W�(Kε) be a solution of prob-
lem (18.4), (18.5) with the right-hand side {fj , ψjσμ} ∈ S0(Kε, γε). Then

U =W + U ′, (20.1)

where U ′ ∈ H2m
δ (Kε) for any δ > 0, W = (W1, . . . ,WN ) is a vector-valued polynomial of degree 2m−2

such that if condition 20.1 holds, then

Bjσμ(D)W |γjσ = 0, (20.2)

and if condition 20.2 holds, then W = 0.

Proof. 1. Since {ψjσμ} ∈ S2m−m−1/2(γε), it follows from Lemma 5.4 that {ψjσμ} ∈ H2m−m−1/2
δ (γε)

for all δ > 0. In particular, this and the embedding W0(Kε) ⊂ H0
δ(K

ε) (for any δ > 0) imply that

{Pj(y,D)Uj} ∈ H0
δ(K

ε), {Bjσμ(y,D)U} ∈ H2m−m−1/2
δ (γε) ∀δ > 0. (20.3)

Consider a number δ > 0 for which the strips

1− δ ≤ Imλ < 1, −δ ≤ Imλ < 0, . . . , 1− �− δ ≤ Imλ < 1− � (20.4)

do not contain eigenvalues of the operator L̃(λ) (Lemma 6.1 guarantees the existence of such δ).
It follows from Eq. (20.3), the relation U ∈ H2m

2m(K
ε) (see (15.14)), and Lemmas 5.5 and 5.6 that

{Pj(D)Uj} ∈ H0
2m−δ(K

ε), {Bjσμ(y,D)U} ∈ H2m−m−1/2
2m−δ (γε). (20.5)

Using Eq. (20.5), [26, Theorem 2.2], and the fact that there are no eigenvalues of the operator L̃(λ)
in the strip 1− δ ≤ Imλ < 1, we obtain the embedding

U ∈ H2m
2m−δ(K

ε). (20.6)
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Equations (20.3) and (20.6) and Lemmas 5.5 and 5.6 yield

{Pj(D)Uj} ∈ H0
2m−1−δ(K

ε), {Bjσμ(y,D)U} ∈ H2m−m−1/2
2m−1−δ (γε) ∀δ > 0. (20.7)

Hence, using Eq. (20.7) and [26, Theorem 2.2], we obtain the equality

U =W 1 + U1, (20.8)

where

W 1 =

n1∑
n=1

l1∑
l=0

riμn(i ln r)lϕnl(ω),

{μ1, . . . , μn1} is the set of all eigenvalues from the strip 0 ≤ Imλ < 1 − δ (we must take eigenvalues
from the strip −δ < Imλ < 1 − δ, but the second strip in Eq. (20.4) does not contain eigenvalues),
ϕnl ∈ W2m(−ω, ω) and U1 ∈ H2m

2m−1−δ(K
ε); moreover,

Bjσμ(D)W 1|γjσ = 0. (20.9)

Taking into account the inequality Re iμn ≤ 0, the relation

W 1 = U − U1 ∈ W1(Kε),

and [53, Lemma 4.20] we obtain that if condition 20.2 holds, then W 1 is a homogeneous vector-valued
polynomial of degree 0 with respect to variables y1 and y2 (i.e., a constant vector) and W 1 = 0.

2. If 2m−2 > 0, then we take the following step. Using Eqs. (20.3) and (20.8), Lemma 5.5, and the
fact that W 1 is a vector-valued polynomial (in the following step, it is a constant vector), we obtain
the following equality:

{Pj(D)U1
j } = {Pj(y,D)Uj} − {P(y,D)W 1

j }+ {(Pj(D)−Pj(y,D))U1
j } ∈ H0

2m−2−δ(K
ε). (20.10)

If condition 20.1 hold, then, using the equality Bjσμ(y,D) = Bjσμ(D) and the relations (20.3), (20.8),
and (20.9), we obtain the equality

{Bjσμ(D)U1} = {Bjσμ(y,D)U} ∈ H2m−m−1/2
2m−2−δ (γε). (20.11)

If condition 20.2 holds, then W 1 = 0, i.e., U = U1 and, by virtue of Eq. (20.3) and Lemma 5.6, we
have

{Bjσμ(D)U1} = {Bjσμ(y,D)U}+ {(Bjσμ(D)−Bjσμ(y,D))U1} ∈ H2m−m−1/2
2m−2−δ (γε). (20.12)

Repeating this procedure finitely many times, we obtain

U =W 1 + · · ·+W � + U �,

Bjσμ(D)W 1|γjσ = · · · = Bjσμ(D)W �|γjσ = 0,

where W s, s = 1, . . . , �, is a homogeneous vector-valued polynomial of degree s − 1 and U � ∈
H2m

2m−�−δ(K
ε). Moreover, if condition 20.2 holds, then W 1 = · · · =W � = 0 and

U = U � ∈ H2m
2m−�−δ(K

ε).

3. Similarly to Eqs. (20.10)–(20.12) we can verify that the function U � satisfies the relations

{P(D)U �j } ∈ H0
2m−�−1−δ(K

ε), {Bjσμ(D)U �} ∈ H2m−m−1/2
2m−�−1−δ (γ

ε).

Repeating the procedure again, we obtain

U =W 1 + · · ·+W 2m−1 + U ′,

Bjσμ(D)W �+1|γjσ = · · · = Bjσμ(D)W 2m−1|γjσ = 0,

where W �+1, . . . ,W 2m−1 are homogeneous vector-valued polynomials of degrees �, . . . , 2m− 2, respec-
tively. They appear since if condition 20.1 holds and W �+1 = · · · =W 2m−1 = 0 (by virtue of the fact
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that Λ = ∅) and if condition 20.2 holds, then the set Λ contains only regular eigenvalues. Finally,
U ′ ∈ H2m

δ (Kε).

20.2. Main results. We prove an analog of Theorem 18.1.

Theorem 20.1. Let conditions 18.1 and 20.3 hold. Assume also that conditions 20.1 or 20.2 hold.
Let u be a generalized solution of problem (18.1), (18.2) with a regular right-hand side {f0, fiμ} ∈
S0(G, ∂G). Then u ∈W 2m(G).

Proof. Since the right-hand sides fiμ are regular and condition 20.3 holds, we have

ψjσμ = fjσμ −Bu
jσμ ∈ S2m−mjσμ−1/2(γεjσ)

(i.e., the right-hand sides ψjσμ are regular). Hence, Lemma 20.1 is valid. By virtue of (18.4), (18.5),
(20.1), and (20.2), the function U ′ ∈ H2m

δ (Kε) from Lemma 20.1 satisfies the following relations:

{Pj(y,D)U ′
j} = {fj −Pj(y,D)Wj} ∈ H0

0(K
ε),

{Bjσμ(y,D)U ′} ∈ H2m−m−1/2
δ (γε) ∀δ > 0,

{Bjσμ(y,D)U ′} = {ψjσμ −Bjσμ(y,D)W} ∈ W2m−m−1/2(γε)

(20.13)

(cf. (18.13)). Similarly to the proof of Lemma 18.2, we obtain from Eq. (20.13) that U ′ ∈ W2m(Kε);
hence, U ∈ W2m(Kε). Combining this embedding with Eq. (13.21), we complete the proof.

Further we prove an analog of Lemma 19.4, where we study the situation where the line
Imλ = 1− 2m contains only an eigenvalue i(1− 2m) of the operator L̃(λ).

The following condition is an analog of condition 19.4.

Condition 20.4. The functions Bv
jσμ satisfy concordance condition (19.5) for any function v ∈

W 2m(G \ Oκ1(K)).

Theorem 20.2. Let conditions 19.1 and 20.3 hold. Assume that either condition 20.1 or condi-
tion 20.2 is valid. Then the following assertions are valid.

(1) If condition 20.4 holds and u is a generalized solution of problem (18.1), (18.2) with the regular

right-hand side {f0, fiμ} ∈ Ŝ0(G, ∂G), then u ∈W 2m(G).
(2) If condition 20.4 is violated, then there exist a right-hand side {f0, fiμ} ∈ H0

0(G, ∂G) and a
generalized solution u of problem (18.1), (18.2) such that u /∈W 2m(G).

Proof. 1. Sufficiency. Let condition 20.4 hold and let u be a generalized solutions of problem (18.1),

(18.2) with the regular right-hand side {f0, fiμ} ∈ Ŝ0(G, ∂G). Since the right-hand sides fiμ are
regular, we see that, by virtue of condition 20.3,

ψjσμ = fjσμ −Bu
jσμ ∈ S2m−mjσμ−1/2(γεjσ).

Hence, Lemma 20.1 is valid. By Eqs. (18.4), (18.5), (20.1), and (20.2), the function U ′ ∈ H2m
δ (Kε)

from Lemma 20.1 satisfies relations (20.13).

Further, we note that {fiμ} ∈ Ŝ2m−m−1/2(∂G), i.e., the functions fjσμ satisfy concordance condi-
tion (19.5). By condition 20.4, the functions Bu

jσμ also satisfy concordance condition (19.5). Hence,

the functions ψjσμ = fjσμ −Bu
jσμ satisfy concordance condition (19.5).

Let W be a vector-valued polynomial from Lemma 20.1. We show that the functions

Bjσμ(y,D)W

satisfy concordance condition (19.5). Indeed, if condition 20.1 holds, then, using Eq. (20.2), we have

D
2m−mjσμ−1
τjσ Bjσμ(y,D)W |γεjσ = D

2m−mjσμ−1
τjσ Bjσμ(D)W |γεjσ = 0.
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If condition 20.2 holds, then by Lemma 20.1 we see that W = 0. Thus, in both cases, the functions
Bjσμ(y,D)W satisfy concordance condition (19.5).

Hence, using the embedding U ′ ∈ H2m
δ (Kε) and relations (20.13), we can repeat the reasoning

from the proof of the sufficiency of Theorem 19.1. As a result, we obtain U ′ ∈ W2m(Kε); hence,
U ∈ W2m(Kε). This and Eq. (13.21) imply that u ∈W 2m(G).

2. Necessity. Assume that condition 20.4 is violated. Then there exists a function
v ∈W 2m(G \ Oκ1(K)) such that the functions Bv

jσμ do not satisfy concordance condition (19.5). Let

us extend the function v to the domain G such that v(y) = 0 for y ∈ Oκ1/2(K) and v ∈W 2m(G).

By Lemma 19.1, there exists a function U ′ ∈ H2m
δ (K) ⊂ W2m−1(K) such that suppU ′ ⊂ Oε′(0),

U ′ /∈ W2m(Kε) and

{Pj(y,D)U ′
j} ∈ W0(Kε), (20.14)

{Bjσμ(y,D)U ′ +Bv
jσμ} ∈ H2m−m−1/2

0 (γε). (20.15)

We introduce a function u′(y) such that u′(y) = U ′
j(y

′(y)) for y ∈ Oε′(gj) and u′(y) = 0 for

y /∈ Oε′(K), where y′ 
→ y(gj) is the change of variables inverse to the change y 
→ y′(gj) from Sec. 6.1
(see Chap. 2), ξj ∈ C∞

0 (Oε′(gj)), ξj(y) = 1 for y ∈ Oε′/2(gj), and ε′ is defined in Eq. (19.8). Prove

that the function u = u′+v is as required. Obviously, u ∈W 2m−1(G) and u /∈W 2m(G) and u satisfies
relations (13.21). It follows from embedding v ∈W 2m(G) and relations (20.14) that

P(y,D)u ∈ L2(G).

Let us consider functions

fiμ = B0
iμu+B1

iμu+B2
iμu.

The embedding v ∈W 2m(G), Eqs. (13.21), and inequality (6.5) (for l = 0) imply that

fiμ ∈W 2m−miμ−1/2
(
Γi \ Oδ(K)

)
for all δ > 0. Consider the behavior of fiμ near the set K. Note that, by virtue of (6.5) (for l = 0), we
have B2

iμu
′ = 0. Further, B0

iμv +B1
iμv = 0 for y ∈ Oκ1/d2(K). Hence,

fiμ = B0
iμu

′ +B1
iμu

′ +B2
iμv, y ∈ Oκ1/d2(K). (20.16)

Introduce functions fjσμ(y
′) = fiμ(y(y

′)), where y 
→ y′(gj) is the change of variables from Sec. 6.1

(see Chap. 2). Equations (20.16) and (20.15) imply that {fjσμ} ∈ H2m−m−1/2
0 (γε). Thus, {fiμ} ∈

H2m−m−1/2
0 (∂G).

Remark 20.2. There exist analogs of Corollaries 19.1–19.4. To prove them, one must use item 2 of
Theorem 20.2 instead of item 2 of Theorem 19.4).

21. Violation of Smoothness of Generalized Solutions

21.1. Simultaneous violation of conditions 18.1 and 19.1 or violation of condition 18.2.
The situation declared in the title of this subsection is equivalent to the following condition.

Condition 21.1. The strip 1 − 2m ≤ Imλ < 1 − � contains an irregular eigenvalue of the opera-
tor L̃(λ).

Show that in this case the smoothness of generalized solutions can be violated for any operators B2
iμ.

Theorem 21.1.

(1) Let condition 21.1 hold. Then there exist a right-hand side {f0, fiμ} ∈ H0
0(G, ∂G) and a gener-

alized u of problem (18.1), (18.2) such that u /∈W 2m(G).
(2) Let conditions 21.1 and 19.5 hold. Then statement (1) holds with fiμ = 0.
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Proof. 1. Let λ = λ0 be an irregular eigenvalue of the operator L̃(λ), 1− 2m ≤ Imλ0 < 1− �. Con-
sider the function

V = riλ0
l0∑
l=0

1

l!
(i ln r)lϕ(l0−l)(ω) ∈ W�(Kd) ∀d > 0, (21.1)

where ϕ(0), . . . , ϕ(κ−1) is a Jordan chain of length κ ≥ 1 of the operator L̃(λ); it consists of an eigen-
vector and adjoint vectors corresponding to an eigenvalue λ0. The number l0, 0 ≤ l0 ≤ κ − 1, from
the definition of the function V is such that the function V is not a vector-valued polynomial with
respect to the variables y1 and y2. Such an l0 exists since λ0 is an irregular eigenvalue (if Imλ is not
an integer or Imλ is an integer but Reλ 	= 0, we can take l0 = 0).

Since V is not a vector-valued polynomial, we see, according to [53, Lemma 4.20], that

V /∈ W2m(Kd) ∀d > 0. (21.2)

It follows from [26, Lemma 2.1] that

Pj(D)Vj = 0, Bjσμ(D)V |γjσ = 0. (21.3)

Using inequalities (21.3) and the Taylor expansions for the coefficients of the operators Pj(y,D)
and Bjσμ(y,D), we obtain the following embeddings:

{Pj(y,D)Vj − Pj} ∈ W0(Kε), {Bjσμ(y,D)V − Pjσμ} ∈ H2m−m−1/2
0 (γε), (21.4)

where Pj is a linear combination of terms of the form

riλ0−2m+1(i ln r)lϕ(ω), . . . , riλ0−2m+k0(i ln r)lϕ(ω),

Pjσμ is a linear combination of terms of the form

riλ0−mjσμ+1(i ln r)l, . . . , riλ0−mjσμ+k0(i ln r)l,

ϕ(ω) is infinitely differentiable vector-valued functions, and the number k0 ∈ N is such that

− Imλ0 − 2m+ k0 ≤ −1, − Imλ0 − 2m+ k0 + 1 > −1. (21.5)

Obviously, if inequalities (21.5) hold for k0 = 0, i.e., 1 − 2m ≤ Imλ0 < 2 − 2m, we can assume that
Pj = 0 and Pjσμ = 0.

Applying [26, Lemma 4.3], we construct a function

V ′ =
k0∑
k=1

l′∑
l=0

riλ0+k(i ln r)lkϕkl(ω) ∈W �(Kd) ∀d > 0 (21.6)

such that

{Pj(y,D)V ′
j − Pj} ∈ W0(Kε), {Bjσμ(y,D)V ′ − Pjσμ} ∈ H2m−m−1/2

0 (γε). (21.7)

Consider a patch function ξ ∈ C∞
0 (Oε′(0)), which is equal to 1 near the origin, where ε′ is defined

in (19.8). Let U = ξ(V − V ′). Obviously, suppU ⊂ Oε′(0); hence,

suppBjσμ(y,D)U ⊂ γjσ ∩ Oκ2(0). (21.8)

It follows from (21.1), (21.6), and (21.2) that

U ∈ W�(K), U /∈ W2m(Kd) ∀d > 0. (21.9)

Moreover, by (21.4) and (21.7) we have

{Pj(y,D)Uj} ∈ W0(Kε), {Bjσμ(y,D)U} ∈ H2m−m−1/2
0 (γε). (21.10)

2. Consider a function u(y) such that u(y) = Uj(y
′(y)) for y ∈ Oε′(gj) and u(y) = 0 for y /∈ Oε′(K),

where y′ 
→ y(gj) is the change of variables that is inverse to the change y 
→ y′(gj) from Sec. 6.1
(see Chap. 2). The function u is as required. Indeed, by (21.9) we have u /∈ W 2m(G). By virtue of
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inequality (6.5) (as l = 0), we see that B2
iμu = 0 since suppu ⊂ Oκ1(K). It follows from the equality

B2
iμu = 0 and relations (21.10) that the function u satisfies the relations

P(y,D)u ∈ L2(G), B0
iμu+B1

iμu+B2
iμu ∈ H

2m−miμ−1/2
0 (Γi),

supp(B0
iμu+B1

iμu+B2
iμu) ⊂ Γi ∩ Oκ2(K).

(21.11)

Statement 1 is proved.
Statement 2 follows from Eq. (21.11) and statement 2 of Lemma 19.2.

21.2. Violation of condition 18.3 or 18.4. We have considered all possible cases of location of
eigenvalues of the operator L̃(λ) for � = 2m − 1. It remains to consider the case where � ≤ 2m − 2
and either condition 18.3 or condition 18.4 is violated.

Theorem 21.2. Let condition 18.2 hold, but let either condition 18.3 or condition 18.4 be violated.
Then there exist a right-hand side {f0, f1iμ + f2iμ} ∈ W0(G, ∂G) and a generalized solution u of prob-

lem (18.1), (18.2) such that u /∈ W 2m(G), where f1iμ is a polynomial of degree ≤ 2m −miμ − 2 in a

neighborhood of a point g ∈ Γi ∩ K and {f2iμ} ∈ H2m−m−1/2
0 (∂G).

Proof. 1. According to item 2 of Remark 18.3, for some natural s from the set {�, . . . , 2m− 2} and
some (nonzero) vector {cjσμ} ∈ Cs, one can find a function V of the form (18.8) such that

V ∈ W�(Kd), V /∈ W2m(Kd) ∀d > 0, (21.12)

Pj(D)Vj = 0, Bjσμ(D)V |γjσ = cjσμr
s−mjσμ . (21.13)

Using inequality (21.13) and the Taylor expansion for the coefficients of the operators Pj(y,D) and
Bjσμ(y,D), we obtain the embeddings

{Pj(y,D)Vj − Pj} ∈ W0(Kε),

{Bjσμ(y,D)V − cjσμr
s−mjσμ − Pjσμ} ∈ H2m−m−1/2

0 (γε),
(21.14)

where the functions Pj and Pjσμ have the same form as in Eq. (21.4).
Similarly to the proof of Theorem 21.1, we construct a function V ′ of the form (21.6) (where iλ0

must be replaced by s) satisfying relations (21.7).
Consider a patch function ξ ∈ C∞

0 (Oε′(0)), which is equal to 1 near the origin, where ε′ is defined
in Eq. (19.8). Let U = ξ(V − V ′). Obviously, suppU ⊂ Oε′(0) and

U ∈ W�(K), U /∈ W2m(Kd) ∀d > 0. (21.15)

Moreover, by virtue of Eqs. (21.14) and (21.7) we have

{Pj(y,D)Uj} ∈ W0(Kε), {Bjσμ(y,D)U − cjσμr
s−mjσμ} ∈ H2m−m−1/2

0 (γε). (21.16)

Note that, since {cjσμ} ∈ Cs, the function cjσμr
s−mjσμ either vanishes (in particular, it vanishes if

(j, σ, μ) ∈ Js) or is a monomial of degree s−mjσμ (i.e., the degree of the monomial is not greater than
2m−mjσμ − 2).

2. Consider a function u(y) such that u(y) = Uj(y
′(y)) for y ∈ Oε′(gj) and u(y) = 0 for y /∈ Oε′(K),

where y′ 
→ y(gj) is the change of the variables inverse to the change y 
→ y′(gj) from Sec. 6.1 (see
Chap. 2). The function u is a required function. Indeed, u /∈ W 2m(G) according to Eq. (21.15).
By virtue of inequality (6.5) (for l = 0), we have B2

iμu = 0 since suppu ⊂ Oκ1(K). It follows from

B2
iμu = 0 and relations (21.16) that the function u satisfies the relations

P(y,D)u ∈ L2(G), B0
iμu+B1

iμu+B2
iμu = f1iμ + f2iμ,
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where f1iμ is a polynomial11 of degree not greater than 2m − miμ − 2 in a neighborhood of a point

g ∈ Γi ∩ K and {f2iμ} ∈ H2m−m−1/2
0 (∂G).

Remark 21.1. Recall that the space S̃2m−m−1/2(∂G) was introduced in Sec. 19.2 in the case where
the line Imλ = 1 − 2m contains a unique eigenvalue i(1 − 2m). According to Theorem 19.2, the

smoothness of generalized solutions can be violated if the right-hand side {fiμ} ∈ W2m−m−1/2(∂G)

does not belong to S̃2m−m−1/2(∂G). Theorem 21.2 shows that if either condition 18.3 or condition 18.4
is violated, then the smoothness of generalized solutions can be violated even for the right-hand sides
{fiμ} ∈ S̃2m−m−1/2(∂G). This happens since the right-hand sides {f1iμ + f2iμ} in the statement of

Theorem 21.2 belong to S̃2m−m−1/2(∂G) (cf. Remark 19.1).
On the other hand, the fact that the violation of the smoothness in Theorem 21.2 occurs for nonzero

(and even irregular, i.e., not belonging to Ŝ2m−m−1/2(∂G)) right-hand sides {fiμ} is substantial. By
Theorems 20.1 and 20.2, if we consider only regular right-hand sides, the smoothness of solutions can
be preserved even when condition 18.3 or 18.4 is violated.

22. Example

We give an example illustrating the results of this chapter. In this example, the set K consists of
some orbits; therefore, when we refer to theorems from the previous sections, we must use obvious
generalizations to this case.

22.1. Problem with inhomogeneous conditions.

22.1.1. Statement of the problem. Let ∂G \ K = Γ1 ∪ Γ2, where Γi are open (in the topology of ∂G)
curves of class C∞ and K = Γ1 ∩ Γ2 = {g, h}, where g and h are the endpoints of the curves Γ1 and
Γ2. Assume that the domain G coincides with a plane angle of spread π in a neighborhood of every
point g and h. Thus, the boundary G is infinitely smooth. Consider the following nonlocal problem
in the domain G (cf. example in Sec. 6.2, Chap. 2):

Δu = f0(y), y ∈ G, (22.1)

u|Γ1 + b1(y)u
(
Ω1(y)

)∣∣
Γ1

+ a(y)u
(
Ω(y)

)∣∣
Γ1

= f1(y), y ∈ Γ1,

u|Γ2 + b2(y)u
(
Ω2(y)

)∣∣
Γ2

= f2(y), y ∈ Γ2,
(22.2)

where b1, b2, and a are real-valued, infinitely differentiable functions, Ωi (Ω) is a diffeomorphism of
class C∞ that maps a neighborhood Oi (respectively, O1) of the curve Γi (respectively, Γ1) to the set
Ωi(Oi) (respectively, Ω(O1)) such that Ωi(Γi) ⊂ G, Ωi(g) = g, Ωi(h) = h, and the transformation
Ωi near the points g and h is a rotation of the boundary Γi by the angle π/2 inwards the domain G

(respectively, Ω(Γ1) ⊂ G, Ω(Γ1) ∩ {g, h} = ∅, but the approach of the curve Ω(Γ1) to the boundary
∂G is arbitrary); see Fig. 22.1.

To write nonlocal conditions (22.2) in the form (18.2), we choose a sufficiently small number ε such

that the sets Oε(g) and Oε(h) do not intersect with the curve Ω(Γ1).
Consider a function ζ ∈ C∞

0 (R2) such that ζ(y) = 1 for y ∈ Oε/2(K) and supp ζ ⊂ Oε(K). Let us
introduce the operators

B1
iu = ζ(y)bi(y)u(Ωi(y))|Γi ,

B2
1u = (1− ζ(y))b1(y)u(Ω1(y))|Γ1 + a(y)u(Ω(y))|Γ1 ,

B2
2u = (1− ζ(y))b2(y)u(Ω2(y))|Γ2 .

11The function f1
iμ written in the coordinate system with origin at the point g ∈ Γi∩K either vanishes or is a monomial

of degree s−mjσμ.
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Fig. 22.1. The domain G with the boundary ∂G = Γ1 ∪ Γ2 ∪ {g, h}.

In this example, the set K is formed by two orbits. The first orbit consists of the point g and the
second consists of the point h. Since the support of ζ is located near a neighborhood of the set K, we
can assume that the transformations Ωi from the definition of the operators B1

iμ are also defined in a

neighborhood of the set K and satisfy condition 6.3. It is easy to see that the operators B2
iμ satisfy

condition 6.4 with κ1 = ε/2 and some κ2 < κ1 and ρ.
Here, we will use spaces of vector-valued functions introduced in Eqs. (5.3) and (5.21) for N = 2.
Consider a model problem corresponding to the point g (a model problem corresponding to the

point h can be considered similarly). Assume that the point g coincides with the origin, g = 0, and
the axis Oy1 is directed inwards the domain G orthogonally to the boundary. Consider the sets

Kε = {y ∈ R
2 : 0 < r < ε, |ω| < π/2},

γεσ = {y ∈ R
2 : 0 < r < ε, ω = (−1)σπ/2}.

We choose a small ε such that Oε(0) ∩G = Kε. The model problem takes the form

ΔU = F (y), y ∈ Kε, (22.3)

U(y) + bσ(y)U(Gσy) = ψσ(y), y ∈ γεσ, σ = 1, 2, (22.4)

where

Gσ =

(
0 (−1)σ

(−1)σ+1 0

)
is the operator of the rotation by the angle (−1)σ+1π/2,

F (y) = f0(y), y ∈ Kε, ψσ(y) = fσ(y)−Bu
σ(y), y ∈ γεσ.

Moreover,

Bu
1 (y) = a(y)u

(
Ω(y)

)
, y ∈ γ

ε/2
1 , Bu

2 (y) = 0, y ∈ γ
ε/2
2 ,

since (1− ζ(y))bσ(y)u(Ωσ(y)) = 0 for y ∈ γ
ε/2
σ , σ = 1, 2.

The eigenproblem has the form

ϕ′′(ω)− λ2ϕ(ω) = 0, |ω| < π/2, (22.5)

ϕ(−π/2) + b1(0)ϕ(0) = 0, ϕ(π/2) + b2(0)ϕ(0) = 0. (22.6)

Introduce the notation I1 = (−∞,−2]∪(0,∞) and I2 = (−2, 0). We can directly verify that eigenvalues
of problem (22.5), (22.6) can be arranged relative to the strip −1 ≤ Imλ < 0 as follows:

Case 1 (b1(0) + b2(0) ∈ I1). The strip −1 ≤ Imλ < 0 does not contain eigenvalues.
Case 2 (b1(0) + b2(0) = 0). The strip −1 ≤ Imλ < 0 contains a unique eigenvalue λ = −i; this

eigenvalue is regular.
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Case 3 (b1(0) + b2(0) ∈ I2). The strip −1 ≤ Imλ < 0 contains an irregular eigenvalue

λ = 2π−1i arctan

√
4− (b1(0) + b2(0))2

b1(0) + b2(0)
.

22.1.2. Case 1.

Theorem 22.1. Let b1(0) + b2(0) ∈ I1 and b1(h) + b2(h) ∈ I1. Let u ∈ W 1(G) be a generalized
solution of problem (22.1), (22.2) with the right-hand side

{f0, fiμ} ∈ W0(G, ∂G).

Then u ∈W 2(G).

Proof. In this case, the strip −1 ≤ Imλ < 0 does not contain eigenvalues of problem (22.5), (22.6)
(as well as eigenvalues of a similar problem corresponding to the point h). Hence, the theorem follows
from Theorem 18.1.

Note that in this case we do not impose any restrictions on the coefficients bi and a and on the
right-hand sides fiμ.

22.1.3. Case 2. Assume that
b1(h) + b2(h) ∈ I1.

In this case, concordance condition (19.5) is considered only near the origin. Let us write this condition
for problem (22.1), (22.2). Denote by τσ the vector with coordinates (0, (−1)σ). Then12

∂

∂τσ
= (−1)σ

∂

∂y2
,

∂

∂τ1

(
U(y) + b1(0)U(G1y)

)
= −Uy2(y) + b1(0)Uy1(G1y),

∂

∂τ2

(
U(y) + b2(0)U(G2y)

)
= Uy2(y) + b2(0)Uy1(G2y).

Hence,

B̂σ(D)U = (−1)σUy2 + bσ(0)Uy1 , σ = 1, 2.

Since b1(0) + b2(0) = 0, we see that the operators B̂1(D) and B̂2(D) are linearly dependent:

B̂1(D) + B̂2(D) = 0.

Thus, concordance condition (19.5) for the functions Zσ ∈W 3/2(γεσ) has the form
ε∫

0

r−1

∣∣∣∣∣∂Z1

∂y2

∣∣∣∣
y=(0,−r)

− dZ2

dy2

∣∣∣∣
y=(0,r)

∣∣∣∣∣
2

dr <∞. (22.7)

Taking into account Eq. (22.7), we denote by S̃3/2(∂G) the set of all functions {fiμ} ∈ W3/2(∂G) such
that

ε∫
0

r−1

∣∣∣∣∣∂f1∂y2

∣∣∣∣
y=(0,−r)

− ∂f2
∂y2

∣∣∣∣
y=(0,r)

∣∣∣∣∣
2

dr <∞. (22.8)

Let S̃0(G, ∂G) = S̃0(G, ∂G).

By Theorem 19.2, the embedding {fiμ} ∈ S̃3/2(∂G) is necessary for any generalized solution of
problem (22.1), (22.2) to belong to W 2(G).

Theorem 22.2. Let b1(0) + b2(0) = 0 and b1(h) + b2(h) ∈ I1. Then the following statements hold.

12In this example, for simplicity of notation, we will use the operators
∂

∂τσ
instead of Dτσ = −i

∂

∂τσ
.
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(1) If

a(0) = 0,
∂a

∂y2

∣∣∣∣
y=0

= 0, (22.9)

ε∫
0

r−1

∣∣∣∣∣∂b1∂y2

∣∣∣∣
y=(0,−r)

− ∂b2
∂y2

∣∣∣∣
y=(0,r)

∣∣∣∣∣
2

dr <∞, (22.10)

and the function u ∈ W 1(G) is a generalized solution od problem (22.1), (22.2) with the right-

hand side {f0, fiμ} ∈ S̃0(G, ∂G), then u ∈W 2(G).

(2) If condition (22.9)–(22.10) is violated, then there exist a right-hand side {f0, fiμ} ∈ S̃0(G, ∂G)
and a generalized solution u ∈W 1(G) of problem (22.1), (22.2) such that u /∈W 2(G).

Proof. 1. By Theorem 19.3, it suffices to show that condition (22.9)–(22.10) is equivalent to condi-
tion 19.3.

For any function v ∈W 2(G \ Oκ1(K)), we denote vΩ(y) = v
(
Ω(y)

)
, y ∈ Γ1. Then

Bv
1(y) = a(y)vΩ(y), y ∈ γ

ε/2
1 , Bv

2(y) = 0, y ∈ γ
ε/2
2 .

Hence, the functions Bv
σ satisfy concordance condition (22.7) if and only if

ε/2∫
0

r−1

∣∣∣∣∣∂(avΩ)∂y2

∣∣∣∣
y=(0,−r)

∣∣∣∣∣
2

dr =

ε/2∫
0

r−1

∣∣∣∣∣
( ∂a
∂y2

vΩ + a
∂vΩ
∂y2

)∣∣∣∣
y=(0,−r)

∣∣∣∣∣
2

dr <∞. (22.11)

We take ε/2 instead of ε as the upper limit of integration since in this case the functions Bv
σ are

simpler; obviously, the replacement of ε by ε/2 does not influence the convergence of the integral.
Prove that condition (22.11) is equivalent to Eq. (22.9). Let (22.11) hold. Choose a function v such

that vΩ(y) = y2 near the origin; then

∂(avΩ)

∂y2

∣∣∣∣
y=0

= a(0).

Since the function ∂(avΩ)/∂y2 is continuous near the origin, we have from the last relation and
Eq. (22.11) that a(0) = 0. Similarly, substituting a function v such that vΩ(y) = 1 near the origin
into Eq. (22.11), we obtain the equality

∂a

∂y2

∣∣∣∣
y=0

= 0.

Conversely, let Eq. (22.9) hold. By virtue of the smoothness of the transformation Ω, we have

vΩ,
∂vΩ
∂y2

∈W 1/2(γε1) ⊂ H
1/2
1 (γε1)

for any function v ∈ W 2(G \ Oκ1(K)). This, Eq. (22.9), and Lemma 5.6 imply that

∂(avΩ)/∂y2 ∈ H
1/2
0 (γε1). Hence, by [53, Lemma 4.8], Eq. (22.11) is valid. Thus, we proved that

item 1 of condition 19.3 is equivalent to condition (22.9).
2. Item 2 of condition 19.3 is fulfilled if and only if the functions C+ b1(y)C and C + b2(y)C satisfy

concordance condition (22.7) for any constant C. This is equivalent to Eq. (22.10).

Thus, in case 2 the smoothness of generalized solutions depends on the first derivatives of the
coefficients b1 and b2 near the origin and on the coefficient a and its first derivative at the origin.
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22.1.4. Case 3.

Theorem 22.3. Let b1(0) + b2(0) ∈ I2 or b1(h) + b2(h) ∈ I2. Then there exist a right-hand side
{f0, 0}, where f0 ∈ L2(G), and a generalized solution u ∈ W 1(G) of problem (22.1), (22.2) such that
u /∈W 2(G).

Proof. The strip −1 ≤ Imλ < 0 contains an irregular eigenvalue of problem (22.5), (22.6) (or of a
similar problem corresponding to the point h). Hence, the theorem follows from Theorem 21.1.

Thus, in case 3 the smoothness of generalized solutions can be violated independently of the behavior
of the coefficient a and the derivatives of the coefficients b1 and b2 near the point g.

22.2. Problem with regular and zero right-hand sides in nonlocal conditions. Consider
problem (22.1), (22.2) with regular and zero right-hand sides in boundary conditions. By Theo-
rems 22.1 and 22.3, the smoothness of generalized solutions is preserved in case 1 and can be violated
in case 3. Case 2 (the “boundary” case) is of most interest.

22.2.1. Problem with regular right-hand sides. Assume that

b1(h) + b2(h) ∈ I1.

Theorem 22.4. Let b1(0) + b2(0) = 0 and b1(h) + b2(h) ∈ I1. Then the following statements hold.

(1) If

a(0) = 0,
∂a

∂y2

∣∣∣∣
y=0

= 0, (22.12)

and the function u ∈ W 1(G) is a generalized solution of problem (22.1), (22.2) with the right-

hand side {f0, fiμ} ∈ S̃0(G, ∂G), where fiμ(0) = 0, then u ∈W 2(G).
(2) If condition (22.12) is violated, then there exist a right-hand side {f0, fiμ} ∈ H0(G, ∂G), where

fiμ(y) = 0 near the origin and a generalized solution u ∈W 1(G) of problem (22.1), (22.2) such
that u /∈W 2(G).

Proof. 1. By Theorem 19.4 and Corollary 19.1, it suffices to prove that condition (22.12) is equivalent
to condition 19.4.

By Definition 19.2, the function v ∈W 2(G\Oκ1(K)) is acceptable if and only if there exist constants
C and Ch such that

a(0)vΩ(0) + C + b1(0)C = 0, C + b2(0)C = 0,

a(h)vΩ(h) + Ch + b1(h)Ch = 0, Ch + b2(h)Ch = 0,
(22.13)

where vΩ(y) = v
(
Ω(y)

)
, y ∈ Γ1.

Let ξ ∈ C∞(R2) be a patch function such that

supp ξ ⊂ Oδ(Ω(0)), ξ(y) = 1, y ∈ Oδ/2(Ω(0)),

where δ > 0 is so small that Ω(h) /∈ Oδ(Ω(0)). Since b1(h)+ b2(h) ∈ I1, we see that one must consider
concordance condition (19.5) only near the origin. Hence, if v is an acceptable function, C and Ch are
acceptable constants corresponding to the function v, and condition 19.4 is valid (respectively, violated)
for v and C, then ξv is also an acceptable function, C and 0 are acceptable vectors corresponding to
ξv, and condition 19.4 is valid (respectively, violated) for ξv and C. Thus, it suffices to consider only
functions v with supports in Oδ(Ω(0)) (i.e., functions vΩ with supports near the origin); moreover, we
can assume that Ch = 0.

First, we consider the case where b2(0) 	= −1. In this case, by (22.13), the function v with support
in Oδ(Ω(0)) is acceptable if and only if

a(0)vΩ(0) = 0. (22.14)
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The corresponding set of acceptable constants contains a unique constant C = 0 (recall that Ch by
assumption also vanish). Hence, condition 19.4 is valid if and only if the relation

ε/2∫
0

r−1

∣∣∣∣∣∂(avΩ)∂y2

∣∣∣∣
y=(0,−r)

∣∣∣∣∣
2

dr =

ε/2∫
0

r−1

∣∣∣∣∣
( ∂a
∂y2

vΩ + a
∂vΩ
∂y2

)∣∣∣∣
y=(0,−r)

∣∣∣∣∣
2

dr <∞ (22.15)

is valid for any function vΩ satisfying Eq. (22.14). Assume that Eq. (22.12) holds. Then any function
v with support in Oδ(Ω(0)) is acceptable (since a(0) = 0). Repeating the reasoning from the proof of
Theorem 22.2, we obtain (22.15).

Conversely, assume that Eq. (22.15) holds for any function vΩ satisfying (22.14). Obviously, a func-
tion v such that vΩ(y) = y2 near the origin satisfies (22.14). Substituting the function vΩ to (22.15),
we obtain that a(0) = 0 (cf. the proof of Theorem 22.2). Hence, any function v with support in
Oδ(Ω(0)) is acceptable. Substituting vΩ(y) = 1 to Eq. (22.15), we obtain (∂a/∂y2)|y=0 = 0.

2. It remains to consider the case where b2(0) = −1; in this case, b1(0) = 1. Then by virtue
of (22.13), any function v with support in Oδ(Ω(0)) is acceptable; the corresponding set of accept-
able constants contains a unique constant C = −a(0)vΩ(0)/2 (we still assume that the constant Ch
vanishes). Hence, condition 19.4 is valid if and only if the relation

ε/2∫
0

r−1

∣∣∣∣∣∂(avΩ)∂y2

∣∣∣∣
y=(0,−r)

+ C

(
∂b1
∂y2

∣∣∣∣
y=(0,−r)

− ∂b2
∂y2

∣∣∣∣
y=(0,r)

)∣∣∣∣∣
2

dr

=

ε/2∫
0

r−1

∣∣∣∣∣
( ∂a
∂y2

vΩ + a
∂vΩ
∂y2

)∣∣∣∣
y=(0,−r)

− a(0)vΩ(0)

2

(
∂b1
∂y2

∣∣∣∣
y=(0,−r)

− ∂b2
∂y2

∣∣∣∣
y=(0,r)

)∣∣∣∣∣
2

dr <∞ (22.16)

is valid for any function v with support in Oδ(Ω(0)). Assume that condition (22.12) holds. Then we
see (similarly to the previous reasoning) that Eq. (22.15) holds for any function vΩ. Hence, Eq. (22.16)
also holds for any function vΩ (since a(0) = 0).

Conversely, assume that Eq. (22.16) holds. Let us substitute into Eq. (22.16) a function v such
that vΩ(y) = y2 near the origin. Since vΩ(0) = 0 and (∂vΩ/∂y2)|y=0 = 1, we obtain from Eq. (22.16)
(similarly to the previous reasoning) that a(0) = 0. Hence, relation (22.16) coincides with (22.15).
Then, repeating the previous reasoning, we obtain that (∂a/∂y2)|y=0 = 0.

Obviously, condition (22.12) is weaker than condition (22.9)–(22.10): there are no restrictions on
the behavior of the coefficients b1 and b2 in condition (22.12). The absence of these restrictions is
“compensated” by the fact that the right-hand sides in nonlocal conditions are regular, i.e., {fiμ} ∈
S̃3/2(∂G) and fiμ(0) = 0.

22.2.2. Problem with zero right-hand sides. It follows from statement 1 of Theorem 22.4 that in the
case of zero right-hand sides, condition (22.12) is sufficient for any generalized solution to be smooth.
Let us prove that this condition is also necessary in the following cases (see Figs. 22.2–22.4).

Case A : supp a(Ω−1(y))|Ω(Γ1) ⊂ G;

Case B : Ω(0) ∈ G, Ω(0) /∈ Ω1(Γ1) ∪ Ω2(Γ2);

Case C : Ω(0) ∈ Γ1, Ω(Ω(0)) /∈ Ω1(Γ1) ∪ Ω2(Γ2), (22.17)

a(Ω(0)) 	= 0. (22.18)

Corollary 22.1. Let b1(0) + b2(0) = 0 and b1(h) + b2(h) ∈ I1. Let one of cases A, B, or C hold.
If condition (22.12) is violated, then there exist a right-hand side {f0, 0}, where f0 ∈ L2(G), and a
generalized solution u ∈W 1(G) of problem (22.1), (22.2) such that u /∈W 2(G).
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Fig. 22.2. Case A.

Fig. 22.3. Case B. Fig. 22.4. Case B.

Proof. 1. First, we assume that Case A holds. It follows from the continuity of the transformations
Ωi and Ω that the operators B2

iμ satisfy condition (19.24) for all ρ such that

0 < ρ < dist(supp a(Ω−1(y))|Ω(Γ1), ∂G).

Therefore, the corollary follows from Corollary 19.3.
2. Now we assume Case B holds. As above, we can assume that condition 19.4 is violated for an

acceptable function v with support in arbitrary small δ-neighborhood Oδ(Ω(0)) of a point Ω(0). We
can choose so small δ that

v(y)|Γi ≡ 0, v(Ωi(y))|Γi = 0, supp v(Ω(y))|Γ1 ⊂ Γ1 ∩ Oκ2(0).

Thus, the function v satisfies Eqs. (19.26), and the corollary follows from Corollary 19.4.
3. Finally, we assume that Case C holds. Again, we assume that condition 19.4 is violated for an

acceptable function v with support in Oδ(Ω(0)). By relations (22.17), we can choose a number δ such
that

v(Ωi(y))|Γi ≡ 0, (22.19)

supp v(Ω(y))|Γ1 ⊂ Γ1 ∩ Oκ2(0). (22.20)

Let fiμ be functions from statement 2 of Theorem 19.4 constructed according to the scheme from the
proof of Theorem 19.4. It follows from Eqs. (22.19) and (22.20) that

supp f1 ⊂ Γ1 ∩
(
Oκ2(0) ∪ Oδ(Ω(0))

)
, supp f2 ⊂ Γ2 ∩ Oκ2(0).
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Assume that we have constructed a function u1 ∈ H2
0 (G) such that

u1|Γi +B1
iμu1 +B2

iμu1 = fi(y), y ∈ Γi \ Oκ2(K), i = 1, . . . , N, (22.21)

u1|Γi +B1
iμu1 +B2

iμu1 = 0, y ∈ Γi ∩ Oκ2(K), i = 1, . . . , N. (22.22)

Then the corollary follows from Lemma 19.2 and Corollary 19.2.
Construct the function u1. For this, we consider a function u1Ω ∈ W 2

(
Oδ(Ω(0))

)
with support in

Oδ(Ω(0)) such that

u1Ω(y) = f1(y)/a(y), y ∈ Γ1 ∩ Oδ(Ω(0)),

where δ is so small that a(y) 	= 0 for y ∈ Oδ(Ω(0)) (the existence of such δ follows from Eq. (22.18)
and the continuity of a(y)).

Let u1(y) = u1Ω(Ω
−1(y)) for y ∈ Ω

(
Oδ(Ω(0))

)
and u1(y) = 0 for y /∈ Ω

(
Oδ(Ω(0))

)
. We choose so

small δ that

Γi ∩ Ω
(
Oδ(Ω(0))

)
= ∅, Ωi(Γi) ∩ Ω

(
Oδ(Ω(0))

)
= ∅, Oδ(Ω(0)) ∩ Oκ2(0) = ∅

(the existence of such δ follows from Eq. (22.17) and the continuity of the transformation Ω). Then

u1|Γi = 0, u1(Ωi(y))|Γi = 0,

a(y)u1(Ω(y)) = f1(y), y ∈ Γ1 \ Oκ2(0),

u1(Ω(y)) = 0, y ∈ Γ1 ∩ Oκ2(0).

Thus, the function u1 satisfies Eqs. (22.21) and (22.22). The corollary is proved.

Chapter 6

FELLER SEMIGROUPS

AND TWO-DIMENSIONAL DIFFUSION PROCESSES

23. Nonlocal Problems in Spaces of Continuous Functions

23.1. Preliminary information. In this subsection, we recall the notions of a Feller semigroup
and its generator and formulate the Hille–Yosida theorem in an appropriate form.

Let X be a closed subspace in C(G) containing at least one nonnegative function.

Definition 23.1. A strongly elliptic semigroup of operators Tt : X → X is called a Feller semigroup
on X if:

(1) ‖Tt‖ ≤ 1, t ≥ 0;
(2) Ttu ≥ 0 for all t ≥ 0 and u ∈ X , u ≥ 0.

Definition 23.2. A linear operator P : D(P) ⊂ X → X is called a generator (infinitesimal generating
operator) of a strongly continuous semigroup {Tt} if

Pu = lim
t→+0

Ttu− u

t
, D(P) = {u ∈ X : a limit in X exists}.

Theorem 23.1 (Hille–Yosida theorem, see [101, Theorem 9.3.1]).

(1) Let P : D(P) ⊂ X → X be a generator of a Feller semigroup on X . Then the following
assertions hold :
(a) the domain D(P) is dense in X ;
(b) for any q > 0, the operator qI−P has a bounded inverse operator (qI−P)−1 : X → X and

‖(qI−P)−1‖ ≤ 1/q;
(c) the operator (qI−P)−1 : X → X , q > 0, is nonnegative.
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(2) If P : X → X is a linear operator satisfying the condition (a) and there exists a constant q0 ≥ 0
such that conditions (b) and (c) hold for q > q0, then P is a generator of some Feller semigroup
on X , which is uniquely defined by the operator P.

23.2. Statement of nonlocal problems. Let pjk, pj ∈ C∞(R2) be real-valued functions and let
pjk = pkj , j, k = 1, 2. In this chapter, we consider a second-order differential operator

P(y,D)u =
2∑

j,k=1

pjk(y)uyjyk(y) +
2∑
j=1

pj(y)uyj (y) + p0(y)u(y). (23.1)

Condition 23.1. (1) There exists a constant c > 0 such that

2∑
j,k=1

pjk(y)ξjξk ≥ c|ξ|2

for y ∈ G and ξ = (ξ1, ξ2) ∈ R
2.

(2) p0(y) ≤ 0, y ∈ G.

Let Ωis, i = 1, . . . , N , s = 1, . . . , Si, be diffeomorphisms of class C∞ satisfying condition 6.3.
Let us introduce the operator

Biu =

Si∑
s=1

bis(y)u(Ωis(y))

for y ∈ Γi ∩ Oε(K) and Biu = 0 for y ∈ Γi \ Oε(K), where bis ∈ C∞(R2) are real-valued, supp bis ⊂
Oε(K).

Condition 23.2. The following relations hold :

bis(y) ≥ 0,

Si∑
s=1

bis(y) ≤ 1, y ∈ Γi; (23.2)

Si∑
s=1

bis(g) +

Sj∑
s=1

bjs(g) < 2, g ∈ Γi ∩ Γj ⊂ K, if i 	= j and Γi ∩ Γj 	= ∅. (23.3)

Let us study the nonlocal problem

P(y,D)u− qu = f(y), y ∈ G;

u|Γi −Biu = 0, y ∈ Γi, i = 1, . . . , N,
(23.4)

where q ≥ 0, and the same problem with inhomogeneous nonlocal conditions.
Before we consider problem (23.4) in spaces of continuous functions, we study it in weight spaces.

Consider the bounded operator

L(q) = Ll+1−δ(q) : H l+2
l+1−δ(G) → Hl

l+1−δ(G, ∂G)

defined by the formula

L(q)u = {P(y,D)u− qu, u|Γi −Biu}, q > 0,

where H l+2
l+1−δ(G) and Hl

l+1−δ(G, ∂G) are the spaces defined in Eq. (5.21) with norms (5.22) depending
on a parameter q > 0.

In Sec. 23.3, we prove the following result.

Theorem 23.2. Let conditions 23.1 and 23.2 hold and let l ≥ 0 be fixed. Then for every sufficiently
small δ ≥ 0, there exists q1 > 0 such that the operator L(q) has a bounded inverse operator for q ≥ q1
and

c1|||L(q)u|||Hl
l+1−δ(G,∂G) ≤ |||u|||Hl+2

l+1−δ(G) ≤ c2|||L(q)u|||Hl
l+1−δ(G,∂G), q ≥ q1, (23.5)
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where c1, c2 > 0 are independent of u and q.

Corollary 23.1 (local a priori estimate). Let G1 and G2 be subdomains of the domain G such that
G1 ⊂ G2 and dist(∂G1 \∂G, ∂G2 \∂G) > 0. Then for all q ≥ q1, the following a priori estimate holds:

|||u|||Hl+2
a (G1)

≤ c
(
|||P(y,D)u− qu|||Hl

a(G2)
+

N∑
i=1

|||u|Γi |||Hl+3/2
a (Γi∩G2)

+ q−1/2|||u|||Hl+2
a (G2)

)
, (23.6)

where H l+2
a (Gj) = H l+2

a (Gj ,K), H l
a(G2) = H l

a(G2,K), H
l+3/2
a (Γi ∩G2) = H

l+3/2
a (Γi ∩G2,K), q1 > 0

is sufficiently large, and c > 0 is independent of u and q. If Γi ∩G2 = ∅, then in Eq. (23.6) the term
|||u|Γi |||Hl+3/2

a (Γi∩G2)
is absent.

Proof. Consider a patch function ζ ∈ C∞(R2) such that ζ(y) = 1 for y ∈ G1 and ζ(y) = 0 for
y ∈ G \ G2. Applying Theorem 23.2 for Bi = 0 and using the Leibnitz formula, we obtain the
inequality

|||u|||Hl+2
a (G1)

≤ |||ζu|||Hl+2
a (G)

≤ k1

(
|||P(y,D)(ζu)− qζu|||Hl

a(G) +

N∑
i=1

|||(ζu)|Γi |||Hl+3/2
a (Γi)

)

≤ k2

(
|||P(y,D)u− qu|||Hl

a(G2)
+

N∑
i=1

|||u|Γi |||Hl+3/2
a (Γi∩G2)

+ |||u|||Hl+1
a (G2)

)
,

where k1, k2 > 0 are independent of u and q. On the other hand, according to [41, Lemma 7.1], we
have

|||u|||Hl+1
a (G2)

≤ q−1/2|||u|||Hl+2
a (G2)

.

The corollary follows from these two inequalities.

23.3. Nonlocal problems in weight spaces. Denote by uj(y) the function u(y) for y ∈ Oε1(gj).

If gj ∈ Γi, y ∈ Oε(gj), and Ωis(y) ∈ Oε1(gk), then we denote by uk(Ωis(y)) the function u(Ωis(y)).
Then nonlocal problem (23.4) has the following form in a ε-neighborhood of the orbit K:

P(y,D)uj − quj = f(y), y ∈ Oε(gj) ∩G,

uj(y)−
Si∑
s=1

bis(y)uk(Ωis(y)) = 0, y ∈ Oε(gj) ∩ Γi, i ∈ {1 ≤ i ≤ N : gj ∈ Γi}, j = 1, . . . , N.

Let y 
→ y′(gj) be the change of variables from Sec. 6.1. Introduce the functions Uj(y
′) = u(y(y′))

and Fj(y
′) = f(y(y′)) for y′ ∈ Kε

j , where σ = 1 (σ = 2), if the transformation y 
→ y′(gj) maps Γi
to the ray γj1 (γj2) of the angle Kj . Let us re-denote y′ = y. Then, according to condition 6.3
problem (23.4) has the form

Pj(y,D)Uj − qUj = Fj(y), y ∈ Kε
j ;

Uj(y)−
N∑
k=1

Sjσk∑
s=1

Bjσks(y)Uk(Gjσksy) = 0, y ∈ γεjσ,
(23.7)

where Pj(y,D) is a second-order elliptic differential operator with real-valued coefficients of class
C∞; moreover, the principal homogeneous part of the operator Pj(0, D) is the Laplace operator Δ;
Bjσks(y) are smooth functions; Gjσks is the operator of rotation by the angle ωjσks and dilation with
the scale factor χjσks > 0; moreover, |(−1)σωj + ωjσks| < ωk.
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According to [41], we“freeze” the coefficients of problem (23.7) at the point y = 0, replace the
operators Pj(0, D) by their principal homogeneous parts, and set q = 1. Thus, we consider the
following problem:

ΔUj − Uj = Fj(y), y ∈ Kj ;

BjσU ≡ Uj(y)−
N∑
k=1

Sjσk∑
s=1

bjσksUk(Gjσksy) = 0, y ∈ γjσ,
(23.8)

where U = (U1, . . . , UN ) and bjσks = Bjσks(0). It follows from condition 23.2 that

bjσks ≥ 0,
N∑
k=1

Sjσk∑
s=1

bjσks ≤ 1,
N∑
k=1

( Sj1k∑
s=1

bj1ks +

Sj2k∑
s=1

bj2ks

)
< 2. (23.9)

We consider problem (23.8) in weight spaces with inhomogeneous weights. Denote by Ela(Kj) the

completion of the set C∞
0 (Kj \ {0}) with respect to the norm

‖v‖El
a(Kj) =

(∑
|α|≤l

∫
Kj

|y|2a(|y|2(|α|−l) + 1)|Dαv(y)|2 dy
)1/2

,

where l ≥ 0 is integer and a ∈ R. Denote by E
l−1/2
a (γjσ) (where l ≥ 1 is integer) the trace space

on γjσ (with the infimum norm). Introduce the spaces of vector-valued functions

E l+2
a (K) =

N∏
j=1

El+2
a (Kj), E la(K, γ) =

N∏
j=1

(
Ela(Kj)×

∏
σ=1,2

El+3/2
a (γjσ)

)
.

Let us consider the operator
L : E2

1−δ(K) → E0
1−δ(K, γ)

defined by the formula
LU = {ΔUj − Uj , BjσU}.

We prove that the operator L is an isomorphism for all sufficiently small δ ≥ 0. For this, we consider
an analytic operator-valued function

L̃(λ) : W2
2 (−ω, ω) → W0[−ω, ω]

defined by the formula (cf. (6.18))

L̃(λ)ϕ =
{
ϕ′′
j − λ2ϕj , ϕj((−1)σωj)−

∑
k,s

(χjσks)
iλbjσksϕk((−1)σωj + ωjσks)

}
.

Lemma 23.1. Let conditions 23.1 and 23.2 hold. Then there are no eigenvalues of the operator L̃(λ)
on the line Imλ = 0.

Proof. 1. Assume that λ0 	= 0 is a real eigenvalue of the operator L̃(λ) (the case where λ0 = 0 is
simpler and can be considered similarly). Let ϕ(ω) be a corresponding eigenvector; we represent it in
the form ϕ(ω) = ϕ1(ω) + iϕ2(ω), where ϕ1(ω) and ϕ2(ω) are real-valued functions of class C∞. It
easy to see that the function U = riλ0ϕ(ω) = eiλ0 ln rϕ(ω) is a solution of the problem

ΔUj = 0, y ∈ Kj ; BjσU = 0, y ∈ γjσ. (23.10)

We represent the function U in form U = V + iW , where

V = cos(λ0 ln r)ϕ
1(ω)− sin(λ0 ln r)ϕ

2(ω), W = cos(λ0 ln r)ϕ
2(ω) + sin(λ0 ln r)ϕ

1(ω).

Since the coefficients in Eq. (23.10) are real, we see that V (and W ) is a solution of the problem

ΔVj = 0, y ∈ Kj ; BjσV = 0, y ∈ γjσ. (23.11)
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Assume that
M = max

j=1,...,N
sup
y∈Kj

|Vj(y)|.

We prove that M = 0. Assume the contrary: let M > 0.
2. If |Vj(y0)| = M for some j and y0 ∈ Kj , then Vj(y) ≡ M according to the maximum principle.

From the nonlocal conditions in Eq. (23.11)) we obtain

M = |Vj(y0)| = |Vj |γjσ | ≤M
∑
k,s

bjσks, σ = 1, 2. (23.12)

However, 0 ≤
∑
k,s

bjσks < 1 for σ = 1 or 2 according to conditions (23.9), which contradicts Eq. (23.12).

3. Let |Vj(y0)| =M for some j, σ = 1 or 2 and y0 ∈ γjσ. In this case, taking into account Eq. (23.9),
from the nonlocal conditions in (23.11) we obtain the inequality

M = |Vj(y0)| ≤
∑
k,s

bjσks|Vk(Gjσksy0)| ≤M (23.13)

for σ = 1 or 2. Hence, the inequalities in Eq. (23.13) become equalities, but then∑
k,s

bjσks = 1, |Vk(Gjσksy0)| =M

at least for one pair (k, s). By the above, this is impossible since Gjσksy0 ∈ Kk.
4. Finally, assume that there exists a sequence {ys}∞s=1 ⊂ Kj such that |Vj(ys)| → M for some j

for |ys| → 0 or |ys| → ∞.
Note that the function Vj is periodic with respect to ln r, i.e., the function Vj is completely defined

by its values on the set

K̂j = Kj ∩
{
1 ≤ r ≤ e2π/λ0

}
.

Since the set K̂j is compact, we see that there exists a sequence {ŷs}∞s=1 ⊂ K̂j such that |Vj(ŷs)| →
M for ŷs → ŷ, where ŷ ∈ K̂j . It follows from the continuity of Vj(y) on the compact K̂j that
|Vj(ŷ)| =M . We again obtain a contradiction with the above.

5. It follows from items 1–4 of this proof that M = 0. Hence, V = 0, i.e., ϕ1(ω) = ϕ2(ω) = 0.

Lemma 23.2. Let conditions 23.1 and 23.2 hold. Then the operator L : E2
1 (K) → E0

1 (K, γ) is an
isomorphism.

Proof. 1. First, we prove that the operator L : E2
1 (K) → E0

1 (K, γ) is a Fredholm operator and
indL = 0. Consider the family of operators Lt : E2

1 (K) → E0
1 (K, γ) defined by the formula

LtU =
{
ΔUj − Uj , Uj |γjσ − t

∑
k,s

bjσksUk(Gjσksy)|γjσ
}
, 0 ≤ t ≤ 1.

Analogously to the operator L̃(λ), we introduce operators L̃t(λ). By Lemma 23.1 there are no eigen-

values of the operators L̃t(λ) on the line Imλ = 0. Hence, Lt are Fredholm operators (see [24,
Theorem 9.1]). By virtue of the homotopic stability of the index of Fredholm operators, we have
indLt = const, t ∈ [0, 1]. Since the local operator L0 is an isomorphism (see, e.g., [24, Sec. 10.3]), we
have indL = indL0 = 0.

2. It remains to prove that dimkerL = 0. Let U ∈ E2
1 (K) be a real-valued solution of the problem

ΔUj = Uj , y ∈ Kj ; BjσU = 0, y ∈ γjσ. (23.14)

By the theorem on the internal smoothness, the functions Uj are infinitely differentiable in Kj . Prove

that Uj are continuous on Kj .

Since there are no eigenvalues L̃(λ) on the line Imλ = 0, it follows from [88] that there exists a

number δ ∈ [0, 1] such that there is no more than a finite set of eigenvalues {λk} of the operator L̃(λ)
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(at that, −1 − δ < Imλk < 0) on the strip −1 − δ ≤ Imλ ≤ 0. Taking into account the fact that
Uj ∈ E2

1(Kj) ⊂ H2
1 (Kj) is a solution of problem (23.14) with the right-hand sides Uj ∈ E2

1(Kj) ⊂
H0

−δ(Kj) and using [26, Theorem 2.2] (on the asymptotic behavior of solutions of nonlocal problems),
we obtain the relation

U =
∑
k

Jk∑
q=1

κqk−1∑
m=0

c
(m,q)
k W

(m,q)
k + U ′, W

(m,q)
k (ω, r) = riλk

m∑
ν=0

1

ν!
(i ln r)νϕ

(m−ν,q)
k (ω), (23.15)

where ϕ
(0,q)
k , . . . , ϕ

(κqk−1,q)
k ∈

∏
j
C∞([−ωj , ωj ]) is a Jordan chain corresponding to the eigenvalue λk,

c
(m,q)
k are constants, and U ′

j ∈ H2
−δ(Kj). It follows from here and the Sobolev embedding theorem

that Uj are continuous on Kj and Uj(0) = 0.
Now we show that

|Uj(y)| → 0 as |y| → ∞. (23.16)

If U ∈ E2
1 (K), then U ∈ E0

1 (K). This, the fact that U is a solution of homogeneous problem (23.14), and
[24, Theorem 3.2] imply that U ∈ E2

3 (K). Fixing arbitrary large a ≥ 1 and repeating these reasonings,
we obtain U ∈ E2

a(K). Assuming that V (ω, r) = U(ω, r−1) and using the Sobolev embedding theorem
and the arbitrariness of a, we see that the function Vj(y) is continuous at the origin and |Vj(y)| → 0
as |y| → 0. Equation (23.16) follows from here.

3. Introduce the notation

M = max
j=1,...,N

sup
y∈Kj

|Uj(y)|.

Let us show that M = 0. Assume the contrary: let M > 0. By the properties of Uj proved above,

any function |Uj(y)| has a maximum at some point y0 ∈ Kj \ {0}. If |Uj(y0)| = M for some j and
y0 ∈ Kj , then Uj(y) ≡ const by the maximum principle. Using the differential equation in (23.14), we
obtain M ≡ |Uj | = |ΔUj | = 0.

If |Uj(y0)| = M for y0 ∈ γjσ, where σ = 1 or 2, then, using the nonlocal conditions in (23.14) and
conditions (23.9), we obtain the inequality

M = |Uj(y0)| ≤
∑
k,s

bjσks|Uk(Gjσksy0)| ≤M. (23.17)

Thus, inequalities in Eq. (23.17) become equalities, and it follows from here that∑
k,s

bjσks = 1, |Uk(Gjσksy0)| =M

at least for one pair (k, s). Nevertheless, Gjσksy0 ∈ Kk, which is impossible by the above.

Corollary 23.2. Let conditions 23.1 and 23.2 hold. Then there is δ0 > 0 such that the operator

L : E l+2
l+1−δ(K) → E ll+1−δ(K, γ), l = 0, 1, 2, . . . ,

is an isomorphism for 0 ≤ δ ≤ δ0.

Proof. By Lemma 23.2, the operator L : E2
1 (K) → E0

1 (K, γ) is an isomorphism. On the other hand, by

Lemma 23.1 and the discontinuity of the spectrum L̃(λ) (see [88]), there exists δ0 > 0 such that there

are no eigenvalues L̃(λ) in the strip −δ0 ≤ Imλ ≤ 0. Similarly (see [64, Chap. 6, Proposition 2.8]),
we can show that the operator L : E2

1−δ(K) → E0
1−δ(K, γ) is an isomorphism for 0 ≤ δ ≤ δ0. Then,

by [24, Theorem 9.2, 9.3], the operator L : E l+2
l+1−δ(K) → E ll+1−δ(K, γ) is also an isomorphism.

Proof of Theorem 23.2. The theorem follows from Corollary 23.2 and [41, Theorem 8.1].
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23.4. Nonlocal problems in spaces of continuous functions. Take a number δ ∈ [0, 1] such

that there are no eigenvalues of the operator L̃(λ) either in the strip −δ ≤ Imλ ≤ 0 or on the line
Imλ = −1− δ. The existence of such a number follows from Lemma 23.1 and the discreteness of the
spectrum of L̃(λ) (see Lemma 6.1).

Let q1 be a number from Theorem 23.2. First, we construct an analog of a barrier function for
nonlocal problems. Consider the following auxiliary problem:

P(y,D)v − q1v = 0, y ∈ G; v|Γi −Biv = 1, y ∈ Γi, i = 1, . . . , N. (23.18)

Lemma 23.3. Let conditions 23.1 and 23.2 hold. Then problem (23.18) has a bounded solution
v ∈ C∞(G \ K) such that inf

y∈G\K
v(y) > 0.

Proof. 1. Consider the model problem

ΔW 1
j = 0, y ∈ Kε

j ; W 1
j (y)−

∑
k,s

bjσksW
1
k (Gjσksy) = 1, y ∈ γεjσ. (23.19)

Find a solution of problem (23.19) in the form

W 1
j = ϕj(ω), |ω| < ωj , j = 1, . . . , N. (23.20)

Obviously, the functions ϕ1(ω), . . . , ϕN (ω) satisfy the relations

ϕ′′
j (ω) = 0, |ω| < ωj ; ϕj((−1)σωj)−

∑
k,s

bjσksϕk((−1)σωj + ωjσks) = 1, (23.21)

or, equivalently, L̃(0)ϕ = {F̃j , F̃jσ}, where F̃j = 0 and F̃jσ = 1. By Lemma 23.1, the number λ = 0

is not an eigenvalue L̃(λ). Since L̃(λ) is a Fredholm operator and it has a zero index (see. [88]),
there exists a unique (real-valued) solution ϕ ∈

∏
j
C∞([−ωj , ωj ]) of problem (23.21). Obviously, the

functions ϕj(ω) are linear. Using the nonlocal conditions in Eq. (23.21) and relation (23.9), it is easy
to verify that ϕj(ω) > 0 for ω ∈ [−ωj , ωj ].

2. Consider a function ξ ∈ C∞(R2) such that ξ(y) = 1 for y ∈ Oε/2(K) and supp ξ ⊂ Oε(K).
Find a solution v of the initial problem (23.18) in the form

v(y) = w1(y) + v1(y), y ∈ G, (23.22)

where w1(y) = ξ(y)W 1
j (y

′(y)), y ∈ Oε(gj), gj ∈ K, y′ 
→ y(gj) is a transformation inverse to the

transformation y 
→ y′(gj) from Sec. 23.2, and the function w1 is extended by zero to G \ Oε(K); v1

is an unknown function.
It follows from Eqs. (23.18) and (23.22) that v1 satisfies relations

P(y,D)v1 − q1v
1 = f1(y), y ∈ G; v1|Γi −Biv

1 = f1i (y), y ∈ Γi, (23.23)

where

f1 = −P(y,D)w1 + q1w
1, f1i = 1− w1|Γi +Biw

1|Γi . (23.24)

Let V 1
j (y

′) = v1(y(y′)), Fj(y′) = f1(y(y′)), and Fjσ(y′) = f1i (y(y
′)), y′ ∈ Kε

j , where y 
→ y′(gj) is

the transformation from Sec. 23.2, gj ∈ K ∩ Γi. Denote y′ = y. Then by virtue of (23.19) and (23.24)
we have

Fj(y) = (Δ−Pj(y,D))W 1
j + q1W

1
j , y ∈ K

ε/2
j ,

Fjσ(y) =
∑
k,s

(Bjσks(y)− bjσks)W
1
k (Gjσksy), y ∈ K

ε/2
j ,

(23.25)

where Pj(y,D) and Bjσks(y) are the same as in Eq. (23.7). Taking into account the fact that the
principal homogeneous parts of the operators P(y,D)j(0, D) coincide with the Laplace operator and
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Bjσks(0) = bjσks and using the Taylor expansion, from representation (23.20) and relations (23.25) we
obtain

Fj ∈ H l
l+1−δ(K

ε/2
j ), Fjσ ∈ H

l+3/2
l+1−δ(γ

ε/2
jσ ),

i.e., {f1, f1i } ∈ Hl
l+1−δ(G, ∂G). Hence, by Theorem 23.2, there exists a unique solution v1 ∈ H l+2

l+1−δ(G)
of problem (23.23). Since l ≥ 0 is arbitrary, by the Sobolev embedding theorem, the function v defined
in Eq. (23.22) belongs to C∞(G \ K). Obviously, it is a solution of the initial problem (23.18).

3. We prove that v1 ∈ C(G) and v1(y) = 0 for y ∈ K. By virtue of Eq. (23.23), the functions V 1
j (y)

satisfy the following relations:

ΔV 1
j = F 1

j (y) + Fj(y), y ∈ K
ε/2
j ,

V 1
j (y)−

∑
k,s

bjσksV
1
k (Gjσksy) = F 1

jσ(y) + Fjσ(y), y ∈ γ
ε/2
jσ ,

(23.26)

where F 1
j = (Δ−Pj(y,D))V 1

j + q1V
1
j and

F 1
jσ =

∑
k,s

(Bjσks(y)− bjσks)V
1
k (Gjσksy).

Taking into account the fact that the principal homogeneous parts of the operators P(y,D)j(0, D)
coincide with the Laplace operator and Bjσks(0) = bjσks and using the Taylor expansion, we can
represent the right-hand side of problem (23.26) in the following form:

F 1
j + Fj = F 1

j + F 2
j + r−1ψj(ω), F 1

jσ + Fjσ = F 1
jσ + F 2

jσ + ψjσr, (23.27)

where ψj ∈ C∞([−ωj , ωj ]), F 1
j + F 2

j ∈ H0
−δ(K

ε/2
j ) and ψjσ ∈ R, F 1

jσ + F 2
jσ ∈ H

3/2
−δ (γ

ε/2
jσ ).

Obtain the asymptotic expansions of the functions V 1
j . We denote by {λk} the finite set of eigen-

values L̃(λ) concentrated in the strip −1− δ < Imλ < −δ. Then, applying [26, Theorem 2.2] and [26,
Lemma 4.3] to problem (23.26) with right-hand side (23.27), we obtain

V 1 = r
κ∑
ν=0

1

ν!
(i ln r)νu(ν)(ω) +

∑
k

Jk∑
q=1

κqk−1∑
m=0

c
(m,q)
k W

(m,q)
k + V 2, y ∈ K

ε/2
j , (23.28)

where u(ν) ∈
∏
j
C∞([−ωj , ωj ]), the functions W

(m,q)
k have the same form as in Eq. (23.15), c

(m,q)
k are

some constants, and V 2
j ∈ H2

−δ(K
ε/2
j ). It follows from formula (23.28) and the Sobolev embedding

theorem that V 1
j ∈ C(K

ε/2
j ) and V 1

j (0) = 0. Hence, v1 ∈ C(G) and v1(0) = 0 for y ∈ K. In particular,

it follows from here that the function v = v1 + w1 is bounded.
4. It remains to show thatm > 0, wherem = inf

y∈G\K
v(y). Assume the contrary: letm ≤ 0. Consider

a sequence {yk} ⊂ G \ K such that v(yk) → m for k → ∞. Since the sequence {yk} is bounded, it
contains a convergent subsequence (which we denote {yk}). Let yk → y0 for k → ∞, where y0 ∈ G.

Using the maximum principle, the nonlocal conditions in Eq. (23.18), and relations (23.2), it is easy
to verify that y0 /∈ G \ K. Assume that y0 ∈ K. By item 1, we can find a constant A > 0 such that
w1(y) ≥ A in some neighborhood of a point y0 (except for a point y0 where the function w1 may not
be defined). On the other hand, we have proved in item 3 that v1(y0) = 0. Hence, v(y) ≥ A/2 in
some neighborhood of y0 (perhaps, except for the point y0). In this case, the sequence {v(yk)} cannot
converge to a nonpositive number m.

Let us consider the problem

P(y,D)u− qu = 0, y ∈ G; u|Γi −Biu = ψi(y), y ∈ Γi, i = 1, . . . , N. (23.29)

The following theorem is fundamental in the study of Feller semigroups.
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Theorem 23.3. Let conditions 23.1 and 23.2 hold and let q ≥ q1. Then for any ψ = {ψi} ∈ CK(∂G),
there exists a unique solution u ∈ C(G) ∩ C∞(G) of problem (23.29). Moreover, u(y) = 0 for y ∈ K
and the following estimate holds :

‖u‖C(G) ≤ c1‖ψ‖CK(∂G), (23.30)

where c1 > 0 is independent of ψ and q.

Proof. 1. We prove the theorem for infinitely smooth functions ψi that vanish in some neighborhood
of the sets Γi ∩ K. Passing to the limit, we obtain the general case. For the functions ψi mentioned,

we have ψi ∈ H
3/2
−δ (Γi). Hence, by Theorem 23.2, there exists a unique solution u ∈ H2

1−δ(G) of

problem (23.29). By virtue (13.22), u ∈ C∞(G \ K). Let {λk} be a finite set of eigenvalues L̃(λ)
concentrated in the strip −1 − δ < Imλ < −δ. Then, according to [26, Theorem 2.2] (theorem on
the asymptotic behavior of solutions of nonlocal problems), the function u can be re presented in the
following form near the point gj ∈ K (j = 1, . . . , N):

u(y) =
∑
k

Jk∑
q=1

κqk−1∑
m=0

c
(m,q)
k W

(m,q)
kj + u′(y), y ∈ G ∩ Oε(gj),

where c
(m,q)
k are some constants, the functions W

(m,q)
kj (ω, r) have the same form as the components of

the vector W
(m,q)
k (ω, r) in Eq. (23.15) (ω and r are the polar coordinates with pole at the point gj),

and u′ ∈ H2
−δ(G). Thus, applying the Sobolev embedding theorem, we see that u ∈ C(G) and

u(y) = 0, y ∈ K. (23.31)

2. Prove estimate (23.30). Assume that M = ‖ψ‖CK(∂G) and M > 0.
Denote w±(y) = Mv(y) ± u(y), where v(y) is the function from Lemma 23.3. By Eqs. (23.18)

and (23.29), the functions w± satisfy the following relations:

P(y,D)w± − qw± =M(q1 − q)v(y), y ∈ G,

w±|Γi −Biw± =M ± ψi(y), y ∈ Γi, i = 1, . . . , N.

Since q1 ≤ q, v(y) > 0, y ∈ G (by Lemma 23.3) and M ≥ ±ψi, we have

P(y,D)w± − qw± ≤ 0, y ∈ G, w±|Γi −Biw± ≥ 0, y ∈ Γi, i = 1, . . . , N. (23.32)

Let us show that m± = inf
y∈G\K

w±(y) ≥ 0. Assume the contrary: let m± < 0. As well as in item 4 of

the proof of Lemma 23.3, we consider a sequence {yk} ⊂ G \ K such that yk → y0 and w±(yk) → m±
as k → ∞, where y0 ∈ G. The following three cases are possible: y0 ∈ G, y0 ∈ Γi for some i, and
y0 ∈ K.

Let y0 ∈ G. Since w±(y) is continuous in G, we see that it has a negative minimum m inside the
domain. It follows from the first inequality in Eq. (23.32) and the maximum principle that w±(y) = m±
as y ∈ G. Taking into account condition 23.1, we obtain

P(y,D)w±(y0)− qw±(y0) = p0(y
0)m± − qm± ≥ −qm± > 0,

which contradicts the first inequality in Eq. (23.32).
Let y0 ∈ Γi for some i. Then from Eq. (23.32) and (23.2) we obtain the following inequality:

m± = w±(y0) ≥
Si∑
s=1

bis(y
0)w±(Ωis(y0)) ≥ m±

Si∑
s=1

bis(y
0) ≥ m±. (23.33)

Hence, inequalities (23.33) become equalities, i.e.,

Si∑
s=1

bis(y
0) = 1, w±(Ωis(y0)) = m±,
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for some s, i.e., the function w±(y) has a negative minimum at an internal point of Ωis(y
0) ∈ G.

However, this is impossible.
Finally, we assume that y0 ∈ K. By Lemma 23.3,m = inf

y′∈G\K
v(y′) > 0, and we obtain the inequality

Mv(y) ≥Mm > 0, y ∈ G \ K.
The last inequality and Eq. (23.31) imply that

w±(y) =Mv(y)± u(y) ≥Mm/2 > 0

in some neighborhood of y0 (except for the point y0, where w±(y) may not be defined). Hence, the
sequence {w±(yk)} cannot converge to a negative number m±.

Hence, we have proved that inf
y∈G\K

w±(y) ≥ 0; therefore,

|u(y)| ≤Mv(y) ≤M sup
y′∈G\K

v(y′), y ∈ G \ K.

Since the function u(y) is continuous in G, from the last inequality we obtain estimate (23.30), where
c1 = sup

y′∈G\K
v(y′). Obviously, the constant c1 > 0 is independent of ψ and q.

Consider the nonlocal problem

P(y,D)u− qu = f0(y), y ∈ G; u|Γi −Biu = ψi(y), y ∈ Γi, i = 1, . . . , N. (23.34)

The following result follows from Theorems 23.2 and 23.3 and the asymptotic properties of solutions
of nonlocal problems [26].

Corollary 23.3. Let conditions 23.1 and 23.2 hold. Then we can find a number q1 > 0 such that for
any f0 ∈ C(G), ψ = {ψi} ∈ CK(∂G), and q ≥ q1, there exists a unique solution u ∈ CK(G) ∩W 2

loc(G)

of problem (23.34). Moreover, if f0 = 0, then u ∈ CK(G) ∩ C∞(G) and the following estimate holds :

‖u‖CK(G) ≤ c1‖ψ‖CK(∂G), (23.35)

where c1 > 0 is independent of ψ and q.

24. Bounded Perturbations of Diffusion Processes

24.1. Problems with nonlocal terms whose supports lie near conjugation points. In the
sequel, we will need the following maximum principle.

Maximum Principle 24.1 ( [22, Theorem 9.6]). Let D ⊂ R
2 be a bounded or unbounded domain

and let condition 23.1 hold for the domain D. If the function u ∈ C(D) has a positive maximum at a
point y0 ∈ D and13 P(y,D)u ∈ C(D), then P(y,D)u(y0) ≤ 0.

Let us formulate some auxiliary results that will be helpful in the next sections.
Let u ∈ C∞(G) ∩ CK(G) be a solution of problem (23.34) with f0 = 0 and ψ = {ψi} ∈ CK(∂G).

Denote u = Sqψ. By Corollary 23.3, the operator

Sq : CK(∂G) → CK(G), q ≥ q1,

is bounded and ‖Sq‖ ≤ c1, where c1 > 0 is independent of q.

Lemma 24.1. Let conditions 23.1 and 23.2 hold. Let Q1 and Q2 be closed sets such that Q1 ⊂ ∂G,
Q2 ⊂ G, and Q1 ∩ Q2 = ∅, and let q ≥ q1. Then the following inequality holds for all ψ ∈ CK(∂G)
such that supp(Sqψ)|∂G ⊂ Q1:

‖Sqψ‖C(Q2) ≤
c2
q
‖ψ‖CK(∂G), q ≥ q1,

13In what follows, the operator P(y,D) acts in the sense of generalized function.
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where c2 > 0 is independent of ψ and q.

Proof. Using [19, Lemma 1.3]14 and Corollary 23.3. We obtain

‖Sqψ‖C(Q2) ≤
k

q
‖(Sqψ)|∂G‖C(∂G) ≤

k

q
‖Sqψ‖C(G) ≤

kc1
q

‖ψ‖CK(∂G), q ≥ q1, (24.1)

where the number q1 from Corollary 23.3 is assumed to be sufficiently large (so large that [19,
Lemma 1.3] is valid for q ≥ q1); the number k = k(q1) is independent of ψ and q.

Lemma 24.2. Let conditions 23.1 and 23.2 hold, Q1 and Q2 be the same as in Lemma 24.1, and let
q ≥ q1. Assume that Q2 ∩ K = ∅. Then for all ψ ∈ CK(∂G) such that suppψ ⊂ Q1, the following
inequality holds:

‖Sqψ‖C(Q2) ≤
c3
q
‖ψ‖CK(Q1), q ≥ q1,

where c3 > 0 is independent of ψ and q.

Proof. 1. Consider a number σ > 0 such that

dist(Q1, Q2) > 3σ, dist(K, Q2) > 3σ. (24.2)

Introduce a function ξ ∈ C∞(R2) such that 0 ≤ ξ(y) ≤ 1, ξ(y) = 1 for dist(y,Q2) ≤ σ and ξ(y) = 0
for dist(y,Q2) ≥ 2σ.

Consider the auxiliary problem

P(y,D)v − qv = 0, y ∈ G; v(y) = ξ(y)u(y), y ∈ ∂G, (24.3)

where u = Sqψ ∈ CK(G). Applying Corollary 23.3 (with Bi = 0), we see that there exists a unique

solution v ∈ C∞(G) ∩ CK(G) of Problem (24.3). It follows from the maximum principle 24.1 and
definition of the function ξ that

‖v‖C(G) ≤ ‖ξu‖C(∂G) ≤ max
i=1,...,N

‖u|Q2,2σ∩Γi
‖C(Q2,2σ∩Γi)

, (24.4)

where Q2,2σ = {y ∈ ∂G : dist(y,Q2) ≤ 2σ}.
Since suppψ ∩Q2,2σ = ∅, we see that

u−Biu = 0, y ∈ Q2,2σ ∩ Γi. (24.5)

Since Biu = 0 for y /∈ Oε(K), it follows from Eq. (24.5) that

u(y) = 0, y ∈ [Q2,2σ ∩ Γi] \ Oε(K). (24.6)

Using (24.4)–(24.6), the definition of the operators Bi, and condition 23.2, we obtain the inequality

‖v‖C(G) ≤ max
i=1,...,N

‖u|
Q2,2σ∩Γi∩Oε(K)

‖
C(Q2,2σ∩Γi∩Oε(K))

≤ max
i=1,...,N

max
s=1,...,Si

‖u|
Ωis(Q2,2σ∩Γi∩Oε(K))

‖
C(Ωis(Q2,2σ∩Γi∩Oε(K)))

. (24.7)

Since Q2,2σ ∩ K = ∅ (see Eq. (24.2)), it follows from the definition of the transformations Ωis that

Ωis(Q2,2σ ∩ Γi ∩ Oε(K))) ⊂ G.

Hence, using inequalities (24.7) and Lemma 24.1, where the sets ∂G and Ωis(Q2,2σ ∩Γi ∩Oε(K))) are
taken instead of Q1 and Q2, we have

‖v‖C(G) ≤
c2
q
‖ψ‖CK(∂G). (24.8)

14In [19, Lemma 1.3], it was assumed that the boundary of the domain is infinitely smooth. This assumption was used
in the proof of the existence of classic solutions of elliptic equations with inhomogeneous boundary conditions. However,
if we know that a classic solution exists, we can omit the assumption on the smoothness of the boundary in the proof of
the first inequality in Eq. (24.1).
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2. Let w = u− v. Obviously, the function w satisfies the relations

P(y,D)w − qw = 0, y ∈ G; w(y) = u(y)− v(y) = 0, y ∈ Q2,σ.

Using Lemma 24.1 (with Bi = 0), where the set ∂G \Q2,σ is taken instead of Q1, and taking into
account the fact that w|∂G = (1− ξ)u|∂G, we obtain the inequality

‖w‖C(Q2) ≤
c2
q
‖w|∂G‖C(∂G) ≤

c2
q
‖u‖C(G).

It follows from the last inequality and Corollary 23.3 that

‖w‖C(Q2) ≤
c2c1
q

‖ψ‖CK(∂G).

Combining this estimate with Eq. (24.8), we complete the proof.

24.2. Bounded perturbations of elliptic operators and their properties. Consider a linear
operator P1 satisfying the following condition.

Condition 24.1. An operator P1 : C(G) → C(G) is bounded and, if a function u ∈ C(G) has a
positive maximum at a point y0 ∈ G, then P1u(y

0) ≤ 0.

Here, the operator P1 is a bounded perturbation of an unbounded elliptic operator in spaces of
continuous functions (cf. [19, 20]).

The next result follows from conditions 23.1 and 24.1 and the maximum principle 24.1.

Lemma 24.3. Let conditions 23.1 and 24.1 hold. If a function u ∈ C(G) has a positive maximum at
a point y0 ∈ G and P(y,D)u ∈ C(G), then P(y,D)u(y0) +P1u(y

0) ≤ 0.

In this paper, we consider the following nonlocal conditions in the nontransversal case:

b(y)u(y) +

∫
G

[u(y)− u(η)]μ(y, dη) = 0, y ∈ ∂G, (24.9)

where b(y) ≥ 0 and μ(y, ·) is a nonnegative Borel measure at G.
Let N = {y ∈ ∂G : μ(y,G) = 0} and M = ∂G \ N . Assume that N and M are Borel sets.

Condition 24.2. K ⊂ N .

Introduce the function b0(y) = b(y) + μ(y,G).

Condition 24.3. b0(y) > 0 for y ∈ ∂G.

By 24.2 and 24.3, we can write condition (24.9) in the following form:

u(y)−
∫
G

u(η)μi(y, dη) = 0, y ∈ Γi; u(y) = 0, y ∈ K, (24.10)

where μi(y, ·) =
μ(y, ·)
b0(y)

, y ∈ Γi. By the definition of the function b0(y), we have

μi(y,G) ≤ 1, y ∈ Γi. (24.11)

For any set Q, denote by χQ(y) a function that equals 1 in Q and vanishes in R
2 \Q.

Let bis(y) and Ωis be the same as above. Introduce the measures δis as follows:

δis(y,Q) =

{
bis(y)χQ(Ωis(y)), y ∈ Γi ∩ Oε(K),

0, y ∈ Γi \ Oε(K),

where Q is an arbitrary Borel set.
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We study the measures μi(y, ·) represented in the form

μi(y, ·) =
Si∑
s=1

δis(y, ·) + αi(y, ·) + βi(y, ·), y ∈ Γi, (24.12)

where αi(y, ·) and βi(y, ·) are nonnegative Borel measures satisfying the following conditions.
For any Borel measure μ(y, ·), a closed set

sptμ(y, ·) = G \
⋃
V ∈T

{V ∈ T : μ(y, V ∩G) = 0},

where T is the set of all open sets in R
2, is called the support of the measure μ(y, ·).

Condition 24.4. There exist numbers κ1 > κ2 > 0 and σ > 0 such that

(1) sptαi(y, ·) ⊂ G \ Oκ1(K) for y ∈ Γi,
(2) sptαi(y, ·) ⊂ Gσ for y ∈ Γi \ Oκ2(K),

where Oκ1(K) = {y ∈ R
2 : dist(y,K) < κ1} and Gσ = {y ∈ G : dist(y, ∂G) < σ}.

Condition 24.5. βi(y,M) < 1 for y ∈ Γi ∩M, i = 1, . . . , N .

Remark 24.1. Condition 24.5 is weaker than similar conditions 2.2 in [19] and 3.2 in [20]. It is
needed in these conditions that the inequality μi(y,M) < 1 hold for y ∈ Γi ∩M.

Remark 24.2. One can show that if conditions 24.3–24.5 are valid, then

b(y) + μ(y,G \ {y}) > 0, y ∈ ∂G,

i.e., boundary condition (24.9) is given at every point of the boundary.

Using relations (24.12), we write nonlocal conditions (24.10) in the form

u(y)−Biu(y)−Bαiu(y)−Bβiu(y) = 0, y ∈ Γi; u(y) = 0, y ∈ K, (24.13)

where the operators Bi are defined in Sec. 23.2,

Bαiu(y) =

∫
G

u(η)αi(y, dη), Bβiu(y) =

∫
G

u(η)βi(y, dη), y ∈ Γi.

Let us introduce the space

CB(G) = {u ∈ C(G) : u satisfies (24.9)}.
Obviously, we can use conditions (24.10) or (24.13) in the definition of the space CB(G). It follows
from the definition of the space CB(G) and condition 24.2 that

CB(G) ⊂ CN (G) ⊂ CK(G). (24.14)

Lemma 24.4. Let conditions 23.1, 23.2, and 24.1–24.5 hold. Let the function u ∈ CB(G) have a
positive maximum at a point y0 ∈ G and let P(y,D)u ∈ C(G). Then there is a point y1 ∈ G such that
u(y1) = u(y0) and P(y,D)u(y1) +P1u(y

1) ≤ 0.

Proof. 1. If y0 ∈ G, then the lemma follows from Lemma 24.3. Let y0 ∈ ∂G. Assume that the lemma
does not hold, i.e., u(y0) > u(y) for all y ∈ G.

Since u(y0) > 0 and u ∈ CB(G) ⊂ CN (G), we have y0 ∈ M. Let y0 ∈ Γi ∩ M for some i. If
μi(y

0, G) > 0, then, taking into account Eq. (24.11), we obtain

u(y0)−
∫
G

u(η)μi(y
0, dη) ≥

∫
G

[u(y0)− u(η)]μi(y
0, dη) > 0.
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This contradicts Eq. (24.10). Hence, sptμi(y
0, ·) ⊂ ∂G. It follows from here, Eq. (24.12), and

condition 24.4 (item 1) that

bis(y
0) = 0, sptαi(y

0, ·) ⊂ ∂G \ Oκ1(K), sptβi(y
0, ·) ⊂ ∂G. (24.15)

2. Assume that αi(y
0, ∂G \ Oκ1(K)) = 0. In this case, by Eq. (24.15), we have

αi(y
0, G) = 0. (24.16)

Further, from Eqs. (24.12), (24.15), and (24.16) and condition 24.5 we obtain

μi(y
0, ·) = βi(y

0, ·), sptβi(y
0, ·) ⊂ ∂G, βi(y

0,M) < 1.

Hence the following relations hold for u ∈ CB(G) ⊂ CN (G):

u(y0)−
∫
G

u(η)μi(y
0, dη) = u(y0)−

∫
M

u(η)βi(y
0, dη) ≥ u(y0)− u(y0)βi(y

0,M) > 0.

This contradicts Eq. (24.10).
The contradiction means that αi(y

0, ∂G \ Oκ1(K)) > 0. Thus, taking into account condition 24.4
(item 2), we have y0 ∈ Oκ2(K).

3. Let us show that there is a point

y′ ∈ ∂G \ Oκ1(K) (24.17)

such that u(y′) = u(y0). Assume the contrary: u(y0) > u(y) for y ∈ ∂G \ Oκ1(K). Then, using
Eqs. (24.11), (24.12), and (24.15), we obtain the inequalities

u(y0)−
∫
G

u(η)μi(y
0, dη) ≥

∫
G

[u(y0)−u(η)]μi(y0, dη) ≥
∫

∂G\Oκ1 (K)

[u(y0)−u(η)]αi(y0, dη) > 0, (24.18)

since αi(y
0, ∂G \ Oκ1(K)) > 0. Inequality (24.18) contradicts Eq. (24.10). Hence, the function u has

a positive maximum at some point y′ ∈ ∂G \ Oκ1(K). Repeating reasonings of items 1 and 2 of the
proof, we obtain that y′ ∈ Oκ2(K). This contradicts to Eq. (24.17).

Thus, we have proved the existence of a point y1 ∈ G such that u(y1) = u(y0). Applying
Lemma 24.3, we can also prove the inequality P(y,D)u(y1) +P1u(y

1) ≤ 0.

Corollary 24.1. Let conditions 23.1, 23.2, and 24.1–24.5 hold. Let u ∈ CB(G) be a solution of the
equation

qu(y)−P(y,D)u(y)−P1u(y) = f0(y), y ∈ G,

where q > 0 and f0 ∈ C(G). Then

‖u‖C(G) ≤
1

q
‖f0‖C(G). (24.19)

Proof. Let max
y∈G

|u(y)| = u(y0) > 0 for some y0 ∈ G. By Lemma 24.4, there exists a point y1 ∈ G such

that u(y1) = u(y0) and P(y,D)u(y1) +P1u(y
1) ≤ 0. Hence

‖u‖C(G) = u(y0) = u(y1) =
1

q
(P(y,D)u(y1) +P1u(y

1) + f0(y
1)) ≤ 1

q
‖f0‖C(G).

If max
y∈G

|u(y)| = −u(y0) > 0, then, applying the above reasonings to the solution v(y) = −u(y) of

the equation qv −P(y,D)v −P1v = −f0, we again obtain (24.19).
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24.3. Reducing to an operator equation on the boundary. In this section, we impose addi-
tional restrictions on nonlocal operators. These restrictions will allow us to reduce nonlocal elliptic
problems to operator equations on the boundary.

Note that if u ∈ CN (G), then the function Biu is continuous on Γi and can be extended to
a continuous function on Γi that belongs to CN (Γi); we will denote it by Biu. Assume that the
operators Bαi and Bβi have similar properties.

Condition 24.6. For any u ∈ CN (G), the functions Bαiu and Bβiu can be extended to Γi such that

the resulting functions (we will denote them by Bαiu and Bβiu, respectively) belong to CN (Γi).

The following lemma directly follows from the definition of nonlocal operators.

Lemma 24.5. Let conditions 6.3, 23.2, 24.2, 24.3, and 24.6 hold. Then the operators Bi and Bαi,
Bβi : CN (G) → CN (Γi) are bounded and

‖Biu‖CN (Γi)
≤ ‖u‖CN (G), ‖Bαiu‖CN (Γi)

≤ ‖u‖CN (G\Oκ1 (K)),

‖Bβiu‖CN (Γi)
≤ ‖u‖CN (G), ‖Bαiu+Bβiu‖ ≤ ‖u‖CN (G),

‖Biu+Bαiu+Bβiu‖ ≤ ‖u‖CN (G).

Introduce the operators

B = {Bi} : CN (G) → CN (∂G), Bαβ = {Bαi +Bβi} : CN (G) → CN (∂G), (24.20)

where CN (∂G) is defined in Eq. (5.1).
Using the operator Sq defined in Sec. 24.1, we introduce the bounded operator

I−BαβSq : CN (∂G) → CN (∂G), q ≥ q1. (24.21)

Since Sqψ ∈ CN (G) for ψ ∈ CN (∂G), we see that the operator in (24.21) is well defined.
Further, we will formulate sufficient conditions that guarantee the existence of a bounded operator

(I−BαβSq)
−1 : CN (∂G) → CN (∂G).

Let us represent the measures βi(y, ·) in the form

βi(y, ·) = β1i (y, ·) + β2i (y, ·), (24.22)

where β1i (y, ·) and β2i (y, ·) are nonnegative Borel measures. Describe them. For any p > 0, we consider

a covering of the set M by p-neighborhoods of all its points. We denote by Mp some finite covering.

Obviously, Mp is an open Borel set. Further, for any p > 0, we consider a patch function ζ̂p ∈ C∞(R2)

such that 0 ≤ ζ̂p(y) ≤ 1, ζ̂p(y) = 1 for y ∈ Mp/2, and ζ̂p(y) = 0 for y /∈ Mp. Let ζ̃p = 1− ζ̂p. Introduce
the operators

B̂1
βiu(y) =

∫
G

ζ̂p(η)u(η)β
1
i (y, dη), B̃1

βiu(y) =

∫
G

ζ̃p(η)u(η)β
1
i (y, dη), B2

βiu(y) =

∫
G

u(η)β2i (y, dη).

Condition 24.7. For all i = 1, . . . , N we have:

(1) the operators B̂1
βi, B̃

1
βi : CN (G) → CN (Γi) are bounded ;

(2) there exist a number p > 0 such that15

‖B̂1
βi‖ <

⎧⎪⎪⎨
⎪⎪⎩

1

c1
, if αj(y,G) = 0 for all y ∈ Γj, j = 1, . . . , N,

1

c1(1 + c1)
otherwise,

where c1 is a constant from Corollary 23.3.

15Item 2 of condition 24.7 can be replaced by a stronger assumption “‖B̂1
βi‖ → 0 as p → 0,” which is easier for

verification in concrete applications.
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Remark 24.3. The operators B̂1
βi, B̃

1
βi : CN (G) → CN (Γi) are bounded if and only if the operator

B̂1
βi + B̃1

βi : CN (G) → CN (Γi) is bounded. This follows from the relations

B̂1
βiu = (B̂1

βi + B̃1
βi)(ζ̂pu), B̃1

βiu = (B̂1
βi + B̃1

βi)(ζ̃pu)

and the continuity of the functions ζ̂p and ζ̃p.

Condition 24.8. The perators B2
βi : CN (G) → CN (Γi), i = 1, . . . , N , are compact.

It follows from Eqs. (24.12) and (24.22) that the measures μi(y, ·) can be represented in the form

μi(y, ·) =
Si∑
s=1

δis(y, ·) + αi(y, ·) + β1i (y, ·) + β2i (y, ·), y ∈ Γi.

The measures δis(y, ·) correspond to nonlocal terms supported near the set K of conjugation points.
The measures αi(y, ·) correspond to nonlocal terms supported outside the set K. The measures
β1i (y, ·) and β2i (y, ·) correspond to nonlocal terms whose supports have arbitrary geometric structure
(in particular, it can intersect with the set K); however, the measure β1i (y,Mp) of the set Mp must
be small for small p (condition 24.7), and the measure β2i (y, ·) must generate a compact operator
(condition 24.8).

Lemma 24.6. Let conditions 23.1, 23.2, 24.1–24.5, and 24.6–24.8 hold. Then there exists a bounded
operator (I−BαβSq)

−1 : CN (∂G) → CN (∂G), q ≥ q1, where q1 > 0 is sufficiently small.

Proof. 1. Let us consider the bounded operators B̂1
β = {B̂1

βi}, B̃1
β = {B̃1

βi}, B2
β = {B2

βi}, and

Bα = {Bαi} acting from CN (G) to CN (∂G) (cf. (24.20)).
Prove that the operator I−BαSq : CN (∂G) → CN (∂G) has a bounded inverse operator. Introduce

a function ζ ∈ C∞(G) such that 0 ≤ ζ(y) ≤ 1, ζ(y) = 1 for y ∈ Gσ, and ζ(y) = 0 for y /∈ Gσ/2, where
σ > 0 is a number from condition 24.4.

We have

I−BαSq = I−Bα(1− ζ)Sq −BαζSq. (24.23)

1a. First, we prove that the operator I−Bα(1−ζ)Sq has a bounded inverse operator. By Lemma 24.5
and Corollary 23.3, we have

‖Bα(1− ζ)Sq‖ ≤ c1. (24.24)

Further, (1− ζ)Sqψ = 0 in Gσ for any ψ ∈ CN (∂G). Hence, by condition 24.4, we see that

suppBα(1− ζ)Sqψ ⊂ ∂G ∩ Oκ2(K). (24.25)

Let us show that

‖[Bα(1− ζ)Sq]
2‖ ≤ c

q
, q ≥ q1, (24.26)

where q1 > 0 is sufficiently large and c > 0 is independent of q. Applying sequentially Lemma 24.5,
Lemma 24.2, relation (24.25), Lemma 24.5, and Corollary 23.3, we obtain the inequality

‖Bα(1− ζ)SqBα(1− ζ)Sqψ‖CN (∂G) ≤ ‖SqBα(1− ζ)Sqψ‖CN (G\Oκ1 (K))

≤ c3
q
‖Bα(1− ζ)Sqψ‖CN (∂G∩Oκ2 (K))

≤ c3c1
q

‖ψ‖CN (∂G).

Equation (24.26) with c = c3c1 follows from here.
If q ≥ 2c, then the operator I− [Bα(1− ζ)Sq]

2 has a bounded inverse operator. Then the operator
I−Bα(1− ζ)Sq also has a bounded inverse operator and

[I−Bα(1− ζ)Sq]
−1 = [I+Bα(1− ζ)Sq][I− (Bα(1− ζ)Sq)

2]−1. (24.27)
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It follows from (24.27), Lemma 24.5, Corollary 23.3, and relations (24.24) and (24.26) that

‖[I−Bα(1− ζ)Sq]
−1‖ = 1 + c1 +O(q−1), q → +∞. (24.28)

1b. Now let us estimate the norm of the operator BαζSq. Lemmas 24.5 and 24.2 yield

‖BαζSqψ‖CN (∂G) ≤ ‖Sqψ‖C(Gσ/2)
≤ c2

q
‖ψ‖CN (∂G). (24.29)

Hence, using representation (24.23), we see that the operator I−BαSq has a bounded inverse for all
sufficiently large q and

(I−BαSq)
−1 = [I− (I−Bα(1− ζ)Sq)

−1BαζSq]
−1[I−Bα(1− ζ)Sq]

−1. (24.30)

It follows from (24.28)–(24.30) that

‖(I−BαSq)
−1‖ = 1 + c1 +O(q−1), q → +∞. (24.31)

2. Let us prove that the operator I− (Bα+B̂1
β+B̃1

β)Sq : CN (∂G) → CN (∂G) has a bounded inverse
operator.

2a. It follows from the definition of the operator B̃1
β and Lemma 24.1 (with Q1 = M and Q2 =

G \Mp/2) that

‖B̃1
βiSqψ‖CN (Γi)

≤ ‖Sqψ‖C(G\Mp/2)
≤ c2

q
‖ψ‖CN (∂G), (24.32)

because (G \Mp/2) ∩M = ∅ and supp(Sqψ)|∂G ⊂ M for ψ ∈ CN (∂G).

2b. Let αj(y,G) 	= 0 for some j and y ∈ Γj . By virtue of condition 24.7 (item 2) and Corollary 23.3
there is a number d such that 0 < 2d < 1/(1 + c1) and

‖B̂1
βiSqψ‖CN (Γi)

≤
(

1

c1(1 + c1)
− 2d

c1

)
‖Sqψ‖CN (G) ≤

(
1

1 + c1
− 2d

)
‖ψ‖CN (∂G). (24.33)

Inequalities (24.32) and (24.33) yields the inequality

‖(B̂1
β + B̃1

β)Sq‖ ≤ 1

1 + c1
− d (24.34)

for all sufficiently large q. It follows from (24.31) and (24.34) that

‖(I−BαSq)
−1(B̂1

β + B̃1
β)Sq‖ < 1

for sufficiently large q. Hence, there exists a bounded inverse operator

[I− (Bα + B̂1
β + B̃1

β)Sq]
−1 = [I− (I−BαSq)

−1(B̂1
β + B̃1

β)Sq]
−1[I−BαSq]

−1. (24.35)

2c. If αj(y,G) = 0 for y ∈ Γj , j = 1, . . . , N , then, by condition 24.7 (item 1), inequality (24.33) has
the form

‖B̂1
βiSqψ‖CN (Γi)

≤
(

1

c1
− 2d

c1

)
‖Sqψ‖CN (G) ≤ (1− 2d)‖ψ‖CN (∂G).

Hence, inequality (24.34) has the form

‖(B̂1
β + B̃1

β)Sq‖ ≤ 1− d. (24.36)

Since Bα = 0 in this case, we see that Eq. (24.36) implies that the operator

I− (Bα + B̂1
β + B̃1

β)Sq = I− (B̂1
β + B̃1

β)Sq

has a bounded inverse operator.
3. It remains to prove that the operator I − BαβSq also has a bounded inverse operator. By

condition 24.8, the operator B2
β is compact. Hence, the operator B2

βSq is also compact. Since the
index of a Fredholm operator is steady with respect to compact perturbations, we see that the operator
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I−BαβSq is a Fredholm operator and ind(I−BαβSq) = 0. It suffices to show that dimker(I−BαβSq) =
0 to prove that I−BαβSq has a bounded inverse operator.

Let ψ ∈ CN (∂G) and (I−BαβSq)ψ = 0. The the function u = Sqψ ∈ C∞(G)∩CN (G) is a solution
of the problem

P(y,D)u− qu = 0, y ∈ G,

u(y)−Biu(y)−Bαiu(y)−Bβiu(y) = 0, y ∈ Γi,

u(y) = 0, y ∈ K.
By Corollary 24.1, we have u = 0. Hence, ψ = BαβSqψ = Bαβu = 0.

24.4. Existence of Feller semigroups. Here we prove that bounded perturbations of elliptic op-
erators with nonlocal terms which satisfy the conditions of Secs. 24.1–24.3 generate Feller semigroups.

Reducing nonlocal problems to the boundary and using Lemma 24.6, we prove that nonlocal prob-
lems are solvable in spaces of continuous functions.

Lemma 24.7. Let conditions 23.1, 23.2, 24.2–24.5, and 24.6–24.8 hold and let q1 > 0 be sufficiently
large. Then for any q ≥ q1 and f0 ∈ C(G), the problem

qu(y)−P(y,D)u(y) = f0(y), y ∈ G, (24.37)

u(y)−Biu(y)−Bαiu(y)−Bβiu(y) = 0, y ∈ Γi; u(y) = 0, y ∈ K, (24.38)

has a unique solution u ∈ CB(G) ∩W 2
loc(G).

Proof. Consider the following auxiliary problem:

qv(y)−P(y,D)v(y) = f0(y), y ∈ G; v(y)−Biv(y) = 0, y ∈ Γi, i = 1, . . . , N. (24.39)

Since f0 ∈ C(G), we see that by Corollary 23.3 there exists a unique solution v ∈ CK(G) of problem
(24.39). Hence, v ∈ CN (G).

2. Let w = u − v. The unknown function w belongs to CN (G) and, by Eqs. (24.37)–(24.39), it
satisfies the relations

qw(y)−P(y,D)w(y) = 0, y ∈ G,

w(y)−Biw(y)−Bαiw(y)−Bβiw(y) = Bαiv(y) +Bβiv(y), y ∈ Γi, i = 1, . . . , N,

w(y) = 0, y ∈ K.
(24.40)

By condition 24.6, problem (24.40) is equivalent to the operator equation ψ−BαβSqψ = Bαβv with
respect to the unknown function ψ ∈ CN (∂G). By Lemma 24.6, this equation has a unique solution
ψ ∈ CN (∂G). Then problem (24.37), (24.38) also has a unique solution

u = v + w = v + Sqψ = v + Sq(I−BαβSq)
−1Bαβv ∈ CB(G).

Moreover, by the theorem on the inner smoothness of solutions of elliptic equations, we have u ∈
W 2

loc(G).

Using Lemma 24.7 and condition 24.1, we prove that problems with bounded perturbations are also
solvable in spaces of continuous functions.

Lemma 24.8. Let conditions 23.1, 23.2, and 24.1–24.8 hold and let q1 > 0 be sufficiently large. Then
for any q ≥ q1 and f0 ∈ C(G), the problem

qu− (P(y,D) +P1)u = f0(y), y ∈ G, (24.41)

u(y)−Biu(y)−Bαiu(y)−Bβiu(y) = 0, y ∈ Γi; u(y) = 0, y ∈ K, (24.42)

has a unique solution u ∈ CB(G) ∩W 2
loc(G).
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Proof. Denote the identity operator in the space C(G) by I. Consider the operator qI −P(y,D) as
an operator acting from C(G) to C(G) with the domain

D(qI −P(y,D)) = {u ∈ CB(G) ∩W 2
loc(G) : P(y,D)u ∈ C(G)}.

By Lemma 24.7 and Corollary 24.1, there exists a bounded operator (qI−P(y,D))−1 : C(G) → C(G)
and

‖(qI −P(y,D))−1‖ ≤ 1

q
.

Introduce the operator qI −P(y,D)−P1 : C(G) → C(G) with the domain

D(qI −P(y,D)−P1) = D(qI −P(y,D)).

Since

qI −P(y,D)−P1 = (I −P1(qI −P(y,D))−1)(qI −P(y,D)),

we see that the operator qI −P(y,D)−P1 : C(G) → C(G) has a bounded inverse for q ≥ q1, where
q1 is so large that ‖P1‖ · ‖(qI −P(y,D))−1‖ ≤ 1/2, q ≥ q1.

Consider the unbounded operator PB : D(PB) ⊂ CB(G) → CB(G) defined by the formula

PBu = P(y,D)u+P1u,

u ∈ D(PB) = {u ∈ CB(G) ∩W 2
loc(G) : P(y,D)u+P1u ∈ CB(G)}.

(24.43)

Lemma 24.9. Let conditions 23.1, 23.2, and 24.1–24.8 hold. Then D(PB) is dense in CB(G).

Proof. We prove the lemma using the scheme described in [20].
1. Let u ∈ CB(G). Since CB(G) ⊂ CN (G) (by Eq. (24.14)), we see that there exists a function

u1 ∈ C∞(G) ∩ CN (G) such that for any ε > 0 and q ≥ q1

‖u− u1‖C(G) ≤ min(ε, ε/(2c1kq)), (24.44)

where kq = ‖(I−BαβSq)
−1‖.

Let

f0(y) ≡ qu1 −P(y,D)u1, y ∈ G,

ψi(y) ≡ u1(y)−Biu1(y)−Bαiu1(y)−Bβiu1(y), y ∈ Γi, i = 1, . . . , N.
(24.45)

Since u1 ∈ CN (G), by condition 24.6 we have {ψi} ∈ CN (∂G). Using the relation

u(y)−Biu(y)−Bαiu(y)−Bβiu(y) = 0, y ∈ Γi,

inequality (24.44), and Lemma 24.5, we obtain the inequality

‖{ψi}‖CN (∂G) ≤ ‖u− u1‖C(G) + ‖(B+Bαβ)(u− u1)‖CN (∂G) ≤
ε

c1kq
. (24.46)

Consider the following auxiliary nonlocal problem:

qu2 −P(y,D)u2 = f0(y), y ∈ G,

u2(y)−Biu2(y)−Bαiu2(y)−Bβiu2(y) = 0, y ∈ Γi; u2(y) = 0, y ∈ K. (24.47)

Since f0 ∈ C∞(G), by Lemma 24.7 we see that problem (24.47) has a unique solution
u2 ∈ CB(G) ⊂ CN (G).

Using Eqs. (24.45), (24.47), and the relations u1(y) = u2(y) = 0, y ∈ K, we see that the function
w1 = u1 − u2 satisfies the relations

qw1 −P(y,D)w1 = 0, y ∈ G,

w1(y)−Biw1(y)−Bαiw1(y)−Bβiw1(y) = ψi(y), y ∈ Γi; w1(y) = 0, y ∈ K. (24.48)
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It follows from condition 24.6 that problem (24.48) is equivalent to the operator equation
ϕ−BαβSqϕ = ψ in CN (∂G), where w1 = Sqϕ. By Lemma 24.6, this equation has a unique solu-
tion ϕ ∈ CN (∂G). Thus, using Corollary 23.3 and inequality (24.46), we obtain

‖w1‖C(G) ≤ c1‖(I−BαβSq)
−1‖ · ‖{ψi}‖CN (∂G) ≤ c1kqε/(c1kq) = ε. (24.49)

2. Finally, we consider the problem

λu3 −P(y,D)u3 −P1u3 = λu2, y ∈ G,

u3(y)−Biu3(y)−Bαiu3(y)−Bβiu3(y) = 0, y ∈ Γi; u3(y) = 0, y ∈ K. (24.50)

Since u2 ∈ CB(G), we see (by Lemma 24.8) that problem (24.50) has a unique solution u3 ∈ D(PB)
for all sufficiently large λ.

Denote w2 = u2 − u3. It follows from Eq. (24.50) that

λw2 −P(y,D)w2 −P1w2 = −P(y,D)u2 −P1u2 = f0 − qu2 −P1u2.

Applying Corollary 24.1, we have

‖w2‖C(G) ≤
1

λ
‖f0 − qu2 −P1u2‖C(G).

Choosing a sufficiently large λ, we obtain

‖w2‖C(G) ≤ ε. (24.51)

It follows from inequalities (24.44), (24.49), and (24.51) that

‖u− u3‖C(G) ≤ ‖u− u1‖C(G) + ‖u1 − u2‖C(G) + ‖u2 − u3‖C(G) ≤ 3ε.

Now we prove the main result of the paper.

Theorem 24.1. Let conditions 23.1, 23.2, and 24.1–24.8 hold. Then the operator

PB : D(PB) ⊂ CB(G) → CB(G)

generates a Feller semigroup.

Proof. 1. By Lemma 24.8 and Corollary 24.1, there exists a bounded operator (qI−PB)
−1 : CB(G) →

CB(G) for all sufficiently large q > 0 and

‖(qI −PB)
−1‖ ≤ 1/q.

2. Since the operator (qI − PB)
−1 is bounded and is defined in the whole space CB(G), it is

closed. Hence, the operator qI − PB : D(PB) ⊂ CB(G) → CB(G) is closed. Therefore, the operator
PB : D(PB) ⊂ CB(G) → CB(G) is also closed.

3. Prove that the operator (qI − PB)
−1 is nonnegative. Assume the converse; then there exists

a function f0 ≥ 0 such that the solution u ∈ D(PB) of the equation qu − PBu = f0 has a negative
minimum at some point y0 ∈ G. In this case, the function v = −u has a positive maximum at the
point y0. By Lemma 24.4, there exists a point y1 ∈ G such that v(y1) = v(y0) and PBv(y

1) ≤ 0.
Hence, 0 < v(y0) = v(y1) = (PBv(y

1)− f0(y
1))/q ≤ 0. This contradiction proves that u ≥ 0.

Thus, all conditions of the Hille–Yosida theorem are fulfilled (Theorem 23.1), and the operator
PB : D(PB) ⊂ CB(G) → CB(G) generates a Feller semigroup.

In the next subsection, we give examples of nonlocal operators that satisfy the conditions of Theo-
rem 24.1.

404



24.5. Example. Let ∂G = Γ1 ∪ Γ2 ∪K, where Γ1 and Γ2 are open and connected (in the topology
of ∂G) curves of the class C∞; moreover, Γ1 ∩ Γ2 = ∅ and Γ1 ∩ Γ2 = K; the set K consists of two
points g1 and g2. Assume that the domain G coincides with a plane angle in an ε-neighborhood of
the points gi, i = 1, 2. Let Ωj , j = 1, . . . , 4, be continuous transformations given at Γ1 and satisfying
the following conditions (see Fig. 24.1):

(1) Ω1(K) ⊂ K, Ω1(Γ1 ∩ Oε(K)) ⊂ G, Ω1(Γ1 \ Oε(K)) ⊂ G ∪ Γ2 and Ω1(y) is the composition of
operators of argument shift, rotation, and dilation when y ∈ Γ1 ∩ Oε(K);

(2) there exist numbers κ1 > κ2 > 0 and σ > 0 such that Ω2(Γ1) ⊂ G \ Oκ1(K) and
Ω2(Γ1 \ Oκ2(K)) ⊂ Gσ; moreover, Ω2(g1) ∈ Γ1 and Ω2(g2) ∈ G;

(3) Ω3(Γ1) ⊂ G ∪ Γ2 and Ω3(K) ⊂ Γ2;
(4) Ω4(Γ1) ⊂ G ∪ Γ2 and Ω4(K) ⊂ K.

Fig. 24.1. Nontransversal nonlocal conditions

Let b1 ∈ C(Γ1) ∩ C∞(Γ1 ∩ Oε(K)), b2, b3, b4 ∈ C(Γ1), and bj ≥ 0, j = 1, . . . , 4.

Let G1 be a bounded domain, G1 ⊂ G, and Γ ⊂ G be a curve of the class C1. Introduce nonnegative
functions c(y, η), y ∈ Γ1, η ∈ G1, and d(y, η), y ∈ Γ1, η ∈ Γ.

Consider the following nonlocal conditions:

u(y)−
4∑
j=1

bj(y)u(Ωj(y))−
∫
G1

c(y, η)u(η)dη −
∫
Γ

d(y, η)u(η)dΓη = 0, y ∈ Γ1,

u(y) = 0, y ∈ Γ2.

(24.52)

Let Q ⊂ G be an arbitrary Borel set. Introduce the following measures μ(y, ·), y ∈ ∂G:

μ(y,Q) =
4∑
j=1

bj(y)χQ(Ωj(y)) +

∫
G1∩Q

c(y, η)dη +

∫
Γ∩Q

d(y, η)u(η)dΓη, y ∈ Γ1,

μ(y,Q) = 0, y ∈ Γ2.

(24.53)

Let N and M be defined as above. Assume that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(y,G) =
4∑
j=1

bj(y) +

∫
G1

c(y, η) dη +

∫
Γ

d(y, η) dΓη ≤ 1, y ∈ ∂G,

∫
Γ∩M

d(y, η)dΓη < 1, y ∈ M,

b2(g1) = 0 or μ(Ω2(g1), G) = 0, b2(g2) = 0,

b4(gj) = 0, c(gj , ·) = 0, d(gj , ·) = 0.

(24.54)
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Setting b(y) = 1− μ(y,G), we can rewrite Eq. (24.52) in the following form (cf. (24.9)):

b(y)u(y) +

∫
G

[u(y)− u(η)]μ(y, dη) = 0, y ∈ ∂G.

Introduce a patch function ζ ∈ C∞(R2) with support in Oε(K). This function is equal to 1 on
Oε/2(K) and is such that 0 ≤ ζ(y) ≤ 1 for y ∈ R

2. Let y ∈ Γ1, and Q ⊂ G be an arbitrary Borel set;
we denote

δ(y,Q) = ζ(y)b1(y)χQ(Ω1(y)), α(y,Q) = b2(y)χQ(Ω2(y)),

β1(y,Q) =
(
1− ζ(y)

)
b1(y)χQ(Ω1(y)) +

∑
j=3,4

bj(y)χQ(Ωj(y)),

β2(y,Q) =

∫
G1∩Q

c(y, η)dη +

∫
Γ∩Q

d(y, η)u(η)dΓη.

(24.55)

It can be directly verified that these measures satisfy conditions 6.3, 23.2, and 24.2–24.8.

25. Unbounded Perturbations of Diffusion Processes

In this section, we prove the existence of a Feller semigroup generated by an unbounded in C(G)
perturbation of an elliptic operator.

25.1. Assumptions about unbounded perturbations and nonlocal operators. Consider the
same nonlocal conditions as in Sec. 24 (see (24.9), (24.10) or (24.13)). Let N ⊂ ∂G and M = ∂G \N
be the same sets as in Sec. 24. We fix a natural number l and a real number a such that l ≥ 2,
a = l + 1− δ, where δ ∈ (0, 1) is the same as in Sec. 23.4.

Remark 25.1. By Theorem 23.2 and Corollary 23.3, the operators

Sq : Hl+3/2
a (∂G) → H l+2

a (G), Sq : Hl+3/2
N ,a (∂G) → H l+2

N ,a(G)

are bounded in the corresponding norms ||| · ||| uniformly with respect to q, q ≥ q1, where q1 > 0 is a
sufficiently large number (the stated spaces are defined in Sec. 5.3).

Consider a linear bounded operator P1 : H
l+2
a (G) → H l

a−1(G) satisfying the following condition.

Condition 25.1. (1) If the function u ∈ H l+2
a (G) has a positive maximum at a point y0 ∈ G, then

P1u(y
0) ≤ 0.

(2) If u ∈ C(G) ∩H l+2
a (G), then the function P1u is bounded in the domain G.

(3) For all sufficiently small � > 0, the following representation holds:

P1 = P1
1
 +P2

1
,

where the operators P1
1
,P

2
1
 : H

l+2
a (G) → H l

a−1(G) are such that

(a) ‖P1
1
u‖Hl

a−1(G) ≤ c(�)‖u‖Hl+2
a (G), where c(�) > 0 is independent of u and c(�) → 0 for

�→ 0;
(b) the operator P2

1
 is compact.

Note that D(P1) ⊂ C l(G \ K) ⊂ C2(G) and R(P1) ⊂ C l−2(G \ K) ⊂ C(G) since l ≥ 2 and by the
Sobolev embedding theorem. Moreover, if u ∈ C(G) ∩H l+2

a (G), then the function P1u is bounded in
the domain G, but it is not necessarily continuous on G.

Consider an example of the operator P1.

Example 25.1. 1. Let l ≥ 2, 0 < δ < 1, and a = l + 1 − δ be the same as above. Let F be a space
with a σ-algebra F and a Borel measure π. Let us consider a vector-valued function z(y, η) with values
in R

2 and a scalar nonnegative function m(y, η), where y ∈ G and η ∈ F .
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In the description of a motion of a particle with “jumps” in a domain G, the function z(y, η)
characterizes the direction of the jump and its length, and the function m(y, η) characterizes the
density of the jump.

Assume that z(·, η),m(·, η) ∈ C l(G) for any fixed η ∈ F and the functions Dα
y z(y, η) and D

α
ym(y, η)

are bounded and π-measurable with respect to the variable η for |α| ≤ l, y ∈ G.
Let the function z(y, η) satisfy the following conditions:

y + θz(y, η) ∈ G ∀y ∈ G, η ∈ F, θ ∈ [0, 1], (25.1)

|Dα
y z(y, η)| ≤ Z(η) ∀y ∈ G, η ∈ F, |α| ≤ l, (25.2)

∫
Z≤


Z2(η)π(dη) ≤ c1(�),

∫
Z>


π(dη) ≤ c2(�), (25.3)

where Z(η) is a nonnegative π-measurable function, c1(�), c2(�) > 0, and c1(�) → 0 as �→ 0.
In particular, condition (25.1) means that jumps outward the G are impossible. Condition (25.3)

characterizes the behavior of the measure π with respect to small and large jumps.
To prove estimates in weight spaces, we assume that

c|y − y′| ≤ |(y − y′) + θ(z(y, η)− z(y′, η))| ≤ C|y − y′|, y, y′ ∈ G, η ∈ F, θ ∈ [0, 1], (25.4)

where c, C > 0. Using inequalities (25.4), it is easy to show that the change of variables
Y : y 
→ y + θz(y, η) is a diffeomorphism of class C1 (even of class C l, since z(·, η) ∈ C l(G) for any
η ∈ F ) mapping G to Y (G) ⊂ G for any η ∈ F and θ ∈ [0, 1] and

c2 ≤ Jη,θ(y) ≤ C2, y ∈ G, η ∈ F, θ ∈ [0, 1], (25.5)

where Jη,θ(y) is the absolute value of the Jacobian of this change of variables.
Now we impose some restrictions on the size, amplitude, and density of jumps near the set K and

outside K. For any � > 0, we assume that

G
 = G ∩ O
(K), G′

 = G \G
.

Fix sufficiently small numbers �1 > �2 > 0. For y ∈ G′

1 , we assume that

y + θz(y, η) ∈ G′

2 ∀y ∈ G′


1 , η ∈ F, θ ∈ [0, 1]. (25.6)

To describe the functions z(y, η) and m(y, η) for y ∈ G
1 , we fix an arbitrary point gj and assume
that it coincides with the origin: gj = 0. Let

y + θz(y, η) ∈ Oχ̃r(K) \ Oχr(K) ∀y ∈ G ∩ O
1(gj), η ∈ F, (25.7)

m(y, η) =Mj(η)r
l+1−δμj(ω) ∀y ∈ G ∩ O
1(gj), η ∈ F, (25.8)

where ω and r are the polar coordinates of the point y, μj(ω) is a nonnegative, l+2 times continuously
differentiable function, and χ̃ ≥ χ > 0, Mj(η) is a nonnegative, bounded, π-measurable function.

We assume that �1 is so small that the domain G coincides with a plane angle in a neighborhood
Oχ̃
1(gj), j = 1, . . . , N , and Oχ̃
1(gi) ∩ Oχ̃
1(gj) = ∅, i 	= j.

Condition (25.6) means that a particle that is “far” from the set K (i.e., is outside G
1), cannot
“jump” to a small neighborhood of the set K (i.e., to G
2). Condition (25.7) means that a particle is
“near” the set K (i.e., inside G
1), that it cannot “jump” far from the set K (i.e., it stays inside Gχ̃
1);
moreover, by condition (25.8), the density of such a “jump” tends to zero as y tends to the set K.
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Let us define the operators P1, P
1
1
, and P2

1
 on the set C∞
0 (G \ K) by the formulas

P1u(y) =

∫
F

[u(y + z(y, η))− u(y)− (∇u(y), z(y, η))]m(y, η)π(dη),

P1
1
u(y) =

∫
Z≤


[u(y + z(y, η))− u(y)− (∇u(y), z(y, η))]m(y, η)π(dη),

P2
1
u(y) =

∫
Z>


[u(y + z(y, η))− u(y)− (∇u(y), z(y, η))]m(y, η)π(dη),

where (·, ·) is the scalar product in R
2 (cf. [6, 20, 21, 102]). It will be shown below that the operators

P1, P
1
1
, P

2
1
 : H

l+2
l+1−δ(G) → H l

l−δ(G) with the domain C∞
0 (G \ K) are bounded. Hence, they can be

extended by the continuity to the whole space H l+2
l+1−δ(G).

2. Let us show that the operator P1 satisfies condition 25.1.
2.1. First, we prove that

‖P1
1
u‖W l(G) ≤ c(�)‖u‖Hl+2

l+1−δ(G), (25.9)

where c(�) > 0 is independent of u and c(�) → 0 as �→ 0.
Let us denote

U(y, η) = u(y + z(y, η))− u(y)− (∇u(y), z(y, η))

=

1∫
0

dθ

θ∫
0

2∑
i,j=1

uyiyj (y + θ′z(y, η))zi(y, η)zj(y, η) dθ′ (25.10)

and write

‖P1
1
u‖2W l(G) =

∑
|α|≤l

∫
G�1

∣∣∣∣∣∣∣
∫

Z≤

Dα
y

(
U(y, η)m(y, η)

)
π(dη)

∣∣∣∣∣∣∣
2

dy

+
∑
|α|≤l

∫
G′

ρ1

∣∣∣∣∣∣∣
∫

Z≤

Dα
y

(
U(y, η)m(y, η)

)
π(dη)

∣∣∣∣∣∣∣
2

dy. (25.11)

Using the Schwartz inequality, Eq. (??), the explicit form of the function m(y, η) (see (25.8)), and
Eq. (25.10), we have

∑
|α|≤l

∫
G�1

∣∣∣∣∣∣∣
∫

Z≤

Dα
y

(
U(y, η)m(y, η)

)
π(dη)

∣∣∣∣∣∣∣
2

dy

≤ c1
∑

|β|≤l+2

∫
G�1

ρ2(|β|−δ−1)

1∫
0

dθ

θ∫
0

dθ′
∫

Z≤

|(Dβ

yu)(y + θ′z(y, η))|2Z2(η)π(dη)

∫
Z≤


Z2(η)π(dη),

where ρ(y) = dist(y,K) and c1, c2, . . . > 0 are independent of u and �. By virtue of Eq. (25.1), (25.4),
and (25.5), we can change the variables Y = y+ θ′z(y, η); then, using (25.7), from the last inequality,
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we obtain

∑
|α|≤l

∫
G�1

∣∣∣∣∣∣∣
∫

Z≤

Dα
y

(
U(y, η)m(y, η)

)
π(dη)

∣∣∣∣∣∣∣
2

dy ≤ c2‖u‖2Hl+2
l+1−δ(Gχ̃�1

)

⎛
⎜⎝ ∫
Z≤


Z2(η)π(dη)

⎞
⎟⎠

2

. (25.12)

Similarly, using Eq. (25.6), we obtain the inequality

∑
|α|≤l

∫
G′

�1

∣∣∣∣∣∣∣
∫

Z≤

Dα
y

(
U(y, η)m(y, η)

)
π(dη)

∣∣∣∣∣∣∣
2

dy

≤ c3‖u‖2W l+2(G′
�2

)

⎛
⎜⎝ ∫
Z≤


Z2(η)π(dη)

⎞
⎟⎠

2

≤ c4‖u‖2Hl+2
l+1−δ(G

′
�2

)

⎛
⎜⎝ ∫
Z≤


Z2(η)π(dη)

⎞
⎟⎠

2

. (25.13)

Equations (25.11)–(25.13) and the first inequality in Eq. (25.3) yield (25.9).
2.2. Dividing the domain G into two parts G
1 and G′


1 and using the estimate

∣∣DαU(y, η)
∣∣ ≤ c5

⎛
⎝ ∑

|β|≤|α|

∣∣(Dβ
yu)(y + z(y, η))

∣∣+ ∑
|β|≤|α|+1

∣∣Dβ
yu(y)

∣∣
⎞
⎠

and the second estimate in Eq. (25.3), we see that

‖P2
1
u‖W l+1(G) ≤ ĉ(�)‖u‖Hl+2

l+1−δ(G), (25.14)

where ĉ(�) > 0 are independent of u.
From Eqs. (25.9) and (25.14) and the Sobolev embedding theorem (recall that l ≥ 2), we obtain

that the function P1u = P1
1
u+P2

1
u is continuous on G; hence, it is bounded on G. Thus, item 2 in
condition 25.1 is fulfilled.

Item 3 in Eq. 25.1 follows from estimates (25.9) and (25.14), the boundedness of the embedding
operatorW l(G) ⊂ H l

l−δ(G) (see item 1 of Lemma 5.2), and the compactness of the embedding operator

W l+1(G) ⊂W l(G).
Item 1 in condition 25.1 follows from the nonnegativeness of the functionm(y, η) and the measure π.

Let Bαi, Bβi, etc., be operators defined by the measures αi(y, ·) and βi(y, ·) (see Sec. 24). In this
section, in addition to conditions 23.1, 23.2, 24.2–24.6, and 25.1, we consider the following conditions.

Condition 25.2. For u ∈ H l+2
N ,a(G) and q ≥ q1, the following conditions hold :

|||Bαiu|||Hl+3/2
a (Γi)

≤ c|||u|||
Hl+2

a (G\Oκ1 (K))
, (25.15)

|||Bαiu|||Hl+3/2
a (Γi\Oκ2 (K))

≤ c|||u|||Hl+2
a (Gσ)

, (25.16)

where q1 > 0 is sufficiently large, i = 1, . . . , N , the numbers κ1, κ2, and σ are the same as in
condition 24.4, and c > 0 is independent of u and q.

Note that the norms in the weight spaces H l+2
a (G \ Oκ1(K)), H

l+3/2
a (Γi \ Oκ2(K)), and H l+2

a (Gσ)

are equivalent to the norms in the corresponding Sobolev spaces since the sets G\Oκ1(K), Γi\Oκ2(K),
and Gσ are separated from the set K.

Condition 25.3. There exists q1 > 0 such that for i = 1, . . . , N and any sufficiently small p > 0, the
following statements are valid :
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(1) the operator B̂1
βi : H

l+2
N ,a(G ∩Mp) → H

l+3/2
N ,a (Γi) is bounded in the norms ||| · ||| if q ≥ q1 and

|||B̂1
βi|||Hl+2

N ,a(G∩Mp)→H
l+3/2
N ,a (Γi)

→ 0

uniformly with respect to q as p→ 0;

(2) the operator B̃1
βi : H

l+2
N ,a(G \Mp/2) → H

l+3/2
N ,a (Γi) is bounded in the norms ||| · ||| uniformly with

respect to q for q ≥ q1.

Condition 25.4. The operators B2
βi : H

l+2
N ,a(G) → H

l+3/2
N ,a (Γi), i = 1, . . . , N , are compact.

Conditions 25.2, 25.3 and 25.4 in weight spaces are analogs of conditions 24.4, 24.7, and 24.8,
respectively.

25.2. Reduction to the boundary. Introduce the operators

B = {Bi} : H l+2
N ,a(G) → Hl+3/2

N ,a (∂G),

Bαβ = {Bαi +Bβi} : H l+2
N ,a(G) → Hl+3/2

N ,a (∂G).

Using the operator Sq defined in Sec. 24.1, we introduce the bounded operator

I−BαβSq : Hl+3/2
N ,a (∂G) → Hl+3/2

N ,a (∂G), q ≥ q1. (25.17)

By Remark 25.1, the operator (25.17) is well defined.
The following Lemma allows us to reduce nonlocal problems in bounded domains to operator equa-

tions on the boundary.

Lemma 25.1. For sufficiently large q1 > 0, there exists the bounded operator

(I−BαβSq)
−1 : Hl+3/2

N ,a (∂G) → Hl+3/2
N ,a (∂G), q ≥ q1.

Proof. 1. Consider the bounded operators

B̂1
β = {B̂1

βi}, B̃1
β = {B̃1

βi}, B2
β = {B2

βi}, Bα = {Bαi}

that act from H l+2
N ,a(G) into Hl+3/2

N ,a (∂G).
Prove that the operator

I−BαSq : Hl+3/2
N ,a (∂G) → Hl+3/2

N ,a (∂G)

has a bounded inverse operator.
Introduce a function ζ ∈ C∞(G) such that 0 ≤ ζ(y) ≤ 1, ζ(y) = 1 for y ∈ Gσ and ζ(y) = 0 for

y /∈ Gσ/2, where σ > 0 is a number from conditions 24.4 and 25.2.
We have

I−BαSq = I−Bα(1− ζ)Sq −BαζSq. (25.18)

1a. First, we prove that the operator I−Bα(1− ζ)Sq has a bounded inverse operator.
Assume Φ = Bα(1− ζ)Sqψ. It follows from condition 25.2 and Theorem 23.2 that

|||Φ|||Hl+3/2
a (∂G)

≤ k1|||ψ|||Hl+3/2
a (∂G)

, (25.19)

where k1, k2, . . . > 0 are independent of q and ψ.

Further, (1− ζ)Sqψ = 0 in Gσ for any ψ ∈ Hl+3/2
N ,a (∂G). Hence, by condition 24.4,

suppΦ = suppBα(1− ζ)Sqψ ⊂ ∂G ∩ Oκ2(K). (25.20)

We show that

|||[Bα(1− ζ)Sq]
2ψ|||Hl+3/2

a (∂G)
≤ k2q

−1/2|||ψ|||Hl+3/2
a (∂G)

, q ≥ q1, (25.21)
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where q1 > 0 is sufficiently large. By condition 25.2,

|||[Bα(1− ζ)Sq]
2ψ|||Hl+3/2

a (∂G)
= |||Bα(1− ζ)SqΦ|||Hl+3/2

a (∂G)
≤ |||SqΦ|||Hl+2

a (G\Oκ1 (K))
. (25.22)

Using the local a priori estimate (Corollary 23.1), the relation

P(y,D)SqΦ− qSqΦ = 0,

and Remark 25.1, we have

|||SqΦ|||Hl+2
a (G\Oκ1 (K))

≤ k4

( N∑
i=1

|||SqΦ|Γi\O(κ1+κ2)/2
(K)

|||
H

l+3/2
a (Γi\O(κ1+κ2)/2

(K))

+ q−1/2|||SqΦ|||Hl+2
a (G\O(κ1+κ2)/2

(K))

)

≤ k5

(
N∑
i=1

|||SqΦ|Γi\O(κ1+κ2)/2
(K)

|||
H

l+3/2
a (Γi\O(κ1+κ2)/2

(K))
+ q−1/2|||Φ|||Hl+3/2

a (∂G)

)
. (25.23)

Since the functions SqΦ|Γi −BiSqΦ = Φi vanish on Γi \ O(κ1+κ2)/2(K) by Eq. (25.20), we have

|||SqΦ|Γi\O(κ1+κ2)/2
(K)

|||
H

l+3/2
a (Γi\O(κ1+κ2)/2

(K))

= |||BiSqΦ|Γi\O(κ1+κ2)/2
(K)

|||
H

l+3/2
a (Γi\O(κ1+κ2)/2

(K))
≤ k6|||SqΦ|||Hl+2

a (G1)
,

whereG1 ⊂ G. Using the local a priori estimate (Corollary 23.1), the relations P(y,D)SqΦ− qSqΦ = 0

and G1 ∩ ∂G = ∅, and Remark 25.1, we obtain the following inequality:

|||SqΦ|Γi\O(κ1+κ2)/2
(K)

|||
H

l+3/2
a (Γi\O(κ1+κ2)/2

(K))
≤ k7q

−1/2|||SqΦ|||Hl+2
a (G2)

≤ k8q
−1/2|||Φ|||Hl+3/2

a (∂G)
, (25.24)

where G1 ⊂ G2 and G2 ⊂ G.
Inequalities (25.22)–(25.24) and (25.19) yield estimate (25.21). From here and estimate (24.26) in

the proof of Lemma 24.6, we obtain the inequality

|||[Bα(1− ζ)Sq]
2ψ|||Hl+3/2

N ,a (∂G)
≤ k9q

−1/2|||ψ|||Hl+3/2
N ,a (∂G)

. (25.25)

It follows from Eq. (25.25) that there exists a bounded operator

(I−Bα(1− ζ)Sq)
−1 : Hl+3/2

N ,a (∂G) → Hl+3/2
N ,a (∂G)

and

|||(I−Bα(1− ζ)Sq)
−1|||Hl+3/2

N ,a (∂G)→Hl+3/2
N ,a (∂G)

≤ k10 (25.26)

(cf. Eqs. (24.27) and (24.28)).
1b. Now let us estimate the norm of the operator BαζSq. Using condition 25.2, the local a priori

estimate (Corollary 23.1), the relation P(y,D)Sqψ − qSqψ = 0, and Remark 25.1, we obtain

|||BαζSqψ|||Hl+3/2
a (∂G)

≤ k11|||Sqψ|||Hl+2
a (Gσ/2)

≤ k12q
−1/2|||Sqψ|||Hl+2

a (Gσ/4)
≤ k13q

−1/2|||ψ|||Hl+3/2
a (∂G)

.

From here and inequality (24.29) in the proof of Lemma 24.6, we have

|||BαζSqψ|||Hl+3/2
N ,a (∂G)

≤ k14q
−1/2|||ψ|||Hl+3/2

N ,a (∂G)
.

Hence, taking into account inequality (25.26), we see that there exists a bounded operator

(I−BαSq)
−1 : Hl+3/2

N ,a (∂G) → Hl+3/2
N ,a (∂G)
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and

|||(I−BαSq)
−1|||Hl+3/2

N ,a (∂G)→Hl+3/2
N ,a (∂G)

≤ k15 (25.27)

(cf. (24.30) and (24.31)).
2. Let us prove that the operator

I− (Bα + B̂1
β + B̃1

β)Sq : H
l+3/2
N ,a (∂G) → Hl+3/2

N ,a (∂G)

has a bounded inverse operator.
Let us fix arbitrary ε > 0. Using condition 25.3 (item 1) and Remark 25.1, we have

|||B̂1
βSqψ|||Hl+3/2

N ,a (∂G)
≤ k16ε|||Sqψ|||Hl+2

N ,a(G) ≤ k17ε|||ψ|||Hl+3/2
N ,a (∂G)

(25.28)

for sufficiently small p > 0 (recall that p presents in the definition of the operator B̂1
β), where

k16, k17, . . . > 0 are independent of ψ, q, and ε.
Now let us fix p. By condition 25.3 (item 2),

|||B̃1
βiSqψ|||Hl+3/2

N ,a (Γi)
≤ k18|||Sqψ|||Hl+2

N ,a(G\Mp/2)
. (25.29)

Using the local a priori estimate (Corollary 23.1), the relations

P(y,D)Sqψ − qSqψ = 0, Sqψ|∂G\Op/4(M) = 0,

and Remark 25.1, we obtain the inequality

|||Sqψ|||Hl+2
a (G\Mp/2)

≤ k19q
−1/2|||Sqψ|||Hl+2

a (G\Mp/4)
≤ k20q

−1/2|||ψ|||Hl+3/2
a (∂G)

. (25.30)

On the other hand, the following inequality follows from Lemma 24.1:

‖Sqψ‖C(G\Mp/2)
≤ c2q

−1‖ψ‖CN (∂G) (25.31)

(cf. (24.32)). Combining (25.29)–(25.31), we obtain

|||B̃1
βiSqψ|||Hl+3/2

N ,a (Γi)
≤ k21q

−1/2|||ψ|||Hl+3/2
N ,a (∂G)

. (25.32)

Inequalities (25.28) and (25.32) show us that the value

|||(B̂1
β + B̃1

β)Sq|||Hl+3/2
N ,a (∂G)→Hl+3/2

N ,a (∂G)

can be made arbitrarily small if we first choose sufficiently small p > 0 and then sufficiently large
q > 0. Hence, taking into account (25.27), we see that there exists a bounded operator

[I− (Bα + B̂1
β + B̃1

β)Sq]
−1 : Hl+3/2

N ,a (∂G) → Hl+3/2
N ,a (∂G).

3. Now we prove that the operator

I−BαβSq : Hl+3/2
N ,a (∂G) → Hl+3/2

N ,a (∂G)

also has a bounded inverse operator. It follows from condition 25.4 and Remark 25.1 that the op-
erator B2

βSq is compact. Using [56, Theorem 16.4] (theorem on compact perturbations of Fredholm

operators), we see that I − BαβSq is also a Fredholm operator and ind(I − BαβSq) = 0. It follows
from item 3 of the proof of Lemma 24.6 that dimker(I−BαβSq) = 0. This means that the operator
I−BαβSq has a bounded inverse operator.
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25.3. Existence of Feller semigroups. In this subsection, we assume that conditions 23.1, 23.2,
24.2–24.6, and 25.1–25.4 hold. We prove that unbounded perturbations of an elliptic operator with
nonlocal boundary condition described above are generators of Feller semigroups.

Lemma 25.2. If the function u ∈ H l+2
a (G) has a positive maximum at a point y0 ∈ G, then

P(y,D)u(y0) +P1u(y
0) ≤ 0.

Proof. Let u ∈ H l+2
a (G) have a positive maximum at a point y0 ∈ G. SinceP(y,D)u ∈ H l

a(G) ⊂ C(G),
it follows from the maximum principle 24.1 that P(y,D)u(y0) ≤ 0. From here and condition 25.1
(item 1), we obtain P(y,D)u(y0) +P1u(y

0) ≤ 0.

Lemma 25.3. Let the function u ∈ CB(G) ∩H l+2
a (G) have a positive maximum at a point y0 ∈ G.

Then there exists a point y1 ∈ G such that u(y1) = u(y0) and P(y,D)u(y1) +P1u(y
1) ≤ 0.

The proof is similar to the proof of Lemma 24.4, where the references to Lemma 24.3 must be
replaced by the references to Lemma 25.2.

Corollary 25.1. Let u ∈ CB(G) ∩H l+2
a (G). Assume that

f0(y) = qu(y)−P(y,D)u(y)−P1u(y), y ∈ G,

where q > 0. Then there exists a point y1 ∈ G such that

‖u‖C(G) ≤
1

q
|f0(y1)|. (25.33)

The proof is similar to the proof of Corollary 24.1, where the references to Lemma 24.4 must be
replaced by the references to Lemma 25.3.

Reducing the problems to the boundary and using Lemma 25.1, we prove that the nonlocal problems
under consideration are solvable in spaces of continuous functions for a wide class of right-hand sides.

Lemma 25.4. Let q ≥ q1, where q1 is the same as in Lemma 25.1, and let f0 ∈ H l
a−1(G). Then the

problem

qu(y)−P(y,D)u(y) = f0(y), y ∈ G, (25.34)

u(y)−Biu(y)−Bαiu(y)−Bβiu(y) = 0, y ∈ Γi, i = 1, . . . , N, (25.35)

u(y) = 0, y ∈ K,

has a unique solution u ∈ CB(G) ∩H l+2
a (G).

Proof. Consider the auxiliary problem

qv(y)−P(y,D)v(y) = f0(y), y ∈ G, (25.36)

v(y)−Biv(y) = 0, y ∈ Γi, i = 1, . . . , N. (25.37)

Similarly to the proof of Lemma 24.7, using Theorem 23.2 and asymptotic formulas for solutions of
nonlocal problems, we can show that problem (25.36), (25.37) has a unique solution v ∈ H l+2

N ,a(G).

Assume that w = u − v. Obviously, the unknown function w belongs to the space H l+2
N ,a(G) if and

only if u ∈ H l+2
N ,a(G) and u is a solution of the problem

qw −P(y,D)w = 0, y ∈ G,

w(y)−Biw(y)−Bαiw(y)−Bβiw(y) = Bαiv(y) +Bβiv(y), y ∈ Γi, i = 1, . . . , N,

w(y) = 0, y ∈ K.

Using Remark 25.1 and the fact that the operator Bαβ : H l+2
N ,a(G) → Hl+3/2

N ,a (∂G) is bounded, we see
that this problem is equivalent to the operator equation ψ−BαβSqψ = Bαβv for the unknown function

413



ψ ∈ Hl+3/2
N ,a (∂G). It follows from Lemma 25.1 that this equation has a unique solution ψ ∈ Hl+3/2

N ,a (∂G).

Hence problem (25.34), (25.35) also has a unique solution

u = v + w = v + Sqψ = v + Sq(I−BαβSq)
−1Bαβv ∈ H l+2

N ,a(G).

Since u satisfy nonlocal condition (25.35), we see that u ∈ CB(G) ∩H l+2
a (G).

Note that the solution u of problem (25.34), (25.35) satisfies the inequality

‖u‖Hl+2
a (G) ≤ c‖f0‖Hl

a−1(G), (25.38)

where c > 0 is independent of u and f . This follows from Theorem 23.2 and the boundedness of the
embedding operator H l

a−1(G) ⊂ H l
a(G).

Using Lemma 25.5 and assumptions about unbounded perturbations (see condition 25.1), we prove
that the perturbed problem is also solvable in the space of continuous functions for a wide class of
right-hand sides.

Lemma 25.5. Let q ≥ q1, where q1 is sufficiently large, and let f0 ∈ H l
a−1(G). Then the problem

qu− (P(y,D) +P1)u = f0(y), y ∈ G, (25.39)

u(y)−Biu(y)−Bαiu(y)−Bβiu(y) = 0, y ∈ Γi, i = 1, . . . , N, (25.40)

u(y) = 0, y ∈ K,

has a unique solution u ∈ CB(G) ∩H l+2
a (G).

Proof. Denote by I the bounded operator acting from H l+2
a (G) to H l

a−1(G) by the formula Iu = u.

Let us consider the operator qI − P(y,D) as an operator acting from H l+2
a (G) to H l

a−1(G) with the
domain

D(qI −P(y,D)) = {u ∈ CB(G) ∩H l+2
a (G) : qu−P(y,D)u ∈ H l

a−1(G)}.
By Lemma 25.4 and inequality (25.38), there exists a bounded operator

(qI −P(y,D))−1 : H l
a−1(G) → H l+2

a (G).

In particular, this means that qI −P(y,D) is a Fredholm operator and ind(qI −P(y,D)) = 0.
Introduce the operator

qI −P(y,D)−P1 : H
l+2
a (G) → H l

a−1(G)

with domain D(qI −P(y,D)−P1) = D(qI −P(y,D)). Rewrite this operator in the form

qI −P(y,D)−P1 = [I − (P1
1
 +P2

1
)(qI −P(y,D))−1](qI −P(y,D)). (25.41)

It follows from condition 25.1 (item 3) that if � = �(q) > 0 is sufficiently small, then the operator

I −P1
1
(qI −P(y,D))−1 : H l

a−1(G) → H l
a−1(G)

is an isomorphism and the operator

P2
1
(qI −P(y,D))−1 : H l

a−1(G) → H l
a−1(G)

is compact. Hence, by virtue of the results of [56, Sec. 16] and [56, Theorem 12.2], the operator
qI −P(y,D)−P1 : H

l+2
a (G) → H l

a−1(G) is a Fredholm operator and ind(qI −P(y,D)−P1) = 0.

If u ∈ ker(qI −P(y,D)−P1), then u ∈ CB(G) ∩H l+2
a (G) and

(qI −P(y,D)−P1)u = 0.

Hence, by Corollary 25.1, we have u = 0. Thus, dimker(qI − P(y,D) − P1) = 0 and the operator
qI −P(y,D)−P1 has a bounded inverse operator. To complete the proof, we note that

R((qI −P(y,D)−P1)
−1) = D(qI −P(y,D)) ⊂ CB(G) ∩H l+2

a (G).
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Consider the unbounded operator PB : D(PB) ⊂ CB(G) → CB(G) defined by the formula

PBu = P(y,D)u+P1u,

u ∈ D(PB) = {u ∈ CB(G) ∩H l+2
a (G) : P(y,D)u+P1u ∈ CB(G)}.

Note that, by the relation l ≥ 2 and the Sobolev embedding theorem, D(PB) ⊂ C2(G) ∩ CB(G).
Prove that the domain of the nonlocal operator is dense in CB(G) (one of assumptions of the

Hille–Yosida theorem).

Lemma 25.6. The set D(PB) is dense in CB(G).

Proof. 1. Let u ∈ CB(G). By Eq. (24.14), we have CB(G) ⊂ CN (G). Then for any ε > 0 and q ≥ q1,
there exists a function u1 ∈ C∞(G) ∩ CN (G) such that

‖u− u1‖C(G) ≤ min(ε, ε/(2c1kq)), (25.42)

where kq = ‖(I−BαβSq)
−1‖CN (∂G)→CN (∂G).

Assume that

f0(y) ≡ qu1 −P(y,D)u1, y ∈ G,

ψi(y) ≡ u1(y)−Biu1(y)−Bαiu1(y)−Bβiu1(y), y ∈ Γi, i = 1, . . . , N.
(25.43)

Since u1 ∈ CN (G), we see that {ψi} ∈ CN (∂G). Using the relation

u(y)−Biu(y)−Bαiu(y)−Bβiu(y) = 0, y ∈ Γi,

inequality (25.42), and Lemma 24.5, we obtain the following inequality:

‖{ψi}‖CN (∂G) ≤ ‖u− u1‖C(G) + ‖(B+Bαβ)(u− u1)‖CN (∂G) ≤ ε/(c1kq). (25.44)

Consider the following auxiliary nonlocal problem:

qu2 −P(y,D)u2 = f0(y), y ∈ G,

u2(y)−Biu2(y)−Bαiu2(y)−Bβiu2(y) = 0, y ∈ Γi, i = 1, . . . , N,

u2(y) = 0, y ∈ K.
(25.45)

Since f0 ∈ C∞(G) ⊂ H l
a−1(G), we obtain, by Lemma 25.4, that problem (25.45) has a unique solution

u2 ∈ CB(G) ∩H l+2
a (G).

Using (25.43), (25.45), and the relations u1(y) = u2(y) = 0 and y ∈ K, we see that the function
w1 = u1 − u2 satisfies the relations

qw1 −P(y,D)w1 = 0, y ∈ G,

w1(y)−Biw1(y)−Bαiw1(y)−Bβiw1(y) = ψi(y), y ∈ Γi, i = 1, . . . , N,

w1(y) = 0, y ∈ K.
(25.46)

By Eq. (24.6), problem (25.46) is equivalent to the equation ϕ−BαβSqϕ = ψ in CN (∂G), where w1 =
Sqϕ. By Lemma 24.6, this equation has a unique solution ϕ ∈ CN (∂G). Hence, using Theorem 23.3
and inequality (25.44), we obtain the inequality

‖w1‖C(G) ≤ c1‖(I−BαβSq)
−1‖ · ‖{ψi}‖CN (∂G) ≤ c1kqε/(c1kq) = ε. (25.47)

2. Finally, we consider the problem

λu3 −P(y,D)u3 −P1u3 = λu2, y ∈ G,

u3(y)−Biu3(y)−Bαiu3(y)−Bβiu3(y) = 0, y ∈ Γi, i = 1, . . . , N,

u3(y) = 0, y ∈ K.
(25.48)

Since u2 ∈ (CB(G) ∩ H l+2
a (G)) ⊂ (CB(G) ∩ H l

a−1(G)), using Lemma 25.5, we obtain that prob-
lem (25.48) has a unique solution u3 ∈ D(PB) if λ are sufficiently large.
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Denote w2 = u2 − u3 ∈ CB(G) ∩H l+2
a (G). It follows from Eqs. (25.45) and (25.48) that

λw2 −P(y,D)w2 −P1w2 = −P(y,D)u2 −P1u2 = f0 − qu2 −P1u2.

Using Corollary 25.1, we have

‖w2‖C(G) ≤
1

λ

(
‖f0‖C(G) + q‖u2‖C(G) + sup

y∈G
|P1u2(y)|

)
.

By condition 25.1 (item 2), the value sup
y∈G

|P1u2(y)| is finite. Thus, choosing sufficiently large λ, we

obtain the inequality

‖w2‖C(G) ≤ ε. (25.49)

It follows from Eqs. (25.42), (25.47), and (25.49) that

‖u− u3‖C(G) ≤ ‖u− u1‖C(G) + ‖u1 − u2‖C(G) + ‖u2 − u3‖C(G) ≤ 3ε.

Let us verify that other assumptions of the Hille–Yosida theorem also hold.

Lemma 25.7. (1) The operator PB : D(PB) ⊂ CB(G) → CB(G) admits a closure PB.
(2) Let q1 be sufficiently large. Then for any q ≥ q1, the operator

qI −PB : D(PB) ⊂ CB(G) → CB(G)

has a bounded inverse operator (qI −PB)
−1 : CB(G) → CB(G) and

‖(qI −PB)
−1‖ ≤ 1/q.

(3) The operator (qI −PB)
−1 is nonnegative.

Proof. 1. First, we consider the auxiliary operator

P : D(P) ⊂ CB(G) → C(G)

defined by the formula

Pu = P(y,D)u+P1u,

u ∈ D(P) = {u ∈ CB(G) ∩H l+2
a (G) : P(y,D)u+P1u ∈ C(G)}.

Show that P is closable. Consider an arbitrary sequence {un}∞n=1 ⊂ D(P) such that un → 0 and
Pun → v in C(G), where v ∈ C(G). Assume that v 	= 0. Then there is a point y0 ∈ G and its
neighborhood U ⊂ G such that

Pun(y) > ε, y ∈ U, (25.50)

for some ε > 0. Consider a function h ∈ C∞
0 (G) such that h(y0) = 1 and h(y) = 0 for y ∈ G \ U .

Introduce the functions

ûn(y) = un(y) +
εh(y)

1 + sup
y′∈G

|Ph(y′)| , n = 1, 2, . . . .

We have ⎧⎪⎨
⎪⎩
ûn(y

0) = un(y
0) +

ε

1 + sup
y′∈G

|Ph(y′)| ≥
ε

2 + 2 sup
y′∈G

|Ph(y′)| ,

ûn(y) = un(y), y ∈ G \ U,
for all sufficiently large n. Hence, for sufficiently large n, every function ûn has a positive maximum
at some point ŷn ∈ U , and by Lemma 25.2, Pûn(ŷ

n) ≤ 0.
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However, by Eq. (25.50) we have

Pûn(ŷ
n) = Pun(ŷ

n) + ε
Ph(ŷn)

1 + sup
y′∈G

|Ph(y′)| > Pun(ŷ
n)− ε > 0.

This contradiction proves that v = 0 and that the operator P is closable.
2. It is known that C l(G) ⊂ H l

a−1(G). Then, by Lemma 25.5, C l(G) ⊂ R(qI − P). Hence, the

image R(qI −P) is dense in C(G).
On the other hand, according to Corollary 25.1, we have

‖u‖CB(G) ≤
1

q
‖(qI −P)u‖C(G) (25.51)

for any u ∈ D(P). It follows from here, the fact that the operator qI −P is closed, and the denseness
of R(qI −P) in C(G) that there exists a bounded operator (qI −P)−1 : C(G) → CB(G) and for any
u ∈ D(P) estimate (25.51) is valid.

3. Let us prove that the operator (qI − P)−1 is nonnegative. First, we take an arbitrary function
f ∈ C(G) such that f(y) > 0, y ∈ G. Since the image R(qI − P) is dense in C(G), we can find a
sequence fn ∈ R(qI−P) such that fn(y) > 0, y ∈ G, and fn → f in C(G). Hence, using Lemma 25.3,
we obtain the relation

(qI −P)−1f = lim
n→∞(qI −P)−1fn.

If f ∈ C(G) and f(y) ≥ 0, y ∈ G, then there exists a sequence Fn ∈ C(G) such that Fn(y) > 0, y ∈ G,
and Fn → f in C(G). Hence, (qI −P)−1f ≥ 0 for any f ∈ C(G) such that f(y) ≥ 0, y ∈ G.

4. Now we consider the operator PB. Since PB ⊂ P, we see that PB is closable (i.e., item 1 is
proved).

Since D(PB) ⊂ CB(G) ∩H l+2
a (G) and, by Lemma 25.6, D(PB) is dense in CB(G), we see that the

set CB(G) ∩ H l+2
a (G) is also dense in CB(G). Therefore, by Lemma 25.5, the image R(qI − PB) is

dense in CB(G).
On the other hand, according to Corollary 25.1

‖u‖CB(G) ≤
1

q
‖(qI −PB)u‖C(G) ∀u ∈ D(PB).

Item 2 follows from here, the fact that the operator qI−PB is closed, and the denseness of R(qI−PB)
in CB(G).

3. Item 3 follows from the nonnegativeness of (qI −P)−1 and the relation

(qI −PB)
−1 ⊂ (qI −P)−1.

The lemma is proved.

Lemmas 25.6 and 25.7 and the Hille–Yosida theorem (Theorem 23.1) yield the main result of this
subsection.

Theorem 25.1. The operator PB : D(PB) ⊂ CB(G) → CB(G) generates a Feller semigroup.

Further, we give an example of nonlocal operators that satisfy the conditions of this subsection.

25.4. Example. Let ∂G = Γ1∪Γ2∪K, where Γ1 and Γ2 are curves of class C
∞, open in topology ∂G,

Γ1 ∩ Γ2 = ∅ and Γ1 ∩ Γ2 = K; the set K consists of two points g1 and g2. Denote by Ωj , j = 1, . . . , 4,

nondegenerate transformations of class C l+2 defined in some neighborhood Γ1 and satisfying the
following conditions (see Fig. 25.1):

(1) Ω1(K) = K, Ω1(Γ1 ∩Oε(K)) ⊂ G, Ω1(Γ1 \ Oε(K)) ⊂ G∪ Γ2 and Ω1(y) is the composition of an
argument shift, rotation, and dilation for y ∈ Γ1 ∩ Oε(K);
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(2) there exist numbers κ1 > κ2 > 0 and σ > 0 such that

Ω2(Γ1) ⊂ G \ Oκ1(K), Ω2(Γ1 \ Oκ2(K)) ⊂ Gσ;

moreover, Ω2(g1) ∈ Γ1 and Ω2(g2) ∈ G;
(3) Ω3(Γ1) ⊂ G ∪ Γ2 and Ω3(K) ⊂ Γ2;
(4) Ω4(Γ1) ⊂ G∪Γ2 and Ω4(K) = K; the angle between rays tangent to Γ1 and Ω4(Γ1) at the point

gj is not zero.

Fig. 25.1. Nontransversal nonlocal conditions

Introduce the functions bj ∈ C l+2(Γ1), bj ≥ 0, j = 1, . . . , 4. Let G1 be a bounded domain, G1 ⊂ G,

and Γ ⊂ G be a curve of class C1, and let c(y, η) and d(y, η) be nonnegative functions,

Dα
y c(y, η) ∈ C(G×G1), Dα

y d(y, η) ∈ C(G× Γ), |α| ≤ l + 2.

Consider the following nonlocal conditions:

u(y)−
4∑
j=1

bj(y)u(Ωj(y))−
∫
G1

c(y, η)u(η)dη −
∫
Γ
d(y, η)u(η)dΓη = 0, y ∈ Γ1,

u(y) = 0, y ∈ Γ2.

Let Q ⊂ G be an arbitrary Borel set. Introduce the following measures μi(y, ·):

μ1(y,Q) =

4∑
j=1

bj(y)χQ(Ωj(y)) +

∫
G1∩Q

c(y, η)dη +

∫
Γ∩Q

d(y, η)u(η)dΓη, y ∈ Γ1,

μ2(y,Q) = 0, y ∈ Γ2.

Define the sets N and M as above. Assume that

μ1(y,G) ≤ 1, y ∈ Γ1;

∫
Γ∩M

d(y, η)dΓη < 1, y ∈ M;

b2(g1) = 0 or μ(Ω2(g1), G) = 0, b2(g2) = 0; b4(gj) = 0; c(gj , ·) = 0; d(gj , ·) = 0.

Introduce a patch function ζ ∈ C∞(R2) with the support in Oε(K), which is equal to 1 on Oε/2(K)

and such that 0 ≤ ζ(y) ≤ 1, y ∈ R
2. Let y ∈ Γ1 and let Q ⊂ G be an arbitrary Borel set. Then the

measures

δ(y,Q) = ζ(y)b1(y)χQ(Ω1(y)), α(y,Q) = b2(y)χQ(Ω2(y)),

β1(y,Q) =
(
1− ζ(y)

)
b1(y)χQ(Ω1(y)) +

∑
j=3,4

bj(y)χQ(Ωj(y)),

β2(y,Q) =

∫
G1∩Q

c(y, η)dη +

∫
Γ∩Q

d(y, η)u(η)dΓη.
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satisfy conditions 6.3, 23.2, 24.2–24.6, and 25.2–25.4.

26. Nonexistence of Feller Semigroup

26.1. Laplace operator in weight spaces. In this section, we construct examples in which the
closures of the operators corresponding to nonlocal problems do not generate Feller semigroups.

Obtain the asymptotic of solutions of the equation

Δu = f(y), y ∈ R
2 \ {0} (26.1)

in the space H l
a(R

2).
Writing Eq. (26.1) in the polar coordinates and applying the Mellin transform with respect to r,

we obtain the following auxiliary problem:

d2ũ(ω, λ)

dω2
− λ2ũ(ω, λ) = F̃ (ω, λ), 0 < ω < 2π,

ũ(0, λ) = ũ(2π, λ),
dũ(0, λ)

dω
=
dũ(2π, λ)

dω
,

where F̃ (ω, λ) is the Mellin transform of the function r2f(ω, r), and λ is a complex parameter.
Consider the corresponding eigenvalue problem:

ϕ′′(ω)− λ2ϕ(ω) = 0, 0 < ω < 2π,

ϕ(0) = ϕ(2π), ϕ′(0) = ϕ′(2π).
(26.2)

The numbers λs = si, s = 0,±1,±2, . . . , are eigenvalues. The eigenvector ϕ0(ω) ≡ 1 corresponds
to the eigenvalue λ0 = 0; moreover, there exists an adjoint vector ϕ̂0(ω) ≡ 0. The eigenvectors
ϕs(ω) = cos sω correspond to the eigenvalues λs, s = ±1,±2, . . . ; if s 	= 0, then there are no adjoint
vectors.

From [26, Theorem 5.1], we obtain the following result.

Lemma 26.1. Let f ∈ H0
a(R

2)∩H0
a′(R

2). Assume that the number a′ is not an integer, a′ 	= a, and S
denotes the set of integers concentrated in the interval

(
min(a, a′),max(a, a′)

)
. If u is a solution of

problem (26.1) from the space H2
a(R

2), then

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c0 + ĉ0 ln r +

∑
s∈S\{0}

rs(cs cos sω + ds sin sω) + u′, if 0 ∈ S,

∑
s∈S

rs(cs cos sω + ds sin sω) + u′, if 0 /∈ S,

where cs and ds, s ∈ S, and ĉ0 are some constants and u′ is a solution of problem (26.1) from the
space H2

a′(R
2).

26.2. “Jumps” outside the neighborhood of termination points of the process with
nonzero probability.

26.2.1. Statement of nonlocal problem. Here we show that condition 24.6 is substantial.
Let G ⊂ R

2 be a bounded domain with smooth boundary ∂G = Γ1 ∪ Γ2 ∪ K, where Γ1 and Γ2 are
open and connected (in the topology of ∂G) curves of class C∞ such that Γ1∩Γ2 = ∅ and Γ1∩Γ2 = K.
Let the set K consist of two points g1 and g2. Assume that in some neighborhood of the points gi,
i = 1, 2, the domain G coincides with a plane angle π.

Consider the problem (see Fig. 26.1)

Δu(y) = f0(y), y ∈ G, (26.3)

u(y)− b1(y)u(Ω1(y)) = 0, y ∈ Γ1, (26.4)

u(y) = 0, y ∈ Γ2, (26.5)
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where the function b1 ∈ C∞(Γ1) is such that

(1) 0 ≤ b1(y) ≤ 1,
(2) b1(y) = b∗1 > 0 for y ∈ Oε(g1),
(3) b1(y) = 0 as y /∈ O2ε(g1),

and Ω1 is a smooth nondegenerate manifold defined in some neighborhood of a curve Γ1; moreover,

(1) Ω1(Γ1) ⊂ G, Ω1(g1) ∈ G, Ω1(g2) = g2,
(2) Ω1(y) for y ∈ Oε(g1) is the composition of a rotation about the point g1 and a shift by some

vector.

Fig. 26.1. Problem (26.3)–(26.5).

Assume that g = Ω1(g1). Let ε > 0 be so small that

Oε(g1) ∩ Oε(g2) = ∅, Oε(g) ∩ ∂G = ∅, Oε(g) ∩ Oε(gj) = ∅, j = 1, 2.

Introduce a measure α(y, ·), y ∈ ∂G, such that for any Borel set Q ⊂ G,

α(y,Q) = b1(y)χQ(Ω1(y)), y ∈ Γ1,

α(y,Q) = 0, y ∈ Γ2.

Then boundary conditions (26.4), (26.5) can be rewritten in the form

b(y)u(y) +

∫
G

[u(y)− u(η)]α(y, dη) = 0, y ∈ ∂G,

where b(y) = 1− α(y,G) (cf. (24.9)). Obviously, Γ2 ⊂ N , Oε(g2) ∩ Γ1 ⊂ N , and M ⊂ Γ1 \ Oε(g2).
Consider the operator

Bα1u(y) =

∫
G

u(η)α(y, dη) = b1(y)u(Ω1(y)), y ∈ Γ1.

It is easy to verify that conditions 23.1, 23.2, 24.1–24.4, 24.7, and 24.8 hold (with P(y,D) = Δ,
P1 = 0, and βi(y,G) ≡ 0). Show that condition 24.6 is violated. Indeed, Bα1u ∈ C(Γ1) for any

u ∈ CN (G) since the function b1 and the transformation Ω1 are continuous. However, if u ∈ CN (G)
and u(Ω1(g1)) 	= 0, then lim

y→g1
Bα1u(y) = b∗1u(Ω1(g1)) 	= 0, i.e., Bα1u /∈ CN (Γ1).

Consider the unbounded operator PB : D(PB) ⊂ CB(G) → CB(G) defined by the formula

PBu = Δu, u ∈ D(PB) = {u ∈ CB(G) : Δu ∈ CB(G)}, (26.6)

where CB(G) is the set of functions from C(G) satisfying nonlocal conditions (26.4) and (26.5).

Lemma 26.2. If u ∈ D(PB), then u ∈W 2(G′) for any domain G′ such that G′ ⊂ G \ K.
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Proof. Assume that
f = Δu. (26.7)

Since f ∈ L2(G), it follows from the theorem on the internal smoothness (see, e.g., [57, Chap. 2,
Theorem 3.2]) that u ∈ W 2

loc(G). Hence, it remains to prove that u ∈ W 2(G ∩ OR(y
0)), where y0 is

an arbitrary point on Γj , j = 1, 2, R = R(y0), and OR(y0) ∩ K = ∅.
Consider a domain GR with a smooth boundary ∂GR such that

G ∩ OR(y
0) ⊂ GR ⊂ G.

If y0 ∈ Γ1 ∩ OR(y
0), then we consider a function ψ ∈ W 3/2(∂GR) such that ψ(y) = b1(y)u(Ω1(y)) for

y ∈ Γ1∩OR(y
0). If y0 ∈ Γ2∩OR(y

0), then we consider a function ψ ∈W 3/2(∂GR) such that ψ(y) = 0
for y ∈ Γ2 ∩ OR(y

0).
Let v ∈W 2(GR) ⊂ C(GR) be a solution of the problem

Δv = f(y), y ∈ GR,

v|∂GR
= ψ(y), y ∈ ∂GR.

(26.8)

It follows from Eqs. (26.7) and (26.8) that the function w = u− v ∈ C(GR) satisfies the relations

Δw = 0, y ∈ G ∩ OR(y
0),

w(y) = 0, y ∈ ∂G ∩ OR(y
0).

(26.9)

Applying the theorem on the internal smoothness to the Laplace equation in Eq. (26.9), we see that

w ∈ C∞(G ∩ OR(y
0)) ∩ C(G ∩ OR(y0)). Further, applying [22, Lemma 6.18] to problem (26.9), we

obtain that w ∈ C2(G ∩BR/2(y0)). Hence,
u = w + v ∈W 2(G ∩BR/2(y0)).

Since y0 ∈ Γj is arbitrary, the lemma is proved.

Lemma 26.3. The operator PB : D(PB) ⊂ CB(G) → CB(G) admits a closure PB.

Proof. The operator PB is a restriction of the operator P : C(G) → C(G) defined by the formula

Pu = Δu, u ∈ D(P) = {u ∈ C(G) : Δu ∈ C(G)}.
Hence, it suffices to prove that the operatorP admits a closure. Obviously, the inclusion C2(G) ⊂ D(P)
is valid; hence, the set D(P) is dense in C(G). Moreover, if u ∈ D(P) has a positive maximum at the
point y0, then by the maximum principle 24.1 we see that Pu(y0) ≤ 0. It follows from here and [101,
Theorem 9.3.3] that the operator P admits a closure.

Here we will prove the following result.

Theorem 26.1. Let PB : D(PB) ⊂ CB(G) → CB(G) be a closure of the operator (26.6). Then PB

is not a generator of a Feller semigroup.

By the Hille–Yosida theorem (Theorem 23.1), it suffices to show that the image R(PB − qI) does
not coincide with CB(G) for some q > 0.

26.2.2. Proof of Theorem 26.1. To prove Theorem 26.1, we obtain an asymptotic of the solution
u ∈ D(PB) of problem (26.3)–(26.5).

Consider the following model problem with a complex parameter λ, corresponding to the point g1:

ϕ′′(ω)− λ2ϕ(ω) = 0, 0 < ω < π, (26.10)

ϕ(0) = ϕ(π) = 0, , (26.11)

where ω and r are the polar coordinates with pole at the point g1 such that (0, r) ∈ Γ1 and (π, r) ∈ Γ2 as
0 < r < ε. Eigenvalues of this problem have the form λ1,k = ki, k = ±1,±2, . . . , and the corresponding
eigenvectors are ϕ1,k = sin kω. There are no adjoint vectors.
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Since b1(y) = 0 near the point g2, we see that the same model problem corresponds to the point g2.
In this example, we use the weight spaces

H l
a(G) = H l

a(G,K ∪ {g}),
H l
a(G ∩ Oε(gj)) = H l

a(G ∩ Oε(gj), {gj}), H l
a(Oε(g)) = H l

a(Oε(g), {g}),

and the corresponding trace spaces. We emphasize that the space H l
a(G) (unlike spaces from previous

sections) consists of functions that can have power singularities not only near the set K, but also near
the point g.

Let us fix a number δ such that

0 < δ < 1. (26.12)

Lemma 26.4. Let u ∈ D(PB). Then u ∈ H2
1−δ(G).

Proof. It follows from Lemma 26.2 that u ∈ W 2(G′) for any domain G′ such that G′ ⊂ G \ K. Since
u(g) = u(g1)/b

∗
1 = 0, by Lemma 5.2 we obtain that u ∈ H2

1−δ(Oε(g)). Hence, using (26.4) and (26.5)
and the fact that the transform Ω1 is a smooth and nondegenerate, we obtain

Δu ∈ C(G) ⊂ H0
1−δ(G ∩ Oε(g1)), (26.13)

u|Γ1∩Oε(g1) ∈ H
3/2
1−δ(Γ1 ∩ Oε(g1)), u|Γ2∩Oε(g1) = 0. (26.14)

Using (26.13) and (26.14) and the relation u ∈ C(G) ⊂ H0
−1+δ(G∩Oε(g1)), we obtain from Lemma 14.2

that

u ∈ H2
1+δ(G ∩ Oε(g1)). (26.15)

According to Eq. (26.12), the strip −δ ≤ Imλ ≤ δ does not contain eigenvalues λ1,k of
problem (26.10), (26.11). It follows from relation (26.13)–(26.15) and [26, Theorem 2.2] that
u ∈ H2

1−δ(G ∩ Oε(g1)).

It can be proved similarly that u ∈ H2
1−δ(G ∩ Oε(g2)).

Introduce the bounded operator La(q) : H
2
a(G) → H0

a(G, ∂G) by the formula

La(q)u = {Δu− qu, u|Γ1 − b1(y)u(Ω1(y))|Γ1 , u|Γ2}, q ≥ 0.

We also denote La = La(0).

Lemma 26.5. Let q > 0 be sufficiently small ; then dimkerL1−δ(q) = 0.

Proof. First, we assume that q = 0 and prove that dimkerL1−δ = 0. Let u ∈ kerL1−δ. Without loss of
generality, we assume that the function u is real-valued. Lemma 26.1 yields the following asymptotic
of the function u near the point g:

u(y) = r(c1 cosω + d1 sinω) + v(y), y ∈ Oε(g), (26.16)

where ω and r are the polar coordinates with pole at the point g such that (0, r) ∈ Ω(Γ1) for 0 < r < ε,
c1 and d1 are some constants, and v ∈ H2

−δ(Oε(g)). In particular, it follows from Eq. (26.16) and

the Sobolev embedding theorem that u ∈ C(G \ K). Applying relations (26.3)–(26.5) and (26.16), we
obtain

Δu = 0, y ∈ G ∩ Oε(g1),

u|Γ1∩Oε(g1) = b∗1c1r + w(r), u|Γ2∩Oε(g1) = 0,
(26.17)

where w ∈ H
3/2
−δ (Γ1 ∩ Oε(g1)).

Hence, applying [26, Theorem 2.2, Lemma 4.3], we see that

u(y) = rψ(ω) + v(y), y ∈ G ∩ Oε(g1), (26.18)
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where ω and r are the polar coordinates with pole at the point g1, ψ ∈ C∞([0, π]), and v ∈ H2
−δ(G ∩

Oε(g1)) ⊂ W 2(G ∩ Oε(g1)). Thus, taking into account the Sobolev embedding theorem, we have

u ∈ C(G ∩ Oε(g1)).

Similarly, we can show that u ∈ C(G ∩ Oε(g2)). Hence, u ∈ C(G), and we can apply the maximum
principle 24.1; this yields u = 0, i.e., dimkerL1−δ = 0.

According to [85, Theorem 3.4], the operator L1−δ(q) is a Fredholm operator for any q. On the other
hand, the dimension of the kernel of a Fredholm operator does not increase for small perturbations
(see [56, Sec. 16]). Therefore, dimkerL1−δ(q) = 0 for all sufficiently small q > 0.

Lemma 26.6. Let q > 0 be sufficiently small. Then dimkerL1+δ(q) ≤ 1.

Proof. 1. First, we assume that q = 0 and prove that dimkerL1+δ ≤ 1. Let u ∈ kerL1+δ. Without
loss of generality, we assume that the function u is real-valued. Lemma 26.1 yields the following
asymptotic of the function u near the point g:

u(y) = c0 + ĉ0 ln r + r(c1 cosω + d1 sinω) + v(y), y ∈ Oε(g), (26.19)

where ω and r are the polar coordinates with pole at the point g such that (0, r) ∈ Ω1(Γ1) for 0 < r < ε,
c0, ĉ0, c1, and d1 are some constants, and v ∈ H2

−δ(Oε(g)). Using Eqs. (26.3)–(26.5) and (26.19), we
obtain the relations

Δu = 0, y ∈ G ∩ Oε(g1),

u|Γ1∩Oε(g1) = b∗1(c0 + ĉ0 ln r + c1r) + w(r), u|Γ2∩Oε(g1) = 0,
(26.20)

where w ∈ H
3/2
−δ (Γ1 ∩ Oε(g1)).

Hence, applying [26, Theorem 2.2, Lemma 4.3], we see that

u(y) = c0b
∗
1ϕ(ω) + ĉ0b

∗
1 ln rϕ̂(ω) + rψ(ω) + v(y), y ∈ G ∩ Oε(g1), (26.21)

where ω and r are the polar coordinates with pole at the point g1 such that (0, r) ∈ Γ1 for 0 < r < ε,
ϕ, ϕ̂, ψ ∈ C∞([0, π]), the functions ϕ and ϕ̂ are independent of u, v, c0, and ĉ0, and v ∈ H2

−δ(G ∩
Oε(g1)) ⊂W 2(G∩Oε(g1)). In particular, ϕ(ω) is a function depending only on the polar angle ω and
is a solution of the problem

Δyϕ = 0, r > 0, 0 < ω < π,

ϕ(0) = 1, ϕ(π) = 0,

i.e., ϕ(ω) has the form

ϕ(ω) = 1− ω

π
. (26.22)

Consider the behavior of the function u near the point g2. We have

Δu = 0, y ∈ G ∩ Oε(g2),

u|Γ2∩Oε(g1) = 0, u|Γ2∩Oε(g1) = 0.
(26.23)

Hence, using [26, Theorem 2.2], we obtain that

u(y) = cr sinω + v(y), y ∈ G ∩ Oε(g2), (26.24)

where ω and r are the polar coordinates with pole at the point g2 and v ∈ H2
−δ(G ∩ Oε(g2)) ⊂

W 2(G ∩ Oε(g2)). Thus, u ∈W 2(G ∩ Oε(g2)).
Equations (26.19), (26.21), and (26.24) yield that any function u ∈ kerL1+δ can be written in the

form

u(y) = c0u0(y) + ĉ0û0(y) + U(y), y ∈ G, (26.25)
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where u0, û0 ∈ C∞(G \ {g1, g}) are such that16

u0(y) =

⎧⎪⎨
⎪⎩

1, y ∈ Oε(g),

b∗1ϕ(ω), y ∈ Oε(g1),

0, y ∈ Oε(g2),

û0(y) =

⎧⎪⎨
⎪⎩

ln r, y ∈ Oε(g),

b∗1 ln rϕ̂(ω), y ∈ Oε(g1),

0, y ∈ Oε(g2),

(26.26)

U ∈ W 2(G) ⊂ C(G) and U(g1) = U(g2) = U(g) = 0. It follows from here and Lemma 5.2 (item 2)
that U ∈ H2

1−δ(G).
It follows from representation (26.25) and Lemma 26.5 that dimkerL1+δ ≤ 2.
2. Let us prove that dimkerL1+δ ≤ 1. Assume the contrary: let there exist two linearly independent

functions v1, v2 ∈ kerL1+δ. Since each of these functions can be presented in the form of Eq. (26.25),
we see that some of their nontrivial linear combinations (let us denote it by u) have the form

u(y) = u0(y) + U(y). (26.27)

Equations (26.22), (26.26), and (26.27) yield u ∈ C(G \ {g1}) and
M = sup

y∈G\{g1}
|u(y)| <∞.

Let us show that M = 0. For this, we consider a sequence {yn}∞n=1 ⊂ G \ {g1} such that

u(yn) →M, n→ ∞.

Since the sequence {yn} is bounded, we can extract a subsequence converging to a point y0; we denote
this subsequence also by {yn}, i.e.,

yn → y0, n→ ∞.

If y0 ∈ G, then, by the continuity of u in the domain G, we have |u(y0)| =M . Hence, by the maximum
principle 24.1, we have u ≡ const. This is impossible since ϕ(ω) 	≡ const.

Let y0 ∈ Γ2∪{g2}. Using the continuity of u on Γ2∪{g2} and boundary condition (26.5), we obtain

0 = |u(y0)| = lim
n→∞ |u(yn)| =M.

If y0 ∈ Γ1, then, by the continuity of u on Γ1 and boundary condition (26.4), we have

M = lim
n→∞ |u(yn)| = |u(y0)| = b∗1|u(Ω1(y

0))|.

Hence |u(Ω1(y
0))| = M/b∗1 ≥ M . This is possible only if b∗1 = 1. But in this case, |u(Ω1(y

0))| = M .
This contradicts the relation Ω1(y

0) ∈ G.
Finally, we consider the case where y0 = g1. Without loss of generality, we assume that yn ∈ Oε(g1),

n = 1, 2, . . . . Denote the polar coordinates near the point yn by (ωn, rn). Let xn ∈ Γ1 be the point
with coordinates (0, rn). It follows from Eqs. (26.26) and (26.22) that

|u0(xn)| = |b∗1ϕ(0)| ≥ |b∗1ϕ(ωn)| = |u0(yn)|.
Hence, taking into account the fact that U ∈ C(G), U(g1) = 0, and the functions u and u0 are
continuous on Γ1, we have

M ≥ lim
n→∞ |u(xn)| = lim

n→∞ |u0(xn)| ≥ lim
n→∞ |u0(yn)| = lim

n→∞ |u(yn)| =M.

Thus,
lim
n→∞ |u(xn)| =M. (26.28)

Using the fact that xn ∈ Γ1, the continuity of Ω1, the continuity of the function u in the domain G,
and relations (26.4) and (26.28), we obtain

|u(g)| = lim
n→∞ |u(Ω1(x

n))| = lim
n→∞ |u(xn)|/b∗1 =M/b∗1 ≥M.

16For (26.26), we assume that in any ε-neighborhood, a different coordinate system ω, r is given. This coordinate
system is such that the point r = 0 corresponds to the center of the neighborhood.
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This is impossible since g ∈ G. Thus, we have proved that u = 0, i.e., functions v1 and v2 are linearly
independent and dimkerL1+δ ≤ 1.

3. According to [85, Theorem 3.4], L1+δ(q) is a Fredholm operator for any q. On the other hand,
the dimension of the kernel of a Fredholm operator does not increase for small perturbations (see [56,
Section 16]). Hence, dimkerL1+δ(q) ≤ 1 for all sufficiently small q > 0.

Lemma 26.7. Let q > 0 be sufficiently small. Then codimR(L1−δ(q)) ≥ 1.

Proof. The strip −δ ≤ Imλ ≤ δ does not contain eigenvalues of model problem (26.10), (26.11) but
contains the unique eigenvalue λ0 = 0 of model problem (26.2); moreover, the algebraic multiplicity of
the eigenvalue λ0 = 0 is equal to 2. Hence, according to [31, Theorem 4.1], indL1+δ(q) = indL1−δ(q)+
2, i.e.,

dimkerL1+δ(q)− codimR(L1+δ(q)) = dimkerL1−δ(q)− codimR(L1−δ(q)) + 2.

From here and Lemmas 26.5 and 26.6, we obtain that

codimR(L1−δ(q)) = codimR(L1+δ(q))− dimkerL1+δ(q) + 2 ≥ 1.

Now we fix a number q > 0 for which codimR(L1−δ(q)) ≥ 1. Consider the set

R0
1−δ(G) = {f0 ∈ H0

1−δ(G) : (f0, 0, 0) ∈ R(L1−δ(q))}.
Obviously, R0

1−δ(G) is a closed subset in H0
1−δ(G) since the image R(L1−δ(q)) is a closed subset in

H0
1−δ(G, ∂G).

Lemma 26.8. codimR0
1−δ(G) ≥ 1.

Proof. Assume the contrary: let

R0
1−δ(G) = H0

1−δ(G). (26.29)

We show that in this case

R(L1−δ(q)) = H0
1−δ(G, ∂G). (26.30)

Consider an arbitrary function f = (f0, f1, f2) ∈ H0
1−δ(G, ∂G). By Lemma 11.1, there exists a function

v ∈ H2
1−δ(G) such that v|Γj = fj , j = 1, 2, and the support of the function v is located in an arbitrarily

small neighborhood ∂G. Let this neighborhood be so small that b1(y)v(Ω1(y)) = 0, y ∈ Γ1. Then the
function v satisfies the following nonlocal conditions:

v|Γ1 − b1(y)u(Ω1(y))|Γ1 = f1, v|Γ2 = f2. (26.31)

On the other hand, it follows from Eq. (26.29) that there exists a function w ∈ H2
1−δ(G) such that

Δw − qw = f0 − (Δv − qv), (26.32)

w|Γ1 − b1(y)w(Ω1(y))|Γ1 = 0, w|Γ2 = 0. (26.33)

Equations (26.31)–(26.33) yield L1−δ(q)u = f , where u = v + w ∈ H2
1−δ(G). Thus, Eq. (26.30) is

valid; this contradicts Lemma 26.7.

Now, using the Hille–Yosida theorem (Theorem 23.1) and Lemmas 26.4 and 26.8, we prove Theo-
rem 26.1.

Proof of Theorem 26.1. 1. Assume the contrary: let PB be a generator of a Feller semigroup. Then
by the Hille–Yosida theorem (Theorem 23.1) we have R(PB − qI) = R(PB − qI) = CB(G). Hence

R(PB − qI) = CB(G). By Lemma 26.4, this means that every function from CB(G) can be approxi-
mated by functions from R0

1−δ(G) ∩ CB(G).
2. Show that in this case

R0
1−δ(G) = H0

1−δ(G) (26.34)
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(this contradicts Lemma 26.8). For this, we choose an arbitrary function f0 ∈ H0
1−δ(G). Since the

set C∞
0 (G \ (K ∪ {g})) is dense in H0

1−δ(G), we see that for any κ > 0, we can find a function

f ′0 ∈ C∞
0 (G \ (K ∪ {g})) such that

‖f0 − f ′0‖H0
1−δ(G) ≤ κ. (26.35)

Since f ′0 ∈ L2(G), there exists a function f ′′0 ∈ C∞(G) that vanishes near ∂G ∪ Ω1(Γ1) such that

‖f ′0 − f ′′0 ‖H0
1−δ(G) ≤ k1‖f ′0 − f ′′0 ‖L2(G) ≤ κ, (26.36)

where k1 > 0 is independent of f ′0 and f ′′0 .
Since f ′′0 ∈ CB(G), it follows from item 1 of the proof that there exists a function f ′′′0 ∈ R0

1−δ(G) ∩
CB(G) such that

‖f ′′0 − f ′′′0 ‖H0
1−δ(G) ≤ k2‖f ′′0 − f ′′′0 ‖C(G) ≤ κ, (26.37)

where k2 > 0 is independent of f ′′0 and f ′′′0 .
The following inequality follows from Eqs. (26.35)–(26.37):

‖f0 − f ′′′0 ‖H0
1−δ(G) ≤ 3κ.

Hence, taking into account the fact that the set R0
1−δ(G) is closed in H0

1−δ(G), we obtain Eq. (26.34).
Thus, we arrive at the contradiction with Lemma 26.8.

Remark 26.1. Let P̂B : CB(G) → CB(G) be a reduction of the operator PB. Obviously, the
following embedding holds:

R(P̂B − qI) ⊂ R(PB − qI).

Since R(PB − qI) does not coincide with CB(G), we see that R(P̂B − qI) also does not coincide with

CB(G). Hence, by the Hille–Yosida theorem (Theorem 23.1), the operator P̂B is not a generator of a
Feller semigroup.

26.3. “Jumps” from conjugation points that are not termination points of the process.

26.3.1. Statement of a nonlocal problem. In this example, we show that condition 24.2 is substantial.
Let G, g1, g2, and K be the same as in Sec. 26.2. Consider the following nonlocal problem (see

Fig. 26.2):

Δu(y) = f0(y), y ∈ G, (26.38)

u(y)− b1(y)u(Ω1(y)) = 0, y ∈ Γ1, (26.39)

u(y)− b2(y)u(Ω2(y)) = 0, y ∈ Γ2, (26.40)

where bj ∈ C∞(Γj), j = 1, 2, are such that

(1) 0 ≤ bj(y) ≤ 1,
(2) bj(y) = b∗ > 0 for y ∈ Oε(g1),
(3) bj(y) = 0 for y /∈ O2ε(g1),

and Ωj , j = 1, 2, is a smooth nondegenerate transformation defined in a neighborhood of a curve Γj
such that

(1) Ωj(Γj) ⊂ G, Ωj(g1) ∈ G, Ωj(g2) = g2, andΩ1(g1) 	= Ω2(g1),
(2) for y ∈ Oε(g1), Ωj(y) is the composition of a rotation about the point g1 and a shift by some

vector.
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Fig. 26.2. Problem (26.38)–(26.40).

Assume that g = Ω1(g1) and h = Ω2(g1); by the assumption, g, h ∈ G and g 	= h. Let ε > 0 be so
small that 2ε-neighborhoods of the points g1 and g2 and g and h do not intersect and

O2ε(g) ∩ ∂G = ∅, O2ε(h) ∩ ∂G = ∅.

Introduce measures α(y, ·) and y ∈ ∂G as follows: for any Borel set Q ⊂ G, we assume

α(y,Q) = b1(y)χQ(Ω1(y)), y ∈ Γ1,

α(y,Q) = b2(y)χQ(Ω2(y)), y ∈ Γ2.

Then boundary conditions (26.39) and (26.40) can be rewritten in the form

b(y)u(y) +

∫
G

[u(y)− u(η)]α(y, dη) = 0, y ∈ ∂G,

where b(y) = 1− α(y,G).
Obviously, g2 ∈ N , but g1 /∈ N . Hence, condition 24.2 is violated. It easy to verify that conditions

23.1, 23.2, 24.1, and 24.3–24.8 hold (with P(y,D) = Δ, P1 = 0, and βi(y,G) ≡ 0).
Consider the unbounded operator PB : D(PB) ⊂ CB(G) → CB(G) defined by the formula

PBu = Δu, u ∈ D(PB) = {u ∈ CB(G) : Δu ∈ CB(G)}, (26.41)

where CB(G) is the set of functions from C(G) that satisfy nonlocal conditions (26.39) and (26.40).
The following two results are proved similarly to Lemmas 26.2 and 26.3.

Lemma 26.9. If u ∈ D(PB), then u ∈W 2(G′) for any domain G′ such that G′ ⊂ G \ K.

Lemma 26.10. The operator PB : D(PB) ⊂ CB(G) → CB(G) admits a closure PB.

We will prove the following result.

Theorem 26.2. Let PB : D(PB) ⊂ CB(G) → CB(G) be the closure of operator (26.41). Then PB is
not a generator of a Feller semigroup.

By the Hille–Yosida theorem (Theorem 23.1), it suffices to show that the image R(PB − qI) does
not coincide with CB(G) for sufficiently small q > 0.

26.3.2. Proof of Theorem 26.2. In this example, we will use the weight spaces

H l
a(G) = H l

a(G,K ∪ {g, h}), H l
a(G ∩ Oε(gj)) = H l

a(G ∩ Oε(gj), {gj}),
H l
a(Oε(g)) = H l

a(Oε(g), {g}), H l
a(Oε(h)) = H l

a(Oε(h), {h})
and the corresponding trace spaces. We emphasize that the space H l

a(G) consists of functions that
can have power singularities not only near the set K, but also near points g and h.
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To prove Theorem 26.2, let us obtain asymptotics of solutions u ∈ D(PB) of problem (26.38)–
(26.40).

Let us fix a number δ such that

0 < δ < 1. (26.42)

Lemma 26.11. Let u ∈ D(PB). Then u = cw0 + w1, where c is a constant, the function w0 is
independent of u,

w0 ∈ CB(G) ∩ C∞(G), Δw0(y) = 0, y ∈ Oε/2(K) ∪ Oε/2(g) ∪ Oε/2(h),

and w1 ∈ CB(G) ∩H2
1−δ(G).

Proof. 1. It follows from Lemma 26.9 that u ∈ W 2(G′) for any domain G′ such that G′ ⊂ G \ K.
Since u ∈ W 2(Oε(g)), by Lemma 5.2 we see that u ∈ H2

1+δ(Oε(g)). Since f0 ∈ C(G) ⊂ H0
−δ(Oε(g)),

similarly to Eq. (26.19), we obtain the equality

u(y) = cg + ĉg ln r + r(cg1 cosω + dg1 sinω) + v(y), y ∈ Oε(g),

where ω and r are polar coordinates with pole at the point g such that (0, r) ∈ Ω1(Γ1) for 0 < r < ε,
cg, ĉg, cg1, and dg1 are constants, and v ∈ H2

−δ(Oε(g)). Applying the Sobolev embedding theorem, we
have

v ∈ H2
−δ(Oε(g)) ⊂W 2(Oε(g)) ⊂ C(Oε(g)), v(g) = 0.

Taking into account the fact that u ∈ C(Oε(g)), we see that ĉg = 0 and

u(y) = cg + r(cg1 cosω + dg1 sinω) + v(y), y ∈ Oε(g), (26.43)

u(g) = cg. (26.44)

Replacing g by h, we similarly obtain the equality

u(y) = ch + r(ch1 cosω + dh1 sinω) + v(y), y ∈ Oε(h), (26.45)

u(h) = ch, (26.46)

where ω and r are polar coordinates with pole at the point h such that (0, r) ∈ Ω2(Γ2) for 0 < r < ε,

ch, ch1, and dh1 are constants, and v ∈ H2
−δ(Oε(h)) ⊂W 2(Oε(g)) ⊂ C(Oε(g)).

Since the function u ∈ C(G) satisfies nonlocal conditions (26.39), (26.40), we see that
u(g) = u(g1)/b

∗ = u(h), i.e., by Eqs. (26.44) and (26.46), we have cg = ch. Assume that

c = cg = ch. (26.47)

2. Applying (26.38)–(26.40), (26.43), (26.45), (26.47), and the fact that the transformations Ω1 and
Ω2 are smooth and nondegenerate, we obtain

Δ(u− b∗c) = Δu ∈ C(G) ⊂ H0
1−δ(G ∩ Oε(g1)), (26.48)

(u− b∗c)|Γj∩Oε(g1) ∈ H
3/2
1−δ(Γj ∩ Oε(g1)), j = 1, 2. (26.49)

Using Eqs. (26.48) and (26.49) and the relation u−b∗c ∈ C(G) ⊂ H0
−1+δ(G∩Oε(g1)), from Lemma 14.2

we obtain

u− b∗c ∈ H2
1+δ(G ∩ Oε(g1)). (26.50)

By Eq. (26.42), the strip −δ ≤ Imλ ≤ δ does not contain eigenvalues of problem (26.10), (26.11).
Hence, from Eqs. (26.48)–(26.50) and [26, Theorem 2.2] we obtain the following embedding:

u− b∗c ∈ H2
1−δ(G ∩ Oε(g1)).

Since b1(y) = b2(y) = 0 near the point g2, we see that u ∈ H2
1−δ(G ∩ Oε(g2)) (cf. the proof of

Lemma 26.4).
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3. Introduce a patch function ξ ∈ C∞([0,∞)) such that ξ(r) = 1 for r < ε/2 and supp ξ ⊂ [0, ε).
Consider the function w0 ∈ C∞(G) defined by the formula17

w0(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b∗ψ(r), y ∈ Oε(g1),

ψ(r), y ∈ Oε(g),

ψ(r), y ∈ Oε(h),

0, y /∈ Oε(g1) ∪ Oε(g) ∪ Oε(h),

(26.51)

and the function w1 = u− cw0. It is easy to see that w0 and w1 are the required functions.

Introduce the bounded operator La(q) : H
2
a(G) → H0

a(G, ∂G) by the formula

La(q)u = {Δu− qu, u|Γ1 − b1(y)u(Ω1(y))|Γ1 , u|Γ2}, q ≥ 0.

We also denote La = La(0).

Lemma 26.12. Let q > 0 be sufficiently small. Then dimkerL1−δ(q) = 0.

The proof is similar to the proof of Lemma 26.5.

Lemma 26.13. Let q > 0 be sufficiently small. Then dimkerL1+δ(q) ≤ 2.

Proof. 1. First, we assume that q = 0 and prove that dimkerL1+δ ≤ 2. Let u ∈ kerL1+δ. Without
loss of generality, we assume that the function u is real-valued.

As in the proof of Lemma 26.11, we have

u(y) = cg + ĉg ln r + r(cg1 cosω + dg1 sinω) + v(y), y ∈ Oε(g), (26.52)

where ω and r are the polar coordinates with pole at the point g such that (0, r) ∈ Ω1(Γ1) for 0 < r < ε,
cg, ĉg, cg1 and dg1 are constants, and v ∈ H2

−δ(Oε(g)).
Similarly, replacing the point g by the point h, we obtain the equality

u(y) = ch + ĉh ln r + r(ch1 cosω + dh1 sinω) + v(y), y ∈ Oε(h), (26.53)

where ω and r are the polar coordinates with pole at the point h such that (0, r) ∈ Ω2(Γ2) for 0 < r < ε,
ch, ĉh, ch1 and dh1 are constants, and v ∈ H2

−δ(Oε(h)).
Using Eqs. (26.38)–(26.40), (26.52), and (26.53), we obtain

Δu = 0, y ∈ G ∩ Oε(g1),

u|Γ1∩Oε(g1) = b∗(cg + ĉg ln r + cg1r) + w1(r),

u|Γ2∩Oε(g1) = b∗(ch + ĉh ln r + ch1r) + w2(r),

(26.54)

where wj ∈ H
3/2
−δ (Γj ∩ Oε(g1)).

Hence, applying [26, Theorem 2.2, Lemma 4.3], we see that

u(y) = cgϕg(ω) + chϕh(ω) + ĉg ln rϕ̂g(ω) + ĉh ln rϕ̂h(ω) + rψ(ω) + v(y), y ∈ G ∩ Oε(g1), (26.55)

where ω and r are the polar coordinates with pole at the point g1 such that (0, r) ∈ Γ1 for 0 < r < ε,
ϕg, ϕh, ϕ̂g, ϕ̂h, ψ ∈ C∞([0, π]), the functions ϕg, ϕh, ϕ̂g, and ϕ̂h are independent of u, v, cg, ch, ĉj ,
ĉh, and v ∈ H2

−δ(G ∩ Oε(g1)) ⊂W 2(G ∩ Oε(g1)). In particular, ϕg(ω) is a function that depends only
on the polar angle ω and is a solution of the problem

Δyϕg = 0, r > 0, 0 < ω < π,

ϕg(0) = 1, ϕg(π) = 0,

i.e., ϕg(ω) has the form
ϕg(ω) = 1− ω/π. (26.56)

17For Eq. (26.51), we assume that a specific polar coordinate system ω, r is given for any ε-neighborhood. The
coordinate system is such that the point r = 0 corresponds to the center of the neighborhood.
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The function ϕh(ω) depends only on the polar angle ω and is a solution of the problem

Δyϕh = 0, r > 0, 0 < ω < π,

ϕh(0) = 0, ϕh(π) = 1,

i.e., ϕh(ω) has the form

ϕh(ω) =
ω

π
. (26.57)

Similarly to the proof of Lemma 26.6, we have

u ∈W 2(G ∩ Oε(g2)) ⊂ C(G ∩ Oε(g2)).

It follows from Eqs. (26.52), (26.53), and (26.55) that any function u ∈ kerL1+δ can be rewritten
in the form

u(y) = cgug(y) + chuh(y) + ĉgûg(y) + ĉhûh(y) + U(y), y ∈ G, (26.58)

where ug, uh, ûg, ûh ∈ C∞(G \ {g1, g, h}),

ug(y) =

⎧⎪⎨
⎪⎩

1, y ∈ Oε(g),

b∗ϕg(ω), y ∈ Oε(g1),

0, y ∈ Oε(g2) ∪ Oε(h),

uh(y) =

⎧⎪⎨
⎪⎩

1, y ∈ Oε(h),

b∗ϕh(ω), y ∈ Oε(g1),

0, y ∈ Oε(g2) ∪ Oε(g),

ûg(y) =

⎧⎪⎨
⎪⎩

ln r, y ∈ Oε(g),

b∗ ln rϕ̂g(ω), y ∈ Oε(g1),

0, y ∈ Oε(g2) ∪ Oε(h),

ûh(y) =

⎧⎪⎨
⎪⎩

ln r, y ∈ Oε(h),

b∗ ln rϕ̂h(ω), y ∈ Oε(g1),

0, y ∈ Oε(g2) ∪ Oε(g),

U ∈ W 2(G) ⊂ C(G) and U(g1) = U(g2) = U(g) = U(h) = 0. The embedding U ∈ H2
1−δ(G) follows

from here and Lemma 5.2 (item 2).
It follows from Eq. (26.58) and Lemma 26.12 that dimkerL1+δ ≤ 4.
2. Prove that dimkerL1+δ ≤ 2. Assume the contrary: let there exist three linearly indepen-

dent functions v1, v2, v3 ∈ kerL1+δ. Since each of these functions can be represented in the form of
Eq. (26.58), we see that some of their nontrivial linear combinations (we denote it by u) have the form

u(y) = cgug(y) + chuh(y) + U(y). (26.59)

Using (26.59), the explicit form (26.56) and (26.57) of the functions ϕg and ϕh (which describe the
behavior of functions ug and uh near the point g1), and reasoning similarly to the proof of Lemma 26.6,
we obtain u = 0. Hence, the functions v1, v2, and v3 are linearly independent and dimkerL1+δ ≤ 2.

3. Similarly to the proof of Lemma 26.6 we can show that

dimkerL1+δ(q) ≤ 2

for sufficiently small q > 0.

Lemma 26.14. Let q > 0 be sufficiently small. Then codimR(L1−δ(q)) ≥ 2.

Proof. The strip −δ ≤ Imλ ≤ δ does not contain eigenvalues of model problem (26.10), (26.11), but
contains the unique eigenvalue λ0 = 0 of model problem (26.2) that corresponds to the point g, and
contains the unique eigenvalue λ0 = 0 of the same model problem (26.2) that corresponds to the point
h (recall that g 	= h). The algebraic multiplicity of the eigenvalue λ0 = 0 is 2 for both cases. Hence,
according to [31, Theorem 4.1], we have indL1+δ(q) = indL1−δ(q) + 4, i.e.,

dimkerL1+δ(q)− codimR(L1+δ(q)) = dimkerL1−δ(q)− codimR(L1−δ(q)) + 4.

The relation

codimR(L1−δ(q)) = codimR(L1+δ(q))− dimkerL1+δ(q) + 4 ≥ 2

follows from here and Lemmas 26.12 and 26.13
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Let us fix a number q > 0 for which codimR(L1−δ(q)) ≥ 2. Consider the set

R0
1−δ(G) = {f0 ∈ H0

1−δ(G) : (f0, 0, 0) ∈ R(L1−δ(q))}.
Obviously, R0

1−δ(G) is a closed subspace in H0
1−δ(G) since the image R(L1−δ(q)) is a closed subspace

in H0
1−δ(G, ∂G).

Lemma 26.15. codimR0
1−δ(G) ≥ 2.

Proof. 1. According to Lemma 26.14, it suffices to prove that

codimR0
1−δ(G) = codimR(L1−δ(q)).

Let f0 ∈ R0
1−δ(G), i.e., f = (f0, 0, 0) ∈ R(L1−δ(q)). This is equivalent to the relations

(f, Fl)H0
1−δ(G,∂G) = 0, l = 1, . . . , codimR(L1−δ(q)), (26.60)

where Fl ∈ H0
1−δ(G, ∂G) are linearly independent functions from the orthogonal complement to the

subspace R(L1−δ(q)) in the space H0
1−δ(G, ∂G). It follows from Eq. (26.60) and the Riesz theorem on

the general form of linear continuous functionals in Hilbert spaces that

codimR0
1−δ(G) ≤ codimR(L1−δ(q)).

2. Now we prove the inverse inequality. Let f = (f0, f1, f2) ∈ R(L1−δ(q)), i.e., L1−δ(q)u = f for
some function u ∈ H2

1−δ(G). By Lemma 11.1, there exists a function v ∈ H2
1−δ(G) such that v|Γj = fj ,

j = 1, 2, the support v is located in an arbitrarily small neighborhood O(∂G) of the boundary ∂G, and

‖v‖ ≤ k
(
‖f1‖H3/2

1−δ(Γ1)
+ ‖f2‖H3/2

1−δ(Γ2)

)
, (26.61)

where k > 0 depends on a neighborhood O(∂G), but is independent of f1 and f2.
Assume that a neighborhood O(∂G) is such that bj(y)v(Ωj(y)) = 0, y ∈ Γj . Then the function v

satisfies the nonlocal conditions

v|Γj − bj(y)u(Ωj(y))Γj = fj , j = 1, 2.

Hence, the function w = u− v ∈ H2
1−δ(G) satisfies the relation

L1−δ(q)w = (f0 − (Δv − qv), 0, 0). (26.62)

It follows from Eq. (26.62) that f0 − (Δv − qv) ∈ R0
1−δ(G). This is equivalent to relations

(f0 − (Δv − qv),Φl)H0
1−δ(G) = 0, l = 1, . . . , codimR0

1−δ(G), (26.63)

where Φl ∈ H0
1−δ(G) are linearly independent functions from the orthogonal complement to the

subspace R0
1−δ(G) in the space H0

1−δ(G). Using (26.61) and (26.63) and the Riesz theorem on
the general form of linear continuous functionals in Hilbert spaces we obtain codimR(L1−δ(q)) ≤
codimR0

1−δ(G).

Let us prove Theorem 26.2 applying the Hille–Yosida theorem (see Theorem 23.1) and Lemmas 26.11
and 26.15.

Proof of Theorem 26.2. 1. Assume the contrary: let PB be a generator of a Feller semigroup. Then,
by the Hille–Yosida theorem (Theorem 23.1),

R(PB − qI) = R(PB − qI) = CB(G).

Hence, R(PB − qI) = CB(G). According to Lemma 26.11, this means that any function from CB(G)
can be approximated by functions from the set

Span(R0
1−δ(G),Δw0) ∩ CB(G),

where w0 is a function from Lemma 26.12.

431



2. Similarly to the prove of Theorem 26.2, we obtain from item 1 of the proof of this theorem that

Span(R0
1−δ(G),Δw0) = H0

1−δ(G). (26.64)

It follows from here that codimR0
1−δ(G) ≤ 1. This contradicts Lemma 26.15.

Remark 26.2. Similarly to Sec. 26.2, we see that no reduction P̂B : CB(G) → CB(G) of the opera-
tor PB is a generator of a Feller semigroup.

26.4. “Jumps” with probability 1 inside a neighborhood of a termination point of the
process.

26.4.1. Statement of nonlocal problem. Let us show that Eq. (23.3) in condition 23.2 is substantial.
Let G, g1, g2, and K be the same as in Sec. 26.2. Consider the nonlocal problem (see Fig. 26.3)

Δu(y) = f0(y), y ∈ G, (26.65)

u(y)− bj(y)u(Ωj(y)) = 0, y ∈ Γj , j = 1, 2, (26.66)

u(y) = 0, y ∈ K, (26.67)

where the functions bj ∈ C∞(Γj) are such that

(1) 0 ≤ bj(y) ≤ 1,
(2) bj(y) = 1 for y ∈ Oε(g1),
(3) bj(y) = 0 for y /∈ O2ε(g1),

and Ωj , j = 1, 2, is a smooth nondegenerate transformation defined in a neighborhood of the curve Γj
such that

(1) Ωj(Γj) ⊂ G, Ωj(g1) = g1, Ωj(g2) = g2,
(2) Ωj(y) for y ∈ Oε(g1) is the rotation by angle π/2 degrees inward the domain G.

Fig. 26.3. Problem (26.65)–(26.67).

Further, we consider ε > 0 so small that

O2ε(g1) ∩ O2ε(g2) = ∅.

Introduce the measure δ(y, ·), y ∈ ∂G, as follows: for any Borel set Q ⊂ G, we assume that

δ(y,Q) = bj(y)χQ(Ωj(y)), y ∈ Γj , j = 1, 2,

δ(y,Q) = 0, y ∈ K.
Then boundary conditions (26.66), (26.67) can be rewritten in the form

b(y)u(y) +

∫
G

[u(y)− u(η)]δ(y, dη) = 0, y ∈ ∂G,
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where b(y) = 1− δ(y,G).
It is easy to verify that conditions 23.1 and 24.1–24.8 hold (with P(y,D) = Δ, P1 = 0

and αi(y,G) ≡ βi(y,G) ≡ 0). Obviously, relation (23.3) in condition 23.2 is not fulfilled since
b1(g1) + b2(g1) = 2.

Consider the unbounded operator PB : D(PB) ⊂ CB(G) → CB(G) defined by the formula

PBu = Δu, u ∈ D(PB) = {u ∈ CB(G) : Δu ∈ CB(G)}, (26.68)

where CB(G) is the set of functions from C(G) satisfying nonlocal conditions (26.66) and (26.67).
The following two results are proved similarly to Lemmas 26.2 and 26.3.

Lemma 26.16. If u ∈ D(PB), then u ∈W 2(G′) for any domain G′ such that G′ ⊂ G \ K.

Lemma 26.17. The operator PB : D(PB) ⊂ CB(G) → CB(G) admits a closure PB.

We prove the following result.

Theorem 26.3. Let PB : D(PB) ⊂ CB(G) → CB(G) be the closure of operator (26.68). Then PB is
not a generator of a Feller semigroup.

By the Hille–Yosida theorem (Theorem 23.1), it suffices to show that the image R(PB − qI) does
not coincide with CB(G) for some q > 0.

26.4.2. Proof of Theorem 26.3. To prove Theorem 26.3, we obtain the asymptotic of a solution
u ∈ D(PB) of problem (26.65)–(26.67).

Consider the following model problem corresponding to the point g1 with a complex parameter λ:

ϕ′′(ω)− λ2ϕ(ω) = 0, 0 < ω < π, (26.69)

ϕ(−π/2)− ϕ(0) = 0, ϕ(π/2)− ϕ(0) = 0, (26.70)

where ω and r are the polar coordinates with pole at the point g1 such that (0, r) ∈ Γ1 and (π, r) ∈ Γ2

for 0 < r < ε. The eigenvalues of this problem have the form λk = 2ki, k = 0,±1,±2, . . . . Further,
we will be interested in the eigenvalue λ0 = 0. The eigenvector corresponding to it has the form
ϕ0(ω) ≡ 1. There exists an adjoint vector ϕ̂0(ω) ≡ 0. There is no second adjoint vector.

Since b1(y) = 0 near the point g2, problem (26.10), (26.11) corresponds to the point g2 (see Sec. 26.2).
Here, similarly to Secs. 23–25), we use the weight spaces

H l
a(G) = H l

a(G,K), H l
a(G ∩ Oε(gj)) = H l

a(G ∩ Oε(gj), {gj})
and the corresponding trace spaces.

Fix a number δ such that
0 < δ < 1. (26.71)

Lemma 26.18. Let u ∈ D(PB). Then u ∈ H2
1−δ(G).

Proof. It follows from Lemma 26.16 that u ∈W 2(G′) for any domain G′ such that G′ ⊂ G\K. Further,
using Eqs. (26.66) and (26.67), we obtain

Δu ∈ C(G) ⊂ H0
−δ(G ∩ Oε(g1)), (26.72)

u|Γj∩Oε(g1) − u(Ωj(y))|Γj∩Oε(g1) = 0, j = 1, 2. (26.73)

Using Eqs. (26.72) and (26.73), the relation u ∈ C(G) ⊂ H0
−1+δ(G ∩ Oε(g1)), and Lemma 14.2, we

obtain
u ∈ H2

1+δ(G ∩ Oε(g1)). (26.74)

According to (26.71), the strip −1 − δ ≤ Imλ ≤ δ contains the unique eigenvalue λ0 = 0 of
problem (26.69), (26.70). Hence, applying Eqs. (26.72) and (26.73) and [26, Theorem 2.2], we obtain

u(y) = c0ϕ0(ω) + ĉ0(ϕ̂0(ω) + ϕ0(ω) ln r) + v(y) = c0 + ĉ ln r + v(y), y ∈ G ∩ Oε(g1),
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where c1 and c2 are constants and v ∈ H2
−δ(G ∩ Oε(g1)). Since H2

−δ(G ∩ Oε(g1)) ⊂W 2(G ∩ Oε(g1)),

using the Sobolev embedding theorem, we obtain v ∈ C(G ∩ Oε(g1)) and v(g1) = 0. It follows from

here and the relation u ∈ C(G ∩ Oε(g1)) that ĉ0 = 0. Taking into account Eq. (26.67) and the relation
v(g1) = 0, we obtain

c0 = u(g1)− v(g1) = 0.

Thus, u ∈ H2
−δ(G ∩ Oε(g1)) ⊂ H2

1−δ(G ∩ Oε(g1)).

Similarly to Lemma 26.5, we prove that u ∈ H2
1−δ(G ∩ Oε(g2)).

Introduce the bounded operator La(q) : H
2
a(G) → H0

a(G, ∂G) by the formula

La(q)u = {Δu− qu, u|Γ1 − b1(y)u(Ω1(y))|Γ1 , u|Γ2}, q ≥ 0.

We also denote La = La(0).

Lemma 26.19. Let q > 0 be sufficiently small. Then dimkerL1−δ(q) = 0.

Proof. Suppose q = 0 and prove that dimkerL1−δ = 0. Let u ∈ kerL1−δ. Without loss of generality,
we assume that the function u is real-valued. Using Eqs. (26.65)–(26.67), we obtain

Δu = 0, y ∈ G ∩ Oε(g1),

u|Γj∩Oε(g1) − u(Ωj(y))|Γj∩Oε(g1) = 0, j = 1, 2.

Hence, reasoning similarly to the proof of Lemma 26.4, we obtain the embedding u ∈ C(G ∩ Oε(g1)).

It is easy to show (similarly to Lemma 26.5) that u ∈ C(G ∩ Oε(g2)). Then u ∈ C(G), and, according
to maximum principle 24.1, we have u = 0, i.e., dimkerL1−δ = 0.

Similarly to Lemma 26.5, we prove that dimkerL1−δ(q) = 0 for sufficiently small q > 0.

Lemma 26.20. Let q > 0 be sufficiently small. Then dimkerL1+δ(q) ≤ 1.

Proof. 1. First, we prove that dimkerL1+δ ≤ 2. Let u ∈ kerL1+δ. Without loss of generality, we
assume that the function u is real-valued. Using Eqs. (26.65)–(26.67), we obtain

Δu = 0, y ∈ G ∩ Oε(g1), (26.75)

u|Γj∩Oε(g1) − u(Ωj(y))|Γj∩Oε(g1) = 0, j = 1, 2. (26.76)

By (26.71), the strip −1 − δ ≤ Imλ ≤ δ contains only one eigenvalue λ0 = 0 of problem (26.69),
(26.70). Hence, using Eqs. (26.75) and (26.76), and [26, Theorem 2.2], we obtain

u(y) = c0ϕ0(ω) + ĉ0(ϕ̂0(ω) + ϕ0(ω) ln r) + v(y) = c0 + ĉ ln r + v(y), y ∈ G ∩ Oε(g1), (26.77)

where c1 and c2 are constants,

v ∈ H2
−δ(G ∩ Oε(g1)) ⊂W 2(G ∩ Oε(g1)) ⊂ C(G ∩ Oε(g1)),

and v(g1) = 0.
As in the proof of Lemma 26.20, we have

u ∈W 2(G ∩ Oε(g2)) ⊂ C(G ∩ Oε(g1)).

Hence, taking into account (26.77), we see that

u(y) = c0u0(y) + ĉ0û0(y) + U(y), y ∈ G, (26.78)

where u0, û0 ∈ C∞(G \ {g1}),

u0(y) =

{
1, y ∈ Oε(g1),

0, y ∈ Oε(g2),
û0(y) =

{
ln r, y ∈ Oε(g1),

0, y ∈ Oε(g2),

U ∈ W 2(G) ⊂ C(G) and U(g1) = U(g2) = U(g) = 0. It follows from here and Lemma 5.2 (item 2)
that U ∈ H2

1−δ(G).
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From Eq. (26.78) and Lemma 26.19 we obtain that dimkerL1+δ ≤ 2.
2. Prove that dimkerL1+δ ≤ 1. Assume the contrary: let there exist two linearly independent

functions v1, v2 ∈ kerL1+δ. Since each of these functions can be represented in the form of Eq. (26.78),
we see that some of their nontrivial linear combinations (that we denote by u) have the form

u(y) = u0(y) + U(y), (26.79)

i.e., u ∈ C(G). Using maximum principle 24.1, we have u(y) ≡ 0. Hence, the functions v1 and v2 are
linearly dependent and dimkerL1+δ ≤ 1.

3. Similarly to the proof of Lemma 26.6, we can show that

dimkerL1+δ(q) ≤ 1

for sufficiently small q > 0.

Lemma 26.21. Let q > 0 be sufficiently small. Then codimR(L1−δ(q)) ≥ 1.

Proof. The strip −δ ≤ Imλ ≤ δ does not contain eigenvalues of the model problem (26.10), (26.11)
(see Sec. 26.2) corresponding to the point g2 and contains the unique eigenvalue λ0 = 0 of the model
problem (26.69), (26.70). Moreover, the algebraic multiplicity of the eigenvalue λ0 = 0 is 2. Hence,
according to [31, Theorem 4.1],

indL1+δ(q) = indL1−δ(q) + 2,

that is,

dimkerL1+δ(q)− codimR(L1+δ(q)) = dimkerL1−δ(q)− codimR(L1−δ(q)) + 2.

The relation

codimR(L1−δ(q)) = codimR(L1+δ(q))− dimkerL1+δ(q) + 2 ≥ 1

follows from here and Lemmas 26.19 and 26.20

Fix a number q > 0 for which

codimR(L1−δ(q)) ≥ 1.

Consider the set

R0
1−δ(G) = {f0 ∈ H0

1−δ(G) : (f0, 0, 0) ∈ R(L1−δ(q))}.
Obviously, R0

1−δ(G) is a closed subspace in H0
1−δ(G) since the image R(L1−δ(q)) is a closed subspace

in H0
1−δ(G, ∂G).

The following result can be proved similarly to Lemma 26.8 (here, Lemma 26.7 must be replaced
by Lemma 26.21).

Lemma 26.22. codimR0
1−δ(G) ≥ 1.

Now, repeating the proof of Theorem 26.1 and applying Lemmas 26.18 and 26.22 instead of Lem-
mas 26.4 and 26.8, respectively, we obtain the conclusion of Theorem 26.3.

Remark 26.3. As in Sec. 26.2, we see that no reduction P̂B : CB(G) → CB(G) of the operator PB

is a generator of a Feller semigroup.
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