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ELLIPTIC PROBLEMS
WITH NONLOCAL BOUNDARY CONDITIONS
AND FELLER SEMIGROUPS

P. L. Gurevich UDC 517.9

ABSTRACT. This monograph is devoted to the following interrelated problems: the solvability and
smoothness of elliptic linear equations with nonlocal boundary conditions and the existence of Feller
semigroups that appear in the theory of multidimensional diffusion processes.
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INTRODUCTION

I. This monograph is based on the author’s doctoral dissertation and is devoted to the following
interrelated problems: the solvability and smoothness of elliptic linear equations with nonlocal bound-
ary conditions and the existence of Feller semigroups that appear in the theory of multidimensional
diffusion processes.

One-dimension nonlocal problems were studied by Sommerfeld [99], II’in [45], II'in and Moiseev [46],
Krall [55], Picone [68], Skubachevskii [97], Tamarkin [104], Shkalikov [80], and others.

In 1932, Carleman [12] studied a problem of finding a holomorphic function in a bounded domain G
that satisfies the following condition: the value of an unknown function at a point y of the bound-
ary OG is related to the value at each point Q(y), where Q : 0G — G is a smooth nondegenerate
transformation, Q(2(y)) =y, y € 9G. In [12], this problem was reduced to a singular equation with a
shift. Further studies of singular integral equations with shift that maps a boundary of the domain to
itself and generates a finite group (see detailed bibliography in [62]) and studies of elliptic equations
with a shift of the domain to itself (see [4]) are related to such a statement of the problem. Beals [5],
Browder [11], Vishik [106], and Schechter [77] studied elliptic equations with nonlocal boundary condi-
tions. Conditions that guarantee the fulfillment of the coercivity inequality were imposed on abstract
operators. In some cases, restrictions were imposed on an adjoint operator.

In 1969, Bitsadze and Samarskii (see [9]) considered a completely different nonlocal elliptic problem
appearing in the theory of plasma: find a harmonic function in a bounded domain G that satisfies
nonlocal conditions, which are related to a value of the function on a manifold I'y C G with values
on some manifold inside the domain G; the Dirichlet condition was imposed on the set G \ I';. If the
domain is rectangular, this problem was solved in [9] by reduction to a Fredholm equation of the second
type and applying the maximum principle. In the case of an auxiliary domain and general nonlocal
conditions, this problem was formulated as unsolved [75] (we specify [55], where the importance of
development of the theory of nonlocal boundary-value problems was mentioned).

Bitsadze [7, 8], Gushchin [42], Gushchin and Mikhailov [43, 44], Eidelman and Zhiratau [14], II'in
and Moiseev [47], Kishkis [50, 51|, Paneah [67], Roitberg and Sheftel’ [73, 74], Soldatov [78], and
others studied different versions and generalizations of nonlocal problems containing transformations
of variables that mapped a boundary to closure of the domain. Special attention was devoted to
the solvability nonlocal problems. Moiseev [60, 61] and Mustafin [63] considered spectral properties
of nonlocal problems in the multidimensional case. Note that, in the cited publications, the two-
dimensional case, or second-order equations, or strict conditions are imposed on the geometry of the
support of nonlocal terms (e.g., it is assumed that the support of nonlocal terms lies inside the domain
or intersects with a part of the boundary where the “local” Dirichlet condition is given).

The foundations of the theory of linear elliptic 2m-order equations with general nonlocal boundary
conditions were stated by Skubachevskii and his colleagues (see [52, 69, 70, 82, 84, 85, 87-90, 93-98]).
A classification according to a type of nonlocal conditions was conducted, a priori estimations were
proved, left and right regularizers were constructed in Sobolev and weight spaces (depending on
the type of nonlocal conditions), and asymptotic expansions of solutions near singular points were
obtained. Spectral properties and properties of indexes of the corresponding operators were studied
for some problems. In particular, it was shown that properties of a problem significantly depend on
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the geometry of the support of nonlocal terms. Let us illustrate some possible cases by the following
example.

Let G C R™ (n > 2) be a bounded domain with the boundary 0G = I't UT's U K, where ', are
open, connected (in the topology of G), (n — 1)-dimensional manifolds of class C*°, and K =T'; NTy
is an (n — 2)-dimensional, connected manifold of class C* (if n = 2, then K = {g1, g2}, where ¢g; and
go are endpoints of the curves I'; and I's) without a boundary. Let the domain G be diffeomorphic to
an n-dimensional dihedral angle in a neighborhood of each point g € K. Let us consider the following
nonlocal problem in the domain G:

Au:fO(y)a yeq, (1)
ulr, = bo (y)u(Qe (Y))Ir, =0, o =1,2. (2)

Here b, € C*°(R?); €, is an infinitely differentiable, nondegenerate transformation that maps some
neighborhood O, of the manifold I',; to the set 2,(0,) in such a way that Q,(I';) C G. Points of set
IC are called conjugation points of nonlocal boundary conditions.

A. L. Skubachevskii proposed the following classification:

(1) I's = @ and Ql(Fl) = Ql(f)G) cdG (Flg 1);

(2) T9 # @ and Q,(I'y) NK =@, 0 = 1,2 (Fig. 2);
(

3) Ty # @ and Q,(I'y) NK # @, 0 =1or 2 (Fig. 3).

Iy

Fig. 1. Domain G with boundary 0G =T'.

FQ FQ
01 (T) 0y (T)
g1 g2 g1 22 92
Ty Iy
Fig. 2. Q,(T,)NK = 2. Fig. 3. Q,(Ty) NK # @.

The first type of problems (and generalizations to the case of abstract nonlocal operators in bound-
ary conditions) is the best studied because the properties of nonlocal problems are similar to the
corresponding “local” problem (when b,(y) = 0). In particular, a nonlocal problem is a Fredholm
problem in Sobolev spaces and its index equals the index of a “localized” problem; the corresponding
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problem with a spectral parameter is uniquely solvable for sufficiently large parameters (see [82, 84,
97]). If the spectrum of a local problem is discrete, then the nonlocal problem has a discrete spectrum
and the system of root functions forms an Abel basis in the corresponding Sobolev space (see [69, 70]).

The situation is substantially more difficult for the second and third types. For the second class,
a curve Q,(I';) can cross (it can also be tangent) the boundary of the domain. In the general
case, it even can partially coincide with the boundary. For problems of the third type, we assume
that nonlocal terms are not tangent to the boundary of the domain at conjugation points; this is
important for the method used. In [85, 98], it is shown that if the support of nonlocal terms crosses the
boundary of the domain, then the areas of solutions can have power singularities near a conjugation
point of the boundary conditions. This can happen even if the boundary is infinitely smooth and
the right-hand side is infinitely differentiable. Therefore, such problems were considered in special
weight spaces (they consider singularities of solutions). It turned out that Kondrat’ev spaces are the
most convenient. Kondrat’ev introduced such spaces in for the study of “local” boundary problems
in domains with corner or conical points. In [52, 85, 88, 89], the Fredholm solvability of nonlocal
problems in Kondrat’ev spaces was proved, and in [90], it was shown that if the support of nonlocal
terms does not cross conjugation points of boundary conditions (Fig. 2), then the index of nonlocal
problem is equal to the index of the corresponding local problem; otherwise (Fig. 3), this is not true.

Note that nonlocal elliptic problems with tangent approach of a curve ,(I';) to the boundary of a
domain at conjugation points were studied in [8, 51] by methods of the theory of complex functions.
Nevertheless, the general theory of nonlocal boundary-value problems is not developed enough.

Independently of the papers mentioned above, nonlocal problems arose in the theory of multidimen-
sional diffusion processes that describe the behavior of a particle in a domain G from the point of view
of the probability theory. In [15, 16], it was shown that any one-dimensional (n = 1) diffusion process
corresponds to some nonnegative, continuous contracting semigroup in the space C (é) or in some
of its subspaces. Further, such semigroups are called Feller semigroups. Moreover, Feller obtained
necessary and sufficient conditions for a second-order ordinary differential operator to be a generator
(infinitesimal generating operator) of this semigroup. He obtained nonlocal boundary conditions that
give the domain of the operator.

In the multidimensional case (n > 2), Ventsel [105] obtained a general form of a generator of a Feller
semigroup. He proved that this generator is an elliptic, second-order differential operator (possibly,
with generation), and its domain consists of continuous (once or twice continuously differentiable
depending on the process) functions satisfying nonlocal boundary conditions. A nonlocal term is an
integral of a function over a closure of a domain with respect to a nonnegative Borel measure p(y, dn),
y € 0G.

In the most difficult case, when the measure is atomic, the nonlocal case can have form (2). They
have the following probabilistic sense: a particle hitting a point y € I', can either hit a point Q,(y)
with probability b, (0 < b, < 1) (such behavior of a particle is called “jump”), or be assimilated by a
boundary with probability 1 — b,. In the latter case, the process terminates.

In the general case, boundary conditions include the derivatives of an unknown function up to the
second order. This corresponds to the assimilation and reflection of a particle from the boundary,
diffusion along the boundary, and viscosity.

The following problem is unsolved for n > 2. Let an elliptic integro-differential operator be given;
its domain is described by general nonlocal boundary conditions (see [105]). Is such an operator (or
its closure) a generator of a Feller semigroup?

There are two types of nonlocal boundary conditions: transversal and nontransversal. In the
transversal case, the order of nonlocal terms is less than the order of local terms. In the nontransversal
case, these orders coincide. Sato and Ueno [76], Bony, Courrege, and Priouret [10], Watanabe [109],
Taira [101-103], Ishikawa [48], and others studied the transversal case. Skubachevskii [86, 91, 92]
proposed a method of studying the nontransversal case. This method is based on the idea of separation
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of nonlocal terms from local terms and the Hille-Yosida theorem. This idea was used earlier (see [82,
85]). Further, this method was developed in [17-20].

Let us specify important applications arising in the theory of functional-differential equations
(see [97] and the references therein), in the theory of parabolic problems with nonlocal boundary
conditions (see [79]), in modelling of multilayered plates and shells in aerospace engineering [65, 66,
97], in thermic control problems in the description of processes in chemical reactors and climate-control
systems (see [40]), in the theory of parabolic problems with nonlocal boundary conditions (see [13,
40]), and in control theory (see, e.g., [3]). In addition, let us mention a monograph of Bensoussan and
Lions (see [6]), where elliptic integro-differential operators were studied in connection with stochastic
control theory.

Lately, the theory of nonlocal nonlinear equations and inequalities and applications are being de-
veloped. Let us mention the paper [59] where differential inequalities with nonlocal terms are studied
(see also bibliography there).

I1. Until now (see [24, 85, 88, 89]), in the general theory of elliptic problems with nonlocal boundary
conditions, it was assumed that transformations (), near conjugation points of boundary conditions
are linear, that is, they are compositions of operators of shift, rotation, and homothety. In Chap. 1, we
consider a problem with nonlinear transformations. It turns out (see [25]) that such a problem is not a
small or compact perturbation of the corresponding problem with linear transformations. Nevertheless,
it is shown that the operator of the problem remains a Fredholm operator in Kondrat’yev weight spaces
and its index does not change after passage to nonlinear transformations. For simplicity, we assume
that n = 2; however, the corresponding results are valid in the case where n > 3 (see [25]).

The problem of whether a unbounded nonlocal operator in Ly(G) is a Fredholm operator when the
support of nonlocal terms approaches the boundary of a domain was studied when nonlocal conditions
were given at shifts of the boundary (see [83, 87]) or when the Dirichlet problem for a second-order
equation was nonlocally perturbed (see [42-44]). The solvability of nonlocal elliptic problems in the
Sobolev spaces W2™(G) = Wit?™(G) (where 2m is the order of the elliptic equation, I > 0) has not
yet been studied. The main difficulty is that solutions of a nonlocal problem can have singularities near
some points and, in general, do not belong to a “necessary” Sobolev space. Such problems are studied
in Chaps. 2-4. We show that the Fredholm solvability of a bounded operator in the Sobolev space
W2m(G) is defined by the eigenvalues of some auxiliary function £(\) (they depend on a complex
parameter \), the structure of Jordan chains corresponding to these eigenvalues, and by some algebraic
relations between the elliptic operator and operators in the nonlocal boundary conditions. We study
nonlocal boundary conditions with arbitrary right-hand sides. An unbounded operator in Ly(G) given
at generalized solutions of a nonlocal problem (i.e., functions from W*(G), 0 < £ <2m —1), is a
Fredholm operator for any position of eigenvalues of the operator-valued function £~()\) The stability
of the index of nonlocal operators in Ly(G) when an elliptic equation and boundary conditions are
perturbed by minor terms has been studied via the notion of the spread between unbounded operators
(see [49]).

In [53], a 2m-order elliptic equation with the Dirichlet boundary condition was solved and a question
on the smoothness near an corner or conical point of generalized solutions from the Sobolev space
W™(G) was considered. In particular, it is proved that solutions can be made arbitrary smooth due
to decrease of the angle. In the case of nonlocal boundary conditions, the situation is substantially
different. In [85, 98], it is shown that the smoothness of generalized solutions can be violated near
a smooth boundary or a vertex of a small angle. On the other hand, generalized solutions near a
vertex of an angle that is more than 7 can be smooth if there are nonlocal terms with sufficiently large
coefficients. In Chap. 5, we study the smoothness of generalized solution from W*(G), 0 < £ < 2m — 1,
of 2m-order elliptic equations; we consider nonlocal boundary conditions with both zero and arbitrary
right-hand sides.
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In [86, 92], the question of whether Feller semigroups in the nontransversal case exist is considered
under conditions where the coefficients of nonlocal operators decrease as the argument tends to the
boundary of the domain. In [19, 20|, boundary conditions in the case where the coefficients of nonlocal
terms near conjugation points are less than 1 are considered. It is proved that a nonlocal problem
(after reducing to the boundary) can be considered as a perturbation of a “local” Dirichlet problem.
The extreme case where the coefficients of nonlocal terms equal 1 remains unstudied until now (the
coefficients cannot be more than 1; see [105]). In Chap. 6, we study nontransversal nonlocal conditions
that allow the extreme case. We obtain sufficient conditions for Borel measure pu(y, dn) (its support
is inside the closure of the domain) that guarantee that the corresponding operator is a generator of
a Feller semigroup. Both bounded and unbounded perturbations of an elliptic operator were studied.

III. Let us describe the structure of the monograph and state the main results corresponding to the
chapters.

This monograph consists of the Introduction, six chapters, and the bibliography list.

Introduce the notation

K={yeR?*:7r>0, vy <w<w}, Yo={weR>:r>0 w=w,}, o=12,

where w and 7 are the polar coordinates of a point y, w1 < 0 < wy, and we — wy < 27.
Denote by O.(0) the e-neighborhood of the origin. Let us introduce the following sets:

K°=KnO.(0), 7 =7%Nn0(0), o=1,2.

Let G C R? be a bounded domain with the boundary dG. The boundary contains the origin. We
assume that G N O(0) = K¢ for some ¢ > 0, and the boundary of the domain G is infinitely smooth
in a neighborhood of every point y € G \ {0}.

In Chaps. 1-5, we consider a nonlocal boundary-value problem

P(y, D)u= fo(y), y€G, 3)
B,u= Bgu—l—B}Lu—i—BZu = fuly), yeodG\{0}; p=1,...,m, (4)

where P(y, D) is a 2m-order, properly elliptic operator in G with smooth complex-valued coefficients;

(Bu1(y, D)u) (2 (y))lre, ¥ €760 0 = 1,2,

Bw = B D Bly =
pt = Buo(y, Dyu(y)locfoy,  Bpu {0, y € 9G \ O-(0);

B,o(y, D) and By (y, D) are my-order differential operators with smooth (on 9G\{0}) complex-valued
coefficients (as y € JG tends to the origin, the coefficients and all their derivatives have, generally
speaking, one-sided limits); the support of the coefficients of the operators By,1(y, D) lies inside a suffi-
ciently small neighborhood of the origin; €2, are diffeomorphisms given in some neighborhood ~; such
that Q,(75) C G, Q,(0) = 0 and the curves Q,(7%) have a nontangent approach to the boundary 0G

at the origin; Blu = B;QL <u| G\m) (521 > 0) are abstract nonlocal operators corresponding to the

nonlocal terms with supports lying outside a s¢;-neighborhood of the origin; if y € 0G, the system
of operators {Byo(y, D)}, satisfies the cover condition (the Lopatinskii condition) relative to the
operator P(y, D) (at the origin, the values of coefficients of operators B,o(y, D) are understood in the
sense of one-sided limits).

A vector

Biu(y) = b(y)u(Qy))loc (o} (5)

can be an example of the operator Bi. Here b € C*°(R?) and the restrictions of the transformation
to dG \ {0} and 7¢ (o0 = 1,2) are smooth nongenerate transformations; moreover,

QOG\{0}) c G, Q@G {0}) € G\ O, (0).
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For any [ > 0 and any a € R, we denote by H, (@) the completion of the set of infinitely differentiable
in G functions with supports in G \ {0} with respect to the norm

1/2

lallrie = | S0 / pAo-tHab payj2gy |
lo| <l &

where p = p(y) = dist(y, {0}). For [ > 1, we denote by H,ll_l/z(aG \ {0}) the trace space on 0G \ {0}
with the norm

‘|17Z)||H(ll—1/2(ac\{0}) = inf HUHH(ZJ(G)’ u € H{i(G) : u|8G\{0} = 9.

Assume that

m
HL(G,0G) = HL(G) x [ Ha™" " 2(0G \ {0}),
pn=1
where @ € R and [ > 0 is an integer such that [ +2m —m, > 1.
In Chap. 1, we study the problem of whether the operator

L ={P(y,D), B,}: H™(Q) - H.(G,0G),

is a Fredholm operator and its index is stable when we change the transformation 2, to QU. Both
transformations have the same linear part near the origin.

In Sec. 1, auxiliary results from the theory of linear operators are proved and definitions of functional
spaces are given.

In Sec. 2, the statement of nonlocal problem (3), (4) is studied in weight spaces in a bounded domain
and the statement of a model problem in a plane angle is considered. We introduce a model operator

L) : W2 (w01, wy) — WHwy,we) x C¥™, X eC,

which corresponds to a nonlocal problem near the origin. This problem should be written in the polar
coordinates w and r (with the subsequent Mellin transformation r — \). Spectral properties of the
operator £(\) play a key role in the study of the solvability and smoothness of solutions of problem (3),
(4).

In Sec. 3, we study properties of nonlocal operators with nonlinear transformations near the origin.

In Sec. 4, we prove an a priori estimate of solutions of problem (3), (4) and construct the right
regularizer in weight spaces under the condition that the straight line ImA =a + 1 — 1 — 2m does not
contain eigenvalues of the operator £(\). Hence,

L= {P(y, D), By} : H"(G) —» HL(G.00)

is a Fredholm operator. In this section, we prove that the index of the operator L is determined by
the linear part of the transform 2.

Chapters 26 are devoted to properties of solutions of problem (3), (4). In Chaps. 2 and 3 we
study strong solutions from Sobolev spaces, in Chaps. 4 and 5 we study generalized solutions from
Sobolev spaces, and in Chap. 6 we consider solutions in spaces of continuous functions. The cor-
responding results are based on the solvability of the same problem in weight spaces. Taking into
account results of Chap. 1, we consider transformations €2, that are linear near the origin. We prove
theorems of Chaps. 2—6 for the general case where there is a finite number of corner points on the
boundary 0G. They divide OG in a finite number of parts; each part corresponds to its boundary
condition that contains, generally speaking, several nonlocal terms. In the Introduction, we restrict
ourself to problem (3), (4) in the domain G.

In Chap. 2, we study model nonlocal problems in plane angles.

In Sec. 5, we introduce functional spaces.
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In Sec. 6, we consider the statement of the nonlocal problem (3), (4) in a bounded domain and
model problems in plane angles in Sobolev spaces. The operators of model problems in plane angles
are defined by the formulas

Lu = {P(y, D)u, By,(y,D)u}, Lv={P(D)v, Byu(D)v},

where
Boyu(y, D)u = Byuo(y, D)ulys + (Bui(y, D)u) (€ (y)) e
BUM(D)U = BMO(D)U"YS + (Bul (D)v)(Qg(y))H%

Bo(D) and B1(D) are the principal homogeneous parts of operators B,o(0, D) and B,1(0, D).

In Chap. 2, we study properties of the operators £ and £ in Sobolev spaces. These properties play
a key role in the study of the solvability and smoothness of generalized solutions of nonlocal problems
in bounded domains.

In Sec. 7, we construct “solutions” of model problems in Sobolev spaces with accuracy to functions
that have a zero of certain order at the origin. We consider the following two situations: when the
straight line Im A = a+ 1 — [ — 2m does not contain eigenvalues of operator E()\) and when it contains
only a regular eigenvalue (i.e., such an eigenvalue )y for which there is no adjoint vectors and for any
eigenvector ¢(w) the function r"*0¢(w) being written in rectangular coordinates y is a polynomial).
In the second case, concordance conditions (integral conditions) for coordinates are imposed on the
right-hand sides of both equation and nonlocal boundary conditions. These conditions arise since the
operators of the problem are related by certain algebraic relations. (More precisely, algebraic relations
arise between operators DLO‘lP(D), o] =1 —1, and DlTij_m“_l
parallel to ~5.)

Chapter 3 is devoted to the solvability of problem (3), (4) in a plane bounded domain in Sobolev
spaces.

We say that a function 1 belongs to the space W'=1/2(dG \ {0}), 1 > 1, if v € W!=1/2(0G \ 05(0))
for all § > 0 and its restriction to 72 belongs to W!=1/2(42). We assume that the operators BZ acts
boundedly from the space W2™(G\ O,,,(q)) to the space W!H2m=mu=1/2(9G\ {0}) (cf. (5)). Recall
that if y € OG tends to the origin, then the coefficients of the operators By,o(y, D) and B (y, D) and
all their derivatives have, generally speaking, only one-sided limits; therefore, we must consider trace
spaces given on the sets 9G \ {0}.

Introduce the notation

Bo, (D), where 7, is a unit vector

m
WHG,0G) = WHG) x [ whm—me=12(0G \ {0}),
pn=1
where [ > 0 is an integer such that [ +2m —m, > 1.
In Sec. 8, we prove that the bounded operator

L = {P(y,D), B,} : W™(G) - WG, dG)

is a Fredholm operator if and only if the straight line Im A =1 — [ — 2m does not contain eigenvalues
of the operator L£(\).
In Sec. 9, we consider the operator

L, = {P(y, D), B,}: H:™™(G) — H.(G,0G) + RL(G,dG),

which acts in weight spaces with a small weight index a > 0. Here R, (G, 0G) is some finite-dimensional
space of functions that have a singularity at the origin. It arises owing to the fact that if a <[142m—1,
then the inclusion u € H.F?™((@), generally speaking, does not imply the inclusion L,u € H. (G, 0G).
Indeed, one can find a function v € H:*?™(G) for which the concordance conditions are violated, i.e.,

B?u belongs to Wht2m=m.=1/2(9@ \ {0}), but it does not belong to H,lfzm*m“*l/z(aG).

262



We prove that if the straight line ImA = a + 1 — I — 2m does not contain eigenvalues of the
operator £~()\), then L, is a Fredholm operator. In particular, it follows that if the right-hand side of
problem (3), (4) belongs to H. (G, 0G) and satisfies a finite number of orthogonality conditions, then
there exists a solution u € H.T2™(G).

In Sec. 10, we consider the case where the straight line ImA = 1 — [ — 2m contains only regular
eigenvalue of the operator £()). In this case, by virtue of the results of Sec. 8, L : W2m(G) —
WG, OG) is not a Fredholm operator (its image is not closed). Hence the operator

L = {P(y,D), B,}: W2™(G) - SY(G,9G) + RI(G, Q)

is set to correspondence with problem (3), (4). Here SZ(G,QG) is the set of right-hand sides of
problem (3), (4) from the Sobolev space W!(G, 0G), which satisfy integral concordance conditions
near the origin (cf. Sec. 7), and R!(G, Q) is a finite-dimensional subset in W!(G, 0G). We prove that
L is a Fredholm operator.

In Secs. 8-10, we prove the Fredholm property of nonlocal operators by the common scheme. The
fact that the kernel of problem (3), (4) has a finite dimension in “proper” weight spaces yields the
fact that the kernel has a finite dimension. To prove the fact that the image has a finite dimension,
we construct the right regularizer using results of Chap. 2.

In Sec. 11, we use results of Sec. 10 and show that if there is only regular eigenvalue on the straight
line Im A = 1 — [ — 2m, then the problem with homogeneous boundary conditions (unlike the problem
with inhomogeneous boundary conditions) can be a Fredholm problem. Concordance conditions can
be fulfilled for any vector of right-hand sides that has a zero component corresponding to right-hand
sides of conditions. Therefore, properties of the problem can be improved.

In Sec. 12, we give examples that illustrate general theorems of Chap. 3. Here, we can observe the
following effects.

(1) Even in the case of infinitely smooth boundary, a nonlocal problem cannot be a Fredholm
problem in Sobolev spaces for arbitrary small coefficients of nonlocal terms. On the other hand,
such a problem can became a Fredholm problem.

(2) The Fredholm solvability of a nonlocal problem in the Sobolev spaces W!*+?™(G) depends on
the index [. For example, a problem can be a Fredholm problem for even [ and have a nonclosed
image for odd .

Such effects are due to the following. If the coefficients of nonlocal terms and the index [ are changed
in the Sobolev space W2 (@), then the mutual position of eigenvalues of the operator £(\) and
the straight line ImA = 1 — [ — 2m, the structure of Jordan chains, and the structure of algebraic
relationships between the operators DLalp(D), la] =1—1, and lejzm_m"_le(D) change.

In Chap. 4, we study generalized solutions of problem (3), (4).

Let us fix an integer ¢ such that 0 < ¢ < 2m — 1. In Sec. 13, we denote a generalized solution of
problem (3), (4) as a function that belongs to W*(G) N W?2™(G \ O5(0)) for all § > 0 and satisfies
Eq. (3) almost everywhere and the boundary conditions (4) in the sense of traces. Thus, a generalized
solution can have a singularity near the origin that is a point of conjugation of nonlocal conditions.

In Sec. 14, we prove the Fredholm solvability of the unbounded operator

P :D(P) C La(G) — Lao(Q),
which acts by the formula
Pu=P(y, D)u,
u € D(P) = {ucWHG)NW?™G\ O50)) V6 > 0: B,u=0, P(y,D)u € La(G)}.

In Sec. 15, we state that the index of the operator P : D(P) C L2(G) — Lo(G) does not change if
we add minor terms to the elliptic equation, and in Sec. 16 we prove the stability of the index when we
add to boundary conditions nonlocal terms with coefficients that have a zero of a certain order at the
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origin. Both cases have the same difficulty. When the operator P is perturbed, its domain changes.
To prove the stability of the index, we use the notion of the spread between unbounded operators
(see [49]) and reduction to operators that act in weight spaces.

In Sec. 17, we show that if we add to boundary conditions nonlocal terms with arbitrary small
coefficients that do not equal zero at the origin, then the index of the operator P can change. We give
examples of the operator P whose spectrum occupies the whole complex plane.

Chapter 5 is devoted to the smoothness of generalized solutions u € W*(G) of problem (3), (4)
under the condition that fo € Lo(G) and f, € W?m—m=1/2(5G \ {0}).

Let us denote the set of all eigenvalues of the operator £(\) that lie in the strip 1—2m < Im A < 1—/¢
by A (in particular, the set A can be empty).

In Sec. 18, we assume that the following condition holds.

Condition 1. The straight line Im A = 1 —2m does not contain eigenvalues of the operator ,C~()\) and
all eigenvalues from the set A are reqular.

We obtain sufficient conditions for any generalized condition of problems (3), (4) to belong to
W?2m(G). These conditions are formulated in terms of eigenvectors that correspond to eigenvalues
from the set A. These conditions are called “conditions on the structure of eigenvectors.”

In Sec. 19, we study the so-called borderline case. Namely, we assume that the following condition
holds.

Condition 2. The straight line Im A = 1 — 2m contains exactly one eigenvalue of the operator f(A);
this eigenvalue is reqular. All eigenvalues from the set A are also regular.

In addition to the “conditions on the structure of eigenvectors,” we obtain (integral) concordance
conditions. If the right-hand sides of f, and the operators Bg, BL, and Bi satisfy these conditions,
then any generalized condition of problem (3), (4) belongs to W?™(G). In Secs. 18 and 19, we consider
boundary conditions with zero and arbitrary right-hand sides.

In Sec. 20, we study nonlocal boundary conditions of a special type. For such boundary conditions,
“conditions on the structure of eigenvectors” do not affect the smoothness of generalized solutions of
problem (3), (4).

In Sec. 21, we considered the cases where the smoothness can be violated. We show that both
conditions 1 and 2 and the “conditions on the structure of eigenvectors” are substantial in the general
case.

In Sec. 22, we give an example that illustrates the results of Secs. 18-21.

In Chap. 6, we study the problem on the existence of Feller semigroups arising in the theory of
multidimensional diffusion processes, when we describe the motion of a particle in a domain in terms
of the probability theory. Let us consider a second-order elliptic differential operator P(y, D) with
smooth real coefficients such that P(y, D)1 < 0 and y € G. The domain of the operator P(y, D) is
given by nonlocal boundary conditions of nontransversal type (cf. (4))

u(y) = bo (Y)u(Q(y)) — [ uln)B(y,dn) =0, yev;, o=12,

u(y) — [ u(n)Bly,dn) =0, yedG\0(0), (6)

Q\\ Q\\

u(0) = 0.

Here b, € C*°(R?) are real functions such that suppb, C O-(0) and 0 < b,(y) < 1 and S(y,-) is a
nonnegative Borel measure.
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Nonlocal conditions (6) can also be written in the following form:

mw—/umm%mwm,yem1 (7)

G
Here 1(0,-) = 0 and p(y,-) = d(y, )+ B(y, ) for y € 0G\ {0}; moreover, d(y, -) is a nonnegative atomic
measure defined by the formula

bo(YxQ (20 (v), Y€y o=1,2,
26, Q) = {o, y € 3G\ 0.(0).

Here () is an arbitrary Borel set and x¢ is the characteristic function of the set (). The nonlocal
condition (7) is a particular case of a boundary condition obtained in [105].
In Sec. 23, we prove theorems on the unique solvability of the elliptic equation

P(y,D)u—qu= fo(y), ye€G, ¢q>0,

with nonlocal boundary conditions (6) in the case where (y, ) = 0 in the space of continuous functions.

The study of the solvability of nonlocal problems in spaces of continuous functions is based on
theorems on the unique solvability in weight spaces (see [41]) and results on the asymptotic behavior
of solutions of nonlocal problems (see [26, 96], where results on the asymptotic behavior are generalized
to the case of systems of differential equations with nonlocal boundary conditions; these systems are
analytic in the Douglis—Nirenberg sense).

In Secs. 24 and 25, we use results of Sec. 23 and the Hille-Yosida theorem and obtained sufficient
conditions for the measure p(y, ) in terms of the geometrical structure of the support of the measure.
These conditions guarantee the existence of a Feller semigroup that corresponds to nonlocal boundary
conditions (6). We assume that p(y,-) = d(y,-)+B(y, ) (see above); moreover, the measure 5(y, -) can
be represented as the sum of three nonnegative Borel measures: the first has a support separated from
the origin, the second possesses some smallness property, and the third generates a compact operator
in the corresponding spaces.

Note that in [19, 20], the conditions 0 < b,(0) < 1 or 0 < b,(0) < 1/2, 0 = 1,2, are assumed
to be fulfilled (depending on the structure of the measure B(y,-)). In this paper, we assume that
0<b,(0)<1,0=1,2, and

b1(0) + b2(0) < 2. (8)
In Sec. 24, we obtain conditions for the measure (y, ) under which the unbounded operator
Pp: D(PB) C 03(6) — CB(é)
defined by the formula
Ppu=P(y,D)u+ Pu,
e . o)
u€ DPp)={ueCp(G):Ply,D)u+Piu e Cp(G)},
is a generator of a Feller semigroup. Here Cg(G) is the set of continuous in G functions that satisfy
nonlocal conditions (6); Py is a bounded in C(G) operator such that if a function u € C(G) has a

positive maximum at a point y° € G, then P1u(y®) < 0. Then the operator Py is a generalization of
a bounded integral operator of the form

Pw@wiﬂmm—mmmwdm,yea

G

where m(y, -) is a nonnegative Borel measure on G.
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In Sec. 25, we study the case of an unbounded in C(G) operator Py, which generalizes the operator
of the form

Pu(y) = / fuly + 2 m) — u(y) — (Vuly), 25 )}y, m)n(dn), y € G
F

(cf. [6, 20, 21, 102]), where F'is a space with a o-algebra F and a Borel measure 7, and the vector-valued
function z(y,n) and the scalar-valued function m(y,n) are bounded and m-measured with respect to 7,
m(y,n) > 0, and y+2(y,n) € G forally € G andn € F. The operator Pg : D(Pg) C Cp(G) — Cp(G)
of the form (9) is, generally speaking, nonclosed. We obtain conditions on the measure §(y, ) under
which the closure of the operator Ppg is a generator of a Feller semigroup.

In Sec. 26, we construct examples in which some of above-mentioned conditions on the coefficients
of nonlocal conditions, the structure of transformations of variables, or the Borel measure 5(y,-) are
violated. We show that the closure of the corresponding operator Pp is not a generator of a Feller
semigroup. To do this, we prove that the image of the operator P g — ¢I does not coincide with Cg(G)
for some ¢ > 0 and we apply the Hille—Yosida theorem.

In particular, we construct an example in which the Dirichlet condition is given in the original and
in some punctured neighborhood b1 (y) = ba(y) = 1, i.e., condition (8) is violated. From the point of
view of the probability theory, this means the following: the origin is a point of process termination;
nevertheless, jumps with probability 1 from an arbitrary small neighborhood of the origin occur.

In this paper, we consider the two-dimensional case. However, we note that the results of Chap. 1
on the solvability of nonlocal problems in Kondrat’ev weight spaces are also valid in R™, n > 3,
when the boundary contains edge-type singularities. Similarly to [54], some results on the smoothness
of generalized solutions can also be generalized to the n-dimensional case. To generalize results on
the existence of Feller semigroups to the n-dimensional case, further development of the theory of
nonlocal elliptic problems is needed: the study of the asymptotic behavior of solutions near edge-type
singularities on the boundaries and the solvability in weight spaces and Sobolev spaces (based on
L,(G), p> 2) and in Hélder spaces.

The author is deeply gratitude to Prof. A. L. Skubachevskii for his constant attention and support
for many years.

CHAPTER 1

NONLOCAL ELLIPTIC PROBLEMS
WITH NONLINEAR TRANSFORMATIONS OF VARIABLES

1. Some Definitions and Results from Linear Operators.
Functional Spaces

1.1. Some definitions and results from the theory of linear operators. In this section, we
recall some definitions from the theory of linear operators and we prove two lemmas that will be used
below.

Let Hy and Hs be Hilbert spaces and P : D(P) C H; — Hjy be a linear (generally speaking,
unbounded) operator, where D(P) denotes the domain of the operator P.

Definition 1.1. An operator P is called a Fredholm operator if it is closed, has a closed image, and
the dimension of its kernel ker P and the co-dimension of its image R(P) are finite. The number
ind P = dimker P — codim R(P) is called the index of the Fredholm operator P.

Let A : D(A) C Hy — Hj be a linear operator.
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Definition 1.2 (see [49, 56]). An operator A is called compact with respect to P (or simply P-
compact) if D(P) € D(A) and for any sequence u,, € D(P) such that {u,} and {Pu,} are bounded,
the sequence {Awu,} contains a converging sequence.

Let us introduce the notion of a spread between linear operators. Let S : D(S) C H; — Ha be a
linear operator. Introduce the following norm in the space H; x Ho:

1/2
1w, Il = (el + 1F117,) " Y(u,f) € Hy x H,.
Introduce the notation

§(P,S)= sup dist ((u,Pu),GrS),
ueD(P):
[[(w,Pu)||=1

where Gr S is the graph of the operator S.

Definition 1.3 (see [49]). The number §(P,S) = max{5(P,S),5(S, P)} is called the spread between
operators P and S.

The spread between operators allows one to evaluate the “closeness” of two unbounded operators
that have, generally speaking, different domains (see [49]).
We prove the following two auxiliary results.

Lemma 1.1. Let H, Hy, and Hy be Hilbert spaces, A : H — Hy be a linear bounded operator, and
T : H — Hs be a compact operator. Assume that for some 6, ¢ > 0, and f € H, the following
equality holds:

[Aflmy < 0[lflla + el TF| - (1.1)
Then there exist operators M,F : H — Hy such that

A=M+F,
IIM|| < 26, and the operator F is finite-dimensional.

Proof. As is known (see [71, Chap. 5, Sec. 85]), any compact operator is a limit in the operator norm
of a sequence of finite-dimensional operators. Thus, there exist operators My, Fy : H — Hs such that
T = My + Fy, |[Mp|| < ¢, and the operator Fy is finite-dimensional. This and (1.1) imply that

[A Sz < 20| flle + cllFofllm, VfeH. (1.2)

Denote the orthogonal complement of the kernel of the operator Fy in H by ker(Fg)*. Since the finite-
dimensional operator Fy maps ker(Fg)* to its image bijectively, we see that the subspace ker(Fg)= is
finite-dimensional. Denote the identity operator in H by I and the orthogonal projector to ker(Fg)*
by Pg. Obviously, APy : H — H; is a finite-dimensional operator. Moreover, since I — Py is an
orthogonal projector to ker(Fy), we obtain Fo(I—Pg) = 0. Hence, substituting the function (I—Py) f
instead of f to (1.2), we obtain

AT~ Po) fllm, <20[(T—Po)fllu <20||fllu VfeH.
Setting M = A(I — Py) and F = APy, we complete the proof. O

Lemma 1.2. Let H be a Hilbert space and 1 be a identity operator in the space H. Let Mg and
Ss = Us+ Fs and 6 > 0 be families of bounded in H operators such that

IMs| < 16, [[Usl < e, (1.3)

where ¢1 and ca > 0 are independent of & and the operators Fs and Sg are compact. Then, for any
sufficiently small 5 > 0, the operators

Ls =1+ M;+ S5

are Fredholm operators.
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Proof. To prove the lemma, we construct right and left regularizers for the operator Ls. We have

Ls(I— (Ms +S;)) = I — M? — MsS;s — SsM; — S?
= (I - M? — M;Us — UsMj;) — (M;sF;s + FsM; + S3).

It follows from (1.3) that
M3 + MsUs + UsMs|| < e30,

where ¢3 > 0 is independent of . This and [56, Theorem 16.2] imply that for all sufficiently small
6 > 0, the operators I—Mg —M;sUs—UsMj; are Fredholm operators. Then we use the compactness of
the operators F and S and apply [56, Theorem 16.4]. We see that the operators Ls(I—(Ms+Ss)) are
also Fredholm operators. It follows from [56, Theorem 15.2] that there exist bounded operators Ry
and compact operators T5 such that

L5(I - (M(s + S5))R15 =14 Tys. (1.4)
Similarly, we prove the existence of bounded operators Ras and compact operators To5 such that
RQ(;(I — (M5 + 85))L5 =1+ Tys. (1.5)

Now the lemma follows from (1.4), (1.5), and [56, Theorems 14.3 and 15.2]. O
1.2. Functional spaces.

1.2.1.  Spaces of continuous and infinitely differentiable functions. Let X be a nonempty set in R",
n > 1. We denote the set of continuous in X functions by C(X). If X is a compact, then C(X) is a
Banach space with the norm

lullocn =maxu(y)l, v e C(X).

Let X and M be closed sets and the set X be nonempty. We denote by C°°(X) the set of restrictions
to X of infinitely differentiable in R™ functions. Denote the set of infinitely differentiable in R™
functions with compact supports in X \ M by C§°(X \ M).

For any domain @@ C R™ and any [ > 0 (in what follows, the number [ is assumed to be integer
whenever the contrary is not stated), we denote the set of I times infinitely differentiable in Q (in Q)

functions by C!(Q) (respectively, by C'(Q)). In particular, C°(Q) = C(Q) and C°(Q) = C(Q).
1.2.2.  The domain G and the angle K. Introduce the notation

K={yeR?:r>0, sy <w<w}, %={yeR?:r>0 w=w,}, o0=1,2,

where w and r are the polar coordinates of a point y, w1 < 0 < we, and wy — wy < 2.
Denote the e-neighborhood of the origin by O.(0).
Introduce the sets

Kf=KNO.0), % =7Nn0.0), o=12

In this chapter, we denote by G C R? a bounded domain with boundary G containing the origin.
We assume that G N O.(0) = K¢ for some € > 0. Assume that in a neighborhood of any point
y € 0G \ {0}, the boundary of the domain G is infinitely smooth.
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1.2.3.  Sobolev spaces. For any domain  C R™ and any [ > 0, we denote the Sobolev space with the

norm
1/2

gy = | X [ 1Dl dy
la|<l &
by WHQ) = W(Q) (for I = 0, we assume that W°(Q) = La(Q)). In the sequel, a = (ag,...,an),
la| = a1+ -+, D* = Dgt... Dy, Dy = —id/dy;. If it is necessary to specify the variables
with respect to which we differentiate the function u, then we write Dju, DZ‘,u, etc. For [ > 1, let us

introduce the space W' =1/2(T'}) of traces on a smooth curve I'y C Q with the norm
|l i-v/20yy = f ullyrgy,  we WHQ) :ulr, = ¢.
We denote by I/VIIOC(Q) the set consisting of all distributions u on @ such that gu € W!(Q) for any
¢ € G5 (Q)-

1.2.4. Kondrat’ev weight spaces. Let us consider the following cases: Q@ = K, @ = K% (d > 0), and
@ = G. For any [ > 0 and any a € R, we denote the completion of the set C§°(Q \ {0}) with respect

to the norm
1/2

lila = | / pRa=tHal paygzay |
MSZQ

by HL(Q) = H.(Q, {0}), where p = p(y) = dist(y, {0}). For I > 1, we denote the space of traces on a
smooth curve I'y C @ with the norm

1l 12y = I0f llull iy @), v € HLY(Q) :ulr, =¥,
by HLVA(T).

2. The statement of the problem in a bounded domain

2.1. The statement of the problem. Let us consider linear differential operators P(y, D) and
B,s(y, D) of orders 2m and my,, respectively, with complex coefficients (n=1,...,m; s = 0,1).
Assume that the coefficients of the operators P(y, D) are infinitely smooth in G and the coefficients
of the operators Bys(y, D) are infinitely smooth in (0G \ {0}) U4, 0 =1, 2.

Let us formulate conditions on the operators P(y, D) and By (y, D) that correspond to a “local”
elliptic problem (see, e.g., [57, Chap. 2, Sec. 1].

Condition 2.1. The operator P(y, D) is properly elliptic on G.

Condition 2.2. For any y € 75 and any y € 9G \ O:(0), the system of operators {Buo(y, D)}y
satisfies the covering condition (Lopatinskii condition) with respect to the operator P(y, D).

We emphasize that the normality of the operators By (y, D) is not provided.
Let us introduce the operators B?L L HAP2m(G) — H(lzﬁm*m“*l/Q(@G) by the formula

B u = Byo(y, D)u(y)|ac-
Everywhere in this chapter, a € R and [ > 0 is an integer such that [ + 2m —m, > 1.

Define the operators that correspond to nonlocal conditions near the origin. Let Q,, 0 = 1,2, be
infinitely differentiable, nondegenerate transformations that map some neighborhood O, of a curve
~E to the set Q,(0O,) such that Q,(75) C G and

Q,(0) = 0. (2.1)

269



Choose small ¢ (see Remark 2.2 below) such that there exists a neighborhood O, (0) such that
O¢ (0) D O-(0) and

(1) WEI(O) = K°*1;
(2) Q% (0-(0)) C O, (0).

Condition 2.3. Fory € O.(0), the transformation Q, has the form
Qo y = Goy +o(lyl),

where G, is the composition of the rotation by the angle —w, about the origin and the dilation with
the center at the origin and the coefficient x, >0, 0 = 1,2.

Thus, the operator G, maps the ray 7, of the angle K to the half-line {yy € R? : 7 > 0, w = 0} lying
inside the angle K.

Remark 2.1. In particular, condition 2.3 means that the curve Q,(7%) approaches the boundary 0G
at the point 0 but does not touch it.

In this chapter, we use the notation
di = min {1,x0}/2, dp =2 max{l X, }. (2.2)
Let us choose a number ¢¢, 0 < g9 < ¢, satisfying the condition
O, (0) € Q6 (0:(0)) € O, (0).
Let us consider a function ¢ € C°°(R?) such that
((y) =1 (y € Og/2(0)),  ¢(y) =0 (y & O,(0)). (2.3)
Introduce the bounded operators BL C HA2(G) — Hé+2m7m“71/2(8G) by the formula

| (Bua(y, D)(Cu)(Qe(W)lrg, Y€V o=1,2,
o y € 0G\ O(0),
where (Bul (3/7 D)U)(st (y)) = B,ul (glv Dy’)v(y/”y’:flg(y)'

Since BLu = 0 when suppu C G\ O (0), we say that the operators B}L correspond to nonlocal
terms with supports near the origin.

1
Buu

Introduce the notation
G, ={y € G : dist(y, 0G) > p}.
Let us consider a bounded operator
B2 : HL2™(@) — Hy ™™ (06)
satisfying the following condition.

Condition 2.4. There exist numbers 1 > 9 > 0 and p > 0 such that the following inequalities hold:

Bl a2y < @l oy Y€ WHHENTHO).  (24)
HBZUHW“r?m*m#*l/z(BG\m) < Cg||u||Wz+2m(Gp) Yu € Wl+2m(Gp), (2.5)
where p=1,...,m, c1, and ca > 0 are independent of u.

It follows from (2.4) that BZu = 0 if suppu C O,,(0). This is why we say that the operators B
correspond to nonlocal terms with supports outside the origin.

Note that we do not assume a priori the presence of any relation between the numbers s, 30, and
p in Condition 2.4 and the number ¢y in Condition 2.3.
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We study the nonlocal elliptic problem
Py, D)u= foly), y€G, (2.6)
BMUEBgu—i—B}Lu—i—Biu:f,‘(y), y€eIG, u=1,...,m. (2.7)

Problem (6.9), (6.10) from Sec. 6.2 (see Chap. 2) for N = 1 can serve as an example of problem (2.6),
(2.7) (see [25] for details).
Introduce the following operator corresponding to problem (2.6), (2.7) in weight spaces:

L ={P(y,D), B,}: H,""(G) — H.(G,0G), (2.8)
where
HL(G,0G) = HL(G) x [[ Ha™" "™ *(0G).
pn=1

Remark 2.2. Let us show that the number ¢y in the definition of nonlocal operators B}L can be
chosen arbitrarily small.
Let the number &y be such that 0 < &y < gg. Let us consider a function ( € C°°(R?) such that

2 . I, ye Oéo/2(’C)7
W= {o, v ¢ 04 (K),

and introduce the operator BL CHF2(G) — Hé“m*m“*lﬂ(aG) by the formula

Bly— {(Bul(y, D)Cw) (W), yers o=1.2
T Buu=0, y € G\ 0.(0).
Obviously,
B} + B! + B2 =B + B!, + B2,
where

2 _ pl  Hl 2
B,=B,-B,+B,.
It is easy to see that the operator Blll — Ei for some 1, 39, and p satisfies Condition 2.4. Thus, we

can always choose ¢( arbitrary small (perhaps, due to a modification of the operator Bi and numbers
1, 9, and p).

2.2. Reduction to model problems in plane angles. In problem (2.6), (2.7), the behavior of
solutions in a neighborhood of the origin requires special attention. Let us consider the following
model problem in a plane angle. Assume that

2 _ _
B,=0, pu=1,...,m. (2.9)
Then, by Condition 2.3, problem (2.6), (2.7) has the following form in a e-neighborhood of the origin:
Py, D)U = fo(y), ye€ K", (2.10)
BO'MO(ya D)U|% + (Boul(ya D)U)(Qa(y))]% = fa,u(y)v Y € Voo (2.11)
where 0 = 1,2; p=1,...,m; Byus(y, D), s = 0,1, are linear differential operators of order m, with

variable coefficients of the class C*°.
We denote by P(D) and Byus(D) the principal homogeneous parts of the operators P(0, D) and
By,5(0, D) respectively. Assume that

B3, (D)U = Bayo(D)Uly, + (Bayut (DYU) (R0 (),
Bau(D)U = BauO(D)U|’yo + (Bdul(D)U)(gUy)"Ya'

271



Introduce the operators
L% ={P(D), B3, (D)} : H;"*™(K) = H,(K,7),
L ={P(D), Byu(D)} : Hy*™(K) — My (K, ),

where
ML (K, v) = HL(K) x HLPm—m=1/2(y),

m
Hfl+2m—m—1/2(,y) _ H HHCZL+2m_mH_1/2(’Yg-)-
o=1,2 u=1

We assume that the operator £ is defined on the set of functions with supports that are concentrated
in a neighborhood of the origin (in particular, with supports such that Q,(y) € K for y € suppU).
It is obvious that the operators £ and £ agree with the model problems with nonlinear and
linearized transformations, respectively.
We rewrite the operators P(D) and By,s(D) in the polar coordinates in the following form:

P(D) = T*Qmﬁ(w,Dw,rDT), B, (D) = rfm“BO.u(w,Dw,rDT),

0 0

ia—, D, = —ia—. Consider the following operator (it is an analytic operator-function
w r

depending on a parameter A € C):

where D, = —

L(A): Wl+2m(w1,w2) — Wl(wl,wg) x C?™,

defined by the formula ) ) )
ﬁ()\)@ = {P(W,Dw,)\)@, BO’H<W7DL07A)SO}7 (212)

where
Bau(wv D, )\)90 = Ba,uO(Wv D, /\)@‘w:wa + (Xa)i/\imMBaul (W7 Dy, )\)SO(W - WJ)‘w:wJ'
Note that the set of eigenvalues of the operator £()) is discrete (see [88]).

3. Nonlinear Transformations Near the Origin

3.1. Nonlinear transformations in polar coordinates. It was shown in [25] that the operator
corresponding to a problem with nonlinear transformations of variables is not a small or compact
perturbation of an operator corresponding to the problem with linearized transformations. There-
fore, to prove the Fredholm solvability of a problem with nonlinear transformations, we first obtain
a priori estimates and construct a right regularizer. To do this, we study some properties of the
transformations €2, near the origin.

Applying the Taylor formula, we easily obtain the following statement, which will be used in the
proof of lemma on the representation of transformations €2 in the polar coordinates (see Lemma 3.2).

Lemma 3.1. Let h = h(r) be a function such that |DFh| < ¢ as 0 <r < o, k = 0,... ko, where
cx > 0 is independent of r. Let f(r) = r~th(r) for some | € N. If |f| < ¢, then |DFf| < Cy as
0<r<p, k=1,...,ky, where Cx > 0 is independent of r.

The following lemma describes the structure of nonlinear transformation €2, in the polar coordinates.
Such a representation is the most convenient when we deal with weight spaces.

Lemma 3.2. If g is sufficiently small, then the representation Q,(y)
coordinates as follows:

e can be written in the polar

(WgyT) > ((I)U(T‘),XUT + Rg(r)), r <o, (3.1)

where O, (r) and R (r) are infinitely smooth functions such that
|| < co, |Rs| < cor, (3:2)
|DF®,| < e, |DF(R,/7)| < ck. (3.3)
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Here k > 1; ¢ and ¢ > 0 are independent of o.
Proof. Let Q,(y) = (2L (y),Q22(y)). Using Eq. (2.1) and the Taylor formula in the neighborhood of

r = 0, we obtain
00
oy

(0) cosw, + E;QU (0) sin wg) r+O(r?). (3.4)
Y2

Q! (r coswgy, rsinw,) = (

Note that

o0l ! 2 o002

0 Z(0) si Z(0 Z(0) si

m (0) cosw, + vs (0) sin w, o (0) coswy + s (0) sin wy

does not vanish simultaneously; this follows from the nondegeneracy of the Jacobian of the transfor-

mation y — Q,(y) at the origin. For example, let

ont Nk
—72(0) coswy + —2(0) sinw, # 0. 3.5
20) o2 0)sine, 7 (5.5)
Then, by Eq. (3.4), if ¢ is sufficiently small, then we have
QL +£0 asr<op (3.6)

and the transformation €2,|.. has the following form in the polar coordinates:

02 .
(W, 7) — | arctan Q—‘l’ + 7, Z Q)2 ]. (3.7)
o i=1,2
Here | =0if QL >0and Q2 >0; 1 =1if QL <0; 1 =2if QL >0 and 02 < 0.
Equation (3.4) and the Taylor formula yield

02 02
02 %(0) COS Wy + %(O) sin wg
arctan —- = arctan y11 y21 + O(r),
% oYy (0) coswy + it (0) sin
Wo inwey
oy Y2
. 09 o9 ?
Z ()2 =7 Z ( Z(0) coswy + =—2(0) sinwg> +O(r?).
i=1,2 AN ya
Assuming that
002 002
—2(0) coswy + —2(0) sin wy
Y1 Oy2
wkq = arctan 201 1 + 7,
7(0) coswg + —2(0) sin w,
o (©) dy2 ©
o9 o 2
o= Z(0) coswy + —2(0) sinwy |
o= 2 (G Gr0psin)

we obtain formula (3.1) and inequalities (3.2).
Prove the first inequality in (3.3). By (3.6), |Q2/Q}| < ¢ for r < p. Therefore, by Egs. (3.1)
2

Q
and (3.7), it suffices to prove the boundedness of the partial derivatives ng—‘f Let us write
g
a3

~102

T Q2
1~ —10L°
954 r—1QL
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It follows from Egs. (3.4) and (3.5) that »—1QL # 0 for r < p; therefore, it suffices to prove that
DE10,)] < e,

However, ), is an infinitely smooth transformation for r < p; since Q,(0) = 0, we have Q, = O(r).
Hence, [r~1Q,| < ¢. Now the desired statement follows from Lemma 3.1.
Similarly, we prove the second inequality in (3.3). It follows from Eqgs. (3.1) and (3.7) that

By Egs. (3.4) and (3.5), we have > (€Q2)2/r? # 0 for r < p; hence, it suffices to show that
i=1,2

DE Y (@) /| < .

i=1,2

However, Y. (9¢)? is an infinitely smooth function if » < p. Since Q,(0) = 0, we have that
i=1,2

3 (20)2 = O(r?). Hence,
i=1,2

> (95)%/r?

i=1,2

< ¢, and the desired statement follows from Lemma 3.1. [

Introduce the notation § = min(—wi,ws)/2. Let g be so small that
@, <6/2, |Ro| < xor/2, 1< o/dr (3.8)

The existence of such a p follows from Lemma 3.2.
Let us introduce infinitely differentiable functions (;(w) and (si(w), i =0, ..., 4, such that

Glw)=1 for |w] <d§/27 Gw)=0 for |w|>d/2,

(3.9)
Coi(w) = Gi(w — wo)-
Obviously, (yi(w) =1 for |w — wy| < §/21 and (yi(w) = 0 for |w — wy| > §/2°
Consider the transformation ,(y), acting in the polar coordinates by the formula
(w,r) = (W= wo + P (1), Xor + Ro(r)). (3.10)

According to Lemma 3.2, we have Qg(y)m = Qs (y)l,¢; therefore, in the sequel, we can assume that
the transformation Q,(y) is defined by formula (3.10). Generally speaking, the transformation ,(y)
can have a singularity at the origin since the new transformation Q,(y) coincides with the old Q,(y)
only on ~5.

Definition 3.1. For any function W (y), we set W (y) = W (Q (G, 1y)).
By Lemma 3.2, the transformation Q, (G, 'y) in the polar coordinates has the form
(w,r) = (w+ ®.(r),r + RL(r)), (3.11)

where ® (1) = ®,(x,;!r) and R.(r) = R,(x,'r). It is easy to see that ® and R/ also satisfy
inequalities (3.2) and (3.3).
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3.2. Properties of operators containing nonlinear transformations in weight spaces.

Lemma 3.3. If o > 0 is sufficiently small, then for any function W € H.(K) such that supp W C K¢,
we have (W € HL(K) and

1GW la (k) < Wl g (k)
where ¢ > 0 is independent of W and .

Proof. To prove the lemma, we use the following obvious statement:

WeH(K) <= DWeH), (K), |o<L (3.12)
Formula (3.11) and inequalities (3.8) imply that the transformation (3.11) maps the set
Ken{y:|w| <d} to K. Moreover, it follows from inequalities (3.2) and (3.3) that the modulus
of the Jacobian of transformation (3.11) is bounded and nonzero in K¢ N {y : |w| < 6} if p are small.
Hence, the lemma is valid for [ = 0 with the function (y instead of (3.

Let us consider functions ¢§ € C§°(R), p = 0,...,1, such that ¢J = (o, ¢} = (1, and Cg_l(w) =1 for
w € suppl, p=1,...,1. Assume that the lemma is valid for [ = p — 1 with the function Cgil instead
of ¢y; prove that it is valid for I = p with the function ¢} instead of ¢; (p > 1). Let W € HE(K);

1OW oW . A1OW L, OW
then ———, —— € HY '(K). Hence, by the induction hypothesis, & 12z b == e HFY(K).
r Ow Or ] r Ow or
These inclusions, the relations
10W, 10w R,
z == (14 =2),
r Ow r OJw r
. _ (3.13)
aWk _laiw 1_|_R7:7 ra(I);'_i_al 1+8R:7
or 1 ow or or or )’
inequalities (3.2) and (3.3), and [53, Lemma 2.1] imply that
L1OW L, W
bl T S e HE (K. (3.14)

r Ow or

Moreover, the inclusion W € Hf(K), the embedding HY(K) C H) ,(K), and the statement of the
lemma for [ = 0 yield ng € HY ,(K). This and Eqs. (3.12) and (3.14) imply that D“(CgW) €

Hg+|a\fp(K)’ |a] < p. Applying Eq. (3.12) again, we obtain the desired statement. O

Thus, the operator W — (1 W is bounded in H!(K).

Lemma 3.4. For any function W € Hfl(K) such that suppW C K¢ and for any multi-index -,
1 < |v| <1, the following inequality holds:

12 D"W = GDIW| it ey < collW |y ) (3.15)
Here ¢ > 0 is independent of W and o.

Proof. Consider functions ¢} € C°(R), p = 1,...,1, such that ¢} = (1, ¢} = (s, and Cf_l(w) =1 for
wesuppll,p=2,...,1

1
Let |y| = 1; then it suffices to prove inequality (3.15) for the case where there are operators %

0 190
and — instead of the operator D7. For example, consider the operator —— (the remaining operators

or r Ow
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are considered similarly). The first relation in (3.13) and the Leibnitz formula yield the relation

2 2

Ly dw Ly dw 3 Ly dw r _
HH(K) HH(K)

2 Tow )|
DP == || dy.

<k Z Z /r2(a+|a—(l—1))‘Da—5Rf;
,

la|<I=1[8|<|al

This, the last inequality in Eq. (3.2), and the last inequality in (3.3) imply that
2

—~ — |2 —
10w 1OW 1OW
122 = < koo? ||l -=— 1
17‘ aw 17‘ aw - = K20 17' 8&] - (3 6)
HH(K) Hy ™' (K)

Estimate (3.16) and Lemma 3.3 prove the lemma for |y| = 1 with the function ({ instead of (s.
Assume that the lemma is valid for 1 < |y| < p—1 with the function Cf_l instead of (5. Prove that
it is valid for |y| = p with the function ¢! instead of 3 (p > 2). We have

HC{)DPYW - Cf‘D’YW”H}Z*V‘N(K)

< [ DPIHDW) — PP DIW i oo, + I DPIIDIW — PO (D)

||H(l;h‘(K)

3.17)

é‘*|"/‘(K
S ]{,‘3<”§‘lp_1D1W - Cf_lDlwnHé—l(K) + ||<th‘_1D1W - Cthllil(DlW)||H(ll—|7\(K)>' (

Here D=1 and D! are some generalized derivatives of orders |v7] — 1 and 1, respectively. By the
induction hypothesis, the following estimates are valid for each of the two norms on the right-hand
side of Eq. (3.17):

-1 11757 171117
17" DW — (T DWWl a1 ey < KaollW g iy

|CPDM=1DIW — PRI L(DIW))| < ks D'W i1 ey < Kool W g -

H(ll*"YI(K) =
The desired statement follows from here and Eq. (3.17). O

The multiplier p appears in estimate (3.15) since both terms on the left-hand side of the inequality
contain the same transformation of variables Q,(G, ly), but the minuend is a derivative from the
transformed function and the subtrahend is a transformation of a derivative.

Lemma 3.5. The following inequality holds for any function U € H:?™(K) such that supp U C Ke:
H(BaulU)(gay)’% - (BaulU)(Qo(y))HaHH(llJr?m*mu*l/?(%)

< (oUll grvam iy + 165U = Tl grom ) - (3:18)
where ¢ > 0 is independent of U and o.

Proof. Using the continuity of the trace operator in weight spaces, we obtain
H(BoulU)(gay)’% - (BaulU)(Qo(y)”%||Hé+2m*mu*1/2(%)

< ki (IGeBoaU = Bt Ul yram—sn oy + 16aBopa U = 4By Ul yresnnsns 1))+ (3:19)

S k1||<4BO',U,1U - <4-B/o',ul\lj||Hlll+2m—mH (K)

Let us estimate the first norm on the right-hand side of inequality (3.19):

|C4BouiU — C4BU“1U”H¢ZZ+2m_m“(K) < ko||(3U — C3U||Hé+2m(K)' (3.20)
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The second norm on the right-hand side of inequality (3.19) is estimated by Lemma 3.4:

[¢4Boy U — C4B0'M1UHH}1+2m_mIL(K) < kBQHUHH}j-?m(Ky (3.21)
The statement of the lemma follows from Egs. (3.19)—(3.21). O

Note that the right-hand side of inequality (3.18) contains the norm of the difference of the non-
transformed and transformed functions. We need the following lemma to estimate such differences.

Lemma 3.6. The following inequality holds for any function W € H;_H(K) such that supp W C K¢:

ICLW = W Lo ey < coll Wl cxcr: (3.22)

a+1

where ¢ > 0 is independent of W and o.

Proof. Writing the arguments of the functions W and W in the polar coordinates, we obtain the
inequality

IGW — AW |y < IIGW (w,7) — GW (W + @4 (r), 7)o i)
FIGW (W + @4 (r),7) — W (w + @4 (r), 7 + RL(r) o) (3-23)

Let us estimate the square of the first norm on the right-hand side of Eq. (3.23), using the Schwartz
inequality:

o) w2 W+ ()
ow
GV (1) = G (o @) gy = [ e [la [ G0 ]
0 w1 w

o0 w2 er(I)ZT T) 8W
< /7"2a7‘ dr/|C1|2|‘1>,U(T)|- / 'aw/
0 w1 w

Taking into consideration the restrictions on the supports of functions W and ¢; and inequalities (3.8),
we change the order of integrating with respect to w and w'; as a result, using Eq. (3.2), we obtain

2
dw'| dw.

IGW (@, 7) = QW (w + D6(r), 7)o (16

[ee) w2
<i [reranopar |50
0 w1
wa

< kggQ/TQ(aJrl)T dT/
0

w1

2
dw

1oW |? 217112
Son | A <K IW IR -

Similarly, we estimate the square of the second norm on the right-hand side of Eq. (3.23). O

Thus, the multiplier o appears in Eq. (3.22) if we increase the differentiability index by 1 (the
left-hand side of (3.22) contains the norm in H?(K) and the right-hand side contains the norm in
H}. ,(K)). This happens because in this case (unlike Eq. (3.15)), we estimate the difference of two
functions, one of which does not contain a transformation of variables and the other contains it.
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4. Fredholm Solvability of Nonlocal Problems
and the Stability of the Index

4.1. A priori estimates of solutions. In this section, we prove an a priori estimate for the
operator L that guarantees the finite dimension if its kernel and closeness of its image.

Condition 4.1. The straight line In A = a + 1 — 1 — 2m does not contain eigenvalues of the opera-
tor L(A).

Lemma 4.1. Let conditions 2.1-2.4 and 4.1 hold. Then

a

l
[ll grv2m ) < € (HLuHHfZ(G,aG) + HUHH%PFM(G)) Yu € HPP™(G).
Here ¢ > 0 is independent of u.

Proof. Similarly to the proof of [41, Theorem 4.1], we use the principle of partition of unity and the
Leibnitz formula and reduce the proof of Lemma 4.1 to the proof of the following a priori estimate for
sufficiently small o > 0:

10 gaam g0y < el L2031y YU € HEF2™ (), suppU © K2, (4.1)

where ¢ > 0 is independent of U.
Let us prove Eq. (4.1). By condition 4.1 and [88, Theorem 2.1], the operator £ : HF?™(K) —
H!(K,vy) has a bounded inverse operator. Hence applying Lemma 3.5, for U € H!*?*™(K),

supp U C K¢, we obtain the following inequality:

10l gt om iy < Rt LU gt

< k2 (HEQUH'Hé(K,'y) + Q‘|U||H(ll+2m(K) + HC3U - CS/U\vHHLllJer(K)) 3 (42)

where k1, ko, --- > 0 are independent of U and p.
Let us estimate the last norm in Eq. (4.2). According to [58, Theorem 4.1], we have

165U = T gt ey < ks (IP(DYGU = Dy + 165U = 6Tllmo_, iey) - (43)

By Lemma 3.6 and the continuity of the embedding H.H?™(K) C Hl_l_2m+1(K), we have

a

16U = Olg . x0 < ka0l ggoam ey (44)

1—2m

To estimate the first norm on the right-hand side of Eq. (4.3), we use the Leibnitz formula and
Lemmas 3.3 and 3.4:

IP(D)(GU = Ut ey < k5(HC37D(D)UHHg(K) +|GPDY |1 i)

+ Y Y IDGDU - DD |y ) < ks (IPD)U g e
|8]<2m—1 |y|=2m—|B|

tolUllgrampn + D > HDWC:J,DBU—D7<3D5U||H5<K>)- (4.5)
|B|<2m—1 |y|=2m—|B|

278



Since |D7¢3| < krr~17|¢o|, we have

> Y IDGDU - D'GDPU i ey
|B|<2m—1 |y|=2m—|B]

<ks ) @D U=GD Ul oo

|a|<l+2m—1
< ko Z (H@DQU B CQDQU||H2+\Q\—z_zm(K)
|| <I4-2m—1
16D = DVl -, ) (46)
Using Lemma 3.6 and the continuity of the embedding of the spaces
1+2 1+|af
Ha m(K) C Ha+1+|a|—l—2m(K)
for |a] <14 2m — 1, we obtain the inequality
I DU — <2DQUHH2+\Q|—1_2m(K) < klOQ”DaUHHé+1+\a\—z_2m(K) = kllQ”UHHi“m(K)' (4.7)
Similarly, Lemma 3.4 implies that
12D = DUllgo, -, i) < Kr20llUll gieam - (4.8)
Now estimate (4.1) follows from Eqgs. (4.2)—(4.8) for sufficiently small . O

By virtue of the compactness of the embedding HF?™(G) C HY 1 5, (G) (see [53, Lemma 3.5]),
Lemma 4.1 implies that the operator L has a finite-dimensional kernel and a closed image.

4.2. Construction of a right regularizer. Fredholm solvability of nonlocal problems. In
this case, we construct the right regularizer for the operator L. This and Lemma 4.1 allow us to prove
the Fredholm property of nonlocal boundary-value problem (2.6), (2.7).

Lemma 4.2. Let conditions 2.1-2.4 and 4.1 hold. Then there exist a bounded operator R :
HL(G,0G) — HF?™(Q) and a compact operator T : H.(G,0G) — HL(G,0G) such that

LR=1+T,
where 1 is the identity operator in H. (G, 0G).

Proof. 1. Similarly to the proof of [41, Theorem 5.2], we use the principle of partition of unity and
the Leibnitz formula and reduce the proof of Lemma 4.2 to the proof of the following statement: for
all sufficiently small 0 > 0, there exist bounded operators R and M and a compact operator T, acting
from {f € HL(K,7) : supp f C Og,/4(0)} to H?™(K), HL(K,v), and H,(K,~), respectively, and
satisfying the conditions

LORf=f+Mf+TH, (4.9)
[IMFlla k) < coll fllze (k) Here di is the number defined by formula (2.2), and ¢ > 0 is indepen-
dent of o and f.

Let us construct the operators R, M and 7T that satisfy relation (4.9).

Introduce a function ¢,(y) = ¥ (y/e), where ¢p € C®(R"), ¥(y) = 1 for |y| < 1, and ¥ (y) = 0 for
ly| > 2. Obviously, 1, € C*°(R"™) and 1,(y) = 1 for |y| < ¢ and ¢,(y) = 0 for |y| > 2. Since we have
|DY,| < cor™lol it follows from [53, Lemma 2.1] that

[$vllgrem ey < vl yiram ey for all v € HE2™(K), (4.10)

where ¢ > 0 is independent of p. Moreover, let 1),, written in the polar coordinates, be independent
of w.

279



Let f' = {f,,}. By condition 4.1 and [88, Theorem 2.1], the operator £ : HI"?™(K) — H(K,~)
has a bounded inverse operator. Hence we can define the operators

Ry HY(K) = HEPM(K), R HEm 2 () o L7 (K)
by the formulas
Rofo =1L (f0,0), R'f' =1,L7H0, ).
Thus, the supports of the functions R fp and R’ f’ are located in the ball of radius 2¢ centered at the
origin.
Let the operators

P HP™(K) —» H(K), B,BY: HPM(K) — HLP2m—m=1/2(y)
act by the formulas
PU =P(D)U, BU = {B,,(D)U}, BU={B;,(D)U}.

Let us establish the connection between the operators P, B, B, and Rg, R/. We use the following
property of weight spaces (see [53, Lemma 3.5]): the embedding operator

{v e HFYK) : suppv € O4(0), d >0} ¢ H (K) (4.11)

is compact for any d > 0.
It follows from the Leibnitz formula, the boundedness of the support supp v,, and the compactness
of embedding (4.11) that

PRofo =vofo+ Tofo. PR'f =T'f, (4.12)
where To : H.(K) — H.(K) and T : f;rzm_m_l/Q('y) — H!(K) are compact operators. Similarly,
BR'f" = o f" + {(We(Xoy) = o (1)) (Boun £71(0, f))(Go) 5o } + TS, (4.13)

where 77 is a compact operator in gl Fammmol/2 (7), and the braces show that the expression {...} is

a vector whose components are defined by indices ¢ and pu.
Let us show that each term of the sum in Eq. (4.13) is a compact operator. Let ¢; be functions
introduced by formulas (3.9). Let us introduce the functions vy, 91 € C5°(R"),

Pi(y) =1 for 2d1po <y < doo, P1(y) =0 outside dio < |y| < 2da0,
doly) =1 for dio<|y|<2dro,  dho(y) =0 outside dig/2 < |y| < 4dap,

where d; and da are the numbers defined in Eq. (2.2). Then by the continuity of the trace operator
in weight spaces, we have

H (¢@(XJ?J) - wg(y))(Bzwl'Cil(oa f/))(gay)|% HH[lle*mu*l/?(%)
< kal|Ga(o(y) = o0z ) Boyt £71(0, ) sz
Sks”CM@lﬁ_l(O,f/)||Hg+2m(K)~ (4.14)

Since the support of the function 1[11 is bounded and separated from zero and the function (7 is zero
near rays of the angle K, we can use [57, Chap. 2, Theorem 5.1]: applying the relation PL~1(0, f') = 0,
we obtain from Eq. (4.14) the following inequality:

(o (xoy) = o) (Bour £7(0, F))(Got) o [l rsam-murrz .y <kl 9oL (0, )| ram-r )

Since the support of the function 1&0 is bounded, it follows from the last inequality and the compactness
of embedding (4.11) that

{Wo(xoy) = o)) (B £71(0, £))(Goy)le }
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is a compact operator in Hfl+2m_m_l/2(’y). Together with Eq. (4.13), this yields
BR'f' = of + Taf, (4.15)

where T3 is a compact operator Hg - ™" 1/2(’y)

Let us obtain the following formula for the composition B*R’ from Eq. (4.15):
BIR'f' = 0o f + Tof + {(BoaR' ") () — (BouaR' 1) (Goy)lns } - (4.16)

2. Let us introduce the operator R : H. (K, ~) — H.2™(K), acting by the formula

R(fo. ') = Rofo — R'B*Rofo+ R f'.
Here R’ : Hf}+2m—m—1/2(7) — H!*2m(K) is a bounded operator acting by the formula
R [ = o(dry/2)L7H0, f).
Similarly to Egs. (4.12) and (4.16), we prove that
PRI =T

BYR'f = yldiy/Df + TF + { Boa RPN Qo@D — B R ) Gow)h, )

—

4.17)

—

4.18)

where 77 and TQ’ are compact operators acting in the same spaces as operators 77, 7s.
Let us show that R satisfies relation (4.9). It follows from formulas (4.12) and (4.17) that

R(f07f/) :¢9f0+7§(f07f/)7 (419)

where T3 : H!(K,~) — H.(K) is a compact operator.
Using the fact that

bo(dry/2)BYRo fo = B Ro fo,
and Eq. (4.18), we obtain the following relation:

BYR(fo, f)) = B*Rofo — BYR'BYRo fo + BR' f!

= —T3BRofo — { > <(Bou1 [R'BYRo folk) 2 (4) s

k,q,s
- (Ban[RE Rofol)Grtl,) | + B°R'S. (4:20)
Using Eq. (4.16), we obtain

BQRQ = wgf/ + To( fo, f/) + {(BoulR/f/)(Qa(y))|% - (Baulnlf/)(gay)‘%}
- {(Baulﬁ/BQRofo)Qa(y)\% - (Baulﬁ/BQRofo)(gay)’va} ,

where T : H! (K, ) — HHQm_m_l/Q(fy) is a compact operator.
Let us consider the relation under the sum sign on the right-hand side of Eq. (4.20). By Lemma 3.5,
we have

H (Baulnlf/)(gcr(y))’% - (BUuIR,f,)(goy”% ||Hi+2m_m”_1/2('yo)

< ks (Q||R/f/HH(ll+2m(K) + ||C3R,f, — <37€/?/”Hé+2m(l<)> . (4.21)
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Repeating the reasoning of Eqgs. (4.3)—(4.8) for U = R'f’, from Eqs. (4.21) and (4.12) we obtain
the following:

H (BUMIR,f/) (Qa(y)) ’% - (BU,lth/f,) (gay) ’% HHiﬂm—mM—l/?(%)
< ks (0l Ry y + PR Py

= ks (elloL™ (0, ) gream ey + 1Ty ) -
This relation, inequality (4.10), and the boundedness of the operator £ : H! (K, ~) — H?2™(K)
yield
1(Bo R ) ( Qo) le = (Bow R ) Got) o |l yrvam-mu-r2
< kol ygram-morvagsy + 1T Fllcy)- - (422)
Hence, by Lemma 1.1,
(Boya R ) ( Q6 (y)lvs — (Boya R ) (Got) 1y = Mopf + Fopf',
where I+2 1/2
Mgy Fope s HPPm 012 (q) = H ™ (5)
are bounded operators; moreover, ||M,,| < 2k70, and the operator F,, is finite-dimensional.
Similarly, we prove that the summands in the second sum on the right-hand side of (4.20) can

be represented in the form “an operator with a small norm + a finite-dimensional operator.” This
statement, Eqgs. (4.20) and (4.19), and the assumption that supp(fo, f') C O,(0) yield Eq. (4.9). O

Now we can prove the Fredholm property of the operator L : H-¥2™(G) — H. (G, 0G).

Theorem 4.1. Let conditions 2.1-2.4 and 4.1 hold. Then L : H>™(G) — H. (G, 0G) is a Fredholm
operator.

Proof. The Fredholm property of the operator L : H,¥2™(G) — HL (G, 0G) follows form Lemmas 4.1
and 4.2 and [56, Theorems 7.1 and 15.2]. O

4.3. Stability of the index with respect to nonlinear perturbations of transformations.
Show that the index of the problem is defined only by a linear part of transformations €, in a
neighborhood of the origin.

Denote transformations with the same properties as €2, by Qg, o = 1,2 (see Sec. 2). Let us consider
the operators

0, y € 0G \ O:(0).
Introduce the operators B“ = Bg + B}A + BZ and
L ={P(y,D), B,}: H"*™(G) - H.(G,dG)

Bly — {<Bul<y,D)(@))(Qa(y))ryg, yes o=12
pt =

(ct. (2.8)).

Theorem 4.2. Let conditions 2.1-2.4 and 4.1 hold; moreover, let condition 2.3 bfz valid for trans-
formations Q, and Q, with the same linear operator G,. Then the operators L, L : H?™(G) —
HL(G,0G) are Fredholm operators and ind L = ind L.

Proof. Let us introduce operators L; : HY2™(G) — H. (G, 0G) by the formula
Liu = {P(y,D)u, B, +t(B, —B,}.

Obviously, Lo =L, L1 = L.
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The transformations €, and €, coincide with accuracy up to infinitesimals in a neighborhood of
the origin; therefore, by Theorem 4.1, the operators L; are Fredholm operators for all {. For any tg
and t,

ILiu — Legullg 06) < Kolt = tol - l[ull grezm gy,

where k;, > 0 is independent of ¢ € [0, 1]. Hence, by [56, Theorem 16.2], we have ind L; = ind L, for
all ¢ from some sufficiently small neighborhood of the point ¢y. This neighborhoods cover the interval
[0,1]. Extracting a finite sub-covering, we obtain ind L = ind Ly = ind L; = ind L. O

Remark 4.1. The results of this chapter can be generalized to the case where the domain G contains
R™, n > 2, the boundary of the domain consists of N open and connected (in the topology of 0G)
(n—1)-dimensional manifolds I'; of the class C*°, and the domain G is diffeomorphic to a n-dimensional

N
dihedral angle (plane angle if n = 2) in a neighborhood of every point g € 9G \ |J I';. The point

i=1
N
g € 0G\ | TI'; is not necessarily a fixed point of transformations from nonlocal conditions, but it has
i=1
a finite orbit (see [25] of details).

CHAPTER 2

STRONG SOLUTIONS OF NONLOCAL ELLIPTIC PROBLEMS
IN PLANE ANGLES IN SOBOLEV SPACES

5. Functional Spaces

In this section, we introduce the notation and define functional spaces that will be used in Chaps. 2—
6.

5.1. Spaces of continued functions.
5.1.1.  Domain G and angles K;. Denote by G C R? a bounded domain with boundary 0G. Introduce
the set L C 0G, consisting of N points. Assume that 0G \ K = U I';, where I'; are open (in the

topology of dG) curves of class C*°. For simplicity, we assume that the number of points of the set IC
is equal to the number of curves I'; (all results can be easily generalized to the general case). Assume
that in a neighborhood of each point g; € K, the domain G coincides with a plane angle

Ki={yeR*:r>0, w<w;}, j=1,...,N;
we denote the rays of this angle by
={yeR?*:r>0, w=(-1)°w;}, j=1,....,N, o=12,
where w and r are the polar coordinates with pole at the point g;, 0 < w; < .

5.1.2.  Spaces of continuous functions. Let X and M be closed sets, where the set X is nonempty.
In addition to the spaces introduced in Sec. 1.2, we consider the spaces

Cy(X)={uelC(X):uly) =0, ye XN M} (5.1)

(if X N M = @, then we assume that Cj/(X) = C(X)).
Let us also introduce the space of vector-valued functions

N
= HCM(E)
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with the norm

1¥llcy o) = ,Joax m?;i(”%/)iﬂc(ﬁ), v ={i}, i € Cu(y).

=1,..., yel’;
5.2. Sobolev spaces.

5.2.1. Spaces W of scalar functions. Let us prove the following result for functions of the space
introduced in Sec. 1.2.

Lemma 5.1. Let f € WYR?) and D*f(0) = 0, |a| <1 —2, if 1 > 2. Then there exists a sequence
{f*} C C*(R?), s =1,2,..., such that f*(y) = 0 in some neighborhood of the origin (the neighborhood
depends on s) and f* — f in W!(R?).

Proof. As is known, the set C$°(R?) is dense in W!(R?). On the other hand, the set
{u e WYR?) : D*u(0) =0, |a| <1—2}

is a closed, finite-dimensional subspace in W!(R?) by the Sobolev embedding theorem and the Riesz
theorem on the general form of linear continuous functionals in Hilbert spaces. Hence, by [56,
Lemma 8.1], the set

CS°(R?) N {u € WYR?) : D*u(0) =0, |a| <1-2}
is dense in {u € WY (R?) : D*u(0) = 0, |a| <1 — 2}. Thus, it suffices to prove the lemma for a function
f € C§°(R?) such that Df(0) =0, |a| <1 —2.

Consider a function £ € C§°[0,00) such that 0 < £(¢t) < 1 and £(t) =1 for t < 1 and £(¢) = 0 for
t > 2. Assume that

Inr
&) =¢(- =),
s
where 7 = |y| and s = 1,2,.... Obviously, 0 < &(y) < 1, £€(y) = 0 for |y| < e72%, €(y) = 1 for
ly| > e™%, and |D*€(y)| < co/(r1%ls) for any |a| > 1, where ¢, > 0 is independent of s and y. It can
be directly verified that the sequence £°f converges to f in W!(R?) as s — oc. O

For the domain G and the part of the domain I'; described in Sec. 5.1, we introduce Sobolev spaces

of negative orders. For [ > 0, let us denote the space dual! to W!(G) with respect to the extension of

the inner product in Ls(G) by WH(Q) et (WYG))*. The norm in W~(G) is defined as follows:

v, U
lully-iy = sup el
04veEW(G) HvHWl(G)

For [ > 1, we denote the space dual to W1/ 2(T;) with respect to the extension of the inner product

in Ly(T';) by W—(E=1/2)(1y) & (W=1/2(T))*. The norm in W—U=1/2(I;) is defined as follows:

_ w9l
HQHW*(FU?)(FZ-) = sup :
0AYEWI=1/2(T;) ||7/’||W171/2(Fi)

Do not confuse it with the space dual to W'(G), where W!(G) is the closure of the set C§°(G) with respect to the
norm of the space W'(G).
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5.2.2. Spaces W of vector-valued functions. For any [ > 0 and integer m;, (0 < my, <1+ 2m — 1),
we introduce the following spaces of vector-valued functions:

Wl+2m m—1/2 GG HHWI+2m My — 1/2( )

i=1p=1
WHG,0G) = WH(G) x WH2m—m=1/2(9G)

(in what follows, the number m > 1 is an integer).
In Sec. 22 (see Chap. 5), nonlocal perturbations of the Dirichlet problem for the Laplace operator
are considered. In this case, m = 1, m;; = 0, and we denote spaces (5.2) as follows:
N
WHS2(0G) = [[W32(1y),  WHG,0G) = WHG) x WH32(0G). (5.3)
i=1

(5.2)

For any [ > 0 and integer mq, (0< Mjop < 1+ 2m — 1), we introduce the spaces of vector-valued
functions in plane angles

N N m
l K) _ H WZ(KJ')7 Wl+2m—m—1/2(,}/) _ H H H Wl+2m_mj0“_1/2('}/jo-)a
j=1

j=1lo=12 p=1
W, 7) = W) x WH2mmm1/2(y)
and the spaces of vector-valued functions on arcs
N
—@, ) HW —wj,wi), WH=m,@] = [[ (WH(-wj,w;) x C*™),
j=1

where numbers w; determme spreads of angles K.
For any set M and any d > 0, we denote by O4(M) a d-neighborhood of the set M:

O4(M) = {y € R? : dist(y, M) < d},
here dist(y, M) = inf |y — ).
where dist(y, M) = inf [y -1

For any d > 0, we set
K]d = Kj N Od(,C), 'y;-ia = Yjo N Od(,C)
For any d > 0, I > 0, and integers mjs, (0 < mjo, < [+ 2m — 1), we introduce the spaces of
vector-valued functions

N
le) _ HWI(KJd)’ Wl+2m m— 1/2 H H HWZ+2m mjgu—1/2<,y]0)
j=1 j=lo=12p=1
Wl(Kd, ,Yd) _ Wl(Kd) > Wl+2m—m—1/2(,yd)'
5.2.3. Spaces S of scalar functions. For any [ > 2, we denote by S'(G) the subspace of the space
WH(G) consisting of functions fy that satisfy the relations

Dfo(y) =0, yek, |a<l-2. (5.4)
For | = 0,1, we assume that S'(G) = W{(G).
For each curve I';, ¢ = 1,..., N, we denote its endpoints by ¢;; and g;». Recall that in some

neighborhood of a point g;; (respectively, g;2), the domain G coincides with a plane angle and the
curve I'; coincides with the interval I;; (respectively, I;2). Let 741 (respectively, 7;2) be a unit vector,
which is parallel to the interval I;; (respectively, I;2). Introduce the notation

0 .0

Dy = —i pre Dryy = —i
i

Otia’
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For any [ > 0, we denote by S*2m~m-1/2(9@3) the subspace of the space W!T2m—m-1/2(9@3) that
consists of functions { f;,} such that

Dﬁ-l fi#|y=g¢1 =0, Dngiﬂy:gm =0, B<I+42m—my, —2. (5.5)
Assume that SY(G,0G) = SY(G) x SH2m—m=1/2(5@).

5.2.4. Spaces S of vector-valued functions. For any | > 2, we denote by S'(K) the subspace of the
space W!(K) consisting of functions {f;} such that

D®fily=0 =0, |af <1-2. (5.6)

Assume that S'(K) = WY(K) for [ = 0, 1.
For any [ > 0, we denote by S*2m~™=1/2(4) the subspace of the space WH2m=—m=1/2(~) consisting
of functions {fjs,} such that

D} fiouly=0="0, B <1+ 2m—mjs, —2. (5.7)

Here 7, is the unit vector that has the same direction as the ray v;,, Dfﬁ, =5 fl+2m—mjqs,—2 <
T
J

0, then there are no corresponding conditions.
Let S'(K,v) = SY(K) x St+2m=—m=1/2(y),
The spaces
Sl+2m—m—1/2(,}/d), Sl(Kd), Sl(Kd, ’)/d), d>0

are introduced similarly.
5.3. Kondrat’ev weight spaces.

5.8.1.  Spaces of scalar functions. Let us consider the following cases:

(1) Q:Kj,Q:K;l (d > 0), or Q@ = R?; we set M = {0};

(2) Q =G; we set M =K.
For any [ > 0 and any a € R, we denote by H.(Q) = H.(Q, M) the completion of the set C§°(Q\ M)
with respect to the norm

1/2

lila = | / pRa-tHal | paygzay |
MSZQ

where p = p(y) = dist(y, M). For [ > 1, we denote the trace space on the smooth curve I' C Q with
the norm

160 172y = 06 il s € HLQ) - wle =,

by Hcll_l/ 2 (T"). In Chap. 6, we use, in addition to the standard norms, norms in weight spaces depending
on a parameter ¢ > 0. Assume that

1/
Vi) = (Il o) + ' lulo) 1> 0, .

_ /
oll vy = (10125 e + 0 lelgey) s 121,

where

1/2
lollugeey = ([ 1o 2ar) .

r;
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It follows form [41, Lemmas 7.1 and 7.2] that
ke, 12y < ellullyey  Vu € Hy(G), (5.9)

where ¢ > 0 is independent of u and ¢ > 0.

We prove some auxiliary results on the connection between Sobolev spaces and weight Kondrat’ev
spaces. Let us fix an arbitrary index i. Let I' = I'; and g € T'\ I'. Without loss of generality, we
assume that ¢ = 0 and I" coincides with the axis Oy; in a sufficiently small neighborhood O.(0) of the
origin. Introduce the notation G = G N O.(0) and I'* = T'N O.(0) and set H.(G®) = H.(G*, {0}).
Lemma 5.2. Ifu € W!(G?) and 1 > 1, then the following statements are valid:

(1) u(y) = P(y) +v(y) for y € G%, where P(y) = Y. pay® and v € WHG®) N HL(G®) for all

|a|<l—2
§ >0 (if | =1, we assume that P(y) = 0); in particular, u € H}_, (G®);
(2) DY|y—g = D*P|y—o for |a] <1 =2 (if 1 > 2);
3) > |pal+ HU||H§(G€) < csllullyi(gey, where c5 > 0 is independent of u.
la|<l—2

The proof follows from [53, Lemma 4.9] for [ = 1 and [53, Lemma 4.11] for [ > 2.
Lemma 5.3. If¢) € W'=/2(T%) and | > 1, then the following statements hold:

(1) ¥(r) = Pi(r) + @(r) for 0 < r < e, where Pi(r) = Z ppr’® and p € WI1/2(T9) ﬂHl 1/2(1“'3)

for all 6 >0 (if | = 1, we assume Py(r) = 0); in partzcular (RS Hl llJ/r%(FE)
(2) (dﬁw/drﬁ)lr 0= (dﬁPl/drﬁ)\T —o for B=0,...,1-2;

(3) ,BZ lpsl + llell, 1172 e < sl llwi-1/2(pey, where cs > 0 is independent of 1.

Proof. Consider a function u € W!(G?) such that

ulee =9, ullpr(gey < 2Plwi-1r2re)

and apply Lemma 5.2. ]
Lemma 5.4. Let ¢ € W!=V2(T9), 1 > 2, and let
dS
f —0, s=0,....k (5.10)
dre |,
1-1/2

for a fived k <1—2. Then+ € H,_,"5  5(T¢) for all 6 > 0 and
\WHH;:;@H&(FE) < sl ey (5.11)

where cs > 0 is independent of 1.
Proof. Tt follows from Eq. (5.10) and Lemma 5.3 (items 1 and 2) that

Z per’ +o(r), 0<r<e, (5.12)
=k+1
where
pe Hy 2re) cH L 5(T0), §>0. (5.13)

If k =1 — 2, then there is no sum in (5.12) and the statement of the lemma follows from Eq. (5.13)
and Lemma 5.3 (item 3).
If £ <1 — 3, then the sum consists of summands of the form 7°, where 8 > k4 1. Tt is directly

verified that 7% € Hl 21/2“5(1”3) for the S mentioned and any § > 0. Hence, the statement of the
lemma follows from Eqs. (5.12) and (5.13) and Lemma 5.3 (item 3). O
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Lemma 5.5. Letu € HTLY?

orn (D), k1 €N, acR,BeC®GF), D*Bly=0 =0, and |a| < k —1. Then

HBUHH}Z(G’E) < CHU|1H3—+§€/2(05)-

Proof. 1t follows from the Taylor formula that |D?B| = O(rk_"") for o; hence,

HBUH?—I&(GE) — Z /T2(a+|a|l)’Da(BU)|2dy

|| <1 Ge
lo|+[¢I<I Ge
< e Z p2atk =0 DSy 2dy = cs|ull3. (K)-

a+k

ICI<T Ge i
The lemma is proved. ]

1=1/2 e 00 (Te 9% _ _
Lemma 5.6. Let ¢ € H, ,/°(I°), k,l € N, a € R, b € C>(I*), e =0, and s=0,...k—1.
™ lr=0
Then '

Hbd}HHé*lm(F) < CHQ’Z)HHCZL:_EM(F) (514)

Proof. Denote the extension of the function b(y1) to R by b € C®(R) and introduce a function
B(y1,v2) = b(11), (y1,y2) € R% Obviously,
BeC®K), D°Bly—0=0, |o|]<k-1 (5.15)
Let u € HLlHk(GE) be an extension of the function ¢ such that
g, a0 < 1l gy (5.16)

where ¢; > 0 is independent of 1. Now Egs. (5.15) and (5.16) and Lemma 5.5 yield the statement of
the lemma. 0

Lemma 5.7. Let u € WY(R?) and u(y) =0 as |y| > 1. Then
lu(y) — w(Goy) gy 2y < cllullwrge),

where Gy is a composition of the operator of rotation by the angle wy (—m < wo < 7) and dilation
centered at the origin with coefficient xo > 0.

Proof. Let us write the function u in the polar coordinates (w,r); then we have
u(y) — u(Goy) = u(w,r) — u(w + wo, xor) = v1 + v2,

where v1(w, ) = u(w, r) — u(w + wp, ) and va(w, ) = u(w + wop, r) — u(w + wo, xor)-
Consider the function v;. By [53, Lemma 4.15],

o0

/7‘1|v1(0,r)]2d7“ < kaflullp r2)-
0
It follows from here and [53, Lemma 4.8] that vy € Hg(R?) and

lvill g ey < Fallullw ge)- (5.17)
It remains to show that

/r‘z\m?dy < ksl - (5.18)
Rz
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For xo > 1 (the case where 0 < xo < 1 is considered similarly), we have

™ o0 T+wo 0 xXor 2
/T_2|vg|2dy: /dw/r_1|vg(w,r)\2d7“: / dw/r_ldr /8u(5;’t)dt
R2 - 0 —T+wo 0 T
Using the Schwartz inequality and changing the limits of integration, we obtain estimate (5.18):
T+wo
/7“2!712|2dy§ (xo—1) / dw/dr/ ‘au w,t)
R2 —m+wo
R Y A ) | L L L
_XO_WZWO wo/ = ‘ tat < 0=l o
The lemma is proved. O

We also will need weight spaces of negative and fractional orders. For [ > 1, we denote the space
dual to H", 1/ 2( I';) with respect to the extension of the inner product in La(I;) by

Hy VA < (HE ()
—(-1/2) (T;)

The norm in H, is defined as follows:

HgHH—(l—l/Q)(F.) = sup M
a g 07Aw€Hl—_al/2(Fi) Hq’DHHl__al/Q(FZ)

Lemma 5.8. For anyl € Z and a € R, the space Hcl:rlm(Fi) is a dense subset in H. 1/2(Fi) and

+1/2
91120,y < ellgll rsvage,y W9 € HGY (T,

where ¢ > 0 is independent of g.

Proof. If I = 1,2,..., then the conclusion of the lemma follows from the definition of weight spaces.
The case where [ = —1, -2, ... follows from duality considerations.

Let us consider the case where [ = 0. Let g € H ;-/|-21( I';). Using equivalent norms in weight spaces
(see [58, Lemma 1.3]), it is easy to verify that

[vmdr| < clbll e lolyrn e, Vo€ HET), ge HET. (5.19)

By virtue of (5.19) and the relation g € Hifl (T';), we obtain

HgHHa_l/Q(pi) - sup M

< clgll i o
075’¢'EHi/a2(1—\i) HwHHi{f(Fz) a+1( 7')

Now we prove that H, 1/ 1(I';) is a dense subset in H, Y 2(Fi). Assume the contrary. Then there
exists? a nonzero element

~1/2 1/2
g € (H'2(T0) = HIZ (1)
“The space Hi/f (T';) is a Hilbert space; therefore, it is reflexive.
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such that (¢, g) = 0 for all ¢ € H;fl( I';). Hence,

/wdr — (g) =0 Vi € CF(T).

Taking into account the fact that C§°(T';) is dense in H i{f(f‘i), we conclude that g = 0. O

5.3.2. Spaces of wvector-valued functions. For any | > 0, a € R, and integer m;, > 0
(I 4+ 2m — my, > 1), we introduce spaces of vector-valued functions

le—‘er—m 1/2 8G HHHH-Q’"’L My — 1/2( )

i=1 p=1
H (G, 0G) = HL(GQ) x H:2m—m=1/2(9@).

(5.20)

In Sec. 22 (see Chap. 5) and in Chap. 6, we consider nonlocal perturbations of the Dirichlet problem
for a second-order differential operator. In this case, m = 1 and m;; = 0. Denote the spaces (5.20) as
follows:

HEF2(9@) HHl+3/2 D, HL(G,0G) = H(G) x H32(6@). (5.21)

In Chap. 6, we will use the following norms that depend on a parameter ¢ > 0 (along with standard
norms):

1/2
[l 202 56y = (Z s 1%, 143/2p > . v ={di},

1/2
1 )l co0) = (1) + 1600 )

(5.22)

where || - || ,i+3/2 ., and || - 1%, () are norms defined in (5.8), 1 > 0.

(')

In Sec. 25 (see Chap. 6), we will use the following Banach spaces with norms depending on a
parameter g > 0:

® HH_,?;(G) = Cn(G) N HA2(G) with the norm
lull 2 6y = 1l @) + lull v
o HIE(D,) = Cn(T3) N HEP/(T,) with the norm

mvaj\;i/z(r HUHCN + m””’ l+3/2(1—\i);

N
Hl+3/2(3(;) — H Hl+3/2( I;) =Cu(0G) N Hé+3/2(8G) with the norm

N
Wlgre = S Wiy 0= {0}
Here N is a closed subset of G and [ > 0.
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For any [ > 0 and a € R and integer mjqs, (0 < mjg, < 1+ 2m — 1), we introduce the following
spaces of vector-valued functions:

N N m
HL(K) = [T HL(K), HE2m= 1200 =TT T T e (o),
Jj=1 j=10=1,2 u=1
ML (K, y) = HL(K) x HEP2m=m=1/2 (),
The spaces
HL(KT),  HEPEmmm2 () oyl (K447, d >0,

are introduced similarly.

6. Statement of the Nonlocal Problem in Bounded Domains

6.1. Statement of the problem. Denote by P(y, D) and B;,,(y, D) linear differential operators
with complex-valued coefficients of class C°° of orders 2m and m;,, respectively, and by P%(y, D) and

B?us(y,D) the principal homogeneous parts of the operators P(y, D) and Bj,s(y,D) (i=1,...,N,
p=1,....m,s=0,...,5).

We formulate conditions for operators P(y, D) and Bj,o(y, D) that will correspond to a “local”
elliptic problem (see, e.g., [57, Chap. 2, Sec. 1].
Condition 6.1. The operator P(y, D) is essentially elliptic on G.

In particular, condition 6.1 means that the following estimate holds for all # € R? and y € G-
A0 < [P(y, 0)] < A", A >0, (6.1)

Condition 6.2. For everyy € I; andi=1,...,N, the system {Bi,o(y, D) ey satisfies the covering
condition the (Lopatinskii condition) with respect to the operator P(y, D).

Condition 6.2 means the following. Let y € T;. Assume, without loss of generality, that near a
given point y, the curve I'; is defined by the equation ys = 0. Let the polynomial

0 T) =D b ()™ = Bl(y, 1,7) (mod M (y, 7))
v=1

be the remainder after the division of BZQHO(y, 1,7) by M (y,7), where

m

M*(y,7) = [[(r = 7F (),

v=1

1 (y), ..., 7;h(y) are the roots of the polynomial P°(y, 1,7) with a positive imaginary part. In this
case, PO(y, 1,7’),B?M0(y, 1,7) and M™(y,7) are considered as polynomials with respect to 7. Then
condition 6.2 means that

di(y) = det [[biw (Y)[l=1 7 0.

Since every arc I';, i = 1,..., N, is compact, we see that

D= min inf |d;(y)| > 0. (6.2)
’iil,...7N yeri

Let us emphasize that, in the general case, we do not assume the normality of the operators B;,o(y, D)
on arcs I';.
Consider operators
P WHm(G) - WHG), B, : WHM(G) — whtmema /(1)
defined by the formulas
Pu = P(y, D)u, Bj,u= Biu(y, D)u(y)lr,-
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In what follows, we assume that [ 4 2m — m;, > 1.

Let us define operators that correspond to nonlocal conditions near the set K. Let Q;5 (i =1,..., N,

s = 1,...,5;) be infinitely differentiable nondegenerate transformations that map some neighbor-
hood O; of the curve I'; N O(K) to the set Q;5(O;) such that Q;s(I'; N O(K)) C G and

Qs(g) e L for gel;NK. (6.3)

Thus, the transformations ;s map arcs I'; N O (K) in the domain G, and their endpoints T;NK are
mapped to endpoints.

Let us specify the structure of transformations €2;5 near the set . Denote by Q;:l the transformation
Qis : O; = Qi5(0;) and the transformation inverse to ;5 by Q;Sl : Qis(O;) — O;. The set of all points
of the form Qiiq( SO (g ek (1<s; < Si;yj=1,...,q) is called the orbit of a point g € K and

1181
is denoted by Orb(g). We can obtain these points sequentially applying to g the transforms ij‘ij or
Q;ij that map points of the set K to K.

Obviously, for any g, ¢’ € K, either Orb(g) = Orb(g’) or Orb(g) N Orb(¢’) = @. In what follows, we
assume that the set K consists of one orbit (all results are easily generalized to the general case where
IC consists of a finite number of nonintersecting orbits). For simplicity, we assume that the set (orbit)
KC consists of N points ¢g1,...,9n-

Let us choose € (cf. Remark 2.2) so small that there exist neighborhoods O, (g;) of the points
gj € K such that O, (g;) D O:(g;) and

(1) GNO:, (g5) = K
(2) O, (95) N Oc, (gr) = @ for any gj, gr, € K and k # j;

(3) if gj € I'; and Qj5(g5) = gk, then O.(g;) C O; and Qs ((’)g(gj)) C O (gk)-
For any point g; € I'; N K, we fix a transform Y; : y — 3/(g;), which is the composition of a shift by
—

a vector —Og; and a rotation by some angle such that
}/j(OEI(g]')) = 051(0)’ Y}(Gmoa(gj)) = Kj mo&l(o)a
Yj(FiﬂOgl(gj)) :’}/jgﬂogl(O), oc=1or 2.

Here the angles K; = {y € R? : 7 > 0, |w| < w;} and their rays vj, = {y e R : 7 > 0, w = (—1)%w;}
(w and 7 are polar coordinates with pole at the origin, 0 < w; < 7) are the same? as in Sec. 5.1.
Consider the following condition (see Fig. 6.1).

Condition 6.3. Let g; € I; N K and Qis(g;) = gr € K. Then the transformation
YioQiso Y 0.(0) = O, (0)
s the composition of operators of rotation and dilation centered at the origin.

Remark 6.1. Condition 6.3 and the assumption Q;5(I';) C G imply that if g € Qis(ﬁ\Fi)ﬂFjﬂK #* &,
then the curves Q;5(I';) and T'; intersect at the point g and make at this point a nonzero angle.

Choose a number ¢g, 0 < g9 < ¢, satisfying the following condition: if g; € I'; and Qi5(g;) = g,
then

Oco (k) € s (O=(95)) € Oc, (gk).
Consider a function ¢ € C°°(R?) such that

C(y) =1 (y € O, 2(K)), ((y) =0 (y & Oc,(K)). (6.4)

3Strictly speaking, the angles K; introduced here can be obtained from the angles K; described in Sec. 5.1 by the
shift by the vector —Og; and a rotation. In what follows, we will identify them.
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Fig. 6.1. Transformation Y5 0 Q7 0 Y71 1 0.(0) — O, (0) is the composition of a
rotation and a dilation.

Introduce bounded operators B}M W2 (G) — Wt2m=miu—1/2(T;) by the formula

Si

Blu =Y (Bius(y, D)(Cu)) (Qus(®))|r,, v €TinO(K),
s=1

Bj,u=0, y € Ti\ O(K);

here
(Bius<y> D)U) (st(y)) = Bi/w(?/a Dy’)v@l)‘y’:ms(y)'
If suppu C G\ O (K), then B%Mu = 0; we say that operators leu correspond to nonlocal terms
with supports near the set IC.

As earlier, we denote
G, ={y € G : dist(y, 0G) > p}.
Let us introduce bounded operators
B?H . Wl+2m(G) N Wl+2mfmiufl/2 (PZ)
satisfying the following condition.

Condition 6.4. There exist numbers sy > 5 > 0 and p > 0 such that the following inequalities hold:

HB?MUHWHQm—mw—1/2(1“1.) < ClHUHWH?m(G\Oul (K)) Vu € WH_Qm(G \ O (IC))¢ (6'5)
HB?MUHWz+2m—mw—1/2(ri\m) < C2||U||Wl+2m(Gp) Yu € Wl+2m(Gp), (6.6)
wherei=1,...,N, u=1,...,m, and ¢; and cs > 0 are independent of u.

Inequality (6.5) implies that if suppu C O,, (K), then B?Mu = 0. Hence we say that the operators
BZZM correspond to nonlocal terms with supports outside the set IC.
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In Chaps. 2-5, we assume that conditions 6.1-6.4 hold; in Chaps. 4 and 5, condition 6.4 is considered
for I = 0. In Chap. 6, conditions 6.1-6.4 will be replaced by their analogs.

Note that a priori we do not suppose any relation between the number ¢ in the definition of the
operators B%ﬂ and the numbers s, 55, and p in condition 6.4.
We study the nonlocal elliptic problem

Byu=B)u+Bju+Blu=fiu(y), yeli, i=1... N, p=1,....m (6.8)

Let us introduce the following bounded operator corresponding to problem (6.7), (6.8) in the Sobolev
spaces:

L ={P, B,,} : W' (G) - WG, 0G),
where WH(G, 0G) is the space defined in Sec. 5.2.

Definition 6.1. A function v € W 2™ (G) is called a strong solution of problem (6.7), (6.8) with the
right-hand side { fo, fi.} € WG, 0G) if the equality Lu = {fo, fin} holds.

In what follows, strong solutions of problem (6.7), (6.8) are called simply solutions.

6.2. Example of a nonlocal problem. We present an example of a problem with nonlocal con-
ditions that satisfy the conditions of this section.

Let the operators P(y, D) and Bj,s(y, D) be as above. Denote by Qs (i =1,...,N,s=1,...,5;)
nondegenerate transformations of the class C*° that map some neighborhood O; of a curve I'; to
Q;5(0;) such that Q;5(I;) C G. Note that in this case, we do not assume that relations (6.3) hold.

Consider the nonlocal problem

P( D)u:fO( )7 y€G, (69)

z,uO(ya |F + Z s y, (st(y)) r, fl,u(y)

(yely, i=1,....N, u=1,...,m).

(6.10)

Let us choose small € > 0 such that for any point g € K, the set O,(g) intersects the curve Q;s(T;) if
and only if g € K N Q;5(T).

Assume that condition 6.3 holds. By Remark 6.1, condition 6.3 is a restriction on the geometric
structure of the support of nonlocal terms near the set K. However, if Q;5(T; \ T';) C 0G \ K, then no
restrictions are imposed on the geometric structure of the curves Q;s(T;) near G (cf. [85, 89]).

Introduce the notation

Pu="P(y,Dju, Bju= Biu(y, D)u(y)|r,,

Si
Blu = (Bius(y, D)(Cw)) (s () |1,
s=1
Si
Bzz,uu - Z (Bius(y, D)((l - C)u)) (st(y)) ‘Fi’
s=1

where the function ¢ is defined in Eq. (6.4). Then problem (6.9), (6.10) has the form of Egs. (6.7),
(6.8).

Similarly to the proof of [89, Lemma 2.5] (where one must replace the weight spaces by the corre-
sponding Sobolev spaces), we can show that the operators Bz?u satisfy condition 6.4.
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6.3. Reduction to model problems in infinite angles. Asin Chap. 1, we pay special attention
to the behavior of solutions near the set K consisting of conjugation points of the boundary conditions.
Consider the corresponding model problem in plane angles. We set

B, =0, i=1,...,N, p=1,....m. (6.11)

For y € O, (g;), we denote u(y) by u;(y). If g; € Ty, y € O:(g;), and Qis(y) € O, (gx), then we
denote u(£2;s(y)) by uk(2is(y)). Then, by assumption (6.11), the nonlocal problem (6.7), (6.8) has the
following form in a e-neighborhood of the set K:

P(y, D)u ':fo( ), ¥ €0c(g;) NG,

Bz,uO(y? ) ( |Og(gj NIy +Z i4LS y, Cuk))(Q (y))

O=(g;)N = fin(v)
(y € O-(g;) NIy, ie{l §Z§N:gj el}, j=1,...,N, p=1,...,m).
Let y — 3/(g;j) be a transformation of coordinates described above. Let us introduce functions
Ui(y) =ui(w(®¥)), fi(¥)=folw®)), ¥ €K  fiou) = finlyW): ¥ €50

where o =1 (0 = 2) if the transformation y — 3/(g;) maps I'; to the ray ;1 (respectively, v;2) of the
angle K;; denote 3’ by y. Then, by condition 6.3, problem (6.7), (6.8) has the following form:

P;(y, D)U; = fi(y), v € Kj, (6.12)

Bjou(?/» D)U = Z(Bjauk:s(y, D)Uk)(gjaksyﬂwa = fjou(y)a Yy e 7§aa (6'13)
k,s

where j,k=1,...,N,o0=1,2, p=1,...,m,and s =0,...,Sj5%;
Pj(y,D), Bjouks(yaD)

are linear differential operators of orders 2m and mjy, (I+2m —mjs, > 1) respectively with variables
of class C'*°:

Pj(va) = Z pja(y)Dg, B]auk:s ya Z b]auk:sa
|| <2m la|<mjoy.

Gjoks is the operator of rotation by the angle wjs,s and a dilation with scale factor xjsrs > 0;
moreover, |(—1)7b; + wjgoks| < by if (k,s) # (J,0) (see Remark 6.1), and wjsjo = 0 and xjqj0 =1 (i.e.,

ngjOy = y)
Obviously,
bjauksa(y) =0 as |yl >eo, (k,8)#(4,0). (6.14)
In Chaps. 2-6, we use the following notation:
di = min{xjoks}/2, do = 2max{Xjoks}- (6.15)

We extend the coefficients of the operators P;(y, D) and Bjy,(y, D) to R? such that we obtain
compactly supported smooth functions. Consider the operator £ : W2m(K) — W (K, ~) defined by
the formula

LU = {Pj(ya D)Uj7 Bjdu(ya D)U"Vja}v
where WH2m(K) and W!(K,~) are the spaces defined in Sec. 5.2. The operator £ corresponds to
problem (6.12), (6.13).

Denote the principal homogeneous parts of the operators P;(0, D) and Bjs.ks(0, D) by P;(D) and

Bjouks(D), respectively. In addition to problem (6.12), (6.13), we consider the following nonlocal
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model problem:

Pi(D)U; = fi(y), v e Kj, (6.16)
Bjou(DYU =Y " (Bjouks(D)Uk) Gjohst)hyso = Fion(¥)s Y € Vo (6.17)
k,s
Consider the operator £ : W*2m(K) — W!(K,~) defined by the formula
LU = {Pj(D)Ujv ij(D)U"wa}
and corresponding to problem (6.16), (6.17) in Sobolev spaces.
Let us write the operators P;(D) and Bjs k(D) in the polar coordinates as follows:
Pj(D) = r—>"P;(w, Dy, 7D,),
Bjouks(D) = 177 Big s (w, Doy, 7Dy),
where 5 5
D, = —i%, D, = —ig.
Consider an operator (an analytic operator-valued function depending on a parameter A € C)
L) : W (5, m) - W, 7]
defined by the formula ) i i
LA)p ={Pj(w, Dus, A)gj; Bjou(w, Du, A)¢}, (6.18)

where

Bjo,u(wa Dy, N = Z(Xjaks)i’\_mj"“ ~jauks(w7 Dy, Npr(w + Wjaks)’w:(—l)"wj
k,s

and the spaces W2 (—@, ) and W![~w, @] are introduced in Sec. 5.2.

The main definitions and facts on eigenvalues, eigenvectors, and adjoint vectors of analytic operator-
valued functions can be found in [23]. In the sequel, we extensively use the fact that the spectrum of
the operator £()) is discrete; namely, the following lemma is valid.

Lemma 6.1 (see [88, Lemma 2.1]). For any A € C, L()\) is a Fredholm operator and ind L()\) = 0.
The spectrum of the operator L(X) is discrete. For any numbers ¢y < ez, the strip ¢ < ImA < ¢
contains no more than a finite number of eigenvalues of the operator L(\).

7. Nonlocal Problems in Plane Angles in Sobolev Spaces

7.1. Construction of a “solution” in the case of absence of eigenvalues of the opera-
tor £(A) on the line Im A =1 — [ — 2m. In this subsection, we assume that the following condition
holds.

Condition 7.1. The line Im A =1 —1 — 2m does not contain eigenvalues of the operator LN(/\)

Let us consider the operators

l — o — l - jou
DTj:?m Mjop 1BJO.M(D)U = D+2m Mjop 1 Z(B]Uuks(D)Uk)(gja—ksy) ,

Tio
k,s

where 7, is a unit vector in the direction of the ray 7;,. Using the chain rule for differentiation, we
write

D" B (DYU = 3 (Bjoks (D)Uk) (Gionst), (7.1)
k,s
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where ijks (D) are homogeneous differential operator of the order [ + 2m — 1 with constant coeffi-
cients. In particular,

~

I4+2m—mjs,—1
Bjopjo(D) = Dz, ™7 Bjgyjo(D)
since Gjsjoy = y. Formally replacing nonlocal operators in Eq. (7.1) by the corresponding local
operators, we introduce operators

Biou(D)U = Bjous(D)Ur(y). (7.2)
k,s

If [ > 1, then we consider the following operators (in addition to system (7.2)):
D*P;(D)U;(y), ¢l =1—1. (7.3)

The system of operators (7.2) and (7.3) plays a key role in the proof of the following lemma that
allows one to reduce problems in Sobolev spaces to problems in weight spaces.

Lemma 7.1. Let condition 7.1 hold. Then there exists a linear bounded operator
A:{f € 8(K,7) :supp f C O1(0)} = S"*™(K)
such that the function V.= Af satisfies the following conditions: V =0 as |y| > 1,

1EV = Fllat ey < el F i (7.4)

IV lom ey < callfwiyy ¥a >0
for any function f = {f;, fjon} € D(A).
Proof. 1. Introduce an operator

fja,u = (I)ja,u,a (76)
that takes each function fj,, € WH2m—mien=1/2(~, ) to its extension ®;,, € WH2m—miou(R2?) to R?
such that ®;,, = 0 for |y| > 2. We also consider an extension of the function f; from K; to R?
such that the extended function (we denote it also by f;) equals zero for |y| > 2. The corresponding
extension operators can be taken linear and bounded (see [100, Chap. 6, Sec. 3]).

Consider the following algebraic system for partial derivatives D*W;, where |a| =14 2m — 1 and
j=1,...,N:

Bjo (D)W = D2 maen g, (7.7)
D*P;(D)W; = D f;, (7.8)

where j = 1,...,N, 0 = 1,2, p = 1,...,m, and |[{| = | — 1. Each operator l%jgu(D) defined by
formula (7.2) is the sum of “local” operators; therefore, system (7.7), (7.8) can be considered as an
algebraic system. Assume that system (7.7), (7.8) has a unique solution for any right-hand side and
denote this solution by Wj,. It is obvious that W, € W(R?) and W;, = 0 for |y| > 2. By [53,
Lemma 4.17], there exists a linear bounded operator

{Wja}\a|:l+2mfl = ‘/j? (79)

which states the correspondence between the system {Wjq}ja|=i42m—1 € IT W(R?) and a
|a|=l+2m—1
function V; € W2™(R?) such that Vj(y) = 0 for |y| > 1 and

D*Vjly—0 =0, |o| <1+42m -2, (7.10)
DVj — Wja € Hy(R?), |a| =142m —1. (7.11)

2. Let us show that the function V' = (V4,...,Vy) is a required function. Inequality (7.5) follows
from Eq. (7.10), Lemma 5.2, and the boundedness of operator (7.9).
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Prove Eq. (7.4). Since the functions Wj, represent a solution of algebraic system (7.7), (7.8) and
the functions Vj satisfy Eq. (7.11), we have

Bjou(D)V — D2 Men g, e HE(R?), (7.12)
DN (P (D)V; — f;) € HY(R). (7.13)

Further, from Egs. (7.10) and (5.6) we obtain that
DE(Pi(D)Vj = fi)ly=0 =0, [a] <1-2.
Combining these equalities with Eq. (7.13) and Lemma 5.2, we see that
{Pi(D)V; = f;} € Hp(K).

Now let us show that
[+2m—m—1/2
{Bjopu(D)V = fion} € Hb' 2(y). (7.14)

We pass from the “local” operators Bj,,,(D) to the nonlocal operators lejfm_mj"”_lBjW(D) in (7.12).
Using Lemma 5.7, we obtain

I+2m—m s, —1
D" (Bjgu(D)V — o) € Hy(R?) (7.15)
from Eq. (7.12). Equation (7.15) and [53, Lemma 4.18] yield the following equality:
ra o 2
[P B D — | e
0
I+2m—m;y,—1 2
< || DT B (D — @), (- (726)
0 J
Inequalities (7.16), Egs. (5.6) and (7.10), and Lemma [53, Lemma 4.7] imply
— m—m; +2m—mjs,—1 2
/Tl 20+2 ]au)|8j0,u(D)V - fjou|2dr < ko HDT;: o (Bja,u(D)V - (I)jo'u)HHl(K-) : (717)
0 J
0

Combining this inequality with the relation
{Biow(D)V = fiou} € Wm0 (),

we obtain (7.14) from Eq. (7.17) and [53, Lemma 4.16]. Using the boundedness of the operators in
Egs. (7.6) and (7.9), we can easily prove estimate (7.4).

3. It remains to prove that system (7.7), (7.8) has a unique solution for any right-hand side.
Obviously, this system consists of (I + 2m)N equations with respect to (I + 2m)N variables. Hence,
it suffices to show that the corresponding homogeneous system has only trivial solution. Assume the
contrary: there exists a nontrivial set of numbers {g;o} (j = 1,...,N and |a| = [+ 2m — 1), such
that if we replace D*W; on the left-hand sides of system (7.7), (7.8) by the numbers gjq, then its
right-hand sides vanish. Let us consider a homogeneous polynomial Q;(y) of degree I + 2m — 1 such
that DQ;(y) = ¢jo. Then P;(D)Q,(y) = 0 (since D*P;(D)Q;(y) =0 for all (| =1—1) and

Biou(D)QW) =Y Biours(D)Qi(y) =0 (Q = (Q1,...,Qx)). (7.18)
k,s
Note that BjaukS(D)Qk (y) = const and the operators Gj,1s map a constant to itself. Hence we have
the following (along with (7.18)):

Di;razm*mjf’ufl (BJUM(D)Q(y)) = Z(Bja,uks(D)Qk)(gjoksy) =0. (719)
k,s
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Since Bjy,(D)Q is a homogeneous polynomial of degree [ + 2m — mj,, — 1, we see that, by virtue
of (7.19), Bjsu(D)Ql4,;, = 0. Thus, we obtain that the vector-valued function @ = (Q1,...,Qn) is a
solution of problem (6.16), (6.17) with zero right-hand side. Hence,

75]- (w, Dy, rD,) (rl+2m_1Qj (w)) =0,

Z(Xjaks)(”2’"’1)77”““3]'0#1@3(00, Do, rDy) (Tl+2m71(2k(w + wjgks)) !w:(,l)%j =0, (7.20)
k,s
where Q;(y) = r+2m~1Q;(w). However, Egs. (7.20) mean that

L(—i(l+2m —1))Q(w) =0,

where Q = (Ql, cees QN) This contradicts the assumptions that the line ImA =1 — 1 —2m does not
contain any eigenvalues of the operator £(A). O

Corollary 7.1. The function V' constructed in Lemma 7.1 satisfies the inequality
1LV = fllaas zey < ell fllwr (e - (7.21)
Proof. By virtue of Eq. (7.4), it suffices to estimate the differences
(Pj(y, D) = Pi(D)Vj,  (Bjou(y, D) = Bjou(D))V.
The first of these differences contains terms of the form
(aa(y) = aa(0)) DVj (la| = 2m), as(y)D°V; (8] < 2m —1),

where a, and ag are infinitely differentiable functions. Fix a number a such that 0 < a < 1. Taking
into account the fact that V' =0 for |y| > 1 and using Lemma 5.5 and Eq. (7.5), we obtain

(@) — 0a(0)) D*Vi g1 1y < il (@a(®) — aa (@) D™Villg e
< k2D Vil ;) < Esll fllwe i)
Similarly, using the definition of weight spaces and Eq. (7.5), we obtain
las (D Vil ) < Fallas@IDVill oo iy < KslIVill grom sy < ol Flbwcacy:
The relation (Bjgu(y, D) — Bjou(D))V can be proved similarly. O

7.2. Spaces Sl(K ,7)- Consider the case where the line Im A = 1 — [ — 2m contains eigenvalues of
the operator £(A). Let \g be one of these eigenvalue.

Definition 7.1. We say that \g is a reqular eigenvalue of the operator EN(/\) if
(1) none of the eigenvectors p(w) = (p1(w), ..., pn(w)) corresponding to Ay has adjoint vectors;
(2) for any eigenvector p(w) = (p1(w),...,¢n(w)) corresponding to Mg, the functions r*0p;(w),
j=1,..., N, are polynomials with respect in the variables y; and ys.

FEigenvalues that are not regular are said to be irregular.

Remark 7.1. The notion of a regular eigenvalue was first introduced by V. A. Kondrat’ev in [53] for
“local” elliptic boundary-value problems in domains with angular or conical points at the boundary.

Obviously, if Ag is a regular eigenvalue, then Re A\g = 0. Hence, the line Im A = 1—1—2m can contain
no more than one eigenvalue. In this case, the functions r”\oapj (w) are homogeneous polynomials of
degree i\g.

In Secs. 7.2-7.4, we assume that the following condition holds.

Condition 7.2. The line Im A = 1 —1—2m contains a unique reqular eigenvalue Ao = i(1 — 1 — 2m).

299



If this condition holds, Lemma 7.1 is invalid since the algebraic system (7.7), (7.8) can be insolvable
for some right-hand side and the system of operators (7.2), (7.3) is not linearly independent. Indeed, let
o(w) = (p1(w),...,pn(w)) be an eigenvector corresponding to a regular eigenvalue Ao = i(1—1—2m).
Then, by the definition of regular eigenvalues, the function Q;(y) = 2™ 1p;(w) is a homogeneous
polynomial of degree | + 2m — 1 with respect to the variables y = (y1,y2). Repeating the reasoning of
the proof of Lemma 7.1, item 3, we see that if we substitute numbers g¢;, = D“Q); instead of D*W;
on the left-hand sides of system (7.7), (7.8), then its right-hand sides vanish. Hence, system (7.2),
(7.3) is linearly dependent.

In this case, we use the spaces S'(K,v) (to be defined below) instead of the spaces S'(K,~). We
note that the set SY(K,~) is not closed in topology of the space W' (K, 7).

Choose the maximal number of linearly independent operators from system (7.2) that consists of
homogeneous differential operators of order [ + 2m — 1 and denote them by

Bj/g/M/(D)U. (7.22)
Any operator lgjw(D) that does not belong to system (7.22) can be written in the form
Bjop(D)U = Y Bl Bjignw (D), (7.23)
j,’o—thL/

where 55;2/“ " are some constants.
Let us consider functions f = { fj, fjcm} € WY(K,~) satisfying the conditions

Tjo J'o

Tiouf = D5 g = 30 B D g € HYRE), (120
3ol
where the indices j’, o/, and y' correspond to operators (7.22) and the indices j, o, and p correspond
to operators from system (7.2) that do not belong to system (7 22); ®;,, are some fixed extensions
of the functions fj,, to R? determined by operator (7.6); ﬁjja‘;“ are constants from Eq. (7.23). If
system (7.2) is linearly dependent, then the set of conditions (7.24) is empty.

Note that the fulfillment of conditions (7.24) is independent of the choice of extensions of the func-
tions fjo, to R?. Indeed, let i)jau be an extension that differs from ®;,,. Then (®;4,, — @jw)]% =0;
hence, by [53, Theorem 4.8],

DTN (@ gy — Bjy) € HY (RP).

Tjo

Now we supplement system (7.22) by differential operators of order +2m—1 taken from system (7.3)
such that the resulting system consists of linearly independent operators:

Birorw(DYU,  DEPy(D)U; (7.25)
and any operator D*P;(D)U; that does not belong to (7.25) can be represented in the form
DPDYU; = 3 )¢ " Bironw (DU + 3w D Py(D)Uy., (7.26)
3ol 31

-/ ! / ¢!
where p;.ég # and p;»f are some constants.

Now we expand the components f; € W!(K;) of the vector f to the whole R2. We denote the
expanded functions by f; € W (RR?). Consider the functions f satisfying the conditions
i'o'u! ~U2m—m o —1 il /
7;£f = Dgfj - Z p;go- K DT]/U/ o q)j’o"p,’ - ijjé D§ f]/ - H&(R2), (727)
j/7o-/7lu'l j/7§/
where the indices j', o/, and 1/ and the indices j’ and £’ correspond to operators (7.25), and the indices

J and & correspond to the operators from system (7.3) that do not belong to (7.25); p;/;/“ " and pzél
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are constants from Eq. (7.26). Similarly to the previous reasoning, we can show that the fulfillment
of conditions (7.27) is independent of the choice of the functions f; and fj,, in R?.

Note that the set of conditions (7.27) is empty if either [ = 0 or [ > 1 and system (7.25) contains
all operators from Eq. (7.3).

Let us introduce an analog of the set S'(K,+) in the case where Eq. 7.2 is valid. Denote the set of
functions f € W!(K,~) satisfying conditions (5.6), (5.7), (7.24), and (7.27) by S'(K,~). The space
S'(K,~) with the norm

1/2
W sty = (I Bty + D0 1o I ey + D W Tief Wy sy (7.28)

j70-7}’[/ j?{
is complete. (In the definition of norm (7.28), the indices j, o, and p and the indices j and & correspond
to operators that do not belong to system (7.25).) Introduce the space

SHEmm=l () — (' e WHINmI2 ) (0, ') € S'(K, ).
Obviously, the following embeddings are valid:
$l+2m—m—1/2(,y) C Sl+2m—m—1/2(,y) C Wl+2m—m—1/2(,7),

| l l (7.29)
S'(K,y) C S'(K,y) C WI(K,"~).

Let us prove some important properties of the space S’l(K ,7)- The following lemma shows that if a
compactly supported function U € W!*?™(K) satisfies finitely many orthogonality conditions of the
form

D*Uly— =0, |aof<I+2m—2, (7.30)
then the right-hand side of the corresponding nonlocal problem belongs to SZ(K )

Lemma 7.2. Let condition 7.2 hold. Assume that U € S"*?™(K) and suppU C O.q, (0) (the number
dy is defined in Eq. (6.15)). Then

1001010y < N0y, 10010y < el lwsamey (731)
Proof. 1. Let f = {f}, fjou} = LU. It follows from assumptions of the lemma that f € WHK, "),
supp f C O:(0), and the functions f; and f;,, satisfy relations (5.6) and (5.7), respectively.

Denote by ®,, € WH2m=mjou(R?) the extension of the function fj,, defined by operator (7.6).
Let us show that

Bjou(D)U — D2 Mamn ™y, e HY(R?). (7.32)
By lemma 5.7,
Bjou(D)U — DY 2MMaen =g, (DYU € HY(R?);
thus, to prove (7.32), it suffices to show that
D2 By (D)U = Bjo) € HY (R?). (7.33)
But

Dl+2m*mjau*1(BjUM(D)U — (I)jau) € Wl(Rz)’

Tio
DE Mo (Bl (DY = o)y = 0.

Thus, relations (7.33) follow from [53, Lemma 4.8]. Relation (7.32) is proved.

The operators ij(D)U satisfy relations (7.23); hence, by (7.32), the functions ®;,, satisfy rela-
tions (7.24).

Similarly, it follows from Eq. (7.32), the equalities P;(D)U; — f; = 0, and relations (7.26) that
the function f satisfies relations (7.27). Hence f € SY(K,~) and we can easily verify that the first
inequality in Eq. (7.31) holds.
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2. Now, to prove that LU ¢ SZ(K, 7v), it suffices to show that
D'V (P;(y, D) — P;(D))U; € HY(R?),
+2m—mjs,—1
DL (B, (y, D)U — Bjoy(D)U) € HY(R),

Tjo

where U; € W!T?2™(R?) is an extension of the function U; € W2 (K;) to R? (we denote this
extension also by Uj). These relations consist of terms of the form

(aa(y)_aa(o))Dan7 ‘CK‘ :l+2m_17 aﬁ(y)DﬁUjv ’/8‘ §l+2m_27

where a, and ag are infinitely differentiable functions.
Since U; € WH2m(R?), we see that D*U; € H{(R?). This and Lemma 5.5 imply that

(aa(y) — aa(0)) D*U; € Hy(R?).

The function ag DPUj (|8] < I1+2m—2) belongs to W2(IR?). This and relations (7.30) and Lemma 5.2
imply that
agDPU; € HX(R?) c H!_(R?), a>0.
Let 0 < a < 1; then, by virtue of the compactness of supports of functions Uj, we obtain an embedding
angB U; e H{(R?). Hence, as we can easily verify, the second inequality in Eq. (7.31) is valid. O

The following lemma shows that the set S'(K, ) is not closed in the topology of the space W!(K,~).

Lemma 7.3. Let condition 7.2 hold. Then there exists a family of functions f0 € SHK,~), § > 0,
such that supp f0 C O.(0) and f° converges to a function f° ¢ SYK,~) in W{(K,v) as 6 — 0.

Proof. 1. As was shown above, if a number Ay = i(1 — [ — 2m) is a regular eigenvalue of the operator
L()), then system (7.2), (7.3) is linearly dependent. The two cases are possible: (a) either system (7.2)
is linearly dependent, (b) or system (7.2) is linearly independent, but system (7.2), (7.3) is linearly
dependent.

2. First, we assume that system (7.2) is linearly dependent. Then the set of conditions (7.24) is not
empty. In this case, norm (7.28) contains the corresponding term || 74, f|| i (r2) for some j, o, and p;
we fix these values of j, o, and p. Without loss of generality, we assume that v;, corresponds to the axis
Oy, . Introduce functions f° = {0, f ]101M1} (0 <6 <1) such that f]lUl,ul = 0 for (j1,01,u1) # (J, 0, 1)
and

+2m—mjo,—1+8

fjau( ) ¢(y1)y1 )
where 1) € C5°([0,00)) and ¢(y1) =1 for 0 <y < &/2 and ¥(y1) = 0 for y; > 2¢/3. Obviously,

B2 (y) = P(r)ys T

jou
is an extension of the function f](m to R?. Moreover, the extension operator defined on functions f](m
(0 < § < 1) is a bounded operator from the space W!t2m="ou=1/2 (%U) to the space WH2m=—mjoun(R?),
This follows from the estimates Hf]‘-swHWHQ,,L,,,L].W,W( o) > c¢; and H®]O_M”Wl+2m Mion(r2) < C2- Here
c1,co > 0 are independent of 0 < 4§ < 1.
Thus, for 0 < § < 1 we have
0 —
Hf ||Wl (K,7) || jau”WH?m m; —1/2(%.6)’
a2 2 Dl+2m Mjop— 1‘136 2 (734)
1 Wty = 1 ol oms 2 (o) T 371 | g1 2y

(a direct calculation shows that norms (7.34) are finite for § > 0). Here the symbol “a~” means that the

corresponding norms are equivalent. Further, we verify directly that $? o @90 p 10 WhH2m=—mjou (R2)

as (5 — 0. Hence, fjcw jocm in WH2m=mjon=1/2(~, y as § — 0. However, the corresponding function

= {0, J(w} does not belong to S'(K,~). Indeed, let us assume the contrary. Then by Eq. (7.34)
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4+2m—m o, —1 4 e . 4+2m—mjo,—1 2
we have that Dler T en égw € H}(R?). This is invalid because the function DyT T en @90“

equals a nonzero constant near the origin.

3. Now we assume that system (7.2) is linearly independent. Then system (7.2), (7.3) is linearly
dependent. In this case, there are no conditions (7.24), but the set of conditions (7.27) is not empty.
Hence, norm (7.28) contains the corresponding term | Tj¢ f|| i (r2) for some j and §. We fix these

values of j and ¢ and introduce functions f° = {ffl,O} (0 <6 <1) such that j‘"j‘-s1 =0 for j; # j and
ff = p(r)ysr®. Tt can be directly verified that fJ‘-S — fjO in WY(R?) as § — 0, but f° = {fjo, jow} ¢
S'(K,~) since D5fjo ¢ HL(R?). O

7.3. Construction of a “solution” in the case of a regular eigenvalue of the operator E()\)
on the line Im A\ =1 — [ — 2m. Prove an analog of Lemma 7.1 in the case where condition 7.2 holds.

Lemma 7.4. Let condition 7.2 hold. Then there exists a bounded operator
A:{f €S (K,7) :supp f C 01(0)} = S*™(K)

such that for any f = {fj, fiou} € D(A), the function V = Af satisfies the following conditions:
V=0 forlyl =1,

12V = Fllag ey < ell Flsrgaen (7.35)
and inequality (7.5) holds.

Proof. 1. Similarly to the proof of Lemma 7.1, we consider the following algebraic system with respect
to all partial derivatives D*Wj, |o| =1 +2m —1,j=1,...,N:

~ l+2m—mjlo.lul—1

Bj’a’u’(D>W = DTj/U/ ‘pj’a’,u/y

/ ) (7.36)
DS Py(D)Wy = D* [y,

where ®;,/,, and f; are the extensions of the functions f;/5/,, and fj to R? described in the proof of
Lemma 7.1. Now the left-hand side of system (7.36) contains only operators from system (7.25). The
matrix of system (7.36) consists of (I + 2m)N columns and ¢ (¢ < (I + 2m)N) linearly independent
rows. Choose ¢ linearly independent columns and assume that the unknowns D*W; corresponding to
the remaining (I +2m)N — g columns are equal to zero; then we obtain the system of ¢ equations with
respect to ¢ variables, which has a unique solution. Thus, we define a linear bounded operator

(W @) 2 { D" by, D fy f o (DOW5) = {Wia} € (W R)EON. - (7.3)
Moreover, W, (y) = 0 for |y| > 2. Using the functions D*W; and operators (7.9), we obtain functions
Vj, j =1,...,N, satisfying relations (7.10) and (7.11). We show that the function V = (V1,...,Vy)
is as required.

2. Similarly to the proof of Lemma 7.1, we prove estimate (7.5) for all functions V. Prove inequal-
ity (7.35). Since {Wj,} is a solution of system (7.36) and the functions V; satisfy conditions (7.11),
we have

BAj/o_/M/(D)V - Dij/i?/nfmj/glmflq)jlo—lul c H&(RQ), (738)
DE (Pj(D)Vy — f;) € HE(R?). (7.39)
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Consider an arbitrary operator l;'jw(D), which does not belong to system (7.25). Using (7.23), we
have

5 +2m—mjo,—1
Bjou(D)V — Dz, Pjop
TSN Y AN +2m—ms_r,1—1
_ ) oM
= E BJ'UM (Bj’g/u/(D)V — DTj’a’ 3ol (I)j/a/#/)
3ol
sl H2m—mey g —1 I+2m—m s, —1
3o’
+ E ﬁjau D1y T @iy — Dy, oy (7.40)
3ol

However, f € S'(K,~); hence, conditions (7.24) hold. This and Egs. (7.38) and (7.40) imply that the
following relations hold for all 7, o, and u:

~

Bjo,(D)V — DE2 ey, e HY(R?). (7.41)

Tjg
We can similarly consider the operators D*P;j(D) that do not belong to system (7.25). Using rela-
tions (7.23) and (7.24), (7.26) and(7.27), and (7.38) and (7.39), we prove the relations

D(P;(D)V; — f;) € Hy(R?) (7.42)
for all j and &. Equations (7.41) and (7.42) and the proof of Lemma 7.1 yield estimate (7.35). O
Similarly to Corollary 7.1, we prove the following corollary of Lemma 7.4.

Corollary 7.2. The function V' constructed in Lemma 7.4 satisfies the inequality

[ fHHg(K) < C”f”gz(;w)- (7.43)
Consider a bounded operator £, : HH?™(K) — HL (K, ~) defined by the formula
‘CGU: {PJ(D)Ujv Bjo’u(D)U}v (744)

where H.H2™(K) and HL (K, ) are the spaces introduced in Sec. 5.3. The operator L, corresponds to
problem (6.16), (6.17) in weight spaces. It follows from [88, Theorem 2.1] that the operator £, has a
bounded inverse operator if and only if the line ImA = a + 1 — [ — 2m does not contain eigenvalues
of the operator E(/\) Using the invertibility of the operator £, and the following lemma, we obtain a
solution of problem (6.16), (6.17) in Sobolev spaces.

Lemma 7.5. Let W € H.F2™(K) for some a >0 and f = LW € HL(K,~). Assume that the closed
strip 1 =1 —2m < ImA < a+1—1—2m contains a unique eigenvalue Ao = i(1 —1—2m) of the
operator L(X) and this is a regular eigenvalue. Then

”Dl+2mWH’H8(K) < C||f”'H6(K,’Y) (7.45)

Lemma 7.5 will be proved in Sec. 7.4. Now we study the solvability of problems (6.16), (6.17)
and (6.12), (6.13).

Lemma 7.6. Let condition 7.2 hold. Then for any function f € SY(K,~) such that supp f C O.(0),
there exists a solution U of problem (6.16), (6.17) such that U € S™*2™(K9) for any d > 0 and the
following inequalities hold:

[U[yrvem (gay < CdHfHS‘l(Kﬁ)a (7.46)
1Ullptsms cay < <allflwire- (7.47)
Proof. 1. Fix a number a, 0 < a < 1, for which the line
1—-1-2m<ImA<a+1—-1-2m

does not contain eigenvalues of the operator £(\). The existence of such a number a follows from the
discontinuity of the spectrum of the operator £(\) (see Lemma 6.1). By the definition of the space

304



SY(K,7), relations (5.6) and (5.7) hold for functions f = {f;, fjou} that satisfy the conditions of the
lemma. Therefore, using Lemma 5.2, we have

£ llpet iy < Fall F ) (7.48)

Consider the function f — LV, where V = Af € WH2™(K) N HA2"(K) is a function defined in
Lemma 7.4. By inequalities (7.5) and (7.48), we see that

1 = LVl (1) < Rl Fllwe (s ) (7.49)

Hence, the function f — LV € H (K, ~) belongs to the domain of the operator £;'. Introducing the
notation W = L, 1(f — LV), we see that U = V + W is a solution of problem (6.16), (6.17).

2. Prove inequality (7.47). By virtue of the boundedness of the operator £;! and inequality (7.49),
we have

IW v ey < Rl v - (7.50)
Now estimate (7.47) follows from inequalities (7.50) and (7.5) and the boundedness of the embedding

HLF2(K) © 1P (K.
3. Prove (7.46). By virtue of the boundedness of the operator

A: S K, y) - W (K)
and inequality (7.50), it suffices to estimate the functions D!*?™IV. Lemma 7.4 implies that
=LV € Hy(K,7)

and estimate (7.35) holds. Hence, applying Lemma 7.5 to the function W = £;!(f — LV and using
Eq. (7.35), we obtain

D2 W (L ) < RallF = £V gt 1.0y < s 1l 511

Since HJ(K;) = La(Kj), inequality (7.46) is proved. O

7.4. Proof of Lemma 7.5. First, we assume that W € INI C5°(K;\{0}). Then f; € C§°(K;\{0})
=1

and fjo, € C3°(vjo), where f = {f;, fjon} = LW. Denote]z the functions W;(y) and f;(y) written in
the polar coordinates by Wj(w,r) and fj(w,r), respectively. We denote the Fourier transformations of
the functions Wj(w, e™), 2™ f;(w, e), and e™ox™ f;5,(e7) with respect to the variable 7 by Wj(w, A),
fj(w, \), and fjg“()\). Assume that f = {fj, fiou}. Then \ f(\) is a function analytic on the whole
complex plane; moreover, if | Re \| — oo in the strip |Im A| < const, then this function tends to zero
uniformly with respect to w and A and faster than any power of |\|.

By [88, Lemma 2.1], there exists a finitely meromorphic operator-valued function 7?,()\) such that
R(\) = (Z(A))_l for any number ), which is not an eigenvalue of the operator £(\). Moreover, if the
line ImA =a+1—1—2m does not contain eigenvalues of the operator /:'(/\), then, as was shown in
the proof of [88, Theorem 2.1], the solution W can be represented in the form

+oo+i(a+1—1—2m)
W(w,e™) = / MR F(N) d. (7.51)

—oo+i(a+1—1—2m)

Consider the derivative D"*2™1¥ (y) of order [ 4 2m of the function W with respect to the variables y;
and yo. Let us write the operator D™ in the polar coordinates as follows: r*(l+2m)M(w, Dy, rD,).
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After the substitution = €7, the operator D't2™ has the form e_(l“m)TM(w, Dy, D;), where D, =
—i%. It follows from Eq. (7.51) that the function D'*?™I¥ (y) can be obtained from the function
+oo+i(a+1—1—2m)
e~ (F2m) / e M (w, Dy, NVR(N) f(N) dA (7.52)
—oo+i(at+1—1—2m)
by the substitution 7 = Inr and the passage to Cartesian coordinates. Let us show that the operator-

valued function M (w, D,,, )\27%()\) is analytic near the point A\g = i(1 —1—2m). Since )¢ is a (regular)
eigenvalue of the operator £(\), by [23] we have the following:

. A
R(\) = o ;0

+I'(N),

where I'(\) is an analytic near \g operator-valued function and the image of the operator A_; coincides

with the span of eigenvectors corresponding to Ag. Hence, for any function f € W!-©,w] we have

the following:

M(w, Dw, )\)A,L}F
A= X

By the definition of regular eigenvalues, the function 72" 1A_,f is a vector Qly) =

(Q1(y),...,Qn(y)), where Q;(y) are polynomials of order [ 4+ 2m — 1 with respect to the variables y;
and yo. Hence,

M(w, D,, )\)A_lf = rl_l_zmM(w, D,, TDT)(THQm_lA_lf) = TDHQmQ(y) =0.

M (w, Dy, VRN f = + M(w, Dy, AT(A) f.

Thus, the operator-valued function M (w, Dy, \)R()) is analytic near A\g = i(1 — | — 2m) and, hence,
in the closed strip 1 — Il —2m <ImA <a+1-1—2m.

Further, for |Im A| < const, if |Re A\| = oo, then the norm HM(w,Dw,)\)ﬁ()\)sz[_w@]_)W()(_@@
does not increase faster than some power of |\ (see [88, Lemma 2.1]), while || f (Mlwi-zz) tends to
zero faster than any power of |\|. Hence, we can integrate Eq. (7.52) over the line ImA =1—1—2m
instead of Im A = a 4+ 1 — I — 2m. Thus, the function D"*?™¥ (y) can be obtained from the function

tooti(1—1—2m)
e~ (H+2m)r / ¢V N (w0, Doy VRN F(A) dA (7.53)
—oo+i(1—1—2m)

by the substitution 7 = Inr and the passage to the Cartesian coordinates. Estimate the norm of the
function D2mV:

HDZ+2mW”3-Lg(K) — Z / |Dl+2ij|2dy

jKj

Footi(l—I—2m) 2

wj +00
=> / dw / e~ 2+2m—1)r / e M (w, Doy, VRN F(N) dA| dr.
Jo—wy o —oo —oco+i(1~1-2m)
The following equality can be obtained from here and the complex analog of the Parseval inequality:
+ooti(1—1—2m)
1D Wy = [ I3 Do NROVFO) By (7.54)
—oo+i(1—1—2m)
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Estimate the norm in the integral on the right-hand side. For this, we introduce equivalent norms
depending on a parameter A\ # 0:

7 2 712 2k 177112
|‘|U]|’|Wk(—w]7w]) = HU]HWI‘?(—WJ7WJ) + ’)\’ ||Uj||L2(—wj,wj)7

[FHiE— <r||ﬁ|r|%w<_w].,w].> +> |A|2<l+2m—mw—”2>|fm|2> :

J O,k

By the interpolation inequality (see. [1, Chap. 1])
R il [ 71 o

< el ||T;l[yyr2m 0<k<l+2m,

—wj,wj) (—wj,wj)s

and [88, Lemma 2.1], there exists a constant C' > 0 such that the following estimate holds for any
A € C satisfying the conditions ImA =1 —1 —2m and |Re | > C:

I (@, Doy VROV oy < il FON - (7.55)
Since the operator-valued function
M (w, Dy, NYR(A) : W-w,®] = W (—w,w)
is analytic in the interval {A € C: Im A =1—1—2m, |Re\| < C}, we see that inequality (7.55) holds
on the whole line Im A = 1 — [ — 2m. Equations (7.54) and (7.55) yield the inequality
+oo+i(1—1—2m)
1D W B <k [ OB agah
—oo+i(1—1—2m)

Estimate (7.45) follows from here and [53, (1.9), (1.10)]. Since the set C§°(K; \ {0}) is dense in
H¥(K;) for any a and k, we see that estimate (7.45) holds for W € H.M2™(K) and f € HY (K, 7).

CHAPTER 3

STRONG SOLUTIONS OF NONLOCAL ELLIPTIC PROBLEMS
IN BOUNDED DOMAINS IN SOBOLEV SPACES

8. Absence of Eigenvalues of the Operator £()\) on the Line InA=1—1—2m

In this section, we use results of Sec. 7.1 (see Chap. 2) for the construction of a right regularizer for
the operator

L={P,B), +Bj,+ B }: W""(G) - W (G,0G)

(see Sec. 6.1, Chap. 2), corresponding to problem (6.7), (6.8) in Sobolev spaces. It follows from the
existence of a right regularizer that the operator L is closed and its co-kernel is finite-dimensional. To
prove the fact that the kernel of the operator L has a finite dimension, we reduce the operator L to
an operator acting in weight spaces and having a finite-dimensional kernel.

Introduce the notation B* = {Bf#}iw k=0,...,2;,B=B"+B!' + B2 C =B’ + B! In addition
to the operator L = {P, B}), we consider the following bounded operators:

L’ = {P, B} : W*¥(GQ) - WY@, 8G),
L' = {P, C}: W'™(G@) - WG, dG).

First, we study the operator L! (i.e., we assume that B?M = 0); then we study the operator L in
the general case Bfu # 0. In this section, we assume that condition 7.1 holds.
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8.1. Construction of a right regularizer in the case where B%# = 0. Here we consider the
case B?H =0, i.e., we assume that the support of nonlocal terms is located near the set K.

Assume that 6 = £¢/dy, where gy determines the diameter of the support of the function ¢ (see
Eq. (6.4)), from the definition of nonlocal operators leu’ and the number d; is defined in Eq. (6.15).
Consider functions 9, ¢ € C§°(R?) such that 0 < ,& < 1, ¢(y) = 1 for y € O5(K), supp 1y C O5(K);
€(y) = 1 for y € Oz(K), supp& C Ous(K).

Lemma 8.1. Let condition 7.1 hold. Then for any sufficiently small eg > 0, there exist bounded
operators
Ri : SYG,0G) = S2™(G), My, Sk : SY(G,0G) — SY(G,0G),
such that
L'Rf =¢f +Mgf + Sk f, (8.1)
IMk|| < cigo, ||Sk|| < c2, and the squared operator Sk is compact; moreover, the operator Sk can

be represented in the form Sx = Uk + Fx, where ||Uk|| < ¢3, and the operator Fi is compact; the
constants c1, co,cs > 0 are independent of eg.

Proof. Let us perform the change of variables y — 3’ described in Sec. 6.1 in a neighborhood of the
set K and denote 3/ by y. We also denote the functions v, £, and f written in the new coordinates by
the same symbols.

By Lemma 7.1, we see that 1 f — LA f) € HL(K,v). Hence,

Lo (W f = LA(YS)) € HGH™ (K),
where Lo : H5™™(K) — HL(K,~) is an operator defined in Eq. (7.44) for a = 0. Assume that

Ricf =¢U, U=Ly (0f — LAWS)) + A@S).

Let us show that the operator Ry is as required. Using the boundedness of the embedding op-
erator HLPM(K) € W2 (K) defined on compactly supported functions, inequality (7.4), and the
boundedness of the operator A, we see that the operator Ry is bounded.

Prove relation (8.1). Since P;(D)U; = ¢ f; and &Y fj = ¢ f;, we have

where [, -] denotes the commutator. This and Lemma 1.1 imply that
PRy f — ¢ fo = (Mo +T0)/f, (8.3)

where the operator My is “small” (i.e., |[Mo| < kigo), the operator Ty : SY(G,0G) — WYG) is
compact, and ki, ks, ... > 0 are independent of &g.
Taking into account the fact that Bjs, (D)U = 1 fjo, and £ fiou = 1 fjou, we obtain

Bjou(y, D)(EU) = ¥ fjon = Biou(y, D), EJU + &(y) (Bjou(y, D) — Bjou(D))U. (84)
Let B(y) be an arbitrary coefficient of the operator Bjsuks(y, D), (k,s) # (4,0). By Eq. (6.14),
according to the choice of the function v, we have
B(Gjorsy) =0 for |yl > eo/Xjoks
§(Gjorsy) = &(y) =1 for |y| < eo/Xjoks-

Thus, for any function v, we have

(BvE)(Gjoksy) = £(y)(B)(Gjorsy)- (8.5)

Obviously, if (k,s) = (5,0), then Eq. (8.5) also holds. Hence, the commutator on the right-hand side
of formula (8.4) does not contain higher derivatives; this means that it is a compact operator. Minor
derivatives from the second term of the right-hand side of formula (8.4) also form a compact operator.
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Consider an arbitrary term containing a higher derivative of order o, |a| = mjqy, as (k, s) # (4,0); it
has the form

£W) (C(Ciorsy)b(Gjorsy) — b(0)) (D U)(Gioksy) ;.
= g(y)C(Gjaksy) (b(Gijsy) - b(O)) (DaU)(Gjaksy) |'ch7
+ &) (C(Giorsy) — 1)b(0)(DU)(Gjorsy),0s  (86)

where b(y) is an infinitely smooth function. Using Lemma 1.1, we can represent the first difference
on the right-hand side of Eq. (8.6) as the sum of “small” and compact operators. Moreover, if
(k,s) = (7,0), then there is no second differences on the right-hand side of Eq. (8.6). Thus,

(B'(L),u + le,u)R/Cf - T/wa = (Mzu + T%u =+ Siu)f7 (87)

where ||M;,|| < koeo, the operator T, is compact, and the operator Sj, consists of terms that have
the following form in the coordinates 3/’

Sionf =W (C(Gjorsy) — 1)bO)DU)(Gjorsy )0, (K, 5) # (4, 0).
Let S = {0, S;,}. The representation of the operator S in the form of
S=Ux+F,

where ||Ux|| < k3, and the operator F is compact, follows from Lemma 1.1. Let us prove that the
squared operator {0, Sj,,} : WH(K,v) — W!(K,~) is compact.
Introduce the notation

O = {0g, Pjou} = {0, Sjonf}, V =Ly (P — LAWD)) + A(D).

Since the function ¢ has a compact support and is equal to 1 near the origin, we see that the support
of the function ((Gjsksy’) — 1 is bounded and separated from the origin. Hence, using [57, Chap. 2,
Theorem 4.3] (about an a priori estimate of solutions of elliptic equations) and taking into account
the fact that P;(D)V; = ¢®g = 0, we obtain the inequality

||Sjo—u@||Wl+2m7mjo.ufl/2(’yja) < k4||VkHWl+2m*1(Qk)v (8.8)

where Q. are bounded domains such that Q, C K. Equation (8.8) and the compactness of the
embedding W2 (Q,) ¢ WH2m=1(Q,.) imply that the operator {0, Sj,,}? is compact. This means
that the operator S? = {0, Siu}Q is also compact. The statement of the lemma with operators My =
{My, M.}, Sk = {To, T} + S, and Fic = {To, T;, } + F follows from here and Egs. (8.3) and (8.7). [

Lemma 8.2. Let condition 7.1 hold. Then for sufficiently small €y, there exist a bounded operator
R : SY(G,0G) — S?™(G) and a compact operator Ty : SHG, 0G) — SHG,G) such that

L'R; =1; + Ty, (8.9)
where 1y is the identity operator in S'(G,0G).

Proof. 1. According to the general theory of elliptic boundary-value problems in domains with a
smooth boundary (see, e.g., [108]), there exist a bounded operator

Ry : WH(G,0G) — {u e WH2™(@) : suppu C G\ Os/2(K)} C Sate)
and a compact operator Tg : W{(G,0G) — W!(G, 0G) such that
L'Ro(1 = 9)f = (1= ¢)f + Tof. (8.10)

For any f € SYG,0G), let R,f = Ri(¥f) + Ro(1 — ) f, where Ry is the operator defined in
Lemma 8.1. Then by virtue of Lemma 8.1 and Eq. (8.10), we have

L'Rif = f+Mxf + (S + To)f + {0,B'R°(1 — ) f}. (8.11)

309



Since the embedding supp Ro(1 —%)f C G\ O, (K) is valid, from the definition of the operator B! we

obtain B'Rg(1 — v)f = 0. Then Eq. (8.11) and Lemma 1.2 imply that L'R, : SY(G,0G) — SY(G, 9G)

is a Fredholm operator and, therefore, it has a right regularizer, i.e., there exist a bounded operator

R/ : SY(G,0G) — SYG,0G) and a compact operator T; : SY(G,0G) — SYG, OG) such that
L1R1R/1 =1, + Ty,

where I; is the identity operator in the space S'(G,0G). Denoting Ry = filR’l, we complete the
proof. O

8.2. Construction of a right regularizer in the case where B%u # 0. Here we assume that
the number ¢ is fixed and consider the operator L in the case where B?N # 0. In other words, we
assume that the support of nonlocal terms is located not only near the set K but also outside it.

Let & and 1 be functions defined before Lemma 8.1; now we assume that 6 > 0 is arbitrary (in
particular, it is independent of g¢).

To construct a right regularizer for the operator L, we need a “right regularizer” R for the operator
L', which is defined on functions f' = {f;,} € Si+2m_m_1/2(8G)) and for which the diameter of the
support of the function Rj-f’, which is located near the set Ky, can be made arbitrary small.

Lemma 8.3. Let condition 7.1 hold. Then for any §, 0 < § < 1, there exist bounded operators
R} : SF2m—m—1/2(5G) = SH2(@G), M., T : SF2m—m-1/2(HG) — SYG, HG)
such that
L'Ricf" = ¢{0, f'} + Micf' + Ti. f', (8.12)
where | M| < ¢d, the operator T is compact, and ¢ > 0 is independent of 6.

Proof. Let us perform the change of variables y — ¢’ from Sec. 6.1 in a neighborhood of the set K
and denote y' by y. We denote the functions 1, £, and f’ written in the new coordinates by the same

symbols.
Let f = (0, f') € S(G,0G). By virtue of Lemma 7.1, we see that 1 f — LAY f) € HL(K, 7). Hence,

Lot (0f = LA(S)) € Mg (),
where Lo : H5™(K) — H4(K,7) is the operator defined in Eq. (7.44) for a = 0. Let
Ricf' =¢U, U=Li'(0f = LAWS)) + AWS).

We show that the operator R} is as required. Using the boundedness of the embedding oper-

ator HLPP™(K) € WH?M(K) defined on compactly supported functions, inequality (7.4), and the
boundedness of the operator A, we obtain that the operator Rj- is bounded.
Prove relation (8.12). Similarly to the proof of Lemma 8.1, we have

P;(y, D)(&U;) = [P;(y, D), &]U; + £(y) (P (y, D) — P;(D)) Uy, (8.13)
Bjcru(ya D)(§U) - wfjau = [Bjo,u(ya D)a f]U + f(y) (Bjou(ya D) - Bjou(D))U' (8'14)
Equation (8.13) and Lemma 1.1 yield the equality
PR f = (M, +T})f, (8.15)
where the operator M} is “small” (i.e., | M| < k16), the operator Ty : S“2m—m=1/2(9G) — WHG)
is compact, and k1, kg, ... > 0 are independent of 4.

The commutator on the right-hand side of (8.4) contains minor derivatives of the function U and
operators of the form

Uk = Jjauks = (‘S(gjaksy) - E(y)) (Bjauks(yv D)Uk) (gjaksy) |'Yja, (ka S) 7é (]a 0)' (8'16)

Since the function £ has a compact support and is equal to 1 near the origin, we see that the support of
the function £(Gjsksy) —&(y) is bounded and separated from the origin. Therefore, using [57, Chap. 2,
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Theorem 4.3] (on a priori estimates of solutions of elliptic equations) and taking into account the
relation P;(D)U; = 0, we obtain the inequality

H Jja’yks ||Wl+2mfm‘jo.ufl/2(,ng) < ko HUk le+2m—1(Qk), (8.17)

where @}, is a bounded domain such that Qr C K. Equation (8.17) and the compactness of the
embedding W'*2™(Qy) ¢ W2m=1(Q,.) imply that operator (8.16) is compact. This means that the
commutator in (8.4) is also compact.

Minor derivatives from the second term on the right-hand side of formula (8.4) also form a compact
operator. Consider an arbitrary term containing a higher derivative of order o, |a| = mjs,, as
(k,s) # (4,0); it has the following form:

E(y) (C(Gioksy)b(Gjorsy) — b(0)) (D U)(Gjoksy)|vys
= £(Y)C(Giorsy) (0(Gjorsy) — b(0)) (D U) (G joksy) |y,
+ &) (C(Gjorsy) — )bO)DU)(Gjoksy)lny, - (8.18)
Using Lemma 1.1, we can represent the first difference on the right-hand side in Eq. (8.18) as the sum

of “small” and compact operators. Moreover, if (k,s) = (j,0), then there is no second difference on
the right-hand side on Eq. (8.18). Thus,

(B?,u + le,u) ;Cf/ - T/ff/ = (Mz/,u + ,I‘i/u + Sz(u)f/7 (819)

where || M],[| < k3d, the operator T}, is compact, and the operator S;, consists of terms that can be
written in the following form in the coordinates 3':

S_;'ap,f/ = f(y/) (C(Gjaksyl) - 1)b(0)(DaUk)(Gj0ksy/)”Yja'

Since the function ¢ has a compact support and is equal to 1 near the origin, we see that the
support of the function ((Gjsksy’) — 1 is bounded and is separated from the origin. Using [57, Chap. 2,
Theorem 4.3] (on a priori estimates of solutions of elliptic equations) again and taking into account
the fact that P;(D)U; = 0, we obtain the inequality

[ ;’qu/HWl+2m_ij“_l/2('7ja) < k3HUkHWl+2m*1(Qk)v (8.20)

where () are bounded domains such that CTJ C Kj. Equation (8.20) and the compactness of the
embedding W*+?m(Q,) ¢ W*2m=1(Q;) imply that the operator Sé’ou is compact. This means that

the operator S}, is compact. From here and Egs. (8.15) and (8.19), we obtain the statement of the
lemma. O

Consider a ¢ /2-neighborhood Os/5(g) of every point g € dG\Oa5(K). All these neighborhoods with
the set O5(K) form a covering dG. Let us choose a finite sub-covering O25(K), Os/2(g5), 7 = 1,...,J,
J = J(9), of the boundary 0G. Let 9, w;- € C°(R?), j =1,...,J, be a partition of unit subordinated
to this covering (we assume that the function ¢ from Lemma 8.3 coincides with the function 1 from
this partition of unit).

According to the general theory of elliptic boundary-value problems in domains with smooth bound-
aries (see, e.g., [108]), there exist bounded operators

05+ {f € W =2(9G), supp f C Ogpa(g5)} = {u € WH™(G) : suppu C Os(g5)}
and compact operators
0; L e WHEm=m=12(9G) s supp f € Op/9(g5)} — {f € WH(G,0G) : supp f C Os(g;)}
such that
LORE)jf, - {Oa f,} + T6jf/-
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For any function f’ € SI*2m—m-1/2(9@3), we assume that

J
V=R + > Ry (Wi f). (8.21)

j=1
Similarly to the proof of Lemma 8.2 (applying Lemma 8.3 instead of Lemma 8.1), we can show that
L'Rif = {0, '} + My f/ + T, f, (8.22)

where M, T : SIT2m—m-1/2(9G) — SYG,G) are bounded operators such that ||M}| < ¢d, where
¢ > 0 is independent of ¢, and the operator T’ is compact.
Using the operators Ry (see Lemma 8.2) and R (see (8.21)), we construct a right regularizer for
the operator L in the case where BZZM #0.
Let us introduce the set
SL(G,0G) = {f € S{(G,0G) : ® =B?R,f and B’R,® belong S m-125G)}.

The Sobolev embedding theorem and the Riesz theorem on the general form of a linear continu-
ous functional in a Hilbert space imply that SfB(G, 0G) is a closed finite-dimensional subspace in
WHG,dG). Obviously, SL(G,0G) C SY(G,G).

Lemma 8.4. Let condition 7.1 hold. Then there exist a bounded operator
R : WG, 0G) - W (@)
and a compact operator T : W'(G,0G) — WG, 0G) such that
LR=I+T, (8.23)
where I is the identity operator in W' (G, 0G).

Proof. 1. Let ® = B2Ryf, where f = {fo, f'} € SL(G,0G). Then, by the definition of the space
Sg(G,@G), the functions ® and B?R/® belong to the domain of the operator R}. Hence we can
introduce a bounded operator Rs : SL(G,0G) — W!T2™(@Q) by the formula

Rsf =R;f — R|® + R|B°R/ .

We show that the operator Rgs is the inverse operator for L with accuracy up to the sum of small
and compact perturbations. For simplicity, we denote different operators (acting in the corresponding
spaces) whose norms do not exceed ¢d by the same letter M. Similarly, we denote different compact
operators by the same letter T

By Egs. (8.9) and (8.22), we have

PRsf = PR, f — PR/ (® — B’R/®)
= fo+Tfo— M(®—B>R,®) — T(® — B*R,®) = fo+ Mf+Tf, (8.24)

CRsf = CR,f — CR,® + CR/B’R|®
= (f'+Tf") ~ (®+ M +T®) + (B°R)® + MB’R® + TB’R/ )
=f - ®+B™RI®+ Mf+Tf. (825)

Applying the operator B? to the function Rsf, we obtain the equality

B’Rsf = ® — B’R}® + B’R|B’R/|®. (8.26)
Adding Eqs. (8.25) and (8.26), we obtain the inequality
BRsf = f'+ Mf+Tf+B*R|B*R/ . (8.27)
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Let us show that
B’R|B’R/® =0 (8.28)

for sufficiently small 6 = §(s¢1, 522, p), where 51, 329, and p are constants from condition 6.4. Note that
0 is independent of &g.

By (8.21), we have supp R|® C G\ Gys. Let § be so small that 46 < p. Then Eq. (6.6) implies that
supp B?R}® C O,,,(K).

Further, let 6 be small that 4§ < 51 and s + 3§/2 < 3¢1. Then, applying (8.21) again, we see that
supp Ry B2R/® C O, (K). This relation and Eq. (6.5) yield Eq. (8.28).

It follows from Egs. (8.24), (8.27), and (8.28) that

LRs=1s+M+T,

where Is, M, T : S4(G,0G) — WG, 0G) are bounded operators such that Isf = f, | M| < ¢6 (¢ > 0
are independent of ¢), and the operator 7" is compact.

3. Since the subspace SL(G, dG) is finite-dimensional in W!(G, 9G), we see that Is is a Fredholm
operator. Hence, by [56, Theorems 16.2, 16.4], Is + M + T is also a Fredholm operator for sufficiently
small §. Now it follows from [56, Theorem 15.2] that there exist a bounded operator R and a compact
operator T such that they act from W!(G,0G) to SL(G,0G) and to W!(G, dG), respectively, and

(Is + M + T)R =1+ T. Denoting R = RsR : WG, 0G) — WH2™(@), we obtain Eq. (8.23). [

8.3. Fredholm solvability of nonlocal problems. Here we prove the following result on the
solvability of problem (6.7), (6.8) in bounded domains in Sobolev spaces.

Theorem 8.1. Let condition 7.1 hold. Then L : W'*2™(G) — WYG,0G) is a Fredholm operator
and ind L = ind L.
Conversely, let L : WH2m(G) — WYG, 0G) be a Fredholm operator. Then condition 7.1 holds.

Below, we show that if condition 7.1 is violated, then the image of the operator L is not closed (see
Lemma 8.7). This statement, Theorem 8.1, and [56, Theorem 7.1] yield the following result.

Corollary 8.1. Condition 7.1 is necessary and sufficient for the fulfillment of the following a prior:
estimate:

lullwesan ey < e (ILullwig.ac) + lullne))
where ¢ > 0 is independent of u.

8.3.1.  Proof of Theorem 8.1. Sufficiency. Let us show that the kernel of the operator L is finite-
dimensional. For this, we consider problem (6.7), (6.8) in weight spaces.
Introduce the operator

L, = {P, B} : H'™>™(G) —» H\(G,0G), a>1+2m—1,

which corresponds to Problem (6.7), (6.8) in weight spaces. Note that, by Eq. (6.5) and Lemma 5.3,
for a > [ 4+ 2m — 1, we have

BZZMU c Wl+2m_mi“_1/2(ri) C Hé+2m—miu—1/2(ri)

for any function u € HF?™(G) ¢ WH2m(G \ O,,,(K)). Since the functions B?uu and Blluu belong to

Hé+2m—Miu—1/2 (T';), we see that the operator L, is well defined.

Thus, the operators L and L, correspond to the same nonlocal problem (6.7), (6.8), which is
considered in Sobolev spaces and in weight spaces respectively.

Lemma 8.5. The kernel of the operator L is finite-dimensional.
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Proof. Lemma 6.1 and [89, Theorem 3.2]* imply that L, is a Fredholm operator for almost all a >
l4+2m — 1. Let us fix a > [ + 2m — 1 for which L, is a Fredholm operator. By Lemma 5.2, we have
WH2m(G) ¢ HF?™(G); hence, ker L C ker L,. Since ker L, is finite-dimensional for the chosen a, we
see that ker L is also finite-dimensional. O

Remark 8.1. Emphasize that the kernel of the operator L is finite-dimensional independently of the
location of eigenvalues of the operator L(\).

By virtue of [56, Theorem 15.2] and Lemma 8.4, the image of the operator L is closed and has a
finite codimension. This and Lemma 8.5 imply that L is a Fredholm operator.

We show that ind L = ind L!. Introduce an operator
Liu = {Pu, Cu+ (1 — t)B%u}.

Obviously, Lo = L and L; = L!.
As was proved above, the operators L; are Fredholm operators for all ¢t. Further, for all ¢g and t,
the following estimate holds:

[Liu — Legulwicoc) < kiolt — tol - [[ullwrrem gy,

where k¢, > 0 is independent of ¢. Hence, by [56, Theorem 16.2], we have ind L; = ind L, for all ¢ from
a sufficiently small neighborhood of the point ty. Since tg is arbitrary, we see that these neighborhoods
cover the interval [0, 1]. Choosing a finite subcovering, we obtain

indL = indLy = ind L; = ind L.

The sufficiency of condition 7.1 in Theorem 8.1 is proved.

8.3.2.  Proof of Theorem 8.1. Necessity. Let d = d(p) = 2d20, where ds is defined in (6.15).

Lemma 8.6. Let the image of the operator L be closed. Then for all sufficiently small o > 0 and
U € WH2m(K9) | the following estimate holds:

N
||UHW1+2m(K@) <c HEUHWZ(KQQ,A/?@) + Z HPJ(D)UJ‘”WZ(KJd) + ||U”Wl+2m*1(Kd) : (8.29)
j=1

Proof. 1. Since the image of the operator L is closed, it follows from Lemma 8.5, the compactness of
the embedding operator W*2™(G) c W*+2m=1(G), and [56, Theorem 7.1] that
lullwesan ) < e (ILulwig.ae + i) (8.30)

Let us substitute in Eq. (8.30) a function u € W*2™ (@) such that suppu C O9,(K), 20 < min{eg, 51 }.
By virtue of Eq. (6.5) we have that B2y = 0 for such a function u. Hence, using [57, Chap. 2,
Lemma 3.2], we obtain the estimate

[Ulhwsznry < € (160w + 10 htsn-r) ) (8:31)

which is valid for U € W!*2™(K) such that supp U C 0,(0), where g is sufficiently small.
2. Now we omit the restriction suppU C O,(0) and show that estimate (8.29) holds for any
function U € WH2m(K?).

“Theorem 3.2 in [89] is formulated for the case where the operators B7, have the same form as in Sec. 6.2 (see Chap. 2).
However, the proof of [89, Theorem 3.2] is based on inequalities (6.5) and (6.6) and is independent of the explicit form
of the operators B}, (see also [41]).
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Let us introduce a function 1 € C§°(R?) such that ¢(y) = 1 for |y| < o, supptp C Os,(0) and
1 is independent of the polar angle w. Applying inequality (8.31) and the Leibnitz formula to the
functions U € W!*?m(K4), we obtain the inequality

10 llwsere ey < N0 lhwrangiey < ki (@Dl iy + 10U sy

<k [10LU ey + D D I iouksllypirzm—mjpn-1/2
j,O’,N (k,S)#(],O)

(1) + ||U||Wl+2m—l(K29) , (8.32)

where
Jiouks = (V(Gjorsy) — (1)) (Bjouks(D)Uk) (Giorsy) ‘wa'
Similarly to Eq. (8.17), we obtain the inequality

1 jopukslym—mjo =12,y < k4(”Pk(D)Uk||Wl({d19/2<|y|<2d2g})

+HUk:”Wl+2m*1({dlg/2<|y\<2dzg})>' (8.33)
Now estimate (8.29) follows from (8.32) and (8.33). O

Lemma 8.7. Assume that there exists an eigenvalue of the operator Z()\) lying on the line Im\ =
1 —1—2m. Then the image of the operator L is not closed.

Proof. 1. Assume that the image of the operator L is closed. The following two cases are possible:
(a) either the line Im A = 1 — 1 — 2m contains an irregular eigenvalue, (b) or the line InA =1—1—2m
contains only a regular eigenvalue Ao = i(1 — [ — 2m) (see Definition 7.1).

2. First, we assume that there is an irregular eigenvalue A = A\g at the line. Let us show that
estimate (8.29) is violated in this case. Let us denote an eigenvector and adjoint vectors (a Jordan
chain of the length s > 1), corresponding to the eigenvalue Ao (see [23]) by ¢ (w), ..., D (w).
The vectors ¢¥)(w) belong to W™ (—%, @), and, by [26, Lemma 2.1], we have

Lvk =o, (8.34)

where
k

, 1
Vk = pido Z ;(z Inr)be®=)(w), k=0,...,2—1.
s=0
Since \g is an irregular eigenvalue, we see that the function V*(y) is not a vector-valued polynomial
for some k > 0. For simplicity, assume that V0 = 72040 () is not a vector-valued polynomial (the
case k > 0 is similar).
Introduce a sequence U° = rV9/ ||T6VOHWZ+2m( Koy For any § > 0, the denominator is finite, but

||T5VO||Wz+zm(Kg) — 00 as § — 0 since V0 is not a vector-valued polynomial. However,
||T6VO|lwl+2m—1(Kd) <eg,

where ¢ > 0 is independent of § > 0; hence,

U llyyis2m-1(gay = 0 as & — 0. (8.35)
Moreover, from relation (8.34) we have
T6Pj(D)VO + Z pjaﬁDaré . DB‘/JO Z pjaﬁDaré . Dﬁ‘/}O
|al+]8]=2m,|a|>1 laf+[8]=2m,|a|>1
P;(D)U° = = ,
’ 170V O [ ypi2m ey 170V O [ 2 oy

where pj,3 are some complex constants. Hence,

IDSPHDIU?| < ejedr' 0 10V O yriam ey, 1€l < L,
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and we obtain the relation

IP;(DYU° |l (cay =0 as & — 0. (8.36)
J
Similarly, using (8.34), we can prove that
6
||Bjau(D)U |'on‘|Wl+2m7m]voufl/2(’7]2.5) —0 as d—0. (837)

To prove Eq. (8.37), we additionally need to estimate the relation

> NOGaks = D (Biouks (4, D)VO) (Giansy) byyo llyre2m—mjo,-1/2
(k,8)#(3,0)

2
'ng)

)

HT"SVOHWHM(KQ)

which converges to zero as 6 — 0 (according to inequality | X? oks — 1| < k6d).

However, statements (8.35)—(8.37) contradict estimate (8.29) since HU‘sHWH-Zm(Kg) =1.

3. It remains to prove the case where the line Im A = 1 — [ — 2m contains only a regular eigenvalue
Ao = i(1 — 1 — 2m) of the operator £()). In this case, we cannot repeat the above reasonings since V°
is a vector-valued polynomial and the norms ][T5V0HW1+zm( ko) are homogeneously bounded as § — 0.

We use the results from Sec. 7.3 (see Chap. 2). According to Lemma 7.3, there exists a sequence
fo e Sl(K,v), § > 0, such that supp f0 C 0,(0) and f® converges to the function fO ¢ SZ(K, v) as
§ — 0 in W{(K,~). By Lemma 7.6, for every function f°, there exists a function U € W!T2m(K?)
such that

LU = f9, (8.38)
U lyyiezmr ey < ell £ iy (8.39)

(c > 0 is independent of &) and U? satisfies relations (7.30). Inequalities (8.29) and (8.39), rela-
tion (8.38), and the convergence of f° in the space W' (K, ~) imply that the sequence U? is a Cauchy
sequence in W!T2™(K¢). Hence, the sequence U° converges in W/*?™(K?) as § — 0 to some func-
tion U. Moreover, the limit function U also satisfies relations (7.30). According to the boundedness
of the operator

L Wl+2m(Kg) N Wl(szIQ, ,Yleg)’
the following equality holds:
LU=f" as y € Oy,(0).
Consider a function ¢ € C§°(R?) such that 1 (y) = 1 for |y| < d?p and supp ) C Oy42,(0). Obviously,
YU € W (K), U satisfies relations (7.30), and supp £(¥U) C Oaq,,(0). Hence,

L@U) =0+ f,
where f € W!(K,~) and the support f is compact and is separated from the origin. Hence, the function
YO+ f, as well as f°, does not belong to S'(K, ). However, this contradicts Lemma, 7.2. O

Now the necessity of condition 7.1 of Theorem 8.1 follows from Lemma 8.7.

9. Nonlocal Problems in Weight Spaces with a Small Weight Index
9.1. Statement of the main result. In Sec. 8.3, we introduced the operator
L, = {P, B} : H'™™"(G) — H\(G,0G), a>1+2m —1. (9.1)

As was stated above, by virtue of Lemma 6.1 and [89, Theorem 3.2], L, is a Fredholm operator for
almost all a > 1 4 2m — 1.

Here, we study problem (6.7), (6.8) in weight spaces with weight index a > 0. As earlier, in this case,
B} u € Wit2m=mi=1/2(D}) for all u € H-2™(G) ¢ WH2™(G\ O,,, (K)). However, now the function
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B%”u may not belong to the space Hé+2m_mi“_l/2(l“i). Then the operator L, defined in Eq. (9.1) is
not well defined.

Let us introduce the set
sirm(@) = {u € H?™(@) : functions BZZHU satisfy conditions (5.5)} :
Using Eq. (6.5), we obtain the inequality
HB?Mu|lwl+2m*miu*1/2(l"i) < k1|\u||wz+2m(g\m) < kz”UHHgﬁzm(G)

for all w € H-F?™(G). This, the Sobolev inequality, and the Riesz theorem on the general form of
linear continuous functionals in a Hilbert space imply that Sit2™(G) is a closed finite-dimensional
subspace in H.F2™(@G).

On the other hand, by Lemma 5.2, we have B%”u € Hé”m_mi“_lm(f‘i) for any function u €

SH2m (@), a > 0. Since the functions B?Mu and B}Mu belong to the space H(l1+2m_mi"_1/2(Fi) for all

a € R and u € S52™(@G) (and even for v € HF?™(Q)), we see that
{Pu, Bu} € H.(G,0G) Yu e S72™(@), a>0.

Thus, there exists a finite-dimensional space R (G, dG) (contained in {0} x HHiTQm_m”‘_l/ 2(1}),
a’ > 1+ 2m — 1) such that v

{Pu, Bu} € H.(G,0G) + RL(G,0G) Yuec HF*™G), a>0.
Hence we can define a bounded operator

L, = {P, B} : H"™(G) — H.(G,0G) + RL(G,0G), a>0.
Obviously, we can assume that R! (G, 0G) = {0} for a > [ +2m — 1.

Theorem 9.1. Let a > 0, and let the line ImA = a + 1 — 1 — 2m not contain eigenvalues of the
operator L(N\). Then L, : H?™(G) — H!(G,0G) + RL(G,0G) is a Fredholm operator.
Conversely, let L, : H?™(G) — H.(G,0G) + RL(G,0G) be a Fredholm operator. Then the line

ImA=a+1-1-2m does not contain eigenvalues of the operator E()\)
Note that if f € H.(G,dG), then

£l (c.00)+rL (c0c) = 1l c06)-

This relation, Theorem 9.1, and the Riesz theorem on the general form of linear continuous functionals
in a Hilbert space yield the following result.

Corollary 9.1. Let a > 0, and let the line ImA = a + 1 —1 — 2m not contain eigenvalues of the
operator L(X\). Then there exist functions f4 € H.(G,0G), ¢ =1,...,q, such that if the right-hand
side f of problem (6.7), (6.8) belongs to H'(G,0G) and

(fﬂfq)’}-[fl(G78G) :0’ q:]-u"'vqla
then problem (6.7), (6.8) has a solution u € H 2™ (Q).

Corollary 9.1 shows that the inclusion v € H!T2™(G), generally speaking, does not yield the in-
clusion L,u € HL(G,0G) for 0 < a < 1+ 2m — 1; however, if we impose a finite number of orthog-
onality conditions on the right-hand side f € H.(G,dG), then problem (6.7), (6.8) has a solution
u € HF2m(G).

9.2. Proof of the main result.
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9.2.1.  Proof of Theorem 9.1. Sufficiency.
Lemma 9.1. The kernel of the operator L, is finite-dimensional.

Proof. Since H.F?™(G) C Hime(G) for a < a’, we see that the proof of this lemma is similar to the
proof of Lemma 8.5. O

Now we pass to the construction of a right regularizer for the operator L.

As was noted above, the functions Bguu and Biluu belong to Hé+2m_mi“_1/2(Fi) for allu € HF2™(@Q)

and a € R. Hence, we can define a bounded operator
L. ={P, C}: HF™(G) - H (G, 0G).
It is proved in [89, Sec. 3] that there exist a bounded operator

R, : HL(G,0G) — HP™(G)
and a compact operator

T, : H.(G,0G) — H.(G,0G)
such that

LR, =1, + T, (9.2)

where I, is the identity operator in H (G, 0G).

Let us formulate an analog of Lemma 8.3 in wight spaces.

Let & and 1 be the functions defined before Lemma 8.1, but now we assume that § > 0 is arbitrary
(in particular, it is independent of ¢y).

Lemma 9.2. Let the line In X\ = a+ 1 — [ — 2m not contain eigenvalues of the operator L()\). Then
for any 6, 0 < § < 1, there exist bounded operators
R« Hy 2R V2(0G) — HPMG),
oic T He 2 12(0G) — H, (G, 0G),

such that [|[ M, x| < cd, where ¢ > 0 is independent of &, the operator Ty, \ is compact, and

LR, o f = {0, f'} + M o f + Thic f.

Proof. 1t follows from [88, Theorem 2.1] that the operator £, defined in (7.44) has a bounded inverse
operator. Let

R, cf =¢&U, U=L ({0, '}),
where ¢ and v are the same functions as in the proof of Lemma 8.3. The further proof is similar to
the proof of Lemma 8.3. O

For any function [’ € Hfz+2m_m_l/2(8G), we set

J
Ll =R f ) R (W), (9.3)

j=1
where the functions w; and the operators R6j are the same as in Sec. 8.2.
It can be directly verified by Lemma 9.2 that

LR, f ={0, f'} + M,  f' + T}, f, (9.4)
where
L1 Ty s HEPPm 206G — HL(GL0G)

are bounded operators such that HMgl || < ¢d, where ¢ > 0 is independent of §, and the operator T;l
is compact.
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/
a,l’

Using the operators R, 1 and R
spaces in the case where B?H # 0.

we construct a right regularizer for problem (6.7), (6.8) in weight

Let us introduce the following space for a > 0:
SL(G,0G) = {f € HL(G,0G) : @ = B*R,,1 f and B*R/,;® belong to ST ™=1/2(5G)}.

First, we show that S!(G,dG) is a closed subspace in H. (G, dG) with finite codimension. Indeed,
using inequality (6.5), we obtain that

1Pipllyyiezm—mi=172p,y < krlRapflyrizmor o) < F2lRar fllgirem gy < ksl fll o) (9-5)
Since the function ®;, satisfies condition (5.5), we see from Eq. (9.5) and Lemma 5.2 that
= Hi+2m7mfl/2(aG)

and
||(I)i“||Hi+2m‘mw‘”2(ri) < kal| fll3e (¢ 06)- (9.6)
Hence, the expression BQRg’lq) is well defined. Similarly, using Egs. (9.6) and (5.5), we obtain
inequalities
HBQR;,I(I)HWH?m*m*l/Q(aG) < ksl fllae c.00), (9.7)
||B2R£171¢||H51+2m7m71/2(8G) < k6||f||H£L(G,BG)' (98)
It follows from Egs. (9.5) and (9.7), the Sobolev embedding theorem, and the Riesz theorem on
the general form of linear continuous functionals in a Hilbert space that S!(G,dG) is a subspace of a
finite co-dimension in H! (G, 0G). Hence,
H (G, 0G) + RL(G,0G) = SL(G,0G) + RL(G,06), (9.9)
where RL (G, Q) is a finite-dimensional space.
Now we prove the following result.

Lemma 9.3. Let a > 0, and let the line ImA = a + 1 — 1 — 2m not contain eigenvalues of the
operator L(X). Then there exist a bounded operator

R, : H.(G,0G) + RL(G,8G) — H*™(@)
and a compact operator
T, : H . (G,0G) + R.(G,0G) — H (G,0G) + RL(G,0G)
such that R
L.R, = I, + T, (9.10)
where 1, is the identity operator in H.(G,0G) + RL(G, dG).
Proof. 1. Let ® = B2R, 1 f, where f € S (G,0G). It follows from Egs. (9.6) and (9.8) that the
functions {0, ®} and {0, B*R/, ; ®} belong to HL (G, 0G). Hence, the functions ® and B°R/, ;& belong
to the domain of the operator Rihl, and we can introduce the operator
Ros : S4(G,0G) — HP™(G)
by the formula
Rosf=Ra1f — Ry 1@+ R;,IBQRg,l(I)'
Similarly to the proof of Lemma 8.4, applying inequalities (9.2) and (9.4), we can show that
LaRa,S = Ia,S + M + T,

where
Ls, M, T : SL(G,0G) - H.(G,0G) + RL(G,0G)
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are bounded operators such that I, s f = f and || M]| < ¢d (¢ > 0 is independent of ), and the operator
T is compact.

2.By Eq. (9.9), the subspace S\ (G, dG) has finite codimension in the space H' (G, 0G) + RL(G, 0G);
hence, I, s is a Fredholm operator. By [56, Theorems 16.2, 16.4], I, s + M + T is also a Fredholm
operator for a sufficiently small ¢. It follows from [56, Theorem 15.2] that there exist a bounded
operator R, and a compact operator T, acting from H! (G, 0G) + R.(G,dG) to SL(G,dG) and to
HL(G,0G) + R (G, 0G), respectively. In addition, these operators are such that

(To.s + M +T)R, = 1, + T,.
Introducing the notation
R, = R, sRa : H.(G,0G) + RL(G,0G) — H™(@),
we obtain Eq. (9.10). O

By [56, Theorem 15.2] and Lemma 9.3, the image of the operator Ly, a > 0, is closed and has finite
codimension. The first item of Theorem 9.1 follows from here and Lemma 9.1.

9.2.2.  Proof of Theorem 9.1. Necessity.

Lemma 9.4. Let a > 0, and let the line Im A = a + 1 —1—2m contain an eigenvalue of the operator
L(N). Then the image of the operator Ly, is not closed.

Proof. 1. Let d = d(9) = 2d2p, where ds is defined in Eq. (6.15). Assume that the image of the
operator L, is closed. Then, similarly to the proof of Lemma 8.6, we use Lemma 9.1, the compactness
of the embedding operator H.*2™(G) ¢ H:?m=1(@), and [56, Theorem 7.1] and show that

N
1Ull3t2m ey < C(HEUHHZ(KQQ;FQ) + > IPi(D)Ujlz xca) + HUHHgHmfl(Kd)) (9.11)
j=1
for all U € H:?™(K?) and sufficiently small o.

2. Let Ag be an eigenvalue of the operator £(\) belonging to the line InA =a + 1 —1— 2m, and
©©(w) be a corresponding eigenvector. The vector o9 (w) belongs to W!*2™(—w,@), and, by [26,
Lemma 2.1], we have

LVY =0, (9.12)
where V0 = r#0(0) (1),

Let us substitute the sequence U° = T6V0/||T6V0”Hl+2m<K9), 0 > 0, to Eq. (9.11) and let 6 — 0.

Similarly to the proof of Lemma 8.7, it is easy to verify (using Eq. (9.12)) that the right-hand side

of inequality (9.11) tends to zero when the left-hand side is equal to 1. The contradiction obtained
proves the lemma. O

Now the second item of Theorem 9.1 follows from Lemma 9.4.

10. Regular Eigenvalues of the Operator £~()\) on the Line ImA=1—-1—-2m

In the previous sections, we have proved the Fredholm solvability of problem (6.7), (6.8) in the cases
where there are no eigenvalues of the operator E()\) on the corresponding line on the complex plane.
In this section, we use results of Sec. 7.3 (see Chap. 2) and study the situation where only a regular
eigenvalue \g = i(1—1—2m) of the operator £()) lies on the line Im A = 1 —1—2m. In other words, we
assume that condition 7.2 holds. In this case, by virtue of Theorem 8.1, L : W!*2™(G) — WY(G, 0G)
is not a Fredholm operator (its image is not closed). Hence we introduce an operator corresponding
to problem (6.7), (6.8) but acting in other spaces and prove that it is a Fredholm operator.
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10.1. Construction of the right regularizer in the case where B?M = 0. Introduce functions
Ve C§°(R?) such that L@(y) =1 for y € O,/5(K) and supp ¥ C O.(K). Let the vector F' = {f;, fjoun}

of the right-hand sides of problem (6.12), (6.13) correspond to the vector Of = {Q/Ajfo,iﬂfw} of the
right-hand sides of problem (6.7), (6.8). Obviously, supp F' C O.(0).
Consider the space S'(G,dG) with the norm

1/2
I lsicom = (10 =D Byaoe + 1FIZ5,) - (10.1)

Introduce the space
Sem R (9G) = {f e WHTTRT2(0G) 1 (0, 1) € §1(G,0G)}-
Obviously, the following embeddings hold (cf. (7.29)):
Sitem—m-1/2(57y = gl+2m-m-1/2(53y  pl+2m-m-1/25y,
SH(@,0G) c S(G,0G) c WY@, dG).
By Lemma 7.3, the set S‘l(G, 0G) is not closed in the topology of the space VYI(G, 0G).
On the other hand, by Lemma 7.2, if u € S"*?™(Q), then {Pu, Cu} € S'(G,0G) (the operator

C = B? + B! is defined in Sec. 8).
Let us consider the operator

L' = {P, C}: 8"?™(@) — Y@, 8G).

By Lemma 7.2, the operator L! is bounded.
Let ¥ and ¢ be functions defined before Lemma 8.1.

Theorem 10.1. Let condition 7.2 hold. Then for any sufficiently small g > 0, there exist bounded
operators

Ri : SY(@G,0G) — S™2™(G), My, Sk : SY(G,0G) — SH(G,dG)
such that
L'Rif =4 f +Mif + Sk f, (10.2)
HMICH < ci1e0, ”SICH < ¢g, and the squared operator Sk is compact. Moreover, the operator Sk can be

written in the form Sk = Uk + Fi, where ||U;<|| < ¢s, and the operator Fic is compact; the constants
c1, co and c3 > 0 are independent of €.

Proof. The idea of the proof is similar to the idea of the proof of Lemma 8.1. We explain how to
construct the operator Ric. We perform the change of variables y — 1/ from Sec. 6.1 in a neighborhood
of the set K and denote iy = y. We denote the functions 1, £, and f written in the new coordinates by
the same symbols. Then the operator Ry is defined by the formula Ry f = £U, where U € W!+2m (K%
(for any d > 0) is a solution of problem (6.16), (6.17) with the right-hand side ¢ f (see Lemma 7.6). O

The proof of the following lemma is similar to the proof of Lemma 8.2 (but we must use Lemma 10.1
instead of Lemma 8.1).

Lemma 10.1. Let condition 7.2 hold. Then there exists a bounded operator Ry : SH{G,0G) — S'*2m(@Q)
and a compact operator Ty : S'(G,0G) — SY(G, 0G) such that

]Zlf{l = i—|—T1, (103)

where 1 is the identity operator in the space Sl(G, Q).
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10.2. Construction of the right regularizer in the case where Bfu # 0. Let £ and ¥ be
the functions defined before Lemma 8.1, but now we assume that the number § > 0 is arbitrary (in
particular, it is independent of ¢).

The proof of the following lemma is similar to the proof of Lemma 8.3.

Lemma 10.2. Let condition 7.2 hold. Then for any §, 0 < § < 1, there exist bounded operators
R} : SF2m—m=1/2(5G) = SH2m(@), M., T : SF2m—m-1/2(HG) — SYG, HG)
such that
L'Rjcf" = {0, f'} + Mic f' + Tic ', (10.4)
where HMH| < cd, the operator T;C is compact, and ¢ > 0 is independent of §.

For any function f/ € S"*2m~m-1/2(9@), assume that

J
W =Rief ) Ry (WG f),
j=1
where the functions ¢; and the operator R{)j are the same as in Sec. 8.2.
Using Lemma 10.2, it easy to verify that

L'Ryf = {0, [} + M, f' + T} f, (10.5)
where
VIL, T« SH2m=m=129G) — SY(@G, 0G)
are bounded operators such that |]M’1|| < ¢d, where ¢ > 0 is independent of §, and the operator T/1 is
compact.

Using the operators Ry and R/, we construct a right regularizer for problem (6.7), (6.8) in the case
where B?H # 0. For this, we need the following concordance condition.

Condition 10.1. For any function u € S'72™(G), we have B%u € S’”Qm*m*l/?(ag) and
||B2u||$‘l+2m7m71/2(ac) < C||UHWl+2m(G).

Remark 10.1. According to (6.5), the operator B? corresponds to nonlocal terms with supports
lying outside the set K. Hence, if condition 10.1 holds for the functions u € S+2™(G), then it is also

fulfilled for the functions v € W*2m(G \ O, (K)).

Remark 10.2. Using the example from Subsec. 6.2 (see Chap. 2), we explain how to achieve the
fulfillment of condition 10.1.

Consider problem (6.9), (6.10) and assume, in addition, that the transformations €2;, in this problem
correspond to condition (6.3) (i.e., the restriction on the structure of transformations €2;5). Then, by
virtue of the continuity of s, we have Qs (Os(g)) C O.,/2(K) for any point g € T;NKif§>0is

sufficiently small. Hence, for any function u € W*2™(G'\ O, (K)), we have
B u(y) =0 for ye 0s5K), (10.6)

since 1 — ((Qis(y)) = 0 for y € Os5(K). Obviously, condition 10.1 holds in this case.

Instead of condition (6.3), we can assume the following: if ;5(g) ¢ K (where g € T; N K), then
the coefficients of the operators Bj,s(y, D) vanish at the points ;5(g). This also guarantees that
B?u € S!T2m—m-1/2(5@3) for any function u € W2 (G \ O, (K)).

By virtue of Lemma 7.2 and condition 10.1, we have

{Pu, Bu} € §(G,0G) Yu e S2(Q).
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Hence the operator ) X
Ls = {P, B} : S'™"(@) - S§Y(G,0G)
is well defined and bounded.
Lemma 10.3. Let conditions 7.2 and 10.1 hold. Then there exist a bounded operator R : SZ(G, 0G) —
SH2m(@) and a compact operator T : SY(G,0G) — SYG, G) such that
LsR=I+T. (10.7)
Proof. Assume that ® = B?R,f, where f = {fo, f'} € S(G,0G), and R, is a operator from for-
mula (10.3). Then, according to condition 10.1, the functions ® and B*R}® belong to the domain of
the operator R). Hence we can define a bounded operator Rs : $'(G, dG) — S22 (@) by the formula
Rsf=Rif — R{® + R|B’R/®.
It is easy to verify (similarly to the proof of Lemma 8.4 by using inequalities(10.3) and (10.5)) that
I:SRS =1 + M+T,
where M, T : SY(G,0G) — SY(G, dG) are bounded operators such that | M| < ¢d (¢ > 0 is independent
of §) and the operator T is compact.
The operator I+ M : S(G,0G) — SYG,0G) is invertible if § < 1/(2¢). Hence, introducing the
notation R = Rg(I+ M)~! and T = T(I+ M)}, we obtain (10.7). O
10.3. Fredholm solvability of nonlocal problems. Since the subspace S!™2™(G) has a finite

dimension in W!*?™(@G), then there exists a finite-dimensional subspace R!(G,0G) of the space
WG, 0G) such that

{Pu, Bu} € (@G, 0G) + RY(G,0G) Yu e WM (G).
Hence we can define a bounded operator
L ={P, B} : W) - §Y(G,0G) + R(G,dG).
Theorem 10.2. Let conditions 7.2 and 10.1 hold. Then L is a Fredholm operator.

Proof. Tt follows from Lemmas 8.5 and 10.3 and [56, Theorem 15.2] that Lg : S"2"(G) — SHG, dG)
is a Fredholm operator. Since the domain W2 (G) of the operator L is an extension of the domain
SHH2m(@) of the operator Lg to a finite-dimensional subspace and L coincides with Lg on S'72™(@),
we see that L is also a Fredholm operator. ]

11. Nonlocal Problems with Homogeneous Nonlocal Conditions

In this section, we study operators corresponding to problem (6.7), (6.8) with homogeneous bound-
ary conditions. Using the results of Sec. 10, we show that if the line ImA =1 —1 — 2m consists of
only a regular eigenvalue, then this operator, unlike L, is a Fredholm operator, if certain algebraic
relations between the operators P, B?, and B! at points of the set K are fulfilled.

11.1. The absence of eigenvalues of the operator £(\) on the line Im\ = 1 —— 2m or the
presence of a irregular eigenvalue. Let us introduce the space

W2 (@) = {u € WH2™(G) : Bu = 0}.

Obviously, W5™2™(G) is a closed subspace in W!*?™(G). Consider a bounded operator Lp :
WLP™(G) — WHG) defined by the formula

Lpu=Pu, ue€W5(Q).

To study problem (6.7), (6.8) with homogeneous nonlocal conditions, we need the following condition
for the operators Bj,s(y, D) (see e.g., [57, Chap. 2, Sec. 1]).
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Condition 11.1. For alli=1,..., N, the system of operators {B;,o(y, D)}/T:1 is normal on T; and
orders of the operators By,s(y, D), s =0,...,S;, do not exceed 2m — 1.

In this subsection, we will prove the following result.

Theorem 11.1. Let condition 7.1 hold. Then Lp is a Fredholm operator. ~

Let the line ImXA = 1 — 1 — 2m contain an irreqular eigenvalue \g of the operator L(A\) and let
condition 11.1 hold. Then the image of the operator L is not closed (and hence L is not a Fredholm
operator).

The following lemma allows one to reduce nonlocal problems with inhomogeneous boundary condi-
tions to problems with homogeneous boundary conditions.

Lemma 11.1. Let condition 11.1 hold. Then for functions

142m—m o —1/2
Fjop € Hy 2 maen =120

such that supp fjo, C O (0) (¢ > 0 is fived), there exists a function V. € HY?™(K) such that
supp V' C Oy/(0) and

Bjcr,u(yaD)V:fja,ua (111)
”VHHﬁ?m(K) < CE/H{fjgu}H%fj’Qm—m—l/Q(,},): (11'2)
where ¢ > 0 is independent of fiou.

Proof. 1. Similarly to the proof of [58, Lemma 3.1], we construct functions Vj, € H.¥?™(K;) such
that

Bjoujo(y D)Vjolvse = Fiow (11.3)
HVjUHHéHM(Kj) < k?H{fjo’u}||,Hfl+2m7mfl/2(’y)- (11.4)

Since supp fjou C O (0), we can assume that supp Vjs C Oa./(0).
2. Let us denote

0 =min|(—1)%w; + wjors Twil/2, Jk=1,...,N, o=12, s=1,...,Sjok

and introduce functions (j, € C§°(R?) such that (j,(w) =1 for |(—1)°w; — w| < §/2 and (jp(w) =0
for |(—1)°w; — w| > §. Since the functions (j, are the multipliers in the space H.2™(Kj), it fol-
lows from (11.3) and (11.4) that the function V' = ({11Vi1 + C12Vig, .-, Cvi Ve + (ve V) satisfies
conditions (11.1) and (11.2). O

Remark 11.1. Similar reasonings are not valid in Sobolev spaces since the functions (j, are not multi-
pliers in W2 (K ;). Moreover, we can construct functions fj,, from the space Wit2m=—mjo.—1/ 2(Vjo)
(j=1,....,N, 0 =1,2, u=1,...,m), for which there is no a function V € W*?m(K) satisfying
conditions (11.1). Therefore, a problem with homogeneous nonlocal conditions is not equivalent to a
problem with inhomogeneous boundary conditions (e.g., a situation is possible where the first problem
is a Fredholm problem but the second is not).

As earlier, assume that d = d(p) = 2d20, where ds is defined in Eq. (6.15). To study the image of
the operator Lp, we use the following result (cf. Lemma 8.6).

Lemma 11.2. Let condition 11.1 hold and let the image of the operator Lp be closed. Then for
sufficiently small 0 > 0 and all U € 82" (K?) such that

Bja—“(D)U"ngﬁ :07 ]: 17...,]\]'7 0'2172, /,L:l,...,m, (115)
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the following estimate holds®:
1T llyeszm iy < c(I{PH (D)5 HIwi sty + U lgqpsam=1 gea))- (11.6)
Proof. 1. Since the image of the operator Lp is closed, by Lemma 8.5, by the compactness of the
embedding W*2m(G) ¢ WH*2m=1(@G), and [56, Theorem 7.1], we have
[ullwirem(g) < (P (y, D)ullwi) + llullwirem-1(q)) (11.7)

for all w € W5™2™(G). Let us substitute in (11.7) a function u € W5™2™(G) such that suppu €
Oz, (K), 201 < min{eg, 51} into (11.7). By Eq. (6.5), for such functions we have B*u = 0. Hence,
using [57, Ch. 2, Lemma 3.2], we see that for sufficiently small g1, the estimate

U bwerzm iy < 1 (I{P5 (D)Us Hiwi ey + 10 Twis2m=1 () (11.8)
holds for all U € W2 (K) such that supp U C Oa,, (0) and
B, (y,D)U=0, j=1,...,N, o=1,2, p=1,...,m. (11.9)

2. Let us show that if gy < p1d; is sufficiently small, then estimate (11.8) is valid for all U €
S!*2m(K) such that supp U C Os,,(0) and

Bigu(DYU =0, j=1,....N, 0=1,2 p=1,...,m (11.10)
Assume that @5, = Bjs,(y, D)U|,,,. Obviously,
supp @y C Oy, /4, (0) C Oy, (0). (11.11)

We fix a, 0 < a < 1, and prove that
1{jop g om-mosray < haok U lyyiam (11.12)

By Eq. (11.10) and the compactness of the trace operator in weight spaces, it suffices to estimate
summands of the form

(aa(y) - aa(o))Dan ‘a‘ = Mjopu, aﬁ(y>DﬁUja ’/8‘ < Miop — 17

where a, and ag are infinitely differentiable functions. Using the restriction to the support of the
functions U; and Lemmas 5.5 and 5.2, we obtain that

(a0 ) = @@O) DT team s
S k3g%_aH (aa(y) - aa(o))DanHHltimfmjau

S k4gé_“ ”Dan HHHszm

(K5)
1—

s () < ksoy “NUjllwizm k)

Similarly, using Lemma 5.2, we have

H@ﬁ(y)DﬁUjHHéﬁmfmm < kooy " Ujll groam—1 gy < kroy ™ IUjlwrsam i

(K5)
Thus, estimate (11.12) is proved.
Now, by virtue of Eq. (11.11) and Lemma 11.1, there exists a function

V= (Vi,...,Vy) € H{P™(K)
such that supp V' C Oy,,(0) and
Bjou(ys D)Vl = Pjop, (11.13)
(11.14)

IVllygrom ey < ol {®jonlyrammosra,

where c,, is independent of os.

°In assumptions of the lemma, according to Lemma 5.2, we have U € H.L?™(K?) for any a > 0. Hence,
U € HLP?™ 1 (K?), and the right-hand side of inequality (11.6) is finite.
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Using Eq. (11.8) to estimate U — V' and inequalities (11.14) and (11.12), we have

Ullwizm iy < N0 = Vllyyirzm gy + 1V im0
< ks (I{P;(D)U; iy + U lwivzm—1xy + 05~ MU lypisam iy ) -

Now, choosing sufficiently small g5, we obtain the estimate (11.8), which is valid for all U € W!*2™(K)
such that supp U C Oz, (0), and relations (7.30) and (11.10) hold.

3. Now we omit the restriction supp U C Oz,,(0) and prove the estimate (11.6) for p < p2d; and
any U € W!T2m(K4) satisfying Eqs. (7.30) and (11.5).

Introduce a function ¢ € C§°(R?) such that ¢(y) = 1 for |y| < o, suppyy C O9,(0) and ¢ is
independent of the polar angle w.

Assume that W, = Bjgu(D)(yU)ly,,. Obviously,

supp ¥op C Opa, (0) C Opy (0). (11.15)
Let us show that
N
||\Ijjo-‘u||H(l)+2mfmjgufl/2 _ Z | Px(D Uk”wl K + HUkHHl+2m I(Kd)) (11.16)
k=1
Taking into account Eq. (11.5), we represent the function ¥4, in the form
]J,u Z \Ijjauks + Z Jjouksa (1117)
(k,s)#(3,0)

where

\I/jauks = ([Bja,uks<D)7 Tb] Uk) (gjo'ksy) "Yja’
chruks = (w(gjoksy) - 1/1(y)) (Bjo,uk:s(D)Uk:) (gjaksy) "Yja7

where [+, -] denotes the commutator.
Since the expression for W,, ks contains derivatives of the functions Uy of order not greater than
Mjou — 1, we have that

H\II.].U/J‘]‘:S||HZ+2""7WJ'UM71/2 S klOHUHHé+2m—1(Kd) (1118)
0

(’on)

Now we repeat the reasonings of item 1 of the proof of Lemma 8.7 and obtain the inequality

H Jjo’,uks || l4+2m—mjg, —1/2
H
0

('on)
<kn (HPk(D)Uk||Wl({d1g/2<\y|<2dgg}) + HUkHWHQ"L*l({d19/2<|y\<2d29})) . (11.19)

Equation (11.16) follows from Egs. (11.17), (11.18). and (11.19).
4. By virtue of Eq. (11.15) and Lemma 11.1 (applied to the operators By, (D)), there exists a

function V = (V4,...,Vy) € Hy ™ (K) such that supp V' C Oa,,(0) and
Bjou(D)V = Yjo, (11.20)
HV”’HE“’"(K) < k12H{‘ljjo-u}HHéﬁ»memfl/Z(’y)- (11.21)

Using (11.8) to estimate 9 U — V, the Leibnitz inequality, and inequalities (11.21) and (11.16), we
obtain

Ul wizm(gey < YU [[wivem gy < 19U = Vipivem gy + [V [ wivem i)
< bt (IFPADI i sy + 10 e gy )

The lemma, is proved. O
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Lemma 11.2 allows one to prove that if the line Im A = 1 — [ — 2m contains an irregular eigenvalue,
then Lpg, as L, is not a Fredholm operator.

Lemma 11.3. Let the line Im A\ =1 —1—2m contain an irreqular eigenvalue Ao of the operator E()\)
and let condition 11.1 hold. Then the image of the operator Lp is not closed.

Proof. 1. Assume that the image of the operator Lp is closed. Denote an eigenvector and adjoint
vectors corresponding to the eigenvalue Ao (see [23]) by ¢(@(w),..., o D (w). The vectors ¢*)(w)
belong to W2 (@, @) and satisfy the relations

Pi(D)VF =0, Bjou(D)V" =0, (11.22)
where i
% L. —5
Vk:r)‘ozgs!(zlnr)knp(k Nw), k=0,...,c—1.

Since \g in an irregular eigenvalue, we see that the function V*(y) is not a vector-valued polynomial
for some k > 0. For simplicity, we assume that V0 = r*04(0) () is not a vector-valued polynomial
(the case where k > 0 is similar).

Let ¢ and d = d(p) be the same constants as in Lemma 11.2. Let us consider the sequence

U = VO |[roVOlyrezm (o).
The denominator of the fraction is finite for any § > 0, but
HT(sVOHWH—Zm(Kg) —o00 as 0—0
since V¥ is not a vector-valued polynomial. Nevertheless,
||T6V0”H6+2m_l(Kd) S C,

where ¢ > 0 is independent of § > 0; hence,

HU‘SH%Hm_l(Kd) —0 as d—0. (11.23)
Using (11.22), we can verify (similarly to the proof of Lemma 8.7) that
I{P;(D)U Hiwi(xcay — 0 as 6 — 0, (11.24)
9
||{ngu(D)U }H,}_[é+2m—m—l/2(’y3g) —0 as 0 —0. (11.25)

2. Introduce a functions ¢ € C§°(R?) such that ¢ (y) = 1 for y € O3,(0) and supp ) C O3,(0).
Applying Lemma 11.1 to the operators Bj,, (D) and the functions fjs, = ¢BjUM(D)U5\,ij (note that

Supp fion C O3,(0)), we construct a function W0 € HEF?™(K) (5 > 0) such that supp W0 C Og,(0)
and

Bjau(D)W‘s‘ﬁg = Bja“(D)U‘SLsz_g, (11.26)
W2 llygsam oey < k1 Y 1{Biou(DIUHytzmm/2 0. (11.27)
3,05

Moreover, the function U? — W? satisfies relations (7.30); hence, we can apply Lemma 11.2 to the
function U® — W?°. Then estimate (11.6), the boundedness of the embedding operator Hé+2m(K]69) C

Wl+2m(K?Q ), and inequality (11.27) imply the following inequality:
1T lyyiom gey < 1U° = WO llyyivam (sey + WP llyyiszm (e
< kz(H{Pj(D)Uf}HWl(Kd) + ||{ngu(D)U5}||Hé+2m_m_1/2ﬁ39) + |\U5||H6+2m71(m . (11.28)
1.

Nevertheless, relations (11.23)-(11.25) contradict estimate (11.28) since HU5\|W1+2m(Kg) = O
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Proof of Theorem 11.1. The first item of Theorem 11.1 follows from Theorem 8.1; the second item
follows from Lemma 11.3. O

11.2. A regular eigenvalue of the operator £()\) on the line ImA = 1 — [ — 2m. It remains to
consider the case where the line Im A = 1 —1—2m contains only a regular eigenvalue. Let condition 7.2
hold. Prove that in this case, Lp is a Fredholm operator for fixed [ > 1 if the following condition
holds.

Condition 11.2. Ifl > 1, system (7.25) contains all the operators D*P;(D), || =1—1,j=1,...,N.

Theorem 11.2. Let conditions 7.2 and 10.1 hold. Then
(1) Lp : WE™(G) — Lo(G) is a Fredholm operator;
(2) if Ll > 1 and condition 11.2 holds, then Lp : W};zm(G) — WUYQ) is a Fredholm operator;
(3) if L > 1 and condition 11.2 is violated but condition 11.1 holds, then the image of the operator
Lp : W52™(G) — WYG) is not closed (and hence the operator L is not a Fredholm operator).

Proof. 1. By Lemma 8.5, the kernel of the operator Lp is finite-dimensional. Let us study the image
R(Lp) of the operator Lp.
2. First, we assume that [ > 1 and condition 11.2 holds. We show that the set

{fo € WHG) : {fo,0} € S'(G,0G)} (11.29)

is a closed finite-dimensional subspace in W!(G). Indeed, let ¢ be a function from the definition of
the space SY(G,dG) (see Sec. 10.1). Then the vector {f;,0} of right-hand sides of problem (6.12),
(6.13) corresponds to the vector of right-hand sides {¢fo,0} of problem (6.7), (6.8). Obviously,
Tioulfj, 0} = 0. Moreover, by virtue of condition 11.2, relations (7.27) are absent. Thus, by virtue
of (10.1), the norm of the function {f,0} € S(G,dG) in S'(G,HG) is equivalent to the function fo
in WY(G) and set (11.29) is a subset in W!(G) consisting of functions satisfying condition (5.4). In
other words, set (11.29) coincides with the space S'(G).
Now, since
SH(@G,0G) c SYG,0G) + RYG, 0Q),

the set

{fo € WYG) : {fo,0} € SYG,dG) + R'(G,0G)} (11.30)
(containing set (11.29)) is also a closed subspace with finite codimension in W!(G). On the other
hand, fo € R(Lp) if and only if { fo, 0} € R(L), where L is operator defined in Sec. 10.3. This and the
fact that L is a Fredholm operator imply that the image of the operator Lp is closed and has finite
dimension.

3. Now assume that [ > 1 and condition 11.2 is violated. Let us prove (using the results of Sec. 7.3,
Chap. 2) that the image R(Lp) of the operator Lp is not closed. Assume the contrary: let the image
R(Lp) be closed.

Since condition 11.2 is violated, we see that the set (7.27) is not empty; this means that for some j
and ¢, norm (7.28) contains the corresponding term || Tj¢ f|| g1 (g2). Similarly to the proof of Lemma 7.3,
this implies that there exists a sequence f¢ = {fJ‘-S,O} S SZ(K, ), 6 > 0, such that supp f0 C 0.(0)
and f® converges in WH(K,~) to f0 ¢ SY(K,~) for § — 0.

By virtue of Lemma 7.6, for any function f° we can find a function U® € W!*2™(K9) such that

Pi(D)US = £, Bjeu(D)U° =0, (11.31)
1T llpgv2mr eay < ell £ lwiac ) (11.32)
(¢ > 0 is independent of &) and U® corresponds to relations (7.30). By virtue of the second relation

in (11.31) and relations (7.30), we can apply Lemma 11.2 to the function U?. Using estimate (11.6),
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the convergence of the sequence f° to f0 ¢ Sl(K ,7), and inequality (11.32), we obtain a contradiction
(cf. the proof of Lemma 8.7).

4. In the case where [ = 0, the set of conditions (7.27) is empty since these conditions arise only if
[ > 1. Similarly to item 2 of the proof, we obtain the conclusion of the theorem. ]

12. Examples

We present two examples that illustrate the results of Chaps. 2 and 3 (detailed proofs can be
found in [33]). In these examples, the set K consists of several orbits and hence we must use obvious
generalizations of the theorems from previous sections to this case.

12.1. Example 1.

2
12.1.1.  Problem with homogeneous nonlocal conditions. Let G \ K = |J I';, where I'; are open in
i=1
the topology of the boundary curves of class C, K = Ty NTy = {g1,92}, g1 and g2 are endpoints
of the curves I'y and T's. Assume that the domain G coincides with a plane angle of spread 7 in
neighborhoods of the points g; and go.
Consider the nonlocal problem

Au= foly), yeG, (12.1)
ulr, + biu(Qi(y))‘Fi =fily) yely, i=1,2, (12.2)
where b1,by € R, ; is an infinitely smooth transformation mapping a neighborhood O; of the curve

I'; onto Q(0;) such that Q(I';) C G, Q(g;) = g5, j = 1,2, and the transformation §2; is a rotation by
the angle 7/2 inwards the domain G near the points ¢g; and go (see Fig. 12.1).

Iy

Fig. 12.1. The domain G with the boundary G =T'; UT,.

Consider the operator L : W*2(G) — WY(G, 0G) acting by the formula
Lu = (Au,u|r, + biu, ulr, + bau)

and corresponding to problem (12.1), (12.2). Using Theorem 8.1, we obtain the following result.
Let | be even. Then L : WH2(G) — WHG, 0G) is a Fredholm operator if and only if by + by # 0.
Let 1 be odd. Then L : W2(G) — WYG, 0G) is not a Fredholm operator for any by, by € R.
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12.1.2.  Problem with homogeneous nonlocal conditions. Let us denote
Wh(G) = {u e W2(G) s ulp, + biu(Qi(y))‘Fi =0, i= 1,2}
and introduce the operator Lp : W??(G) — WYG) by the formula
Lpu=Au, wue W};Q(G).

Using Theorems 8.1 and 11.2, we obtain the following result.

Let 1 be even. Then Ly : W5(G) — WYG) is a Fredholm operator for any by, by € R.

Letl be odd andl =4k +1,k=0,1,2,.... Then Lg: W]l3+2(G) — WYQ) is a Fredholm operator
if and only if by = by < 1.

Let ] be odd andl =4k +3, k=0,1,2,.... Then Lp: W]l3+2(G) — WYQ) is a Fredholm operator
if and only if by = by > —1.

12.2. Example 2.

12.2.1.  Problem with inhomogeneous nonlocal conditions. Let the boundary 0G € C'* of the domain
G coincide with the boundary of the square (0,4/3) x (0,4/3) outside circles Oy 5((4i/3,4;/3)), i,j =
0, 1. Introduce the notation I'y = {y € 0G : y1 < 1/3, yo < 1/3}, Ta ={y € G : y1 > 1, ya > 1}. Let
I's and I'y be the connected components of the set G\ (I'1UT2). In this case, we have K = {g1,..., 94},
where g1 = (1/3,0), g2 = (0,1/3), g3 = (4/3,1), and g4 = (1,4/3) (see Fig. 12.2).

Y2 A
I g4
4/3 ¢ :
4 )
1+ Fl + hl t J3
g2
1/3 1 FQ + hg
I
\l |9 J
0 1/3 1 4/3

4
Fig. 12.2. The domain G with the smooth boundary 0G = | I';.
i=1

Let us consider the nonlocal problem

Au=foly), yeG, (12.3)
u(y)|Fz + blu(y + hl)|F1 = fl(y)a (/S Fi7 i = 17 27

12.4
w@)le, = fi(y), yeTy, j=34, (12.4)
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where hy = (1,1), he = (—1,—1), and by, by € R. Obviously, the set K consists of two orbits Orb; and
Orbsg, where the orbit Orb; contains the points g1 and g3 = g1 + h1 and the orbit Orby contains the
points g2 and g4 = gs + ho.

Consider the operator L : W*2(G) — WY(G, 0G) acting by the formula

Lu = (Au, u(y)|r, + bru(y + ha)lry, w(y)lr, + biu(y + ha)lry, w(y)lrs, U(y)\m)

and corresponding to problem (12.3), (12.4). Using Theorems 8.1, we obtain the following result.
Let | be even. Then L : WH2(G) — WHG, 0G) is a Fredholm operator if and only if byby > 0.
Let | be odd. Then L : WH2(G) — WG, 0G) is not a Fredholm operator for any by, by € R.

12.2.2.  Problem with homogeneous nonlocal conditions. Let us denote
Wh2(G) = {u € WH2(G) s ulr, + bau(y + ha)lr, = 0, i = 1,2; ulp, =0, j = 3,4}
and introduce the operator L : W52(G) — W!(G) by the formula
Lgu=Au, wuc€ W]l;z(G).

Applying Theorems 8.1 and 11.2, we obtain the following result.

Let 1 be even. Then Lp : W52(G) — WYG) is a Fredholm operator if and only if either biby > 0,
or by = by =0.

Let 1 be odd. Then Lp : W}B”(G) — WYGQ) is a Fredholm operator if and only if by = by = 0.

CHAPTER 4

GENERALIZED SOLUTIONS OF NONLOCAL ELLIPTIC PROBLEMS

13. Generalized Solutions of Nonlocal Problems

13.1. Generalized solutions. As in previous chapters, we assume that conditions 6.1-6.4 hold
(with [ = 0 in the last condition). We also assume that the orders m;, of the operators Bj,s(y, D)
satisfy the inequalities

uem < 2m — 1.

Here and in the next chapter, we will study so-called generalized solutions (see Definitions 13.2
and 13.3) of nonlocal boundary-value problem (6.7), (6.8):

P(y, D)u = fo(y), y€G, (13.1)
Bgﬂu+B}#u+B?uu = fiuly) yely, i=1,...,N, p=1,...,m. (13.2)

Let us introduce the notion of the generalized solution of problem (13.1), (13.2). First, like in [72],
we state the corresponding definition for a “local” problem, i.e., in the case where Bllu =0and B?u = 0.
Further, we assume that the number / is fixed such that

0</l<2m—1.

Since C>(T;) C Hgg_kﬂﬂ(l“i), by virtue of Lemma 5.8, we have C>(T;) C Hg_kH/Q, kE=1,...,2m.
Hence the norm
N 2m 9 1/2
lullwic) = (!uum DI H<>> (133
i=1 k=1 ¢ ‘
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is finite for any function u € C*°(G), where v; is an outward normal to the part T'; of the boundary
and b1y
k-19

ayk 1 r,

Denote by W¥(G) the completion of the set C°°(G) with respect to the norm® (13.3).
It follows from (13.3) that the closure S of the operator

u {ulg, D} 'u}, ueC¥(G),

Dy ta = (—i)

states an isometric correspondence between W* (G) and a subspace of the direct product

N 2m
¢ Q) x H H Hg—kH/Q(FZ

i=1k=1
We identify the element u € W*(G) with the element Su = {u, u;;} and write
u = {u,u} € WHYG).
Note that if £ > 1, {u”} € C*°(G), and u® — u in W¥(G) as n — oo, then u” — u in W¥(G). Hence,
DE=tum — DE=ly in Wi kL2(Ty) < Hf k+1/2( I';) for k =1,...,¢. Thus, the components u;;, are
unlquely deﬁned by the component wu for k: =1,...,¢
g, =DElu, i=1,...,N, k=1,...,0L

However, generally speaking, the components u;x, k = £+1,...,2m, are not defined by the component
u (cf. [72, Sec. 2.2]). Therefore, the spaces W¢(G) and W*(G) are substantially different.

Let us also note that if /1 and £y are integers, 0 < f1,0> < 2m — 1, and ¢; < {5, then the space
W*(@) is a closed subspace of the space W*(G) and

[ullwe gy < cllullwe@ Yue W2(G),

where ¢ > 0 is independent of u. This follows from Lemma 5.8.

Let us consider the family of functions {¢s}s~0 C C*°(G) such that ps(y) = 1 for y € G\ Os(K)
and @5(y) = 0 fpr y € Os/2(K) and |DYp;s| < cad1?, where ¢, > 0 is independent of 6. It easy to see
that

lpsu — ullgiey — 0 asd—0, ue HY(G), [ >0, a€R,

st = Gll v, =0 asd—=0, e HTATY),  1>1, aeR.

Assume that for sufficiently small 6 > 0 (in particular, for § > 0, when G N Os(g), g € K coincides
with an angle), the function ¢s(y) depends only on dist(y, ) if y € Os(K). This property implies
that

(13.4)

D! pslr, =0, i=1,...,N, [>1. (13.5)

Lemma 13.1. Let u = {u,uy} € WHG). Then psu = {@su, osu}, i.e., the operator S commutes
with the operator of multiplication by @s.

Proof. Let {u"} ¢ C®(G) and u” — u in W¥(G). On the one hand, this means that

lim psu” = psu in WwW4Q). (13.6)
On the other hand, we have

li_}m esu = psu in WHG) (13.7)

n—oo

SIf £ = 2m, then the norms in the spaces W%(@) and W*(G) are equivalent and these spaces can be identified, but
we consider the case £ < 2m — 1.
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and, by virtue of Eq. (13.5),

Tim DY (psu”) = lim psDfMu" = psu in Hy Y2(1y). (13.8)

It follows from (13.7) and (13.8) that
Jim psu” = {psu, psuip}  in W4 (G). (13.9)
Combining Egs. (13.6) and (13.9), we complete the proof. O

It follows from [72, Lemma 2.3.1] that”
l0sP (y, D)ullyye-2m () < cisllullwee Yue C(G),
B 12 < exslulwee) Y€ C¥(@),
where c15 and cos > 0 are independent of u. Hence, for all § > 0 the closure LY = {psP(y, D), 905B?u

of the operator o

u— {goaP(y, D)ua wéBg,uu}W uc COO(G)v
is a bounded operator that maps the whole space W¢(G) to the space W!=2™(G) x W!=m=1/2(5G),
where

N m
Wéfmfl/Q(aG) — H H Wefmwfl/Z(Fi).

i=1 p=1
Introduce the notation
WG, K) = {g0: psgo € W' (G) V6 > 0},
WEmL2(0G, K) = {{gin} + @sgin € W™ Y2(1y) W6 > 0}.
Definition 13.1. Let the number ¢ be fixed (0 < ¢ < 2m — 1). The function u € W*(G) is called a
strong generalized solutions of the local problem
P(y,D)u=go(y), y€G, (13.10)
B)u=gi.(y) yely i=1,...,N, p=1,...,m, (13.11)
with the right-hand side {go, gi,.} € WE2n(@, K) x Wm=1/2(9G, K), if
Lgu = vs{90, 9in} V6 > 0.

Assume that {fo, fi,} € W°(G, 0G) and define a strong generalized solution u = {u, u;x} € W¥(G)
of problem (13.1), (13.2). First, we assume that the function u satisfies the relation

psP(y, D)u=@sfo in W(G) V6> 0. (13.12)

It follows from Eq. (13.12) and [72, Theorem 7.2.2] (theorem on the local increasing of smoothness)
that u € W2 (G) and

loc

P(y,D)u = fo(y), a.e.yeGqG.

Moreover,
Bl,u & Bl uc Wmu—l/2(1;\ 05(K)) V6 >0 (13.13)
and, by virtue of Eq. (6.6) (for [ = 0),
B2,u ¥ B,u € W mu—l2(1,\ 0, (K)). (13.14)
It follows from Egs. (13.13) and (13.14) that
fiu — BLu— B2 ue Wm—mu—l/2(1;\ 0, (K)). (13.15)

"Since the function s vanishes near the set K, we can replace the space W* ™1/ 2(I;) in the second inequality by
£—mg, —1/2

H, (T';) for any a € R.
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Assume that
L2 u= ¢ {fo, fin = Bj,u - Bju}.
It follows from this equation, Eq. (13.15), and [72, Theorem 7.2.1] (theorem on the local increasing of
smoothness) that u € W™ (G \ O, (K)). Hence, using Eq. (6.5) (for I = 0), we have

def m—m,—
B}, u < B},u e W 2(1y), (13.16)
Equations (13.13) and (13.16) yield the embedding
fin —Biu—Blue W=\ 05(K)) V6 > 0. (13.17)

Now we can state the following definition.

Definition 13.2. Let the number ¢ be fixed, 0 < £ < 2m — 1. The function u € W¥(G) is called
a strong generalized solution of nonlocal problem (13.1), (13.2) with the right-hand side {fo, fi.} €
WY(G, 0G) if this function is a strong generalized solution of the local problem (13.10), (13.11) with
the right-hand side { fo, fi, — Biluu — Bfuu}.

It follows from Definition 13.2, Eq. (13.17), and [72, Theorem 7.2.1] (theorem on the local increasing
of smoothness) that if u = {u,u;;} is a strong generalized solution of problem (13.1), (13.2) with the
right-hand side {fo, fiu} € W°(G, 8G), then u € W?™(G \ O5(K)) for all § > 0,

(psw)ir = DENpsu) V6 >0 (in H V2T, k=1,...,2m) (13.18)
and
P(y,D)u = fo(y) a.e. ye€QG, (13.19)

B),u+Blu+Blu=fi,(y) in W (1, O5(K)) V6 >0, (13.20)
i:l’_',,N’ /,Lzl,...,m- ‘

Thus, we see that the component u of the strong generalized solution u is a generalized solution in
the following case.

Definition 13.3. Let the number ¢ be fixed, 0 < £ < 2m — 1. A function u is called a generalized
solution of problem (13.1), (13.2) with the right-hand side { fo, fi,} € W°(G,9G) if

we WHG) N WG\ Os5(K)) V6> 0 (13.21)
and u satisfies Egs. (13.19) and (13.20).

Moreover, for any § > 0 and an integer [ > 0, we can prove the existence of a number 41, 0 < §; < 9,
such that for any generalized solution u (in the sense of Definition 13.3) of problem (13.1), (13.2), the
following estimate holds:

Julhyssan gz < s (1ollworon,amp + it lwsan-m-seoaonan * liaeon )
(13.22)
where ¢; > 0 is independent of the functions u, fo, and f;,.

Remark 13.1. We have shown that if u = {u,u;,} € W!G) is a strong generalized solution of
problem (13.1), (13.2), then its component u is a generalized solution of the same problem. Let us show
that the converse statement is also valid. Let u be a generalized solution of problem (13.1), (13.2) with
the right-hand side { fo, fi,} € W°(G,0G). Lemma 14.2 (see below) implies that u € W*(G)NHZ™(G).

Hence, using Lemma 5.8, we obtain D} u € ng_kHﬂ(H) C Hf_kH/Q(Fi), ie.,

u = {u, D],fi_lu} c WY@).

Moreover, it is easy to verify that u is a strong generalized solution of problem (13.1), (13.2).
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Let us show that if the function
v = {u, vy} € WG)
(with the same first component u) is a strong generalized solution of problem (13.1), (13.2), then

vie = DE"u in HFTVR), k=1,..,2m, (13.23)

i.e., the generalized solution uniquely defines the strong generalized solution. Indeed, since v is a

strong generalized solution, we have (by Eq. (13.18))

(sv)ik = DE Npsu) V6 >0 (in H V2T, k=1,...,2m). (13.24)

From Egs. (13.24) and (13.5) and Lemma 13.1 we obtain that

_ 1 pl—kt1)2
@svi = (psV)ir = D Hpsu) = psDi'u in H, TRT, k=1,

Since § is arbitrary, it follows from Eq. (13.4) that vy, = D5~ lu in Hfka/Q(Fi), kE=1,...,¢.
Let k =/¢+1,...,2m. Let us consider an arbitrary function ¢ € C§°(I';) and choose ¢s such that
vs(y) =1 for y € supp ). Using Lemma 13.1 and Egs. (13.24) and (13.5), we have

(vik, — DE u, ) = (psvi — sDi tu, ) = ((@sv)ir — Dl Hepsu), 1) = 0.

Since the set C§°(I';) is dense in H:f"““/” (T;), we see that vy, = DE~1u in the set Hg_kH/Q(H),
k=¢+1,...,2m. Thus, Eq. (13.23) is proved and u = v.

Remark 13.1 states a bijective correspondence between generalized solutions and strong generalized
solutions of the same nonlocal problem. In what follows, we will consider generalized solutions and
hence it is convenient to use Definition 13.3.

In this chapter, we study problem (13.1), (13.2) with the following boundary conditions:
P(y, D)u= fo(y), y€G, (13.25)
Byu=B)u+Bju+Bu=0 yeli i=1...,N, pu=1..m, (13.26)

where fy € La(G).
Let us consider an unbounded operator P : D(P) C La(G) — Lao(G) acting by the formula

Pu="P(y, D)’U,,
u € D(P) = {u € La(G) : u satisfies Eq. (13.21), B;,u =0, P(y, D)u € Lo(G)}.

By Definition 13.3, the operator P corresponds to problem (13.25), (13.26).
Let us formulate the main result; it will be proved in Sec. 14.

Theorem 13.1. The operator P is a Fredholm operator.

Note that, unlike the case of a bounded operator Lp (see Sec. 11) corresponding to problem (13.25),
(13.26), the Fredholm property of an unbounded operator P depends neither on spectral properties
of the operator £(\) nor on algebraic relations among operators P(y, D), B?u’ and Bil“ at points of
the set K.

13.2. Nonlocal problems near the set K. As earlier, we pay special attention to the behavior
of solutions in a neighborhood of the set K of conjugation point of nonlocal conditions. Let us write
out corresponding model problems.
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Let us denote by u;j(y) the function u(y) for y € O (g;). If g; € Ty, y € O(g;), and Qis(y) €
O¢, (gx), then we denote u(Qs(y)) by ux(2is(y)). Then nonlocal problem (13.25), (13.26) in a e-
neighborhood of the set (orbit) K has the form

P(y, ):fo( ), ¥ € 0Oc(g;) NG,

BZMO(?J? ) ( ’(’)5 (g;)NC; + Z s y7 guk)) (Q (y))

y € O(g;) NIy, ze{lgng:ngFi}, j=1,....,N, u=1,....,m,

Oc(g;)N fm( )

where f;, = —B?Mu
Let y — ¢/(g;j) be transformations of coordinates described in Sec. 6.1. Introduce the functions

Ui(y') =ui(w®)), fi()=fw®)), v eK5  fiou) = finlw®)), v €5

where 0 = 1 (o = 2) if a transformation y — v/(g;) maps O-(g;) NT; to a side ;1 (respectively, 7;2)
of the angle K. Let us re-denote 3’ by y. Then, by condition 6.3, problem (13.25), (13.26) has the
form (cf. (6.12), (6.13))

P;(y,D)U; = f;(y), v € Kj, (13.27)

Bjou(y, Dy)U =D (Bjouks (Y D)UR) Gioks¥)lrse = fion(¥)s ¥ € V5o (13.28)
k,s

Note that if B?/L = 0, then the right-hand side of problem (13.27), (13.28) coincides with the right-hand
side of problem (6.12), (6.13).

14. Fredholm Solvability of Nonlocal Problems

14.1. Finite dimension of the kernel. Here, we prove that the kernel of the operator P has finite
dimension. For this, we study the smoothness of generalized solutions of problem (13.25), (13.26) near
the set K.

Let u be a generalized solution of problem (13.25), (13.26), and U;(y') = u;(y(y')), j =1,..., N, be
functions corresponding to the set (orbit) I and satisfying problem (13.27), (13.28) with the right-hand

side {fj>fj0,u}'
By Eq. (13.21), we have

Uj € WM (K \ 05(0)) V6 >0, (14.1)
where dy is defined in Eq. (6.15). It follows from the embedding U; € W* (KJ@E) and Lemma 5.2 that
Uj € Hg—2m<KJC'l26)a (142)

where a > 2m — 1. Finally, f; € Ly(K5) and, by virtue of Eq. (13.21) and embedding (6.5), where
l =0, we have fj,, € W™~ mJW_l/2( »). Hence, by Lemma 5.2,

2m—mijg,—1/2
f; € HAKS), fion € Ha" "7 2042, (14.3)

where a > 2m — 1. ,
Using the following two lemmas, we show that the embedding U; € Hgm(K;/ d2)
Egs. (14.1)—(14.3).

Let us denote K, = K; N {edy3d} /2 < |y| < edy®dy "}, where ¢ =0, ..., 4.

is implied by

336



Lemma 14.1. The following estimate holds for all U € [ W?™(Kjo):
J

ZHUHWQm(KJ4 <CZ{HP Y, D)Ujll Ly (x,

+ Y IBoulys DY, izl om o172, iy + WUillzagien ) (14.9)

where ¢ > 0 is independent of U.

Proof. 1t follows from the general theory of elliptic operators that
1Ujllwzm ;) < k(1P (y, DUl 155

+ 3 1Bjowio(w DYl iz lyom-msm 173, ey WUilEatac)- - (14:5)
o,

Let (k,s) # (j,0). In this case, we see that Gjors(vjo) N Kk is located inside the domain Kj;. There-
fore, we can use the continuity of the trace operator in Sobolev spaces and (similarly to Eq. (14.5))
we obtain the inequality

HBjauks(ya )Uk(gjaksy”%om}(ﬁn 2m—mjg,,—1/2 (Vo ﬁKgs)

S k2|’Bj0'/Lk:8(ya )Uk‘gjaks(yja)mK]QH am= i /2 (g]o'ks(’YJJ)kaZ)

S kS(”P](y’ )UkHLQ Kkl + HUkHLz(Kkl)) (146)
Estimates (14.5) and (14.6) yield Eq. (14.4). O

Remark 14.1. Assume that the norms in C°(Kj;) of the coefficients p;, of the operators P;(y, D)
and the norms in C?™~ mion (K o) of the coefficients bjouksa of the operators Bjy,ks(y, D) are bounded
by a constant C. Let this constant C' bound norms in C'(Kj;) of the coefficients pjq, || = 2m, and
the coefficients of higher derivatives in the operators P;(y, D). Then the constant ¢ in inequality (14 4)
depends only on C, the constant A in (6.1), and the constant D in (6.2).

Lemma 14.2. Fiz arbitrary a > 0. Assume that a function U satisfies Eqs. (14.1) and (14.2) and is
a solution of problem (13.27), (13.28) with the right-hand side {f;, fjo.}, which satisfies Eq. (14.3).

Then U € HHzm( K4 ) and

2Oty < DA mgacs + D Wl rnmpencring o+ Wil 0y} (147)
J “ J o,

where ¢ > 0 is independent of U.
Proof. Let us denote

K5, = K;N{edydy 7277 < Jy| < edy®dy 127°}, s=0,1,2,....
Obviously,

GK U = K% (14.8)
s=0

Assume that U7 (y') = U;(27°y'). We perform the change of variables y = 27y in the equation

Pi(y,D)U;= > piay)DyUi(y) = fi(y), ve K},

la|<2m
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and in the nonlocal conditions

Z Z bjO',LLkSC! D U( )’SC Gjoksy — fJUM( )7 ye fy‘jamKifl'

k.s lal<mjop

Multiplying both parts of the first equality by 27°2™ and both parts of the second equality by 275™ox
we have

Y B2 IPMDLUS ) =27 ),y € K, (14.9)

|a|<2m

Z Z Uuksa Qs(lal m]ou)Da Us( N I—Gronsy’ =27 smjauf]g#( Ny Y € e mKi‘%’ (14.10)
kys Jol<mjop

where pj, (y') = Pja(27°Y); Vlounea(@) = bjoursa(27°2), f(y) = [f;(27°Y), and [5,,(y') =
fion(27°y). Applying Lemma 14.1 to problem (14.9), (14.10) we obtain the inequality

S gy < b 4122 £
J J

+2”2 Sm]o“f]cr,u”w2m m; 1/2(7 OKO +HU HLQ(KO)} (1411)

o
where the constant kq is independent of s by Remark 14.1.
Let us denote by ®;,, € Hq e Mion ([ (K;) the function satisfying the following conditions: ‘I’jau"yj.g =
fjou and

Hq)jU”HHjm_mj"“(K;?) < 2Hfja'p/||H§mfmjo.M71/2( (14.12)

Y5o)
Then

3 | — = fs

JoplyjenNKY Jou

where @ (¥') = ©j5,(27°Y'). Hence, Eq. (14.11) yields the inequality

Z HUfHW2m(K§>4) <k Z{ Hzfs'mef”LQ(K?l)
J J
+ 3 27 e @, | e (ko) T 13 Lo, 3o (14.13)

Conducting the inverse change of variables y' = 2%y in inequality (14.13), we obtain the inequality
Z Z H2 s|a|DocU ||L2 K3) < Kk Z{H2—S me]”Lz
J |al<2m

300 e d e+ Ul ) (14.14)

o ol <2m—mjsy

Multiplying inequality (14.14) by 27%(@=2m) suymming over s, and taking into account Eqs. (14.12)
and (14.8), we obtain (14.7). O

Lemma 14.2 and Eq. (13.21) yield u € H>™(G), a > 2m — 1, where u is an arbitrary generalized
solution of problem (13.25), (13.26) with the right-hand side fy € La2(G).

It follows from Lemma 6.1 and [89, Theorem 3.2] that the set of solutions from H2"(G) of prob-
lem (13.25), (13.26) with the right-hand side fp = 0 form a finite-dimensional subspace for almost all
a > 2m — 1. Thus, we proved the following result.

Lemma 14.3. The kernel of the operator P is finite-dimensional.
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14.2. Closedness of the operator and its image. Finite dimension of the cokernel. To
prove that the operator P is a Fredholm operator, we consider problem (13.25), (13.26) in spaces with

weight a such that 0 < a < 1. The following difficulty arises: if u € H2™(G), then, generally speaking,

2m—mmy,— 1/2( )

it is not necessary that B ,u belongs to Hg I';); therefore, the sum

Bj,u=B)u+B]u+Bu

2m— mW—l/2(I\) 2m— mw_l/2(r) d >
i i)

may not belong to H, . We only can guarantee that B;,u € H_,
2m — 1 (this follows from the relation Bj;,u € W?m~™wu~1/2(T;) and Lemma 5.2). However, it is
proved in Sec. 9 that

{P(y, D)u, B;u} € HAUG,0G) + RAUG,0G) Yu € HX™(G), a >0,

where RY(G,0G) is a finite-dimensional subspace embedded in {0} x HHj,m —minl/ 2(Fi) for any
(7
a’ > 2m — 1, i.e., the space R2(G, OG) contains only functions of the form

{0, fiuds fip € H" " TAT0),  fid HATTTR(D).
We fix a number o’ > 2m — 1. Then any function
{fo. fin} € Ho(G,0G) + Ry (G, 0G)
can be uniquely represented in form
{f()?fi#} = {f07 7,1;/,} + {07 z%;}a
where
{va 11/.1,} € Hg(G78G)> {07 z?u,} € RS(G76G)7

and its norm is

1/2
1o fllsgcaerimacon = (o SRy + LI )

Moreover, by Theorem 9.1,

L, = {P(y, D), B;,} : H*(G) — H.(G,0G) + RY(G,IG), a >0, (14.15)
is a Fredholm operator for almost all @ > 0. Using the operator L,, we prove the following result.
Lemma 14.4. The operator P is closed, the image R(P) is closed, and codimR(P) < oo.

Proof. 1. Let us consider an auxiliary unbounded operator
P, :D(P,) C L2(G) — La(G), 0<a<1.
This operator acts by the formula
P,u=P(y,D)u, u€DP,)={uc H™G):B;u=0, Py, D)uc Ly(G)}.

We fix a, 0 < a < 1, such that L, is a Fredholm operator. We prove that P, is also a Fredholm

operator.
The Fredholm property of L,, the compactness of the embedding H2"(G) C HY(G) (see [53,
Lemma 3.5]), and [56, Theorem 7.1] imply that

lull zm @y < k1 Lavllyo @ 00)+r0 @ .0¢) + 1l @o@)) (14.16)
for all u € H>™(G). Now let u € D(P,). Then

Lou = {P(y, D)u,0}, P(y,D)u € Ly(G) C Hy(G)
and hence

|Laullno o0 iro @00 = 1P, D)ull o
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This relation, Eq. (14.16), and the continuity of the embedding Ls(G) C HO(G) for a > 0 yield the
inequality
[ull zm(cy < k(P (y, D)ullage) + lullmge)) < ks(IP(y, D)ullLy@) + lullLa@); (14.17)
where u € D(P,). It follows from inequality (14.17) that the operator P, is closed. Hence, us-
ing (14.17) and [56, Theorem 7.1] again, we obtain dimker P, < oo (clearly, ker P, = kerL,) and
R(P,) is closed.
Consider an arbitrary function fy € Lao(G). Obviously, fo € HY(G). By Corollary 9.1, there exist

functionals F,. .., F, from the dual space H(G,dG)* such that if ({fo,0}, F,) =0, ¢=1,...,qo,
then problem (13.25), (13.26) has a solution u € H2™(G). Since

|({f0,0}, Fo)| < kallfollzoa) < ksl foll o)

we see by the Riesz theorem on the general form of linear continuous functionals in Hilbert spaces
that there exist functions fi,..., fy, € La(G) such that ({fo,0}, ) = (fo, fo)r2c) ¢ =1,---,q0-
Hence codim R(P,) < qo. Thus, P, is a Fredholm operator.

2. Since H2™(G) ¢ H* 1(G) € WYG) for a < 1 and 0 < £ < 2m — 1, we have the following
relation:

P, CP. (14.18)

It follows from Eq. (14.18) that the image R(P) is closed and codim R(P) < codim R(P,) < qo.

It remains to prove that P is closed®. Let us denote the basis in the space

R(P,)*" = R(P) & R(P,)

by hi,...,hi. Then there exist functions vy, ..., v, € D(P) such that Pv; = hj, j = 1,..., k. Since
h; ¢ R(P,), we have v; ¢ D(P,). It is also clear that the functions vy, ..., v are linearly independent
since the functions h1,..., hi are linearly independent.

Consider a finite-dimensional space

N = Span(vy, ..., v, ker P) & ker Py,.
It is easy to see that N N D(P,) = {0}. Indeed, if u € N N D(P,), then

k
u = g ;v + v,
i=1

where «; are some constants, v € ker P. Then, taking into account Eq. (14.18), we have

k
> aihi =Pu=Puuc R(P,).
i=1
Hence, a; = 0, ¢ = 1,...,k, and, consequently, u = v. Using Eq. (14.18) again, we see that
u=1v € ker P,. It follows from here and the definition of the space N that u = 0.
Denote the graph of the operator P (P,) by Gr P (respectively, GrP,). As is known, the operator
P (P,) is closed if and only if its graph GrP (GrP,,) is closed in La(G) x La(G).
Since GrP, is closed (as the graph of a closed operator) and Gr P, C GrP and the spaces N and
R(P,)* are finite-dimensional, we see that to prove that the operator P is closed, it suffices to show
that

CGrP C GrP, + (N x R(P,)1). (14.19)

8Note that the closedness of an operator P, generally speaking, is not implied by the closedness of its image in a
Hilbert space and the finite dimension of its kernel and cokernel; this can be shown by using reasoning similar to that
given, e.g., in [2, Chap. 2, Sec. 18]. However, if, in addition, we assume that P is an extension of a Fredholm operator,
then we will see that P will be closed.
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Obviously, the sum in Eq. (14.19) is a direct product: if
(u, f) € GrPa N (N x R(Pa)"),
then v € D(P,) NN = {0} and hence (u, f) = (u, Pyu) = (0,0).
Further, let (u, f) € GrP, i.e., u € DP and f = Pu. Let us represent the function f in the form
=i+ b
where f; € R(P,) and fo € R(P,)*. We choose an element u; € D(P,) such that P,u; = f;. Then
uz = u—uy € D(P) and Pus = fo. Without loss of generality, we can assume that
ug L ker Pyg; (14.20)

if this relation does not hold, then we consider the projection us, of the function us to ker P, and
replace u; by uj +ug, and ug by ug —ug,. Obviously, (u1, f1) € Gr P,; taking into account Eq. (14.20),
we have (ug, fa) € N'x R(P,)*. Thus, we have proved relation (14.19) and the lemma itself. O

Theorem 13.1 follows from Lemmas 14.3 and 14.4.

15. Stability of the Index of a Differential Operator
under Perturbations by Minor Terms

15.1. Passage to weight spaces. Let us introduce the operator

P'(y,D)= Y pLly)D (15.1)
o <2m—1

corresponding to minor terms, where p), € C°°(R?). Consider the perturbed operator
P’ :D(P') C La(G) — La(G)

acting by the formula
P'u=P(y,D)u+ P'(y, D)u,

u € D(P') = {u € Ly(G) : u satisfies Eq. (13.21), B;,u =0, P(y, D)u + P'(y, D)u € Lo(G)}.

According to Theorem 13.1, the unbounded operator P’ is a Fredholm operator (as well as P). Let
us formulate the main result of this section (see the proof in Sec. 15.2).

Theorem 15.1. ind P/ = ind P.

Thus, minor terms in Eq. (13.25) do not affect the index of the unbounded operator P. The
difficulty is that, generally speaking, minor terms are neither compact perturbations nor P-compact
perturbations in the sense of Definition 1.2. If £ = 2m — 1, then the embedding u € D(P) yields only
u € W?m=L(@G). This guarantees the P-boundedness of the perturbation but not its P-compactness.
However, if £ < 2m — 1, then the embedding u € D(P) does not yield the embedding u € W?™~1(G),
and the perturbation is not even P-bounded. Moreover, in this case, D(P’) # D(P).

To overcome this difficulty, we introduce the operator Q : D(Q) C L2(G) — HY(G) acting by the
formula

Qu = P(y, D)u,
u € D(Q) = {u € Ly(G) : w satisfies (13.21), B;,u =0, P(y, D)u € H)(G)},

where 0 < 2m — ¢ —1 < a < 2m — £. We prove that ind Q = ind P. On the other hand, we show
that the operator P'(y, D) is a Q-compact perturbation and hence it does not affect the index of the
operators Q and P.

(15.2)

Lemma 15.1. Let the line ImA =a+1—2m (2m — £ —1 < a < 2m — {) not contain eigenvalues of
the operator L(N). Then Q is a Fredholm operator and ind Q = ind P.
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Proof. 1. Consider the operator L, defined by the formula (14.15) for 2m — ¢ — 1 < a < 2m — /.
According to Theorem 9.1, this operator is a Fredholm operator. Hence, by virtue of the compactness
of the embedding H2™(G) C Lo(G) (see [53, Lemma 3.5]), taking into account [56, Theorem 7.1], we
have

[ull g2m () < k1 (| Latlluo o) iro @G 00) + ullLa@)) - (15.3)

2. Let us introduce an unbounded operator Q : D(Q) C Lo(G) — HY(G) acting by the formula
Qu=P(y,D)u, uweD(Q)={uc H™G):Bi,u=0} (15.4)

Since H>™(G) ¢ W¥(Q) for a < 2m — £, we see that Q is a reduction of the operator Q, i.e., Q C Q.
First, let us prove that Q is a Fredholm operator. Let u € D(Q). Then u € D(L,) = H2m(G)
P(y, D)u € H2(G), and B;,u = 0. Hence, Eq. (15.3) takes the form

lullzni) <k (I1Qullmgc + lullzae))  Yu € D(Q). (15.5)

It follows from (15.5) that the operator Q is closed, dimker Q < oo, and R(Q) = R(Q) (to obtain
the last two properties, one should apply [56, Theorem 7.1]).

Let us prove that codim R(Q) < 00. Since L is a Fredholm operator, there exist linearly independent
functions F1, ..., Fy € H)(G) such that the function f € H?(G) belongs to the image of the operator
Q if and only if (fs Fi)roey = 0,5 =1,...,d. Thus, Q is a Fredholm operator.

3. Now we prove that Q is a Fredohlm operator. Since ker Q = ker P and P is a Fredholm operator,
we obtain

dimker Q = dimker P < oc. (15.6)

On the other hand, Q is an extension of the Fredholm operator Q; hence,
R(Q) =R(Q), codimR(Q) < cc. (15.7)

Thus, Q is an extension of the Fredholm operator Q and Egs. (15.6) and (15.7) hold. Reasoning
similar to that of item 2 of the proof of Lemma 14.4 shows that Q is a Fredholm operator.

4. By virtue of (15.6), we must prove that codim R(Q) = codim R(P).

Let codimR(Q) = di, where d; < d. Let us consider f € La(G). Then f € R(P) if and only
if f e R(Q), owing to LQ(G) C HO(G). However, the embedding f € R(Q) is equivalent to the
expressions (f, Fj)goqy = 0, j = 1,...,d1, where Fy,...,F; € HJ(G) are linearly independent
functions. Using the Schwartz 1nequahty, the boundedness of the embedding L2(G) C H2(G), and
the Riesz theorem, we see that these expressions are equivalent to the following: (f, fj)r,@) = 0,
j=1,...,dy, where f; € Lo(G). Moreover, the functions fi,..., fg, are linearly independent. (In the

opposite case, some linear combination of the functions Fi, ..., Fy, is orthogonal to any function from
Ly(G) in HY(G). This is impossible since Fi,..., Fy, are linearly independent and Lo(G) is dense
in H)(G).) Thus, we have proved that codim R(P) = d;. O

Let us introduce the perturbed operator Q' : D(Q’) C Ly(G) — H?(G) acting by the formula

Q,u = P(ya D)“’ + Pl(ya D)’U,,
u€D(Q) = {u € Ly(G) : w satisfies Eq. (13.21), B;,u =0, P(y, D)u + P'(y, D)u € HY(G)}.

In the next subsection, we will show that ind Q' = ind Q if there are no eigenvalues of the operator
L(A) on the line Im A = a + 1 —2m. Then, we will prove Theorem 15.1 by using the discreteness of
the spectrum of the operator £(A) and Lemma 15.1.
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15.2. Compactness of minor terms in weight spaces.

Lemma 15.2. Let the lineImA=a+1—2m (2m — ¢ —1 < a < 2m — {) not contain eigenvalues of
the operator L(N). Then

lullweay < e (1Qullmge) + lullry@)  Yu e D(Q).

Proof. Obviously, we must prove only the case where ¢ > 1. Consider an unbounded operator Q:
D(Q) ¢ WY{G) — HY(G) acting by the formula Qu = P(y, D)u, u € D(Q) = D(Q). Since Q is a
Fredholm operator, then Q is also a Fredholm operator. Hence, the required estimate follows from
the embedding W*(G) C La(G) (¢ > 1) and [56, Theorem 7.1]. O

Introduce a function ¢; € C§°(R?) that is equal to 1 in a small neighborhood of the point g; € K and
vanishes outside a larger neighborhood of the point g;. The following lemma describes the behavior
of the functions u € D(Q) near the set K.

Lemma 15.3. Let2m —/{¢—1 < a < 2m —{ and a number a be sufficiently close to 2m —£. Then for
any function u € D(Q), we have

N
u(y) = > Pi(y) +v(y), (15.8)
j=1
where
Pi(y) =vi(u) D> Pialy—9))" Pia€C, (15.9)
la|<e-1
and v € H3™ (G) (if £ =0, then we assume that Pj(y) = 0); moreover,
Z pial + Wl gy < e (1Qullugc) + lullrae)) - (15.10)

Proof. 1. Tt follows from 1nequahty (13.22) that
[ullyyzmaae) < F1e (1Qullroq) + lullzac)) Vo >0, (15.11)
where k15 is independent of u. Hence, it suffices to study the behavior of u near the set .
2. Let U;(y') = uj(y(y)), 5 = 1,...,N, be functions corresponding to the set (orbit) K and
satisfying Eqgs. (13.27), (13.28) with the right-hand side {f;, fjou}-
By virtue of (15.11) and (6.5) (for [ = 0), we have {fj,,} € W¥m"™~1/2(4). Since {f;} € HI(K?),

we have

{15} € MO (E),  {fiou) € Ham ™2 (59),

(15.12)
I{fit g, (o) + K Fioulyom-morr2 o) < k2 (1Qull (e + 1l Laa)) -
2m Hzm (’Y )
Then U € W¥(K*®!) and hence
U € HY(K®). (15.13)
It follows from (15.11)—(15.13) and Lemma 14.2 that
U € HIM(K®),
2m (K1) (15.14)

1Ullagm (=) < ks ([1Qullgoa) + llull o)) -
Assume that ¢ > 1 (the case where ¢ = 0 is obvious). We prove that
U=Q+U,

where U € H2™ ,(K®) and Q = (Q1,...,Qn) is a vector-valued polynomial of degree £ — 1 (if £ = 0,
then there is no vector-valued polynomial @). Inequality (15.10) follows from inequalities in (15.12)
and (15.14) and the continuous dependence of the coefficients in asymptotic expansions below and the

norm ||UHH§g_Z(K€1) on the norms ”UHﬁgm(Ksl) and ||{fj}HHgm(K€) and ”{fjau}Hngfmfl/?(Vs)-
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3. Let § = 2m — £ — a. Obviously, 0 < é < 1. By Lemma 5.3, for every func-
tion fjou € W2m_mj“#_1/2(7§0), there exists a polynomial Pj,,(r) of degree 2m — mjy, — 2 (if
Mjop = 2m — 1, then Pj,,(r) = 0) such that

2m—m—1/2
{fion — Piou} € Hop 15 / (%)
(in this expression, the number 2m — ¢ — ¢ can be substituted by any positive number). Using [26,

Lemma 4.3], we construct a function

-1 Iy

W =" "ri(ilnr)pl(w) € Hom(Ke), (15.15)

s=0 1=0

where ¢!, € W™ (—m, @), such that
c 2m-m—1/2, ¢
{PJ(y7D>Wj1} € HgmefS(K )7 {ijfﬂ(yaD)Wl - ijfﬂ} € H2m—€—§ / <7 )
Hence,
(Y, =W 2m—0—5(H°), jou(Ys i ot ().
{Pj(y, D)(U; = W)} € H3 (K%), {Bjouly, D)(U; =W} € H (%)

It follows from (15.14) and (15.15) that U — W' € H2™(K®). By virtue of Lemma 6.1, we can
choose a number 6§, 0 < § < 1, such that there are no eigenvalues of the operator £(\) in the strip
1—¢—§ <ImA < 1—/. Then, using [26, Theorem 2.2, Lemma 4.3 |, we obtain the following equality:

U-W'=w?+10,

where
ng o

wW? = Z ZTW" (i1ln r)lcpil(w),
n=1 (=0

{p1, ..., ting } is the set of all eigenvalues that are located in the strip 1 — ¢ < Im A < 1 (actually, one
should take eigenvalues from the strip 1 — ¢ — 9§ < Im A < 1, but according to the choice of J, the strip
1—¢—§ <ImA < 1—/ does not contain any eigenvalue), p?, € W™ (—w,w) and Ue Ham , S(KF) C
My (K°).

Since s < £ — 1 (in the formula for W), Reiu, < ¢ — 1 (in the formula for W?), and
WL+ W? =U — U € W{(K?), we see, by virtue of [53, Lemma 4.20], that the function W' 4 12
is a vector-valued polynomial of degree ¢ — 1. O

The following result follows from Lemma 15.3.

Corollary 15.1. Let a number a satisfy the conditions of Lemma 15.3 and let P'(y, D) be a differential
operator of order 2m — 1 of the form (15.1). Then

1P (v DYl ey < e (1Qullpcy + ulliaey) Y € D(Q). (15.16)

Then we can prove that minor terms in Eq. (13.25) do not affect the index of the operator Q.

Lemma 15.4. Let a number a satisfy the conditions of Lemma 15.1 and 15.3. Then the operators Q
and Q' are Fredholm operators and ind Q' = ind Q.

Proof. By Lemma 15.1, Q and Q' are Fredholm operators.

Introduce the operator P’ : D(P') C Lo(G) — HY(G) acting by the formula P'u = P'(y, D)u,
u € D(P') = D(Q). It follows from Corollary 15.1 and the compactness of the embedding H,_,(G) C
HY(G) (see [53, Lemma 3.5]) that Q' = Q + P’ and P’ is a Q-compact operator. Hence, according
to [49, Chap. 4, Theorem 5.26], we have ind Q' = ind Q. O
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Proof of Theorem 15.1. Lemma 6.1 implies that the spectrum of the operator £(\) is discrete. Thus,
there is a number a satisfying the conditions of Lemma 15.3. Then, by virtue of Lemmas 15.1 and 15.4,
indP' =indQ' =ind Q = ind P. O

16. Stability of the Index under Perturbations of Nonlocal Conditions

16.1. Statement of the main result. In this section, we study the stability of the index of
nonlocal operators under perturbations of nonlocal conditions. They are perturbed by operators of
the same type as leu and B?M. This situation is more complicated than the situation considered in
Sec. 15 since nonlocal perturbations explicitly change the domains of the corresponding unbounded
operators. Hence, these perturbations cannot be considered as relatively compact. We offer a different
approach based on the notion of a spread between closed operators.

Consider m;,-ordered differential operators Ciys(y, D), i =1,...,N,p=1,...,m, s=1,...,5], of
the same order as the operators B;,s and acting by the formula

Cips(y, D)u = Z Cipsa(y) D" u,

|| <mip
where ¢jpsa € C*(R?). Introduce the operator Cil# by the formula

!
Czlp,u = Z (Ci,us(yv D)(Cu)) (Q;s(y))a Yy € Fl N OE(K)> Czl,u,u = 07 Yy € Fl \ OE(K)7

s=1

where ¢ and ¢ are the same as in the definition of the operators B}#, and Q, are the C-
diffeomorphisms with the same properties as ;5 (in particular, they satisfy Condition 6.3, where
S; and ;s must be replaced by S; and €2,).

Consider the operators C%“ satisfying condition 6.4 with { = 0; here B?H must be replaced by C
Assume that

2
[

Cy =Cj, +Ci,.
In this section, we assume that the number a satisfies the conditions of Lemma 15.3. In particular,
2m—f—1<a <2m —{.

We prove a theorem on the stability of the index under the following auxiliary conditions (see,
e.g., [57, Chap. 2, Sec. 1]) that are assumed to be valid everywhere in this section (including the
conditions of lemmas).

Condition 16.1. The system {B?u j=1 s normal on T;,i=1,...,N.

Let gi1, gio, Ti1, Ti2, Dfﬂ, and Dfﬂ have the same sense as in Sec. 5.2.
Condition 16.2. If ¢ > m;, — |a| + 1 (o < my,), then
D"ciwa(gﬂ) = Daci,usa(gz'Q) = 0, ’O” = 0, ceey (6 — 1) — (mi“ — ‘Oz‘)

Condition 16.3. If { > m;, +1, then for any function u € W?™(G\ O,,,(K)), the following relations
hold:

Dfil (CZZMUHZI:QM =0, D’fﬁ'ig(czzpu”y:gm =0, B8=0,....0—-1— M-

Remark 16.1. If we increase the index ¢, then conditions 16.2 and 16.3 become stricter. If, for
example, we consider a nonlocal perturbation of the Dirichlet problem for the second-order equation
(i.e, m =1, my, = 0, and p = 1) and find generalized solutions from Ly(G) (i.e., £ = 0), then

conditions 16.2 and 16.3 are satisfied automatically for any operators Czlu and C?#.
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Lemma 16.1. Let conditions 16.2 and 16.3 hold. Then

IChtl ommi-1r2 ) < exllal g (16.1)

T4
2
HCWUHHEW*WW’UQ(FZ_) < CQHUHWﬁm(G\W)- (162)

Proof. 1. For any function u € H27,(G), we have

o 2m—|a|—1/2 2m—m;,—1/2
(D) (% () |y, € Hoty ™300 € H w12, ().
Hence, by virtue of condition 16.2 and Lemma 5.6 we have
« 2m—my;,—1/2
(€insa D"w) (X)) |, € Ha" "7 A(T).
Estimate (16.1) follows from the boundedness of the mentioned embeddings and inequality (5.14).
2. Condition 6.4 (concerning C?M) implies that szu“ € W2m=miu=1/2(T;) if the expression
ue W (G\ O, (K))
is valid. Now it follows from condition 16.3 and Lemma 5.4 that
2 2m—mi —1/2
Estimate (16.2) follows from Inequality (6.5) (that is applied to C?u as [ = 0) and from (5.11). O
Consider the operators P; : D(P;) C La2(G) — L2(G), t € C, acting by the formula
Piu=P(y, D)u,
u € D(Py) = {u € Ly(G) : w satisfies (13.21), (BY, + B}, + tCi,)u =0, P(y, D)u € Ly(G)}.
Let us formulate the main result of this section (the proof will be given in Sec. 16.2).

Theorem 16.1. Let conditions 16.1-16.3 hold. Then ind Py = const for all t € C.

16.2. Spread between nonlocal operators in weight spaces. As in Sec. 15, we first study the
operators Q; : D(Q;) C Lo(G) — H2(G) acting by formula

Qtu = P(y7 D)U,
uw € D(Qt) = {u € La(G) : w satisfies (13.21), (B?u + leu +tCip)u =0, P(y,D)u € H)(G)},
where t € C. The operators P; and Q; correspond the following problem:
P(y,D)u= f(y), ye€G, (16.3)
(B),+ B, +1Cyp)u=0, yely, i=1,....N, p=1...,m. (16.4)
Remark 16.2. In the definition of the operator £(\) (see Sec. 6.3), we considered the principal
homogeneous parts of the operators P(y, D) and B;,s(y, D) at points of the set IC. By virtue of 16.2,

the principal homogeneous parts of the operators Cj,s(y, D) vanish at these points. Hence, for any ¢,
the same operator £(\) corresponds to problem (16.3), (16.4).

It follows from Remark 16.2 and Lemma 15.1 that Q; is a Fredholm operator for chosen a. Hence,
its graph GrQ is a closed subset in the Hilbert space La(G) x H2(G); we equip this space with the
following norm:

1/2
I £l = (Il + 1) V() € La(G) x HIG).
Assume

0(Qt, Qiys) = sup dist ((% Qu), Gr Qt+s)- (16.5)
ueD(Q1):]| (u,Qeu)||=1
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By Definition 1.3, the number
5(Qt7 Qt+$) = max{é(Qtv Qt+s)) 5(Qt+sa Qt)}

is the spread between the operators Q; and Q4.
The proof of the theorem on the stability of the index is based on [49, Chap. 4, Theorem 5.17] and
the following result (it will be proved below).

Theorem 16.2. Let conditions 16.1-16.3 hold. Assume that the lines In A = a + 1 — 2m and
ImA=a+1+4¢—2m do not contain eigenvalues of the operator L(N). Then

3(Qe Qers) < cus, 5| < s, (16.6)
where s¢ > 0 is sufficiently small and c¢; > 0 is independent of s.
First, let us prove some auxiliary statements.
Lemma 16.2. Let the line ImA = a+ 14 £ — 2m not contain eigenvalues of the operator /:(/\) Then
[ull 2, () < cell(u, Py, D)u)l| - Vu € D(Qeys), (16.7)
where ¢y > 0 is independent of s and u, under the condition that |s| is sufficiently small.
Proof. 1. Consider the bounded operator
M, = {P(y, D), Bj, + Bj, + tCiu} : HiTy(G) = Mgy 4(G, 0G). (16.8)
Ifve HgTK(G)’ then
(BY, + Bl +tCL v e HT ™21y,
C20 € Wm0y c B2 min =2 ()

(this follows condition 6.4 and item 1 of Lemma 5.3). Thus, the operator M; is well defined.

By virtue of Theorem 9.1 and Remark 16.2, M; is a Fredholm operator for any t € C. Hence,
using [56, Theorem 7.1] and taking into account the compactness of the embedding H>" T, C La(G) for
a < 2m — /¢ (see [53, Lemma 3.5]), we obtain the following inequality:

[ull 2, () < R (HMtu”’HO o0 T llully@ ) Yu € HZ'Ty(G), (16.9)

where k1 > 0 can depend on ¢, but is independent of s and wu.

2. Now we consider a function u € D(Q¢1s). By Lemma 153, u € HfTZ(G). By virtue of

inequality (16.9), estimate (6.5) (with { = 0 for CZZM) and the boundedness of the embedding

W2m_miﬂ_1/2( )C H2m mzu71/2(1'\z)

(see item 1 of Lemma 5.3), we have

lullzzg e < B (1P D)ullgo, ) + lullzaay ) + kelsl - lull gy Ve € D(Quss),

where ka3 > 0 can depend on ¢ but is independent of s and u. Choosing |s| < 1/2ks and using the
boundedness of the embedding HY(G) C HY, ,(G), we obtain (16.7). O

The next result follows from Lemmas 16.1 and 16.2.

Corollary 16.1. Let the line ImA = a + 1 + ¢ — 2m not contain eigenvalues of the operator £~()\)
Then

< ¢il|(u, P(y, D))l Vu € D(Qeys), (16.10)

HC/L'MUHHjm—m,L‘N—l/Z

()
where ¢; > 0 is independent of s and u, under the condition that |s| is sufficiently small.
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The following lemma allows one to reduce problems with inhomogeneous nonlocal conditions to
problems with homogeneous nonlocal conditions; here we use 16.1.

Lemma 16.3. Let f;, € HY" M 1/2(1“2'). Then for any t € C and |s| < 1, there exists a function
u € H>™(G) such that

(BY, + Bj, + (t + s)Cip)u = fiy, (16.11)
[l pr2m @ <thwaH o131 (16.12)
7""

where ¢; > 0 is independent of f;, and s.

Proof. Using Lemma 11.1 and the method of the partition of unity, we construct a function
v € H2™(G) such that

suppv C G\ G,, (16.13)
B?},Lv = fi,U«? lep,v = 07 C'}u/v - 0) (1614)

[v]l zr2m (@) < Ka Z Hfm||H3mfmifl/2(Fi), (16.15)
M

where k1 > 0 is independent of f;,, t, and s.
By virtue of (16.13) and (6.6) (w1th the operator 02 instead of B2 and [ = 0),
supp va C 0., (K).
Moreover, by Lemma 16.1,
Coe BT,

Hence, applying Lemma 11.1 and the method of partition of unity, we can construct a function
w € H*(G) such that

suppw C O,, (K), (16.16)
BQ w=—(t+ S)C2 v, B1 w =0, C%Mw =0, (16.17)
lwl g2y < k1 > It +5)C3 wOll iz
i

Since |s| < 1, we can apply inequalities (16.2) and (16.15); from the last inequality we obtain

2
Jwllzney < k1 3t + DICL] arcsnyersa g
(272

< kal[vll gy < ok D foull amemiu-a 5 (16.18)

i,

(Ty)

where k2 > 0 can depend on ¢ but is independent of f;, and s.
By virtue of (16.16) and (16.2), Cfﬂw = 0. This and Eqgs. (16.14) and (16.17) imply that u = v+ w
satisfies relations (16.11). Inequality (16.12) follows from inequalities (16.15) and (16.18). O

Remark 16.3. It is easy to see that if (C?Hv)(y) = 0 for y € O,(K) for some » > 0 and any
veW?m(G\ 0,,(K)), then Lemma 16.3 is valid for all a € R.

Proof of Theorem 16.2. 1.  We prove inequalities that are similar to inequality (16.6), where
0(Qt, Qi+s) must be replaced by §(Qy, Qi+s) and 0(Qys, Qr). Let us prove the inequality

0(Qt, Qtys) < cels], Is| < s (16.19)
The proof of the corresponding inequality for 6(Qy+s, Q¢) is similar.
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Fix an arbitrary number ¢ and consider the function u € D(Q;). According to Definition (16.5), it
suffices to find a function vs € D(Q¢+s) (depending on ) such that

lu = vl () + [P (9, Dyu — Py, D)osllugcy < kils| - l(u, Py, D)), (16.20)

where |s| is sufficiently small, and k1, k2,... > 0 can depend on t but are independent of u and s.
Let us find vs € D(Q4+5) in the form

Vs = U + ws, (16.21)

where ws; € H>™(G) is a solution of problem
Js
P(y, D)ws =Y _Bif5, (B), +Bi, + (t+5)Cipws = —sCipu; (16.22)
j=1

let us define numbers J; and $; and functions f; € H, 9(@) such that a solution ws € H2™(G) exists.
2. To solve problem (16.22), we note that, by virtue of the Corollary 16.1, we have C;,u €

HY™ -1 2(I‘i). Hence, applying Lemma 16.3, we can construct a function Wy € H2™(G) such that
(BY, + B, + (t + 5)Ciu) Wy = —sCyyu, (16.23)
IWollzznc) < kalsl 3 ICaptll yam-miyrra (16.24)
i
From (16.24) and (16.10) we obtain the following inequality:
Wl zzm Gy < Kalsl - || (u, P(y, D)u)]. (16.25)
Obviously, Problem (16.22) is equivalent to the following problem:
Js
P(y, D)Y; = —P(y, D)Ws+ > Bif], (Bj, +Bj,+ (t+5)Ciu)Ys =0, (16.26)
j=1
where
Y, = ws — Wy € H™(G). (16.27)
3. To solve problem (16.26), we consider the bounded operator
L; = {P(y,D),B), + B}, + tCi.} : H:™(G) = H)(G,0G). (16.28)

Note that, by Lemma 16.1, C?uv € Hgm_mi“_l/Q(Fi) for any v € H>™(G); therefore, in the definition
of the operator L;, we can write H2(G,0G) instead of HL(G,0G) + RY(G,G). Tt follows from
Theorem 9.1 and Remark 16.2 that L; is a Fredholm operator for any ¢ € C.

Let us decompose the space H2™(G) into the orthogonal sum H2™(G) = ker Ly @ E;, where E; is
a closed subspace in H2™(G). It is obvious that

Ly = {P(y, D),B}, + B, + tCi,} : Ex = H,(G,0G) (16.29)
is a Fredholm operator and its kernel is trivial. This implies that
ull 2m Gy < kallLiullgo g oq) Yu € By (16.30)
Let J = codim R(Lj). Lemma 16.1 and [56, Sec. 16] imply that the operator
Li, = {P(y. D), B}, + B}, + (t + 5)Ci.} : By = Hy(G, 0G)
is also a Fredholm operator, its kernel is trivial, and codim R(L},) = J under the condition |s| < s¢,

where s; > 0 is sufficiently small. Moreover, using estimates (16.30), (16.1), and (16.2), we have for
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all u € B,

ull g2m ey < ka | 1 Ltsullyocoa) + Stz ||Cw“”Hjm—mw—l/2(Fi)
i
< ks (ILisullngc.oc) + stllullmzne)) - (16.31)
Choosing s; < 1/(2kg), we obtain the inequality
ull fr2m ) < kollLisullyo G oa) Yu € By (16.32)
Since Lj, is a Fredholm operator, we see that the set {f € HY(G) : (f,0) € R(Lj},)} is closed and
has a finite codimension Js in H2(G). It is easy to see that J,; < J.
Let f{,..., fj, be an orthonormal basis in the space
HQ(G) & {f € H(G) : (f,0) € R(Li,)}-

Assume that 7 = (P(y, D)W, f7)no(q)- Then problem (16.26) has a unique solution Y, € Et; by
virtue of (16.32) and (16.25), we have

J
1Yl 2y < ks | 1P, DYWllgoey + > 15;]
=1

< kals| - || (uw, P(y, D)u)|| + ke J max{py,..., 55} (16.33)

Applying the Schwartz inequality for estimating 3] = (P(y, D)W, f]‘?)Hg(G), and using (16.25), we
obtain

1551 < I[Py, DYWsllg(e) < ksls| - [I(u, P(y, D)u).
Hence the inequality follows from here and (16.33):

1Ysllrzm @y < Kols| - [|(u, Py, D)u)]l. (16.34)

4. Taking into account Egs. (16.27), we obtain the inequalities
sl Loy < krollws|lmzm(q) < kuls| - [I(w, Py, D)u)|l, (16.35)
1P (y, D)ws | go(ay < krzllwsll gzm(qy < k12kials| - [|(w, Py, D)u)]], (16.36)

where ws = Y5 4+ Wj is a solution of problem (16.22) from Eqs. (16.25) and (16.34).

The boundedness of the embedding H2™(G) C W™(G) implies that the function vs defined
in (16.21) belongs to W™(G); moreover, by virtue of the second relation in (16.22), we have
vs € D(Q4+s). From (16.21), (16.35), and (16.36) we obtain the required inequality (16.20). O

Proof of Theorem 16.1. Let us fix two arbitrary numbers ¢; and t5 € C. By virtue of lemma 15.1 and
Remark 16.2, Q; are Fredholm operators for all ¢ from an interval I;;, C C with endpoints ¢; and
to. Covering every point of the interval I;,;, by a circle of a sufficiently small radius, choosing a finite
subcover, and applying Theorem 16.2 and [49, Chap. 4, Theorem 5.17], we see that

ind Qtl =ind th .
This and Lemma 15.1 imply that
ind Pt1 =ind PtQ.

Theorem 16.1 is proved. O

17. Instability of Index

17.1. Intersection of the support of nonlocal terms with conjugation points of boundary
conditions.
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17.1.1.  Statement of the problem. Let G be a bounded domain in R? and let G\ {g1, g2} = I'1 UTs,
where T'; are open (in G topology) smooth curves, I'1 NTs = {g1, 92}, g1 and go are the endpoints of
the curves I'1 and I's. Assume that the domain G coincides with a plane angle of nonzero spread in
some neighborhood of the points g;. We also assume that the domain G coincides with a plane angle
of spread 2wy in a neighborhood O.(g;), where 0 < wy < m. Consider the following nonlocal problem
in the domain G:

Au= f(y), yeQG, (17.1)
ulp, = (1 + Ou(@i(y))r, =0, ulr, — (1 = )u(Q2(y))lr, =0, (17.2)

where t € C is a parameter and €); is a C*°-diffeomorphism defined in a neighborhood of the curve
[';. Assume that Q;(T;) C G, Qi(g1) = g1, Q2i(g92) = g2, and the transform ; in neighborhoods O.(g1)
and O.(g2) of the points g; and g5 is a rotation by an angle wy inwards the domain G (see Fig. 17.1).

Iy

91 92

Iy
Fig. 17.1. Problem (17.1), (17.2)

Consider the unbounded operator P; : D(P;) C L2(G) — L2(G) acting by the formula
Ptu = AU, u € D(Pt),
D(P;) = {u e WHG)NW?(G\ Os5(K)) V6 >0:Au€ Ly(G) and u satisfies (17.2)}.

By Theorem 13.1 (more precisely, by virtue of its generalization to the case where the set K consists
of several orbits), P; is a Fredholm operator for any ¢ € C.
Let us prove the following result.

Theorem 17.1. There exists a number ty > 0 such that ind Py > ind P, = const for 0 < [t| < tp.

17.1.2.  Proof of Theorem 17.1. Consider a model problem near the point g;. For this, we take the
coordinate system with origin at the point g; and the axis Ox; coinciding with the bisector of the
angle made by the boundary of the domain near g;. The model nonlocal problem with a parameter
A € C has the form (cf. (6.18))
" =X =0, |o| <wo, (17.3)
p(—wo) = (1+8)p(0) =0, @(wo) — (1 —1)p(0) =0, (17.4)
where ¢(w) = @(w, A) for a fixed A. Obviously, the same model problem will correspond to the point gs.
We see that the eigenvalues of problem (17.3), (17.4) are independent of ¢ and have the form

k
A= 20 k=0,41,42,.. .. (17.5)

wo
Now we are interested in the location of the eigenvalues relative to the strip —1 <Im A < 0. Since
0 < wp < 7, we see that there is a unique eigenvalue Ay = 0 in this strip; it corresponds to a unique
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(up to a constant factor) eigenvector
wo(w) = —cfow +1 (17.6)
and a unique (up to an eigenvector) adjoint vector? ¢;(w) = 0.
Lemma 17.1. There exists a number ty > 0 such that
codim R(Py) < codim R(P;) = const
as 0 < [t| < to.
Proof. 1. Consider the operator Ny : H2(G) — H3(G,0G) acting by the formula
Ny = (Au, ufr, = (1 4+ Hu(@(y))|ry, ulr, = (1 = )u(Q2(y))[r,)-

Since there are no eigenvalues of problem (17.3), (17.4) on the line ImA = —1, according to [85,
Theorem 3.4], N is a Fredholm operator for all ¢. Since, on the one hand, the operator u + u(£2;(y))r,

is bounded from HZ(G) to Hg / 2(Fj) and, on the other hand, small perturbations of Fredholm operators
do not change their indices (see [56, Sec 16]), we have ind N; = const for all ¢ from a sufficiently small
neighborhood of any fixed point ¢ € C. Hence

ind N; = const, ¢ e C. (17.7)
2. Let us prove that
codim R(IN;) = const, [t| < tg, (17.8)
where tg > 0 is sufficiently small. By virtue of (17.7) it suffices to show that
dimker Ny =0, |t| < to. (17.9)

Let t = 0 and u € ker Ny. It follows from (13.22) that the function w is infinitely differentiable
outside an arbitrarily small neighborhood of the set {g1, g2}. On the other hand, u € HZ(G) C W3(G);

hence, by the Sobolev embedding theorem, u € C*°(G) N C(G) and
u(g1) = u(g2) = 0. (17.10)

Since for ¢ = 0 the coefficients of the problem are real, we can assume, without loss of generality,
that the function u(y) is real-valued. If the function |u(y)| has a maximum inside the domain G, then,
by the maximum principle, u = const in G; hence, by virtue of (17.10) we have that u = 0. If |u(y)]
has a maximum at a part of the boundary T';, then, according to nonlocal conditions (17.2), which
have the following form:

ulr, = uw((y))lry,  ulr, = u(Q2(y))[r,
for ¢ = 0, the function |u(y)| also has a maximum inside the domain G; then u = 0 by the above.
Finally, if |u(y)| has a maximum at the point g; or go, then, by virtue (17.10), we have u = 0.

Thus, we have proved that dimkerNy = 0. It follows from [56, Sec 16] that
dim ker N; < dimker Ny = 0 for sufficiently small |¢t|; Eq. (17.9) follows from here; hence, (17.8) is
proved.

3. We prove that

R(Py) = {f € Lo(G) : (£,0,0) € R(N,)}, 0#teC. (17.11)

Since any solution u € H3(G) of problem (17.1), (17.2) with the right-hand side f € La(G) belongs
to W1(G), we have
R(P:) D{f € L2(G) : (£,0,0) € R(Ny)}, teC. (17.12)

Tf Ao € C is an eigenvalue of problem (17.3), (17.4) and @o(w) is a corresponding eigenvector, then an adjoint vector

©1(w) can be found as a solution (perhaps, zero) of the equation ¢f — A\3p1 + %(gog — X%0)

A=A
conditions (17.4). Thus, if A\g = 0, then the adjoint vector ¢1(w) is a solution of the equation ¢} = 0 with nonlocal
conditions (17.4).

= 0 with nonlocal
0
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To prove the inverse embedding for ¢ # 0, consider an arbitrary function f € R(P;). Let u € W(Q)
be a solution of problem (17.1), (17.2) with the right-hand side f. Using Lemma 14.2 we obtain
u € H2, | (G) for any a > 0. By virtue of (17.5), we can find a sufficiently small a > 0 such that there
is a unique eigenvalue Ao = 0 of problem (17.1), (17.2) in the strip —1 < Im A < a. It follows from [85,
Theorem 3.3] (theorem on the asymptotic behavior of solutions of nonlocal problems) that

u(y) = cjipo(w) + djpo(w) Inr +v;(y), y € GNO(g)), (17.13)

where (w,r) are the polar coordinates with pole at the point g;, ¢o(w) is given by Eq. (17.6), and
v; € H3(G N O.(g;)). Note that

u € W3(GNO(g;), v;€W3(GNO(g5)),

but

po(w) & W3 (GNO:=(g5)), ¢olw)lnr ¢ W5 (G NO:(g)))
for t # 0. Hence, ¢; = d;j = 0 in Eq. (17.13); thus, u € HZ(G). Therefore, we have proved that
(f,0,0) € R(Nt)a i-e-a

R(P;) C {f € Lo(G) : (£,0,0) € R(Ny)}, 0#£teC. (17.14)

Equation (17.11) follows from Egs. (17.12) and (17.14).
4. Let us prove that

codim{f € L2(G) : (f,0,0) € R(N¢)} = codimR(N,), teC. (17.15)
In Eq. (17.15), the codimension of the subspace
{f € La2(G) : (£,0,0) € R(Ny)}
is calculated in the space H{(G) and the codimension of the subspace R(N;) is calculated in the space

HY(G) x Hy*('y) x Hy/(I).

We fix t € C and assume that
Ji = codim{f € Ly(G) : (f,0,0) € R(Ny)}, Jo = codimR(Ny).
Let f € La(G) and (f,0,0) € R(IN;). This is equivalent to the following relations:
((f,o,O),Fj)Hg(an) =0, j=1,...,.Jo

where F)j are functions that form a basis in the orthogonal complement to the subspace R(Ny) of the
space H3(G,0G). By virtue of the Riesz theorem on the general form of linear continuous functionals
in Hilbert spaces, these relations are equivalent to the following;:

(Fo )i =0, j=1,...,J,
where fj are some functions from the space La(G). Thus,
J1 < Jo (17.16)

(the equality holds if and only if the functions fj are linearly independent).
Let us prove the inverse embedding. Let F' = (f, f1, f2) be an arbitrary function from R(N;). Then
there exists a function u € H2(G) such that

Au=f(y), yeG,
ulpy = (L4 Hu(i(y))lry = fio - ulr, = (1= )u(Qa2(y))[r, = fo-
Using [58, Lemma 3.1], we construct a function v € H3(G) such that
vley = (L4 DoY)l = fi, 0 vlr, = (1 = Ho(Q2(y))lr, = f2,
ol <kt (Uil vz oy, + 12l o) (7.17)
where k; > 0 is independent of f; and f.
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Obviously, the function w = u — v € HZ(G) is a solution of the problem
Aw = f(y) — Av, ye€QG,
wlr, — (L4 Hw(@i(y))lr, =0,  wlr, — (1 = )w(Q2(y))[r, = 0.
Hence,
f—Ave Ly(G), (f—Av,0,0) € R(Ny).
This is equivalent to the relations
(f =20, )y =0, j=1,...,J1,

where f; € Ly(G) are functions that form a basis in the orthogonal complement of the subspace
{f € La(G) : (£,0,0) € R(IN¢)} in the space La(G). By virtue of the Riesz theorem on the general form
of linear continuous functionals in Hilbert spaces and estimate (17.17), these relations are equivalent
to

(F,Fj;)Hg(G’aG) :O, jzl,...,Jl,
where Fj’ are some functions from the space H3(G,0G). Thus,

Jy < Ji; (17.18)

the equality holds if and only if functions F ]’ are linearly independent.
Equation (17.15) follows from inequalities (17.16) and (17.18).
The following equality follows from relations (17.15) and (17.8):

codim{f € L2(G) : (f,0,0) € R(N;)} = const, [t| < tp. (17.19)
Combining (17.11), (17.12) for ¢t = 0, and (17.19), we complete the proof. O
Lemma 17.2. Let a number tg > 0 be the same as in Lemma 17.1. Then
dimker Py > dimker P; = 0
for 0 < |t| < to.

Proof. 1. Let 0 < |t| < tp and u € ker P;. Similarly to item 3 of the proof of Lemma 17.1, we can
show that u € H2(G); hence, u € ker N;. By virtue of Eq. (17.9), we have u = 0; thus, dim ker P; = 0.
2. Let t = 0. Then u = const belongs to ker Py. O

Proof of Theorem 17.1. Applying Lemmas 17.2 and 17.1, we obtain
ind Py = dimker Py — codim R(Pg) > — codim R(Py) > — codim R(P;) = ind Py, 0 < |t| < to.
Theorem 17.1 is proved. O

17.1.3. Nonlocal terms with supports in small neighborhoods of conjugation points. Now we show
that the index of an operator can change even if the supports of nonlocal terms are concentrated in
an arbitrary small neighborhood of a conjugation point of the boundary conditions.

Let G, I';, and g; be the same as above. Consider the following nonlocal problem in the domain G

Au= f(y), yeQG, (17.20)
ulr, = (A +0)EWu(@i(y)lr, =0, ulr, = (1 = 1)EW)u(Q2(y))lr, =0, (17.21)

where ¢ € C*°(R?), the support of the function ¢ is concentrated in an arbitrarily small neighborhood
of the points g1 and go, and {(y) = 1 near these points (see Fig. 17.2).
Consider the unbounded operator P} : D(P}) C L2(G) — L2(G) acting by the formula

Piu=Au, ueD(P)),
D(P}) = {u € WHG)NW?(G\ O5(K)) V6 > 0: Au € Ly(G) and u satisfies (17.21)}.
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Fig. 17.2. Problem (17.20), (17.21)

By Theorem 13.1 (more precisely, by virtue of its generalization to the case where the set K consists
of several orbits), P; is a Fredholm operator for any ¢ € C.
Let us formulate the main result of this subsection.

Theorem 17.2. There exists a number ty > 0 such that ind P{, > ind P} = const for 0 < |t| < tp.

Proof. Nonlocal conditions (17.2) differ from nonlocal conditions (17.21) by the operators
ws (L4 8)(1 =&(y)u(@i()lr, v (1= = £(y)u(Qa2(y))]r,-

Since the coefficients (1 £¢)(1 —&(y)) of the nonlocal terms vanish near the points ¢g; and g2, we have
ind P; = ind Py for all ¢t € C (by virtue of Theorem 16.1), and the statement of the theorem follows
from Theorem 17.1. l

17.2. Case where there are no conjugation points in the support of nonlocal terms. In
this subsection, we show that the index of an operator can change if and only if the support of nonlocal
terms does not intersect with the set of conjugation points of the boundary conditions (and even lies
inside the domain).

17.2.1.  Statement of the problem. Let G, I';, and g; be as above. Assume that
0<wy<m/2
and consider the following problem in the domain G:

Au=f(y), ye, (17.22)
U|F1 + tu(Q(y))h_ﬁ = 07 u’Fz = 07 (1723)

where t € R and Q is a C*°-diffeomorphism defined in a neighborhood of the curve I';. Assume that
Q(I'y) C G (see Fig. 17.3).
Consider the unbounded operator Py : D(P;) C Lo(G) — L2(G) acting by the formula

Piu=Au, ueD(Py),
D(P;) = {u € WHG)NW?(G\ Os(K)) V6 > 0: Au € Lo(G) and u satisfies (17.23)}.

By Theorem 13.1 (more precisely, by virtue of its generalization to the case where the set K consists
of several orbits), P; is a Fredholm operator for any ¢ € C.
Let us formulate the main result of this subsection.

Theorem 17.3. There exists a number ty > 0 such that 0 = ind Py > ind Py as 0 < |t| < tp.
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Fig. 17.3. Problem (17.22), (17.23)

17.2.2.  Proof of Theorem 17.3. As is known, the local operator Py is an isomorphism and hence
ind Py = 0. (17.24)

Let us study the operators P;. The same (local, since the support of nonlocal terms lies outside
the set {g1,g2}) model problem with a parameter A € C corresponds to each point g1, ga:

O =N =0, |p| < wo, (17.25)
o(—wp) = p(wg) = 0. (17.26)
It can be directly verified that the eigenvalues of this problem have the form
k
e = 25 k=41,42, ... (17.27)
2w0

Lemma 17.3. dimkerP; =0 as 0 < || < 1.

Proof. Let u € ker P;. Since 0 < wg < 7/2, it follows from Eq. (17.27) that there are no eigenvalues of
problem (17.25), (17.26) in the bound —1 < Im A < 0. In Sec. 18 (see Theorem 18.1), we show that in
this case u € W2(G). It follows from Eq. (13.22) that the function u is infinitely differentiable outside
an arbitrary neighborhood of the set {g1, g2}; by the Sobolev embedding theorem, u € C*°(G)NC(G).

Since ¢t € R, we see that all coefficients of problem (17.22), (17.23) are real; therefore, without loss
of generality, we assume that the function u(y) is real-valued. If the function |u(y)| has a maximum
inside the domain G, then by the maximum principle, © = const in G; then, by virtue of the second
condition in Eq. (17.23), we see that v = 0. If |u(y)| has a maximum on I'y, then it follows from
the first condition in Eq. (17.23) and from the relation |¢t| < 1 that |u(y)| has a maximum inside the
domain G; by the above, we see that « = 0. Finally, if |u(y)| has a maximum on 'y, by virtue of the
continuity and the second condition in Eq. (17.23), we obtain u = 0. O

Lemma 17.4. There exists a number to > 0 such that codim R(P;) > 0 for 0 < |t| < tp.
Proof. 1. Consider the operator My : H2 ;(G) — H3,,(GOG), a > 0, acting by the formula
M; = (Au, ulr, +tu(Q(y))[r,, ulry)-

Since the embedding operator W;’/Q(Fl) C Hg_/fl (T'1) is bounded (by Lemma 5.3) and Q(T') C G, we
have

() 572 0y < By gy < Rl (17.28)
Hence, if u € HgH(G) and a > 0, we see thatMu € HgH(G,BG). Thus, the operator M; is well

defined.
According to [58, Theorem 10.5], the local operator My is an isomorphism if

0 <a<m/(2wo). (17.29)
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Let us fix a number a satisfying (17.29). Since My is an isomorphism and estimate (17.28) holds, we
see that the operator My is also an isomorphism for 0 < |¢| < tg, where ¢ty = to(a) is sufficiently small.
2. Construct a function u € H2 ,(G) satisfying nonlocal conditions (17.23) such that

u(Q(g1)) = 1.
For this, we consider a function v € C*°(G) such that v(y) =1 for y € Q(I';) and suppv C G. In this
case, v(Q(y)) = 1 for y € T'y; hence v(2(y))|r, € HA ().
Now we consider a function w € H2 {(G) such that
wlry = =t(Qy))|ry,  wlr, =0, suppw N Q) = @

(it exists by [58, Lemma 3.1]). It is easy to see that u = v + w is a desired function (see Fig. 17.3).
3. We approximate the function f = Au € HgH(G) by functions f, € La(G), n =1,2,..., in the
space HY | (G):
[fn = fllmo, @) — 0, n—oc. (17.30)

a+1
If codimR(P;) = 0 for 0 < [t| < g, then for any function fn € La(G), there exists a general solution
u, € WY(G) of problem (17.22), (17.23) with the right-hand side f,; by Lemma 17.3, this solution is
unique. Moreover, by Lemma 14.2, we obtain that wu, € H§+1(G).
The fact that M, is an isomorphism and Eq. (17.30) implies that

|’un_UHH3+1(G) < ksl fn — f”HO )~ 0, n— oo
Hence, by the Sobolev embedding theorem, we have
un(g1)) = w(Q(g1)) =1, n — oo. (17.31)

On the other hand, there are no eigenvalues of problem (17.25), (17.26) in the strip —1 < Im A\ < 0.
In Sec. 18 (see Theorem 18.1), we will show that in this case u,, € W3(G). By the Sobolev embedding
theorem, we obtain that u,, € C(G); by the second relation in Eq. (17.23), we see that u,(g1) = 0.
Then from the first relation in Eq. (17.23) we obtain that u,(2(g1)) = 0 (for ¢t # 0). This contradicts
Eq. (17.31). Thus, we have proved that codim R(P;) > 0. O

Theorem 17.3 follows from Eq. (17.24) and Lemmas 17.3 and 17.4.

Remark 17.1. Let I be a unique operator in Lo(G) and A € C. By Lemma 15.1, minor terms in an
elliptic equation do not affect the index of the unbounded nonlocal operator P;. Thus,

ind(P; — A\I) =ind P, < 0

for 0 < [t| < tg, where to > 0 is sufficiently small. Therefore, if 0 < |t| < to, then the spectrum of the
operator Py coincides with the whole complex plane.

CHAPTER 5

SMOOTHNESS OF GENERALIZED SOLUTIONS
OF NONLOCAL ELLIPTIC PROBLEMS

18. Preservation of Smoothness of Generalized Solutions

18.1. Statement of the problem. As in previous chapters, we assume that conditions 6.1-6.4
hold (condition 6.4 holds with = 0). As in Chap. 4, we assume that the orders m;, of the differential
operators B;,s(y, D) satisfy the inequalities

mi, < 2m — 1.
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We study the smoothness of generalized solutions (see Definition 13.3) of a nonlocal boundary
problem (6.7), (6.8):

P(y,D)u = foly), y€G, (18.1)
B)u+Blu+Bju=fily) yely i=1,...,N, p=1,...,m. (18.2)

We say that the smoothness of generalized solutions is preserved if any generalized solution of
problem (18.1), (18.2) (with any right-hand side {fo, f;;,} from some subset of the space W°(G, 9G);
this subset can be defined by different ways in different cases) belongs to W?2™(G). If there exists a

generalized solution of problem (18.1), (18.2) that does not belong to W?2™(G), then we say that the
smoothness of generalized solutions is violated.

Let us consider a model problem that corresponds the set (orbit) K.

Denote the function u(y) for y € Oc, (g;) by u;(y). If g; € T, y € O:(g;), and Qis(y) € O, ()
then we denote the function u(€2;s(y)) by ug(Qis(y)). In this notation, nonlocal problem (18.1), (18
in a e-neighborhood of the set (orbit) K has the form

P(y, )':fo( ), v €0(g;) NG,

WO(y7 ) ( |Os(g] nr; +Z ips y> Cuk))(Q (y))

05(93 ¢zu( )

y € Oc(gj) NIy, ze{lﬁzSN:gjeFi}, j=1,...,N, u=1,...,m,
where
Vip = fin — Bhu
Let y — 3/(g;) be the change of variables described in Sec. 6.1 (see Chap. 2). Introduce the functions
Ui() =u((®), £iW)=rfWW)), v eK;;
FionW) = finy(®@)), Bl (y) = (Biu)(y(y), (18.3)
djjtw(y/) = fjau( ) B;j}w( )’ Y € 736'0”

where 0 = 1 (0 = 2) if the transformation y — y'(g;) maps O:(g;) NT; to the side ;1 (respectively,
7v;2) of the angle K. Let us denote y’ by y again. Then, by virtue of condition 6.3, problem (18.1),
(18.2) has the following form (cf. (6.12), (6.13) and (13.27), (13.28)):

P;i(y, D)U; = fi(y), y€ K5, (18.4)
Bjou(y, D)U = Z joutes (U, DYU) Giorsy) = Viou(y), ¥ € 7o (18.5)
Note that the right-hand side of problem (18.4), (18.5) coincides with the right-hand side of prob-

lem (13.27), (13.28), if f;, = 0. If, moreover, B?H = 0, then the right-hand side of problem (18.4),
(18.5) coincides with the right-hand side of problem (6.12), (6.13).

18.2. Statement of the main result. Here we study the case where the following condition holds.
Condition 18.1. The line Im A =1 — 2m does not contain eigenvalues of the operator E(/\)
Recall that the index £ in the definition of the generalized solution is fixed and satisfies the inequal-
ities
0</l<2m—1.

Denote by A the set of eigenvalues of the operator £()\) that lie in the strip 1 —2m < Im X < 1 — ¢
(this set can be empty). Let us also denote iA = {i\: A € A}.

Condition 18.2. All eigenvalues from the set A are regular.

358



Recall that the notion of a regular eigenvalue was introduced in Definition 7.1.

Condition 18.2 means that if £ =2m — 1 (e.g., if f = m = 1), then A = & and if £ < 2m — 2, then
iNC{l,...,2m —2}.

In the case where ¢ < 2m — 2, we need additional conditions.

Let W=2™(—w;,w;) be the space dual to W?™(—w;,w;). Let us introduce the space

Consider the operator

conjugated to the operator
L) : WM (—w,w) = WO [—w,@).

The operator (£(\))* maps an element {(;, Xjou} € W°[~@,@] to (L(A\))*{¢j, Xjou} by the following
rule:

(o (LN (Gximad) = D (P Do Ngin ), 4 3 Biow(w D N

J Jy0 1

for all ¢ € W?™(—w,w), where (-, -) denotes a sesquilinear form on a corresponding pair of dual
spaces.
For any number s € {/,...,2m — 2}, we denote by J the set of all indices (j', o', '), for which

s <myjrgry — 1 (18.6)

(i.e., indices corresponding to differential operators of sufficiently high order (namely, order >s+ 1)
in the boundary conditions). Let us also denote the space consisting of vectors {c¢jsu} (¢jou € C)
satisfying the following relations:

Cilo'y! = 0, (jlaojnul) € Js.
by Cs.

Condition 18.3. If ¢ < 2m — 2, then for any s € i/, the following conditions hold:

(1) Js # 2;

(2) ({0, ¢jou},¥0) =0 for all {cj,.} € Cs and ¢ € ker(L(—is))*;

(3) let p. € W™ (~,w) be a solution of the equation L(—is)pe = {0, ¢jop}, where {cjou} € Cs (this
solution exists by item 2 and is defined with accuracy of an element pg € ker ﬁ(—zs)) Then for
any vector {cjop} € Cs, the function r®p.(w) is a homogeneous polynomial (of order s).

Remark 18.1. 1. Item 1 in condition 18.3 is necessary for the fulfillment of item 2. Indeed, consider

an eigenvalue Ay = —is € A and assume that J; = &. Then Cy = [] C. Thus, if item 2 is valid, then
3,0,
the equation L£(As)pe = {0, ¢jou} is solvable for any cj,, € C. It is easy to see that in this case the
equation £(As)¢ = {fj,cjou} is also solvable for any {fj,cjo.} € W'[—w,w]. Hence, by Lemma 6.1,
the operator L£(\) is an isomorphism; this is impossible since \; is an eigenvalue;
2. Item 2 is a necessary and sufficient condition for the existence of solutions ¢, for all {¢js,} € C;

from item 3.

Remark 18.2. Assume that condition 18.2 holds. If item 3 of condition 18.3 holds for some solution
e, then it holds for any solution ¢ + ¢g, where g € ker L(—is) since —is is a regular eigenvalue of
the operator L£(\).
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Condition 18.4. If { < 2m — 2, then the following statement holds for any s € {€,...,2m — 2} \ iA.
Let . € W (—,w) be a solution'® of the equation L(—is)pe = {0, cjou}, where {cjop} € Cs. Then
for any vector {cjo,} € Cs, the function r®p.(w) is a homogeneous polynomial of (order s).

Remark 18.3. Assume that condition 18.2 holds.
1. If conditions 18.3 and 18.4 hold, then the problem

PJ(D)V =0, BjJ“(D)V = ng“’l"s_mj"“ (18.7)

has a solution V(y), which is a homogeneous polynomial of order s for any vector {cj,,} € Cs,
s = 4,...,2m — 2. Indeed, substituting the function V = r*p.(w) into Eq. (18.7), we obtain the
equation £(—is)ps = {0, ¢jo,}. By conditions 18.3 and 18.4, this equation has a solution . such that
the function V' = r%p.(w) is a homogeneous polynomial of order s.

2. If either condition 18.3 or condition 18.4 is violated, then one can find a vector {cjsu} € C; for
which problem (18.7) has a solution of the form

V =r%pc(w) +r°(ilnr) cncp(") (w), (18.8)

M~

1

3
Il

€l

where s € {{,...,2m — 2}, ¢, € C, @, o™ € W™ (-,
not a polynomial with respect to variables y; and ys.

Indeed, if condition 18.4 is violated, then the statement is obvious (with ¢; = -+ = ¢y = 0). Assume
that condition 18.3 is violated. If items 1 and 2 of condition 18.4 hold and item 3 is violated, then
the statement is obvious again (with ¢; = --- = ¢; = 0). Assume that either item 1 or item 2 is
violated. In both cases, item 2 is also violated (see Remark 18.1). In other words, there exist a regular
eigenvalue Ay = —is € A and a numerical vector {cjs,} € Cs such that the element {0,cjs,} is not
orthogonal to the kernel ker(£(\s))*.

Let us denote a basis in ker £(\s) by 1), ..., o) (J > 1). Since A, is a regular eigenvalue, we
see that no eigenvector ¢(™ has adjoint vectors. Let us substitute a function V of the form (18.8) in
Egs. (18.7). As a result, we obtain

) and J = J(s); moreover, the function V is

J ~
A dL(\ n
LAs)pe = {0, ¢jout — E Cnd()\) ™. (18.9)
n=1

A=A

Note that by Lemma 6.1
dimker(£(\))* = dimker £(\s) = J.
Let ™M, ..., 4(/) be a basis in the space ker(£(\s))*. By [26, Lemma 3.2], the matrix

dL()) ) (k)
< i\ A:Af) ;Y

is nondegenerate. Hence we can choose constants ¢, such that the right-hand side of Eq. (18.9) will

be orthogonal to the kernel ker(L£()\;))*; hence, a solution ¢. of Egs. (18.9) exists. Moreover, since
the element {0, ¢jo,} is not orthogonal to the kernel ker(L(\))*, we see that the vector (ci,...,cy)
is nonzero. Thus, the function V' of the form (18.8) is not a polynomial with respect to variables y;

and yo.

n,k=1,....J

Let us formulate the main result of this section.

Theorem 18.1. Let conditions 18.1-18.4 hold and let u be a generalized solution of problem (18.1),
(18.2) with the right-hand side { fo, fiu} € W°(G,0G). Then u € W2™(G).

10T his solution exists and is unique since —is is not an eigenvalue of the operator E()\)
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Remark 18.4. By Theorem 18.1, any generalized solution of problem (18.1), (18.2) belongs to
W?™(G). The right-hand sides f;, in the nonlocal conditions belong to W?2m~™un=1/2(T;) (this is
natural). However, we do not impose any additional restrictions (as concordance conditions at points
of the set IC) on the behavior of the functions f;, and the coefficients of nonlocal operators. In fact,
the functions f;, € W2m=mi=1/2(T;) are not quite arbitrary. For example, if m = 1, m;; = 0, and
B}, =0, B4 =0 (i.e., a “local” Dirichlet problem) and the solution u belongs to W?(G), then, by the
Sobolev embedding theorem, we have

filg) = fin(g), gelinl; #o. (18.10)
Theorem 18.1 shows that if conditions 18.1-18.4 hold, then the existence of a general solution guar-
antees the fulfillment of relations of the form (18.10). In Sec. 19, we prove that if condition 18.1 is
violated, then for any generalized solution be smooth, we must impose special concordance conditions
on the right-hand sides f;,.

18.3. Statement of the main results. Let U;(y') = u;(y(y')), 7 = 1,..., N, be the functions
corresponding to the set (orbit) I and satisfying relations (18.4) and (18.5) with the right-hand sides
{fj, djjau}'

It follows from the proof of Lemma 15.3 that

U=Q+U, (18.11)

where U € H2™ (K€), and Q@ = (Q1,...,Qn) is a vector-valued polynomial of order ¢ — 1 (if £ = 0,
then there is no polynomial Q). Using this fact, we prove the following lemma.

Lemma 18.1. Let conditions 18.2-18.4 hold. Then
U=W+U, (18.12)

where W = (W1, ..., Wy) is a vector-valued polynomial of order 2m—2, U’ € H2Z™(K?) (6 is such that
0 <6 <1 and the strip 1 —2m < Im A < 1—2m+4¢ does not contain eigenvalues of the operator L(\))

and . o
{P;(y, D)U;} € Hop(K°),

e (18.13)
{Bjou(y, DU’} € H2" 12 (42) n2mm=1/2 (),

Proof. 1. The function U from Eq. (18.11) belongs to H3" ,(K¢) and, by Egs. (18.4), (18.5), and
(18.11), is a solution of the following problem:
Pj(va)Uj:fj_Pj(yaD)Qja yeK;’:
Bjo’p,(y; D)(}v:wjau_BjO'/.L(ya D)Q7 Yy 6’7]5'0"
Since {f;} € WP(K?) and Q is a vector-valued polynomial, we see that
{f; = P;(y, D)Q;} € Hp(K"). (18.15)
Further, vjo, — Bjou(y, D)Q € W2m_mfw_1/2(’y]5-). Hence, by Lemma 5.3, there exists a polynomial
Pjsu(r) of order 2m — mjq, — 2 (if mjg, = 2m — 1, then Pj,,(r) = 0) such that
2m—m—1/2 Cm—
{Yjon — Biou(y. D)Q — Pioy} € H;" 2 () nWPm 1 () (18.16)
for any 0 < § < 1. Moreover, since
~ 2m—m—1/2
{¢jau - Bjau(ya D)Q} = {Bja,u(ya D)U} € 7_[227?’1 / (76)7
we see that any polynomial Pj,,,(7) consists of monomials of order max (0, £ —mjgp), - - ., 2m—mjg, —2

(in particular, if £ = 2m — 1, then there is no polynomial Pjy,(r)).
2. Let us write the polynomial Pj,,(r) in the form

(18.14)

Pjou(r) = cjgur'™miom 4 o Mot 4 (18.17)
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where, in particular, ¢jo, = 0 for all j, o, and p such that £ < mjs, — 1 (cf. (18.6) as s = ¢). Hence

{CJUH} e Cy.
Consider the following auxiliary problem:

Pi(DYW! =0, Bjou(D)W* = cjort=mion, (18.18)

By conditions 18.3 and 18.4 (see Remark 18.3), problem (18.18) has a solution W*(y), which is a
homogeneous vector-valued polynomial of order £.

Using (18.17) and (18.18) and expanding the coefficients of operators Bjs,(y, D) in the Taylor
series, we obtain the embeddings

{P;(y. D)W/} € Hi(K°),

e (18.19)
{Bjou(y, DIW' = Piay + Plo,} € Hi" ™72 (57 nwPm o=t 2(y9),
where P, (r) is a polynomial consisting of monomials of order max (0, {—mjou+1), ..., 2m—m;q; —2.
It follows from (18.15), (18.16), and (18.19) that
{£j = Pi(y, D)(Q; + W))} € HY(K?),
T 7o ’ (18.20)

{jon — Bjou(y, D)(Q + W) = Pl } € Hy" ™72 (95) npy2mom=1/2(5),

3. Repeating the procedure from item 2 of the proof finitely many times (every time we use
conditions 18.3 and 18.4), we obtain the embeddings

{f; = Pi(y, D)(Qj + W+ + W)} € HY(K*),

¢ 2m—2 2m-m-1/2, ¢ om—m—1/2, (18.21)
{$jon — Bjou(y, DY(Q + W! -+ + W)} € 1 ()W ).

where W*# is a homogeneous vector-valued polynomial of order s, s = ¢,...,2m — 2. (Let us note that
a homogeneous vector-valued polynomial of order 2m — 1 belongs to H2™(K?).) If £ = 2m — 1, then
there are no polynomials W* in Eq. (18.21); in this case, the second relation in Eq. (18.21) follows
from Eq. (18.16), where Pj,;, = 0.

Equations (18.14) and (18.21) yield the embeddings

{P;(y, D)(U; — W — -+ = WI™%)} € Hy(KF), (1822
{(Bjou(y, D)(U — W — o — W2m=2)} @ 327 ™12 (5) q W2m—m—1/2 (),

4. Since the line Im A = 1 — 2m + ¢ does not contain eigenvalues of the operator £(\) and rela-
tions (18.22) hold, we see that it follows from [26, Theorem 2.2, Lemma 4.3] and conditions 18.2-18.4
that the function U + W' + --- + W22 belongs to the space H2™(K?) with accuracy up to a
vector-valued polynomial. This vector-valued polynomial consists of vector-valued monomials of order

mnﬁ Sy ..., 2m — 2 (this vector-valued polynomial is absent if £ = 2m — 1). In other words, there exists
EIS
a vector-valued polynomial W consisting of vector-valued monomials of orders [, ..., 2m — 2 such that

U+ W e HM(K®),
{P;(y, D)(U; + W))} € Hy(K°), (18.23)
{Bjouly, D)(U + W)} € M ™ 12(7) nwamm12(5),
Now the conclusion of the lemma follows from Egs. (18.11) and (18.23). O

Lemma 18.2. Let conditions 18.1-18.4 hold. Then U € W?™(K*).
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Proof. Tt follows from Eq. (18.13), Lemma 7.1, and Corollary 7.1 that there exists a function V €
HE™(K) N W?*™(K) such that

{P;(y. D)(U] — V))} € HY(K?),
{(Bjou(y, D)(U' = V)} € Hy" ™ 2 (y).

By virtue of Eq. (18.24) and the fact that the strip 1 —2m <Im A < 1—2m+J does not contain the

eigenvalues of the operator £()), we can apply [26, Theorem 2.2] (theorem on the asymptotic behavior
of solutions of nonlocal problems). Thus, we obtain the embedding U’ — V € H3™(K*®) C W?™(K*).
The conclusion of the lemma follows from here and Lemma 18.1. O

Theorem 18.1 follows from (13.21) and Lemma 18.2.

(18.24)

19. “Bounded” Case. Concordance Condition

19.1. Behavior of generalized solution near conjugation points. Let A be the same set of
eigenvalues as in Sec. 18. In this section, we assume that the following condition holds (instead of
Condition 18.1).

(;ondition 19.1. The line Im A = 1 —2m contains a unique eigenvalue X = i(1 — 2m) of the operator
L(X), and this eigenvalue is regqular.

The fundamental difference of results obtained in this section from results of Sec. 18 is in the
behavior of generalized solutions near the set (orbit) K. Lemma 18.1 is still valid if condition 19.1
holds. However, Lemma 18.2 becomes invalid since, if there is an eigenvalue of the operator £(\)
on the line ImA = 1 — 2m, then we cannot apply Lemma 7.1 and Corollary 7.1 from Sec. 7.1 (see
Chap 2). Therefore, we will use results of Secs. 7.2 and 7.3 (see Chap. 2). Moreover, we impose
special concordance conditions on the behavior of the functions f;, and the coefficients of the nonlocal
operators near the set (orbit) K.

Let 7j, and ija are the same as in Sec. 5.2 (see Chap. 2). Consider the operators

2m—miq,—1 2m—miq,—1
DTjo- Ol Bja,u(D)U = DTjg e Z(Bja,uks(D)Uk)(gjaksy)

k,s
Using the chain rule for differentiation, we have
2m=mjou—1p
DT;Z Maon jo,u U Z jauks Uk)(gjaksy) (191)

where Bja,uks(D) are homogeneous differential operators of order 2m — 1 with constant coefficients.
Formally replacing nonlocal operators in Eq. (19.1) by the Corresponding local operators, we obtain

Biou(D)U = Z Bjouns(D)Ur(y), (19.2)

which coincides with the operators in Eq. (7.2) for 1=0.
It was shown in Sec. 7.2 (see Chap. 2) that if condition 19.1 holds, then the system of operators (19.2)
is linearly independent. Denote the maximal linearly subsystem of system (19.2) by

{Bjior (D)} (19.3)
Then any operator ngu(D), which does not belong to system (19.3), can be represented in form
Bjou( Z jo(;“ Bjior (D), (19.4)
] a—/ /
where ﬂ; sy are some constants.
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Introduce the notion of a concordance condition. Let {Z;,,} € W?™~™=1/2(~%) he a vector con-
sisting of functions defined on intervals ~5,. Consider the functions

ZJOU,LL( ) Zqu(y)’yz(rcoswj,r(—l)U sinw;)-

Every function Z]Qcm belongs to Wzm_mjfw_l/Q(O, £).

Definition 19.1. Let ﬁg:;:“ " be constants from relations (19.4). If the relations
2
3

—1 2m—mng JIU/HI 2m— mr /M/fl 0
/T‘ Dr ]UH E BJO'M D Zj/G'/,U/ dT' < o0 (195)
0 J'ol

are valid for all indices j, o, and p that correspond to the operators of system (19.2), which do not
belong to system (19.3), then we say that functions Zjq, satisfy concordance condition (19.5).

Remark 19.1. The relation {Z;,,} € ”Hgm_m_l/ 2 (7¢) is sufficient (but is not necessary) for functions
Zjou to satisfy Eqgs. (19.5). This follows from [53, Lemma 4.8].

Remark 19.2. In terms of Chap. 2, the concordance condition has the form

D2mfmj[,u

il 2m— Mt 1 — 1 1
Tjo Zijoy — Z 55;2” DT' o " ZLyonw € Hy (RQ)v (19.6)
Jhol .

where Zj,, € W2m=mjou (R?) is an extension of the function Zjop to R?, which has a compact support
(the corresponding theorems on extension of functions defined in domains with angular points can be
found in [100]). It is easy to show that Eq. (19.5) is equivalent to Eq. (19.6).

Let us show that the following condition is necessary and sufficient condition for some fixed gener-
alized solution u to belong to W?2™(G).

Condition 19.2. Let u be a generalized solution of problem (18.1), (18.2), v, be the right-hand
sides in nonlocal conditions (18.5), and W be a vector-valued polynomial from Lemma 18.1. Then the
Junctions Vo — Bjou(y, D)W satisfy concordance condition (19.5).

Remark 19.3. 1. The fulfillment of Condition 19.2 depends on the behavior of the function B?Mu
near the set (orbit) K. By virtue of Eq. (6.5) (for { = 0), the values of the function Bgﬂu near the set

K depend on the values of the function v in G\ O,,, (K). Therefore, the smoothness of a generalized
solution u near the set IC depends on the behavior of u outside the set /.

2. Let us clarify how the fulfillment of condition 19.2 depends on the behavior of the functions
uw(y), fin(y), (B?Hu)(y) and the coefficients of the operators B?“ and B%# near the set . On the one
hand, the vector W from 18.1 is defined by the behavior of the solution u(y) near the set . On the
other hand, the coefficients of the operators B?u and Bilu at points of the set K and operators Gy

define the constants Bg;‘ﬂ”/ from Eq. (19.4) and, hence, the constants from Eq. (19.5). Finally, the

derivatives of the functions f;,(y), (B?uu)(y) and the coefficients of the operators B?u and Blu must
be coordinated near the set IC in such a way that the absolute values of the corresponding linear
combinations of derivatives (of order 2m —m,, — 1) of the functions 1, — Bjsu(y, D)W are square

integrable (with weight r—!) near the origin.

Theorem 19.1. Let conditions 19.1 and 18.2-18.4 hold and let u be a generalized solution of prob-
lem (18.1), (18.2) with the right-hand side {fo, fi,} € W°(G,0G). Then u € W?™(G) if and only if
condition 19.2 holds.

Proof. 1. Necessity. Let u € W?™(G). Consider the function U = (Uy,...,Uy) corresponding to the
set (orbit) K. Obviously, U € W?™(K?). By Lemma 18.1, we have U = W +U’, where U’ € H2™(K?),
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0 <4 < 1. Since U' = U—W € W?™(K¢), by the Sobolev embedding theorem, we have D*U’|,— = 0,
la| < 2m — 2. This and Lemma 7.2 imply that the functions ¢, — Bjo,W = Bje,(y, D)U’ satisfy
concordance condition (19.5).
2. Sufficiency. Let condition 19.2 hold. It follows from Eq. (18.13), Lemma 7.4, and Corollary 7.2
that there exists a function V € H2™(K) N W?™(K) ( is the same as in Lemma 18.1) such that
{P;(y, D)(Uj = Vj)} € Hy(K°),
2m—m—1/2
{Bijou(y, D)(U' = V)} € Hy" ™2 (5),
By virtue of Eq. (19.7) and the fact that the strip 1 —2m < Im A < 1—2m+4 contains only the regular

eigenvalue i(1 — 2m) of the operator £()), we can apply Lemma 7.5. By this lemma, all derivatives
of order 2m of the function U’ — V belong to W°(K¢). This and the relations

U' -V e HF™(K) C Hg™ 1K) € W (K¥)
imply that U’ —V € W?™(K¥¢). Combining this relation with Lemma 18.1, we complete the proof. [

(19.7)

Note that Theorem 19.1 allows one to determine whether a given fixed solution w is smooth near
the set K only in the case where the asymptotic behavior of the solution u of form (18.12) near the
set I is known (i.e., if we have a vector-valued polynomial W). Theorem 19.1 clarifies the factors
that affect the smoothness of generalized solutions. Below, we will obtain necessary and sufficient
conditions of the fact that every generalized condition belongs to W2™(G).

19.2. Problem with nonlocal conditions. In this subsection, we formulate necessary and suf-
ficient conditions for the preservation of smoothness of generalized solutions. First, we show that
the right-hand sides of f;, cannot be arbitrary functions from W2m=min=1/2(T); they must satisfy
concordance conditions.

Denote the set consisting of functions {fi,} € W™ m~1/2(9G) such that the functions fjo,
(see (18.3)) satisfy concordance condition (19.5) by S?™~™~1/2(9@G). Introduce the space

S%G,0G) = Ly(G) x S*m—m=1/2(93).

Obviously,

82m7m71/2(aG) m32m7m71/2(8G) — 32m7m71/2(8G) C 32m7m71/2(8G) C W2m7m71/2(8G)’

SYG,0G)NS°(G,06) = 8%G,0G) c S%G,0G) c WO(G,8G).

The smoothness of generalized solutions of problem (18.1), (18.2) can be violated if the right-hand

sides in nonlocal conditions (18.2) do not satisfy the concordance condition.

Theorem 19.2. Let conditions 19.1 and 18.2-18.4 hold. Then there exist functions {fo, fin} €
WG, 0G), {fiu} ¢ S ™"Y2(0G), and w € W?""Y(G) such that u is a generalized solution of
problem (18.1), (18.2) with the right-hand side { fo, fin} and u ¢ W?™(G).

Prove the following auxiliary result. Let
¢ = dy min(e, 52), (19.8)
where d; is defined in Eq. (6.15).

Lemma 19.1. Let condition 19.1 hold and a function {Zjs,} € WP ™=12(4%) be such that
supp{ Zjou} C O/2(0), D%UZJ'JMZ/:() =0, f < 2m — mjou — 2, and functions Zj,, do not satisfy
concordance condition (19.5). Then there exists a function U € H3™(K) C W™ 1K), where § > 0
is arbitrary, such that suppU C O (0), U ¢ W?™(K*), and U satisfies the relations

{P;(y. D)U;} € WOK®), {Bjou(y. DU — Zjo} € Hy" ™ 2 (). (19.9)
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Proof. By Lemma 5.1, there exists a sequence of functions {Z7, } € W2m—m=1/2(~y 'p = 1.2 ... such
that supp 27, , C O(0), Z7, , vanish near the origin (hence, they satisfy concordance condition (19.5)),
and {Z},,} — {Zjou} in W2m—m=1/2(~) " Taking into account Lemma 5.4, we see that {Z3,,.} —
{Zjop} in Hgm_m_l/Q(fy), 0 > 0 is arbitrary. Now we apply Lemma 7.6. By this lemma, there exists
a sequence V" = (V... , V) satisfying the following conditions: V" € W?™(K®) N HZ™(K?) for
every d > 0,

Pi(D)Vi' =0, yeK;,  Bjou(D)V" =Zj,,(y), Y€ Yo (19.10)
and the sequence V" converges to the function V' € H2™(K?) in H3™(K?) for every d > 0. Passing
to the limit in Eq. (19.10) (in the spaces HI(K?) and H?m_m_l/Q(Kd), respectively), we obtain the
equalities

POV, =0, yeK;  BiowDWV = Ziouly), v € o (19.11)

Consider a patch function & € C§°(O(0)), which is equal to 1 near the origin. Let U = &V.

Obviously, supp U C O (0) and
U e HF™(K) c W H(K).

2. Let us show that the function U is as required. Indeed, using the Leibnitz formula, rela-
tions (19.11), and Lemmas 5.5 and 5.6, we derive Eq. (19.9).

It remains to show that U ¢ W?™(K¢). Suppose the contrary: let U € W?™(K¢). Then by virtue
of the Sobolev embedding theorem and the relation U € H3™(K¢®) (§ > 0 is arbitrary), we have
DUly—o = 0, |a| < 2m — 2. It follows from here and Lemma 7.2 that the functions Bj,,(y, D)U
satisfy concordance condition (19.5). However, in this case, the functions Bj,,(y, D)U — Zjs, do not
satisfy concordance condition (19.5). This contradicts (19.9) (see Remark 19.1). O

Proof of Theorem 19.2. 1. Let us construct a generalized solution v ¢ W?™(G) with the support near
the set KC; in this case, by Eq. (6.5), Bfﬂu =0 (for [ =0).

It was proved in Lemma 7.3 that there exists a function {Zj,,} € W2m=m=1/2(y) such that
supp Zjop C Oc/2(0), D? Zioply=0 = 0, B < 2m — mjg, — 2, and the functions Zj,, do not sat-

Tjo

isfy concordance condition (19.5). By Lemma 19.1, there exists a function U € H3™(K) C W?™(K)
such that supp U C O.(0), U ¢ W?™(K), and U satisfies relations (19.9). Hence

{Pj(y. D)U;} € WO(KF),  {Bjouly, D)UY € WP 712(7),
and the functions By, (y, D)U do not satisfy concordance condition (19.5).
2. Introduce a function u(y) such that u(y) = U;(y'(y)) for y € Oz (g;) and u(y) = 0 for y ¢ O (K),
where y’ — y(g;) is the change of variables, which is inverse to y — 3'(g;) (see Sec. 6.1, Chap. 2).

Since suppu C O, (K), we have B%Mu = 0. Hence u(y) is a desired generalized solution of prob-
lem (18.1), (18.2). O

Theorem 19.2 shows us that it is necessary for the right-hand sides { fo, fi,.} to belong to the space
S%(@, 0G) if we want that any generalized solution of problem (18.1), (18.2) be smooth.

Let v be an arbitrary function from W?™(G\ O,,, (K)). Consider the change of variables y — v/(g;)
from Sec. 6.1 (see Chap. 2). Introduce the functions

B, () = BLo) (), ¥ €, (19.12)
(cf. functions (18.3)). Let us prove that the following condition is necessary and sufficient for any
generalized solution to be smooth.

Condition 19.3. (1) For anyv € W*™(G\ O,,,(K)), the functions Bz, satisfy concordance con-
dition (19.5).
(2) For any vector-valued polynomial W of degree 2m — 2, the functions By, (y, D)W satisfy con-
cordance condition (19.5).
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Note that the fulfillment of condition 19.3 (unlike Condition 19.2) is independent of a special
generalized solution. It depends only on the operators B?M, B}H, and B?“ and on the geometry of
the domain G near the set K. This is natural since here we study the smoothness of all generalized

solutions (while in Sec. 19.1, we studied the smoothness of a fixed solution).

Theorem 19.3. Let conditions 19.1 and 18.2-18.4 hold. Then the following statements hold.

(1) If condition 19.3 is valid and u is a generalized solution of problem (18.1), (18.2) with the
right-hand side { fo, fi} € SY(@G,0G), then u € W2 (@).

(2) If condition 19.3 is violated, then there exist a right-hand side {fo, fi,} € S°(G,0G) and a
generalized solution u of problem (18.1), (18.2) such that u ¢ W?™(G).

Proof. 1. Sufficiency. Let condition 19.3 be valid and let u be an arbitrary generalized solution of
problem (18.1), (18.2) with the right-hand side {fo, fi,} € S°(G,0G). By Eq. (13.21), we have u €
W?2m(G\ O,,(K)). Hence the functions B, (by condition 19.3) satisfy concordance condition (19.5).
Let W be a vector-valued polynomial of degree 2m — 2 from Lemma 18.1. Using condition 19.3, we see
that the functions B, (y, D)W satisfy concordance condition (19.5). Since {fi,} € S*™ ™-1/2(9G),
we see that the functions fjy, satisfy concordance condition (19.5). Hence, the functions v, =
fion— By, and By, (y, D)W satisfy condition 19.2. Applying Theorem 19.1, we obtain u € W2m(@).

2. Necessity. Let condition 19.3 hold. Then there exist a function v € W?™(G \ O,,(K)) and a
vector-valued polynomial W = (Wq, ..., Wy) of degree 2m — 2 such that the functions Bf,, +Bjo W
do not satisfy concordance condition (19.5) (we can consider either v =0, W # 0, or v # 0, W = 0).
Let us extend the function v to the domain G such that v(y) = 0 for y € O, 5(K) and v € W*"(G).

By Lemma 5.3, there exist polynomials f},,(r) of degree 2m — mjqy, — 2 (if mjou = 2m — 1, then

ou(r) = 0) such that

{B;

o + Bjo‘u(y, D)W — fJ/'UM} c ’H?m—m—l/Q(,}/a) N WQm—m—l/Q(,ya),

where 0 > 0 is arbitrary. Hence
DEJG( ;au+BjUﬂ(y7 D)W_fjlau)((]) =0, 8< 2m_mjap, - 2.

1.

. 2m—mig —
Since Dy Jon ou !

(r) =0, we see that the functions f],  satisfy concordance condition (19.5).
Then the functions B, , + Bjou(y, D)W — fj,, do not satisfy concordance condition (19.5).
By Lemma 19.1, there exists a function U’ € H3™(K) C W?™ L(K) such that suppU’ C O.(0),

U’ ¢ W (K?) and

{P;(y, D)U}} € WO(K*), (19.13)
v 2m—m—1/2
{Bja,u(ya D)U/ - (fJ(UM - ngﬂ - Bjo,u(ya D)W))} € HO / (78)'
We can rewrite the last relation as follows:
{(Bjou(y, DYU' + W) + Bl — flo} € Ho" ™ 2 (4). (19.14)

Introduce a function u'(y) such that u'(y) = Uj(y'(y)) + &§;(y)W; for y € Ou(g;) and u'(y) = 0 for
y ¢ O (K), where y' — y(g;) is the change of variables inverse to the change y — ¢/(g;) from Sec. 6.1
(see Chap. 2), & € C5°(O(g5)), §i(y) = 1 for y € O /5(g;) and €’ is defined in Eq. (19.8). Let us
prove that the function u = ' + v is as required. Obviously, u € W?™1(G), u ¢ W?™(G), and u
satisfies relations (13.21). Tt follows from v € W?™(G) and Eqgs. (19.13) that

P(y,D)u € L2(G).

Consider the functions f;, = Bgﬂu + B%Mu + B?#u. It follows from v € W?™(G), Egs. (13.21),

and inequality (6.5) (with I = 0) that f;, € W2m ™u=l/2(T;\ Os(K)) for any § > 0. Consider
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the behavior of f;, near the set K. Note that, by virtue of (6.5) (with { = 0), we have B?uu’ = 0.
Moreover, B?Hv + B}”v =0fory € O, /q,(K). Hence,

fip = B?Mu’ + B%Mu' + B?Mv, y €0, /4,(K). (19.15)
Introduce the functions fjou(y') = fiu(y(y')), where y — 3'(g;) is the change of variables from
Sec. 6.1 (see Chap. 2). Equations (19.15) and (19.14) yield {fjou — fi,,.} € H(Q)m_m_l/g(’ye). Hence,
{fiou} € WPm—m=1/2(~1%) and the functions fjo, (as well as fis,,) satisfy concordance condition (19.5).
Thus, {fi,} € S* ™ 1/2(9@). O

19.3. Problem with regular nonlocal conditions.

Definition 19.2. A function v € W?™(G \ O,,,(K)) is said to be admissible if there exists a vector-
valued polynomial W = (W7y,..., Wy) of degree 2m — 2 such that

DEJ’U (B;}UM + BjU,U‘(y’ D)W)|y=0 = 07
/8§2m—m]gu_2, j:l,...,N, 0'21,2, /,L:]_’_."m‘ (1916)

Any vector W of degree 2m — 2 satisfying relations (19.16) is called an admissible vector-valued
polynomial corresponding to the function v.

Remark 19.4. The set of admissible functions is linear. Obviously, the function v = 0 is admissible
and W = 0 is the admissible vector corresponding to it.

The set of admissible vector-valued polynomials that correspond to an admissible function v form
an affine space of the form

{W + W : W is a vector-valued polynomial of degree 2m — 2,

D2 Bjou(y, DYWly=o = 0, f < 2m —mjo, — 2}, (19.17)
where W is a fixed, admissible vector-valued polynomial that corresponds to v.

Definition 19.3. The right-hand sides f;, in nonlocal conditions (18.2) are said to be regular if

(1) condition 18.1 holds and {f;,} € S ™~Y/2(9G) or

(2) condition 19.1 holds and {f;,} € S ™~1/2(3Q).

The right-hand sides 14, in nonlocal conditions (18.5) are said to be regular if

(1) condition 18.1 holds and {5, } € S?™~™~1/2(~%) or

(2) condition 19.1 holds and {t;,,} € S¥M™=1/2(~%).

Thus, the regular right-hand sides f;, (¥jou) have a zero of a certain order near the set K
(respectively, near the origin). In particular, the right-hand sides {f;,} € Hgmfm*l/ 2(86’) and

{Vjout € Hgm_m_1/2(75) are regular by virtue of the Sobolev embedding theorem and Remark 19.1.
If the right-hand sides f;,, from nonlocal conditions (18.2) are regular, we also say that the right-hand
side { fo, fip} of problem (18.1), (18.2) is regular.
We prove that the following statement is necessary and sufficient for any generalized solution of
problem (18.1), (18.2) with a regular right-hand side {f;,} € S ™~1/2(@G) to be smooth.

Condition 19.4. The functions B;?UH+BjJM(y, D)W satisfy concordance condition (19.5) for any ad-

missible function v and any admissible vector-valued polynomial W (of degree 2m —2) that corresponds
to v.

Note that condition 19.4 is weaker than condition 19.3.
Theorem 19.4. Let conditions 19.1 and 18.2-18.4. Then the following conditions hold.
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(1) If condition 19.4 holds and a function u is a generalized solution of problem (18.1), (18.2) with
a regular right-hand side { fo, fi} € S°(G,9G), then u € W™(Q).

(2) If condition 19.4 is violated, then there exists a right-hand side {fo, fiu} € H3(G,0G) and a
generalized solution u of problem (18.1), (18.2) such that u ¢ W?™(G).

Proof. 1. Sufficiency. Let condition 19.4 hold, and let u be a generalized solution of problem (18.1),
(18.2) with a regular right-hand side {fo, fip} € S%(@,0G). By virtue of Eq. (13.21), we have
u € WG\ 0,,(K)).

It follows from the conditions on the functions f;, that the right-hand sides in nonlocal condi-
tions (18.5) have the following form:

wjau = ij,u, - B;‘LUM, (1918)
where {fj,, } € W2m—m=1/2(45),
DY fiouly=0=0, B<2m —mjg, —2, (19.19)

and fjo, satisfies concordance condition (19.5).
Further, let U = W +U’, where U’ € ’H%m (K*¢) and W is a function and a vector-valued polynomial
(of degree 2m — 2) from Lemma 18.1. Equations (18.5) and (19.18) yield

ngu(y, D)U/ = fjau — (B, + Bjau(% DYW).

Jou
Since
(Bl + Bjouly, D)W = fion} € W22, U € HF™(K°),
we have
u 2m—-m-—1/2 m—im—
{Bjcru + Bjau(yv D)W - fjau} = {_Bjau(% D)U/} € Hd / (’76) N W2 1/2<7€)'

It follows from here and Eq. (19.19) that

D3 (Bl

+ ngﬂ(y, D)W)’y:() = 0, 5 S 2m — mja'# — 2,
i.e., u is an admissible function and W is an admissible vector-valued polynomial corresponding to wu.
Hence, by virtue of Eq. (19.18) and condition 19.4, condition 19.2 holds. Thus Theorem 19.1 implies
that u € W2™(QG).

2. Necessity. Let condition 19.4 be violated. Then there exist a function v € W2 (G \ O,,, (K))
and a vector-valued polynomial W = (W7i,..., Wy) of degree 2m — 2 such that

D} (B

jou + Bjaﬂ(yv D)W>’y=0 =0, B<2m-— Mjou — 2,

and the functions B}, + Bj,,(y, D)W do not satisfy concordance condition (19.5).

We must obtain a function u € W*(G) satisfying relations (13.21) and such that u ¢ W?™(G) and

P(y, D)u € Ly(G), {Bouu + B%Mu + B?Mu} € ”Hgm_m_l/z(@G).

)

For this, it suffices to repeat the reasoning of the proof of statement 2 of Theorem 19.3 assuming that
v is the above-mentioned function, W be the above-mentioned polynomial, and f]’- (w(y) = 0; this is
possible by virtue of the relation
2m—m—1/2 —m—
B+ Biouly, DYW € H3" 712 (7 ) w2 (),

where ¢ > 0 is arbitrary. O
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19.4. Homogeneous nonlocal conditions. Violation of smoothness of generalized solu-
tions. Here, we consider some situations where the violation of condition 19.4 leads to the violation
of smoothness of generalized solutions even in the case of homogeneous conditions.

As well as in Sec. 11 (see Chap. 3) and Sec. 16 (see Chap. 4), we assume that the “local” operators
form a normal system (see, e.g., [57, Chap. 2, Sec. 1]).

Condition 19.5. Thr system of operators {B?“ anl is normalT;, i=1,... N.
Lemma 19.2. If condition 19.5 holds, then the following assertions are valid.
(1) Let {fi.} € Hgm_m_l/g(ﬁG). Then there exists a function uy € HZ™(G) such that
suppug C O, (K),
Bjuo = fiu(y), v €TiN 0., (K),
Bj,uo = B} up = 0. (19.20)
(2) Let{fi.} € H(Q)m_m_l/g(ﬁG) and supp fi, C O,,(K). Then there exists a function ug € HZ™(G)
such that
supp ug C O,, (K),
B, = fiu(y), yeTy
and relations (19.20) hold.

Proof. 1. Using Lemma 11.1, the partition of unity, and the corresponding patch functions supported
in O, (K), we construct a function ug € H3™(G) such that

supp up C O, (K), (19.21)
BYuo = fiu(y), y€TiN0,4,(K), (19.22)
B}#uo =0.

Equations (19.21) and (6.5) (as [ = 0) yield B?#uo = 0. Hence, ug is a required function.
2. If supp fip C O,,(K), then we can assume that suppug C O,,(K). In this case Egs. (19.22) are
valid for y € T. O

First, we consider the violation of smoothness if the right-hand sides in the nonlocal conditions
vanish near the set K.

Corollary 19.1. Let conditions 19.1, 19.5, and 18.2-18.4 hold. If condition 19.4 is wviolated, then
there exist a right-hand side {fo, fin} € HY(G,0G), where fi,(y) = 0 fory € T; N O,,(K), and a
generalized solution u of problem (18.1), (18.2) such that u ¢ W?™(G).

Proof. The proof of this corollary follows from statement 2 of Theorem 19.4, statement 1 of
Lemma 19.2, and the embedding H3™(G) C W?™(G). O

Now we study the violation of smoothness in the case where the right-hand sides in the nonlocal
conditions vanish on the whole boundary of the domain.
Statement 2 of Theorem 19.4 yields the following assertion.

Corollary 19.2. Let conditions 19.1 and 18.2-18.4 hold, but let condition 19.4 be violated. Let
{fo, fin} € HY(G,0G) be a function from statement 2 of Theorem 19.4. Assume that there exists
a function ug € W?™(Q) such that

B?MU() + leuuo + B?MU(] = fiu(y)a yely. (1923)
Then there exist a right-hand side { fy,0}, where fo € La(G), and a generalized solution u of prob-
lem (18.1), (18.2) such that u ¢ W™ (G).
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In the general case, this corollary does not give us constructive algorithms of construction of function
ug satisfying relations (19.23). However, we can prove the existence of such a function (in some
particular cases described in Corollaries 19.3 and 19.4; see also Sec. 22.2).

Corollary 19.3. Assume that the operators B?# satisfy the condition
”B'LZMUHW27"*”L1'M*1/2(FZ.) < CHUHW2m(GP) Vv e W2m(GP) (1924)

for some p > 0. Let conditions 19.1, 19.5, and 18.2-18.4 hold, but let condition 19.4 be violated. Then
Corollary 19.2 is valid.

The proof follows from Corollary 19.2, the embedding HZ™(G) C W?™(G), and the next lemma.

Lemma 19.3. Let condition 19.5 hold. Let the operators B?H satisfy condition (19.24) and let { f;,} €
H(Q)m_m_l/Q(@G). Then there exists a function ug € HZ™(G) satisfying (19.23).

Proof. Using Lemma 11.1 and the partition of unity, we construct a function ug € Hgm(G) such that

suppug C G\ G, (19.25)

B?MUO = fi,u, B}#UO =0.
By virtue of Eq. (19.25) and (19.24), we have B?uuo = 0. Hence, ug satisfies (19.23). O

Remark 19.5. Condition (19.24) (which is stricter than condition 6.4) means that the operators BZZ#
correspond to nonlocal terms supported inside the domain G.

Corollary 19.4. Let conditions 19.1, 19.5, and 18.2-18.4 hold. Let condition 19.4 be violated for an
admissible function v such that

supp(B?MU + B%Mv + B?Mv) clin0O.,(K). (19.26)
Then Corollary 19.2 is valid.

Proof. If
supp(Bguv + B%“v + B?uv) clin0O,,(K),
then the function
{fiu} = {BYu+Blu+Bu} e 1g" ™ 12(0G)

constructed in the proof of statement 2 of Theorem 19.4 (see also proof of statement 2 of Theorem 19.3)
has support lying in O,,,(K). Hence, applying statement 2 of Lemma 19.2, we obtain the function wug
satisfying Eq. (19.23). Using Corollary 19.2, we complete the proof. O

20. Nonlocal Conditions of Special Form.
Regular and Zero Right-hand Sides

In this section, we show that, in some cases, the preservation of the smoothness of generalized
solutions of problem (18.1), (18.2) is independent of conditions 18.3 and 18.4. We consider regular
(see Definition 19.3) or, in particular, zero right-hand sides in the nonlocal conditions. If the right-hand
sides are irregular (and ¢ < 2m — 2), then conditions 18.3 and 18.4 are necessary for the preservation
of smoothness of generalized solutions (see Theorem 21.2 in Sec. 21.2). Obviously, if £ = 2m — 1, then
conditions 18.3 and 18.4 are absent; in this case, the results of this section follow from the results of
the previous sections.
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20.1. Nonlocal conditions of a special form. Auxiliary results. Assume that one of the
following two conditions holds.

Condition 20.1. (1) £ <2m —2;
(2) Bjau(ya D) = Bja,u(D) f07’ (TS ’Y?o'; ~
(3) the set A contains only regular eigenvalues of the operator L(\).

Item 2 in condition 20.1 means that the operators B;,s(y, D) are homogeneous and have constant
coefficients near the set K.

Condition 20.2. (1) ¢ <2m —2;
(2) if € > 1, Q is a homogeneous polynomial of degree not higher than £ — 1, and
Bjcru(D)Q|’Yja =0
for all 3,0, u, then @ = 0;
(3) the set A is empty.

Remark 20.1. Item 2 in condition 20.1 holds, for example, in the case of a “local” Dirichlet problem.
In this case, if we search for solutions in the space W*(G) for £ < m, then item 2 in condition 20.2
also holds. Thus, the results of this section generalize results of Kondrat’ev (see [53, Sec. 5]).

Finally, assume that the abstract nonlinear operators B?# “have a zero of a certain order” at points
of the set K.

Condition 20.3. D%aB;'}aMy:O =0, 8 < 2m —mjs, — 2, for any function v € W?™(G \ O,,(K)),
where BY

oY) are functions defined in Eq. (19.12) (if mjo, = 2m—1, then the corresponding relations
are absent).

We prove the following analog of Lemma 18.1.

Lemma 20.1. Let either condition 20.1 or 20.2 hold. Let U € WY(K®) be a solution of prob-
lem (18.4), (18.5) with the right-hand side {f;,Vjou} € S°(K,~°). Then

U=W+1U, (20.1)

where U’ € H3™(K®) for any § > 0, W = (Wy,...,Wn) is a vector-valued polynomial of degree 2m —2
such that if condition 20.1 holds, then

Biou(D)Wly;, =0, (20.2)
and if condition 20.2 holds, then W = 0.

Proof. 1. Since {1hjs,} € S ™~1/2(~%), it follows from Lemma 5.4 that {1j,,} € Hgm_m_lm(’ye)
for all § > 0. In particular, this and the embedding WY(K*®) C H(K*®) (for any § > 0) imply that

{P,(y, D)U;} € HUK®), {Bjouly, D)U} € H2" ™ 2(45) w5 > 0. (20.3)
Consider a number ¢ > 0 for which the strips
1-6<ImA<1, —6<ImA<0, ..., 1—-£—6<TmA<1—/ (20.4)

do not contain eigenvalues of the operator £()\) (Lemma 6.1 guarantees the existence of such §).
It follows from Eq. (20.3), the relation U € H3"(K¢) (see (15.14)), and Lemmas 5.5 and 5.6 that

{Py(D)U;} € H,, 5(K*), {Bjouly, D)U} € Ham 3" 12(9). (20.5)

Using Eq. (20.5), [26, Theorem 2.2], and the fact that there are no eigenvalues of the operator £(\)
in the strip 1 —d <Im A < 1, we obtain the embedding

U e HIm s(K%). (20.6)
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Equations (20.3) and (20.6) and Lemmas 5.5 and 5.6 yield

{PHD)U;} € 1 5(K%),  {Bjouly. D)UY € Hy 151 2(77) W6 > 0. (20.7)
Hence, using Eq. (20.7) and [26, Theorem 2.2], we obtain the equality
U=w!+U%, (20.8)
where
n1 1 '
Wt = Z Zr”‘” (i In7) o (w),
n=1 (=0
{11, ..., pin, } is the set of all eigenvalues from the strip 0 < Im A < 1 —§ (we must take eigenvalues

from the strip —6 < Im A < 1 — 4, but the second strip in Eq. (20.4) does not contain eigenvalues),
O E WP (0, w) and U € ng_l_(s(Ks); moreover,
BjUH(D)Wl"‘/jU =0. (20.9)
Taking into account the inequality Reiu, < 0, the relation
Wl =U-U' e WHK?),

and [53, Lemma 4.20] we obtain that if condition 20.2 holds, then W1 is a homogeneous vector-valued
polynomial of degree 0 with respect to variables 31 and s (i.e., a constant vector) and W = 0.

2. If 2m —2 > 0, then we take the following step. Using Egs. (20.3) and (20.8), Lemma 5.5, and the

fact that W1 is a vector-valued polynomial (in the following step, it is a constant vector), we obtain
the following equality:

{Pi(D)U}} = {P;(y, D)U;} — {P(y, DYW}} + {(P;(D) = Pj(y, D))U}} € 3,y 5(K®).  (20.10)

If condition 20.1 hold, then, using the equality Bjs,(y, D) = Bjs,(D) and the relations (20.3), (20.8),
and (20.9), we obtain the equality

{Bjou(DYU'} = {Bjouly, D)UY} € Hor 357 (49). (20.11)

If condition 20.2 holds, then W' = 0, i.e., U = U! and, by virtue of Eq. (20.3) and Lemma 5.6, we
have

2m—m—1/2
{Bjou(D)Ul} = {Bjou(f‘/’ D)U} + {(Bjau(D) - Bj(m(yv D))Ul} €MHom_o-s / (%) (20.12)
Repeating this procedure finitely many times, we obtain

U=W'+..+ W'+ U",

Bjau(D>W1|wa == Bjau(D)WEHja =0,
where W#, s = 1,...,¢, is a homogeneous vector-valued polynomial of degree s — 1 and U¢ €
H2™ , (K*). Moreover, if condition 20.2 holds, then Wl = ... = W’ =0 and

U=U"eHim o 5(K°).
3. Similarly to Eqs. (20.10)(20.12) we can verify that the function U* satisfies the relations
2m—m—1/2
{P(D)US} € HS o1 5(K%),  {Bjou(D)U*} € Hom 2 V2 (79).
Repeating the procedure again, we obtain

U=W'+. 4+ Wt 4 U,

BjUN(D)W£+1"YjU == BjUM(D)Wzm_1’7ja =0,
where WL . W?2™~1 are homogeneous vector-valued polynomials of degrees £, . ..,2m — 2, respec-
tively. They appear since if condition 20.1 holds and W**! = ... = W?m~1 = 0 (by virtue of the fact
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that A = @) and if condition 20.2 holds, then the set A contains only regular eigenvalues. Finally,
U € H3m™(K®). O

20.2. Main results. We prove an analog of Theorem 18.1.

Theorem 20.1. Let conditions 18.1 and 20.3 hold. Assume also that conditions 20.1 or 20.2 hold.
Let w be a generalized solution of problem (18.1), (18.2) with a regular right-hand side { fo, fiu} €
S%G,0G). Then u € W?™(G).

Proof. Since the right-hand sides f;, are regular and condition 20.3 holds, we have

1/}qu - fja,u - Byau € SQm_mng_l/?(’Yja)

(i.e., the right-hand sides ¥4, are regular). Hence, Lemma 20.1 is valid. By virtue of (18.4), (18.5),
(20.1), and (20.2), the function U’ € H3™(K?) from Lemma 20.1 satisfies the following relations:

{P;(y, D)U;} = {f; — Pj(y, D)W;} € Hy(K*),
{Bjou(y, D)U'} € H2" ™ 12(45) 5 >0, (20.13)
{ngu(y7 D)U/} = {d}jau - Bjau(y’ D)W} € WQm_m_l/Q (’76)

(cf. (18.13)). Similarly to the proof of Lemma 18.2, we obtain from Eq. (20.13) that U’ € W?™(K¢);
hence, U € W?™(K?). Combining this embedding with Eq. (13.21), we complete the proof. O

Further we prove an analog of Lemma 19.4, where we study the situation where the line
Im A =1 — 2m contains only an eigenvalue i(1 — 2m) of the operator L(\).
The following condition is an analog of condition 19.4.

Condition 20.4. The functions BY

S Satisfy concordance condition (19.5) for any function v €

W2 (G \ O, (K)).
Theorem 20.2. Let conditions 19.1 and 20.3 hold. Assume that either condition 20.1 or condi-
tion 20.2 s valid. Then the following assertions are valid.
(1) If condition 20.4 holds and u is a generalized solution of problem (18.1), (18.2) with the regular
right-hand side { fo, fiu} € S°(G,0G), then u € W™ (G).
(2) If condition 20.4 is violated, then there exist a right-hand side {fo, fiu} € HY(G,0G) and a
generalized solution u of problem (18.1), (18.2) such that u ¢ W?™(G).

Proof. 1. Sufficiency. Let condition 20.4 hold and let u be a generalized solutions of problem (18.1),
(18.2) with the regular right-hand side {fo, fiu} € S°(G,0G). Since the right-hand sides f;, are
regular, we see that, by virtue of condition 20.3,

Vjou = fion — Bjoy € S2mimj0“71/2(7§a)-

Hence, Lemma 20.1 is valid. By Eqs. (18.4), (18.5), (20.1), and (20.2), the function U’ € H™(K*)
from Lemma 20.1 satisfies relations (20.13).

Further, we note that {f;,} € > ™~1/2(dQ), i.c., the functions f;,, satisfy concordance condi-
tion (19.5). By condition 20.4, the functions B}, , also satisfy concordance condition (19.5). Hence,
the functions ¢ = fjou — Bj,,, satisty concordance condition (19.5).

Let W be a vector-valued polynomial from Lemma 20.1. We show that the functions

Bjo,u (yv D)W
satisfy concordance condition (19.5). Indeed, if condition 20.1 holds, then, using Eq. (20.2), we have
2m—mjg,—1 2m—mjgy—1
D7 " Bouly, D)W e, = Do Bigu (D)W l,e = 0.
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If condition 20.2 holds, then by Lemma 20.1 we see that W = 0. Thus, in both cases, the functions
Bj,.(y, D)W satisfy concordance condition (19.5).

Hence, using the embedding U’ € HZ™(K*) and relations (20.13), we can repeat the reasoning
from the proof of the sufficiency of Theorem 19.1. As a result, we obtain U’ € W?*™(K¢); hence,
U € W?™(K?). This and Eq. (13.21) imply that u € W?™(G).

2. Necessity.  Assume that condition 20.4 is violated. = Then there exists a function
v e W (G\ O,,(K)) such that the functions By, do not satisfy concordance condition (19.5). Let
us extend the function v to the domain G such that v(y) = 0 for y € O,,, »(K) and v € W™(G).

By Lemma 19.1, there exists a function U’ € H2™(K) C W?™ 1(K) such that supp U’ C O.(0),
U' ¢ WM (K¥?) and

{P;(y, D)U;} € WO(K°), (20.14)
{Bjou(y, DU’ + Bl } € Ho" ™2 (y°). (20.15)

We introduce a function u'(y) such that u'(y) = Uj(y'(y)) for y € O (g;) and v/(y) = 0 for
y ¢ O (K), where ¥ — y(g;) is the change of variables inverse to the change y — (g;) from Sec. 6.1
(see Chap. 2), & € C5°(0=(g;)), &i(y) = 1 for y € Ou/9(gy), and € is defined in Eq. (19.8). Prove
that the function u = v/ +v is as required. Obviously, u € W?™~YG) and u ¢ W?™(G) and u satisfies
relations (13.21). It follows from embedding v € W?™(G) and relations (20.14) that

P(y,D)u € Lo(G).
Let us consider functions
fin = B?Mu + B%Nu + B?Nu.
The embedding v € W?2™(G), Egs. (13.21), and inequality (6.5) (for [ = 0) imply that
fiw € WA TL2(T:\ 05(K)

for all § > 0. Consider the behavior of f;, near the set . Note that, by virtue of (6.5) (for I = 0), we
have B?“u’ = 0. Further, B?Mv + leuv =0 for y € O, /4,(K). Hence,

fip = B?#u/ + B,}#ul + B%uv, y €0, /4,(K). (20.16)
Introduce functions fjou(v') = fiu(y(y')), where y — 3/(g;) is the change of variables from Sec. 6.1
(see Chap. 2). Equations (20.16) and (20.15) imply that {fjs.} € Hgmfmfl/z(’yg). Thus, {fi.} €
1206, 0

Remark 20.2. There exist analogs of Corollaries 19.1-19.4. To prove them, one must use item 2 of
Theorem 20.2 instead of item 2 of Theorem 19.4).
21. Violation of Smoothness of Generalized Solutions

21.1. Simultaneous violation of conditions 18.1 and 19.1 or violation of condition 18.2.
The situation declared in the title of this subsection is equivalent to the following condition.

Condition 21.1. The strip 1 —2m < ImA < 1 — £ contains an irregular eigenvalue of the opera-
tor L(A).

Show that in this case the smoothness of generalized solutions can be violated for any operators B%#.

Theorem 21.1.

(1) Let condition 21.1 hold. Then there exist a right-hand side { fo, fiu} € H(G,0G) and a gener-
alized w of problem (18.1), (18.2) such that u ¢ W?™(G).
(2) Let conditions 21.1 and 19.5 hold. Then statement (1) holds with f;, = 0.
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Proof. 1. Let A\ = Ag be an irregular eigenvalue of the operator E()\), 1—2m <ImXy<1—¢. Con-

sider the function
lo

V = rito Z l—ll(iln el =D(w) e WH(K?) Vd >0, (21.1)
1=0
where go(o), N is a Jordan chain of length s > 1 of the operator /:'(/\); it consists of an eigen-
vector and adjoint vectors corresponding to an eigenvalue A\g. The number Iy, 0 < lp < »» — 1, from
the definition of the function V is such that the function V is not a vector-valued polynomial with
respect to the variables y; and y2. Such an [y exists since A is an irregular eigenvalue (if Im A is not
an integer or Im A is an integer but Re A # 0, we can take lp = 0).
Since V' is not a vector-valued polynomial, we see, according to [53, Lemma 4.20], that

V¢ WM(KY) Vd > 0. (21.2)
It follows from [26, Lemma 2.1] that
PJ(D)V} =0, BjUH(D)V"YjU =0. (21-3)

Using inequalities (21.3) and the Taylor expansions for the coefficients of the operators P;(y, D)
and Bjs,(y, D), we obtain the following embeddings:

{Pi(y, D)V; — P;} € WO(K®), {Bjou(y, D)V — Pj,} € HZ" ™12 (y%), (21.4)

where P; is a linear combination of terms of the form

(1)

ri/\o—Qm-‘rl ri/\o—Qm-‘rk‘o

(i1ln r)lgo(w), el (i1n r)lgo(w),

Pjs,, is a linear combination of terms of the form

TZ’)\O*’H’LJ'O-M+].(7; In 7”)1, T,i)\ofmjgu+k0(

ilnr),

¢(w) is infinitely differentiable vector-valued functions, and the number kg € N is such that
—ImMN —2m+ky < -1, —ImM—2m+ko+1>—1. (21.5)
Obviously, if inequalities (21.5) hold for kg = 0, i.e., 1 —2m < Im A9 < 2 — 2m, we can assume that

P; =0 and Pjs, = 0.
Applying [26, Lemma 4.3], we construct a function

ko U
Vi=3 0y e i) o (w) € WHKT) vd >0 (21.6)
k=1 1=0
such that
{P(y, D)V} — P} e WO(K®), {Bjou(y, D)V’ — Piou} € Hy" ™ 2(5%). (21.7)

Consider a patch function & € C5°(O./(0)), which is equal to 1 near the origin, where ¢’ is defined
in (19.8). Let U = &£(V — V). Obviously, supp U C O./(0); hence,

supp Bjo,(y, D)U C 755 N O,,(0). (21.8)
It follows from (21.1), (21.6), and (21.2) that
UeWH{K), U¢W*™K?Y vd>o. (21.9)
Moreover, by (21.4) and (21.7) we have
{P;(s, D)Uj} € W(K), {Bjouly, DU} € Hg™ ™ (). (21.10)

2. Consider a function u(y) such that u(y) = U;(y/(y)) for y € O (g;) and u(y) = 0 for y ¢ O (K),
where 3y — y(g;) is the change of variables that is inverse to the change y — y'(g;) from Sec. 6.1
(see Chap. 2). The function u is as required. Indeed, by (21.9) we have u ¢ W?™(G). By virtue of
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inequality (6.5) (as [ = 0), we see that B?Hu = 0 since suppu C O,, (K). It follows from the equality
B?uu = 0 and relations (21.10) that the function u satisfies the relations

P(y,D)u € Lo(G),  BYu+Blu+Biuec H" ™ AT,

; : " i (21.11)
supp(B;,u + B; u + B, u) C ;N O,,(K).

Statement 1 is proved.
Statement 2 follows from Eq. (21.11) and statement 2 of Lemma 19.2. O

21.2. Violation of condition 18.3 or 18.4. We have considered all possible cases of location of
eigenvalues of the operator £(\) for £ = 2m — 1. It remains to consider the case where ¢ < 2m — 2
and either condition 18.3 or condition 18.4 is violated.

Theorem 21.2. Let condition 18.2 hold, but let either condition 18.3 or condition 18.4 be violated.

Then there exist a right-hand side { fo, Zlu + EM} € WG, 0G) and a generalized solution u of prob-

lem (18.1), (18.2) such that u ¢ W?™(G), where %1u is a polynomial of degree < 2m —my, —2 in a
neighborhood of a point g € T; NK and { 22“} € Hgm_m_l/Q(OG).

Proof. 1. According to item 2 of Remark 18.3, for some natural s from the set {/,...,2m — 2} and
some (nonzero) vector {¢js,} € Cs, one can find a function V' of the form (18.8) such that

Ve WHKY), V¢W™K?) Vd>o, (21.12)
Pi(D)V; =0, Bjou(D)Vly,, = Cjour™ ™w. (21.13)

Using inequality (21.13) and the Taylor expansion for the coefficients of the operators P;(y, D) and
Bj,.(y, D), we obtain the embeddings

{P;(y, D)V; — P;} e W(K7),

(21.14)
S—Mig 2m—m-—1/2
{Bjou(y, D)V — cjour® Mion — Piy,} € Hy (),

where the functions P; and Pj,, have the same form as in Eq. (21.4).

Similarly to the proof of Theorem 21.1, we construct a function V' of the form (21.6) (where i\g
must be replaced by s) satisfying relations (21.7).

Consider a patch function £ € C§°(O./(0)), which is equal to 1 near the origin, where ¢’ is defined
in Eq. (19.8). Let U = £(V — V’). Obviously, suppU C O.(0) and

UeW{K), U¢W*™K?Y vd>o. (21.15)
Moreover, by virtue of Egs. (21.14) and (21.7) we have
{Pj(y, D)U;} € WO(K®),  {Bjou(y, D)U — cjopur ™7} € Hg" ™12 (59). (21.16)

Note that, since {cjou} € Cs, the function cjq,r® ™o either vanishes (in particular, it vanishes if
(4,0, 1) € Jg) or is a monomial of degree s —mq, (i.e., the degree of the monomial is not greater than
2m — mjo, — 2).

2. Consider a function u(y) such that u(y) = U;(y'(y)) for y € O (g;) and u(y) = 0 for y ¢ O (K),
where ¥’ — y(g;) is the change of the variables inverse to the change y — 3(g;) from Sec. 6.1 (see
Chap. 2). The function u is a required function. Indeed, u ¢ W?™(G) according to Eq. (21.15).
By virtue of inequality (6.5) (for I = 0), we have B?#u = 0 since suppu C O,,(K). It follows from
B%#u = 0 and relations (21.16) that the function u satisfies the relations

P(y, D)u € La(G), B?Mu -+ B%Mu + B?Mu = Zlu + ,i,
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1
ip
gelink and {f2} € Hy" ™ '2(90). O

111

where is a polynomial™* of degree not greater than 2m — m,;, — 2 in a neighborhood of a point

Remark 21.1. Recall that the space S ™~1/2(9G) was introduced in Sec. 19.2 in the case where
the line ImA = 1 — 2m contains a unique eigenvalue i(1 — 2m). According to Theorem 19.2, the
smoothness of generalized solutions can be violated if the right-hand side {f;,} € W*"m~1/2(9G)
does not belong to S2m~™~1/2(3(). Theorem 21.2 shows that if either condition 18.3 or condition 18.4
is violated, then the smoothness of generalized solutions can be violated even for the right-hand sides
{fiu} € S ™=1/2(9G). This happens since the right-hand sides { Zlu + i} in the statement of
Theorem 21.2 belong to S?™~™~1/2(dQ3) (cf. Remark 19.1).

On the other hand, the fact that the violation of the smoothness in Theorem 21.2 occurs for nonzero
(and even irregular, i.e., not belonging to S2™~™~1/2(H@3)) right-hand sides { fip} is substantial. By
Theorems 20.1 and 20.2, if we consider only regular right-hand sides, the smoothness of solutions can
be preserved even when condition 18.3 or 18.4 is violated.

22. Example

We give an example illustrating the results of this chapter. In this example, the set K consists of
some orbits; therefore, when we refer to theorems from the previous sections, we must use obvious
generalizations to this case.

22.1. Problem with inhomogeneous conditions.

22.1.1.  Statement of the problem. Let 0G \ K = T'y UT'y, where I'; are open (in the topology of 0G)
curves of class C*° and K = T'1 NTy = {g,h}, where g and h are the endpoints of the curves I'; and
T'5. Assume that the domain G coincides with a plane angle of spread 7 in a neighborhood of every
point g and h. Thus, the boundary G is infinitely smooth. Consider the following nonlocal problem
in the domain G (cf. example in Sec. 6.2, Chap. 2):

Au = fo(y), ye€G, (22.1)
ulr, + b1 (m)u( )], + a@)u(QW)]p, = fily),  yeTy, 222)
ulr, + ba(Y)u(Q®)|, = f0), y €Ty, '

where by, be, and a are real-valued, infinitely differentiable functions, ; (2) is a diffeomorphism of
class C*° that maps a neighborhood O; (respectively, O;) of the curve I'; (respectively, I'1) to the set
Q,;(0;) (respectively, (0O1)) such that Q;(I;) C G, Q;(g9) = g, Qi(h) = h, and the transformation
Q; near the points g and h is a rotation of the boundary I'; by the angle 7/2 inwards the domain G
(respectively, Q(I'1) C G, Q(I'1) N {g,h} = @, but the approach of the curve 2(T1) to the boundary
OG is arbitrary); see Fig. 22.1.

To write nonlocal conditions (22.2) in the form (18.2), we choose a sufficiently small number & such
that the sets O:(g) and O.(h) do not intersect with the curve Q(I'y).

Consider a function ¢ € C§°(R?) such that ((y) =1 for y € O, 5(K) and supp¢ C O-(K). Let us
introduce the operators

Bju = ((y)bi(y)u(%(y))Ir,
Biu = (1= ¢())b1(y)u((v))Ir, + a(y)u(y))r,,
B3u = (1 — ((y))b2(y)u(Q2(y))|r,-

u(

"The function fllu written in the coordinate system with origin at the point g € I'; N/C either vanishes or is a monomial
of degree s — mjgp.
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Fig. 22.1. The domain G with the boundary 0G =T'y UT's U {g, h}.

In this example, the set K is formed by two orbits. The first orbit consists of the point g and the
second consists of the point h. Since the support of ( is located near a neighborhood of the set IC, we
can assume that the transformations €2; from the definition of the operators Bll“ are also defined in a
neighborhood of the set K and satisfy condition 6.3. It is easy to see that the operators B?# satisfy
condition 6.4 with s = ¢/2 and some 3 < 3 and p.

Here, we will use spaces of vector-valued functions introduced in Egs. (5.3) and (5.21) for N = 2.

Consider a model problem corresponding to the point g (a model problem corresponding to the
point h can be considered similarly). Assume that the point g coincides with the origin, g = 0, and
the axis Oy, is directed inwards the domain G orthogonally to the boundary. Consider the sets

Ke={yeR*:0<r<e, |w<m/2},
ve={yeR*:0<r<e w=(-1)7/2}.
We choose a small ¢ such that O.(0) N G = K°. The model problem takes the form
AU = F(y), ye€ K°, (22.3)
Uy) +bs (1)U (Goy) = ¥o(y), y€, o=12 (22.4)

6=y )

is the operator of the rotation by the angle (—1)°*l7/2,
Fy)=foly), yveK*,  oy) =foly) = Bs(y), y€E%-

where

Moreover,
Bi(y) = alyu(Q)), yer By =0, yer”
since (1 — C(y)bo(1)u(Q(y)) = 0 for y € 45/, 0 = 1,2,
The eigenproblem has the form
" (W) = Np(w) =0, |w| <7/2, (22.5)
@(=7/2) +b1(0)(0) =0, @(7/2) + b2(0)(0) = 0. (22.6)

Introduce the notation I; = (—oo, —2]U(0, 00) and I2 = (—2,0). We can directly verify that eigenvalues
of problem (22.5), (22.6) can be arranged relative to the strip —1 < Im A < 0 as follows:

Case 1 (b1(0) + b2(0) € I). The strip —1 < Im A < 0 does not contain eigenvalues.
Case 2 (b1(0) + b2(0) = 0). The strip —1 < Im A < 0 contains a unique eigenvalue A = —i; this
eigenvalue is regular.
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Case 3 (b1(0) + b2(0) € I3). The strip —1 < Im A < 0 contains an irregular eigenvalue

V4 — (01(0) + b2(0))?
b1(0) + b2(0) '

A\ = 27~ Y arctan

22.1.2. Case 1.

Theorem 22.1. Let by(0) + b2(0) € I and by(h) + ba(h) € I1. Let u € WY(G) be a generalized
solution of problem (22.1), (22.2) with the right-hand side
{fo, fiu} € W(G,0G).
Then u € W2(Q).
Proof. In this case, the strip —1 < Im A < 0 does not contain eigenvalues of problem (22.5), (22.6)

(as well as eigenvalues of a similar problem corresponding to the point h). Hence, the theorem follows
from Theorem 18.1. O

Note that in this case we do not impose any restrictions on the coefficients b; and ¢ and on the
right-hand sides f;,.
22.1.3. Case 2. Assume that
bl(h) + bg(h) e 1.

In this case, concordance condition (19.5) is considered only near the origin. Let us write this condition
for problem (22.1), (22.2). Denote by 7, the vector with coordinates (0, (—1)?). Then!?

) _d
8770 = (1) 37112,

2 (U) + BOU @) = ~Un(®) + n(0)0y, (G10),

2 (U) + 0OV (@21)) = Up) + b2(0)0i (G20

Hence, X
B, (D)U = (—=1)7Uy, + b, (0)U,,, o =1,2.
Since by (0) + b2(0) = 0, we see that the operators B;(D) and By(D) are linearly dependent:
By (D) + By(D) = 0.
Thus, concordance condition (19.5) for the functions Z, € W3/2(42) has the form
07
dy2

dZs

2
- — dr < oo. (22.7)
y=0,r) 2

7’_1

y:(O,T)

Taking into account Eq. (22.7), we denote by S*2(9G) the set of all functions {f;,} € W3/2(dG) such

that .
[
0
Let S%(G, 0G) = S°(G, 0G).
By Theorem 19.2, the embedding {f;,} € S*?(0G) is necessary for any generalized solution of
problem (22.1), (22.2) to belong to W2(G).

Theorem 22.2. Let b1(0) + b2(0) = 0 and by (h) + ba(h) € I;. Then the following statements hold.

o
Y2

of

2
= dr < oo. (22.8)
y:(o’fr) ay?

yZ(O,T)

12T this example, for simplicity of notation, we will use the operators 3 instead of D,, = —za—.
To To
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a(0) = 0, g;; — 0, (22.9)
y=0
/rl b _ O dr < oo, (22.10)
T ] ' C

and the function u € W(Q) is a generalized solution od problem (22.1), (22.2) with the right-
hand side { fo, fiu} € S°(G,0Q), then u € W2(G).

(2) If condition (22.9)~(22.10) is violated, then there exist a right-hand side { fo, fi,} € S°(G,0G)
and a generalized solution u € W (G) of problem (22.1), (22.2) such that u ¢ W2(G).

Proof. 1. By Theorem 19.3, it suffices to show that condition (22.9)—(22.10) is equivalent to condi-
tion 19.3.
For any function v € W?(G '\ O, (K)), we denote va(y) = v(Q(y)), y € T'1. Then

BY(y) = aly)va(y), yer’  Biy) =0, yeri’

Hence, the functions BY satisfy concordance condition (22.7) if and only if

£/2 2 €/2
/rl dr = /7‘1
0 0

We take €/2 instead of € as the upper limit of integration since in this case the functions BY are
simpler; obviously, the replacement of £ by £/2 does not influence the convergence of the integral.

Prove that condition (22.11) is equivalent to Eq. (22.9). Let (22.11) hold. Choose a function v such
that vo(y) = y2 near the origin; then

2

Oava) dr < co. (22.11)

0y2

—vQ +a

0 0
(3212 3,,)

y:(ovfr) y:(O,fT)

83/2 y=0

Since the function 0(avq)/dys is continuous near the origin, we have from the last relation and
Eq. (22.11) that a(0) = 0. Similarly, substituting a function v such that vo(y) = 1 near the origin
into Eq. (22.11), we obtain the equality

Oa

— =0.
0yo

y=0
Conversely, let Eq. (22.9) hold. By virtue of the smoothness of the transformation €2, we have

ovg
va, 50 € WH(3D) € H(7)
Y2

for any function v € W?2*G \ O,,(K)). This, Eq. (22.9), and Lemma 5.6 imply that

d(avq)/dy2 € Hé/Q(q/f). Hence, by [53, Lemma 4.8], Eq. (22.11) is valid. Thus, we proved that
item 1 of condition 19.3 is equivalent to condition (22.9).

2. Ttem 2 of condition 19.3 is fulfilled if and only if the functions C' + b1 (y)C and C + b (y)C satisfy
concordance condition (22.7) for any constant C'. This is equivalent to Eq. (22.10). O

Thus, in case 2 the smoothness of generalized solutions depends on the first derivatives of the
coefficients by and by near the origin and on the coefficient a and its first derivative at the origin.
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22.1.4. Case 3.

Theorem 22.3. Let b1(0) + b2(0) € Iy or bi(h) + ba(h) € Io. Then there exist a right-hand side
{£0,0}, where fo € Lo(G), and a generalized solution u € W(G) of problem (22.1), (22.2) such that
u ¢ W2(Q).

Proof. The strip —1 < Im A < 0 contains an irregular eigenvalue of problem (22.5), (22.6) (or of a
similar problem corresponding to the point h). Hence, the theorem follows from Theorem 21.1. O

Thus, in case 3 the smoothness of generalized solutions can be violated independently of the behavior
of the coefficient a and the derivatives of the coefficients b; and by near the point g.

22.2. Problem with regular and zero right-hand sides in nonlocal conditions. Consider
problem (22.1), (22.2) with regular and zero right-hand sides in boundary conditions. By Theo-
rems 22.1 and 22.3, the smoothness of generalized solutions is preserved in case 1 and can be violated
in case 3. Case 2 (the “boundary” case) is of most interest.

22.2.1.  Problem with regular right-hand sides. Assume that
bl(h) + bQ(h) e 1.

Theorem 22.4. Let b1(0) + b2(0) = 0 and bi(h) + ba(h) € I;. Then the following statements hold.

(1) 1If

oa

ayQ y=0
and the function uw € WY(G) is a generalized solution of problem (22.1), (22.2) with the right-
hand side { fo, fiu} € SY(G,0G), where f;,(0) = 0, then u € W3(G).

(2) If condition (22.12) is violated, then there exist a right-hand side { fo, fi.} € H°(G,0Q), where

fin(y) = 0 near the origin and a generalized solution w € W1(G) of problem (22.1), (22.2) such
that u ¢ W%(G).

a(0) =0, =0, (22.12)

Proof. 1. By Theorem 19.4 and Corollary 19.1, it suffices to prove that condition (22.12) is equivalent
to condition 19.4.

By Definition 19.2, the function v € W2(G\ O,,, (K)) is acceptable if and only if there exist constants
C' and C}, such that

a(0)vqa(0) + C +b1(0)C =0, C+b(0)C =0,

22.13
a(hyo(h) + Co + b1 (B)Ch = 0, i+ ba(h)Ch = 0, (22.13)

where vo(y) = v(Q(y)), y € 1.
Let £ € C’OO(RQ) be a patch function such that

supp€ C O5(2(0)),  &(y) =1, y € O5/2(£2(0)),

where 0 > 0 is so small that Q(h) ¢ O5(£2(0)). Since b1 (h)+ba(h) € I1, we see that one must consider
concordance condition (19.5) only near the origin. Hence, if v is an acceptable function, C' and C}, are
acceptable constants corresponding to the function v, and condition 19.4 is valid (respectively, violated)
for v and C, then £v is also an acceptable function, C' and 0 are acceptable vectors corresponding to
&v, and condition 19.4 is valid (respectively, violated) for (v and C. Thus, it suffices to consider only
functions v with supports in Os(£2(0)) (i.e., functions vg with supports near the origin); moreover, we
can assume that Cj = 0.

First, we consider the case where by(0) # —1. In this case, by (22.13), the function v with support
in O5(£2(0)) is acceptable if and only if

a(0)vg(0) = 0. (22.14)
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The corresponding set of acceptable constants contains a unique constant C' = 0 (recall that Cj, by
assumption also vanish). Hence, condition 19.4 is valid if and only if the relation

€/2 2 /2
/'r_]' a(aUQ) dT‘ — /r—l (%UQ + G/%) d/r < 0 (2215)
J Y2 y=(0,—1) 0 9ya Fy2 y=(0,—7)

is valid for any function vq satisfying Eq. (22.14). Assume that Eq. (22.12) holds. Then any function
v with support in Os(€2(0)) is acceptable (since a(0) = 0). Repeating the reasoning from the proof of
Theorem 22.2, we obtain (22.15).

Conversely, assume that Eq. (22.15) holds for any function vq satisfying (22.14). Obviously, a func-
tion v such that vg(y) = y2 near the origin satisfies (22.14). Substituting the function vg to (22.15),
we obtain that a(0) = 0 (cf. the proof of Theorem 22.2). Hence, any function v with support in
O5(€2(0)) is acceptable. Substituting va(y) =1 to Eq. (22.15), we obtain (da/0y2)|y—o = 0.

2. It remains to consider the case where by(0) = —1; in this case, b1(0) = 1. Then by virtue
of (22.13), any function v with support in Os(€2(0)) is acceptable; the corresponding set of accept-
able constants contains a unique constant C' = —a(0)vq(0)/2 (we still assume that the constant Cj,
vanishes). Hence, condition 19.4 is valid if and only if the relation

€/2 2
/rl J(avq) T C<abl _ Oby ) dr
/ O ly=,r)  \M2ly=0,-r) IW2ly=(or)
€/2 2
_ /rl (—am + aaﬂ> - a(())m(())<abl _ Qb > dr < oo (22.16)
R 20 \02lyn O¥2ly=0n)

0
is valid for any function v with support in Os(£2(0)). Assume that condition (22.12) holds. Then we
see (similarly to the previous reasoning) that Eq. (22.15) holds for any function vg. Hence, Eq. (22.16)
also holds for any function v (since a(0) = 0).

Conversely, assume that Eq. (22.16) holds. Let us substitute into Eq. (22.16) a function v such
that vo(y) = y2 near the origin. Since vn(0) = 0 and (Jva/0y2)|y—0 = 1, we obtain from Eq. (22.16)
(similarly to the previous reasoning) that a(0) = 0. Hence, relation (22.16) coincides with (22.15).
Then, repeating the previous reasoning, we obtain that (0a/0y2)|y—o = 0. O

Obviously, condition (22.12) is weaker than condition (22.9)-(22.10): there are no restrictions on
the behavior of the coefficients b; and by in condition (22.12). The absence of these restrictions is
“compensated” by the fact that the right-hand sides in nonlocal conditions are regular, i.e., {fi,} €

S3/2(8G) and f;,,(0) = 0.

22.2.2.  Problem with zero right-hand sides. It follows from statement 1 of Theorem 22.4 that in the
case of zero right-hand sides, condition (22.12) is sufficient for any generalized solution to be smooth.
Let us prove that this condition is also necessary in the following cases (see Figs. 22.2-22.4).

Case A suppa(® (1)l C G

Case B : Q(O) € G, Q(O) ¢ Ql(Pl) U Qg(rg);

Case C: Q(0) eIy, 2(Q0)) ¢ Qi (1) UQa(I'2), (22.17)

a(€2(0)) # 0. (22.18)

Corollary 22.1. Let b1(0) + b2(0) = 0 and by(h) + ba(h) € I;. Let one of cases A, B, or C hold.

If condition (22.12) is violated, then there exist a right-hand side {fo,0}, where fo € Lo(G), and a
generalized solution v € W(G) of problem (22.1), (22.2) such that u ¢ W2(G).
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a(Q7'(y)) =0 on the dashed line

Fig. 22.2. Case A.

Iy

suppv C O5(22(0)) supp v Usupp uin C Os(2(0)) suppu; C Q(Oo‘(Q(O)))

Fig. 22.3. Case B. Fig. 22.4. Case B.

Proof. 1. First, we assume that Case A holds. It follows from the continuity of the transformations
; and 2 that the operators B?M satisfy condition (19.24) for all p such that
0 < p < dist(supp a(Q~ ' (y))lar,), IG).

Therefore, the corollary follows from Corollary 19.3.

2. Now we assume Case B holds. As above, we can assume that condition 19.4 is violated for an
acceptable function v with support in arbitrary small d-neighborhood Os(€2(0)) of a point £2(0). We
can choose so small § that

v(@)lr, =0, v(Qi(Y)lr; =0, suppv(Q(y))[r; € T'1 N O (0).

Thus, the function v satisfies Egs. (19.26), and the corollary follows from Corollary 19.4.

3. Finally, we assume that Case C holds. Again, we assume that condition 19.4 is violated for an
acceptable function v with support in Os(€2(0)). By relations (22.17), we can choose a number § such
that

v(Qi(y))Ir, =0, (22.19)
supp v(Q2(y))|r, € 't N O,,(0). (22.20)

Let f;, be functions from statement 2 of Theorem 19.4 constructed according to the scheme from the
proof of Theorem 19.4. It follows from Egs. (22.19) and (22.20) that

supp f1 C I'1 N (0., (0) UOs(22(0))), supp fo C a2 N O, (0).
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Assume that we have constructed a function u; € H3(G) such that
uilp, + Blur + Bun = fi(y), y €L\ 0,,(K), i=1,...,N, (22.21)
uilr, + Biur + By =0, yelinN0,(K), i=1,...,N. (22.22)
Then the corollary follows from Lemma 19.2 and Corollary 19.2.

Construct the function u1. For this, we consider a function ujq € W? ((95(9(0))) with support in

05(€2(0)) such that
we(y) = fily)/a(y), yeT1nO0s(Q(0)),

where § is so small that a(y) # 0 for y € O5(£2(0)) (the existence of such § follows from Eq. (22.18)
and the continuity of a(y)).

Let u1(y) = u1o(Q1(y)) for y € Q(05(22(0))) and uy(y) = 0 for y ¢ Q(Os5(€2(0))). We choose so
small § that

;i NQ(0s5(200)) =2, Q(1) NQ(0s5(2(0))) =2, Os5(2(0)) NO,,(0) =
(the existence of such § follows from Eq. (22.17) and the continuity of the transformation €2). Then
ulr; =0, wi(Qi(y))lr; =0,
a(y)ui(2(y)) = fr(y), v €T1\ 04 (0),
u(Qy) =0, yeT1NO,(0).
Thus, the function wu; satisfies Egs. (22.21) and (22.22). The corollary is proved. O

CHAPTER 6

FELLER SEMIGROUPS
AND TWO-DIMENSIONAL DIFFUSION PROCESSES

23. Nonlocal Problems in Spaces of Continuous Functions

23.1. Preliminary information. In this subsection, we recall the notions of a Feller semigroup
and its generator and formulate the Hille—Yosida theorem in an appropriate form.

Let X be a closed subspace in C'(G) containing at least one nonnegative function.
Definition 23.1. A strongly elliptic semigroup of operators T; : X — X is called a Feller semigroup
on X if:

(1) ITef| <1, ¢>0;

(2) Tiju>0forallt>0and ue X, u>0.
Definition 23.2. A linear operator P : D(P) C X — X is called a generator (infinitesimal generating
operator) of a strongly continuous semigroup {T,} if

Tiu —u

, D(P)={ue X :alimit in X exists}.
t—+0 t

Theorem 23.1 (Hille-Yosida theorem, see [101, Theorem 9.3.1]).

(1) Let P : D(P) € X — X be a generator of a Feller semigroup on X. Then the following
assertions hold:
(a) the domain D(P) is dense in X;
(b) for any q > 0, the operator q1 — P has a bounded inverse operator (g1 —P)~!: X — X and
(g =P) ! < 1/g;
(c) the operator (qI —P)~!1: X — X, ¢ > 0, is nonnegative.
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(2) If P : X — X is a linear operator satisfying the condition (a) and there exists a constant gy > 0
such that conditions (b) and (c) hold for ¢ > qo, then P is a generator of some Feller semigroup
on X, which is uniquely defined by the operator P.

23.2. Statement of nonlocal problems. Let pj;,p; € C*(R?) be real-valued functions and let
Pjk = Dkj, J»k = 1,2. In this chapter, we consider a second-order differential operator

2 2
Py, D)u= Y pjs(®)uyu (v) + D> 0i(y)uy; (y) + po(y)u(y). (23.1)
ji=1 =1

Condition 23.1. (1) There exists a constant ¢ > 0 such that

2
> pik)&&r > el

j,k=1

fory € G and £=(&,&) € R2.
(2) poly) <0,y €G.

Let Qs,i=1,...,N, s=1,...,.5;, be diffeomorphisms of class C* satisfying condition 6.3.
Let us introduce the operator

S;
Bru= 3 bis(y)u(s ()
s=1

for y € T'; N O(K) and Byu = 0 for y € T; \ O:(K), where b;s € C°°(R?) are real-valued, supp b;s C
O (K).

Condition 23.2. The following relations hold:

Si
bis(y) 20, Y bis(y) <1, yeTy; (23.2)
s=1
S Sj
D obisl9)+ Y bis(9) <2, geTinT; CK, ifi#jandTiNT; # 2. (23.3)
s=1 s=1

Let us study the nonlocal problem
P(y,D)u—qu= f(y), yeG;
ulp, —Biu=0, yely, i=1,...,N,
where ¢ > 0, and the same problem with inhomogeneous nonlocal conditions.

Before we consider problem (23.4) in spaces of continuous functions, we study it in weight spaces.
Consider the bounded operator

L(q) = Liy1-5(q) : HT7_5(G) = Hi,1_5(G,0G)

(23.4)

defined by the formula

where Hlljfié(G) and Hgﬂﬂs(G, O0GQ) are the spaces defined in Eq. (5.21) with norms (5.22) depending
on a parameter g > 0.
In Sec. 23.3, we prove the following result.

Theorem 23.2. Let conditions 23.1 and 23.2 hold and let I > 0 be fixed. Then for every sufficiently
small 6 > 0, there exists g1 > 0 such that the operator L(q) has a bounded inverse operator for ¢ > q1
and

allL(@ullyy,, coc) < lullgiz o) < elL@uly,, coc) 12 a (23.5)

1+1-6
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where c1,co > 0 are independent of v and q.

Corollary 23.1 (local a priori estimate). Let G1 and Gy be subdomains of the domain G such that
G1 C Gy and dist(0G1 \ 0G, 0G2\ OG) > 0. Then for all ¢ > q1, the following a priori estimate holds:

N
Pl ey < (1P DY = qull gy gy + S Bl lgessra iy + 4 2Bl oz o (236)
i=1
where H2(G,) = HH2(G,,K), HL(Gy) = H(Go,K), HY™/2(TynGy) = HYP2(T N G2, K), 1 > 0
is sufficiently large, and ¢ > 0 is independent of v and q. If T; NGy = @, then in Eq. (23.6) the term
llulr, ”|Hfl+3/2(FmGi) is absent.

Proof. Consider a patch function ¢ € C>(R?) such that ((y) = 1 for y € Gy and ((y) = 0 for
y € G\ Gy. Applying Theorem 23.2 for B; = 0 and using the Leibnitz formula, we obtain the
inequality

|||“|||Hg+2 G1) = ”|CUH|H5+2(G)

N
< ky <|||P(y, D)(¢u) — q¢ull gt @y + > I(Cw)Ir, !!IHgs/z(pi))
=1

N
<k <uP<y, DY~ qull gy cyy + Ml lgresre gy + !||U!”Hg+1(g2)) ,

i=1
where ki, ky > 0 are independent of u and ¢q. On the other hand, according to [41, Lemma 7.1], we
have
ol yiss gy < a2l gien gy

The corollary follows from these two inequalities. O

23.3. Nonlocal problems in weight spaces. Denote by u;(y) the function u(y) for y € O, (g;).
If g; € Ty, y € O(g;), and Qis(y) € Ok, (gk), then we denote by ug(Qis(y)) the function u(Qis(y)).
Then nonlocal problem (23.4) has the following form in a e-neighborhood of the orbit K:

P(y, D)u; — qu; = f(y), v € Oc(gj) NG,

S;

ui(y) = > bis(W)ur(Qis(y)) =0, y€O-(g;)NTy, i€{l<i<N:g;eli}, j=1,...,N.
s=1

Let y — y'(g;) be the change of variables from Sec. 6.1. Introduce the functions U;(y") = u(y(y'))

and Fj(y') = f(y(y')) for y' € K5, where 0 = 1 (0 = 2), if the transformation y ~— y'(g;) maps I';

to the ray ;1 (yj2) of the angle Kj. Let us re-denote y' = y. Then, according to condition 6.3
problem (23.4) has the form

P;(y, D)U; — qU; = Fj(y), y € K5;
N ik (23.7)
Z Z Bjo‘ks Uk gjaksy) =0, ye€ ’ng
k=1 s=1

where P;(y, D) is a second-order elliptic differential operator with real-valued coefficients of class
C°; moreover, the principal homogeneous part of the operator P;(0, D) is the Laplace operator A;
ngks(y) are smooth functions; G;,1, is the operator of rotation by the angle w;,1s and dilation with
the scale factor xjors > 0; moreover, |(—1)7w; + Wjoks| < Wi
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According to [41], we“freeze” the coefficients of problem (23.7) at the point y = 0, replace the
operators P;(0, D) by their principal homogeneous parts, and set ¢ = 1. Thus, we consider the
following problem:

AU; — U; = F;(y), y € Kj;

N Sjok (23.8)
BJUU U Z ]aksUk g]Uksy) =0, Y € Yjo,

k=1 s=

where U = (Uy,...,Uy) and bjgrs = Bjoks(O) It follows from condition 23.2 that

N Sjok 1k Sjok
bjcrk:s 2 07 Z Z bjoks S 17 Z (Z bglk:s + Z ngks) < 2. (239)

k=1 s=1 k=1

We consider problem (23.8) in weight spaces with inhomogeneous weights. Denote by E.(K;) the
completion of the set C§°(K; \ {0}) with respect to the norm

1/2
1ol B i) (Z /W“ (Jy|?e=0 1)|Do‘v(y)l2dy) ;

where [ > 0 is integer and a € R. Denote by El 1/2(7]'(,) (where [ > 1 is integer) the trace space
on vjs (with the infimum norm) Introduce the spaces of vector-valued functions

N

E2 (K HE1+2 Kj), &(K,y) = H <E3(Kj) X H Etll+3/2(7ja))-

j=1 =12
Let us consider the operator
L:E 5(K) = &) _5(K,7)
defined by the formula
LU = {AU; - U;, BjsU}.
We prove that the operator £ is an isomorphism for all sufficiently small § > 0. For this, we consider
an analytic operator-valued function

L) : Wi (~w,w) = W [-5,w]
defined by the formula (cf. (6.18))
LN = {90;' — Nj, 0i((=1)7ws) = > (Xjoks) bjokspr((—1)7w;j + wjoks)}-

S

o

Lemma 23.1. Let conditions 23.1 and 23.2 hold. Then there are no eigenvalues of the operator LN()\)
on the line Im A = 0.

Proof. 1. Assume that A\ # 0 is a real eigenvalue of the operator £()\) (the case where \g = 0 is
simpler and can be considered similarly). Let ¢(w) be a corresponding eigenvector; we represent it in
the form ¢(w) = ¢! (w) + ip?(w), where p!(w) and ¢?(w) are real-valued functions of class C*°. Tt
easy to see that the function U = ri*p(w) = €07 p(w) is a solution of the problem

AU; =0, yeKj; BicU =0, y€& . (23.10)
We represent the function U in form U =V + iW, where
V = cos(AoIn7)p! (w) —sin(Ag In7)?(w), W = cos(AgInr)p?(w) + sin(Ag Inr)et(w).
Since the coefficients in Eq. (23.10) are real, we see that V' (and W) is a solution of the problem
AV; =0, yeKj; BicV =0, ¥y € jo. (23.11)
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Assume that
M= max_sup [Vi(y)l.
j=1,...N yekK;
We prove that M = 0. Assume the contrary: let M > 0.
2. If |V;(y°)] = M for some j and y° € Kj, then V;(y) = M according to the maximum principle.
From the nonlocal conditions in Eq. (23.11)) we obtain

M = ’V}(yo)‘ = ‘Vj”Yja’ < Mzbjak57 o=1,2. (23.12)
k,s
However, 0 < > bjsks < 1 for 0 =1 or 2 according to conditions (23.9), which contradicts Eq. (23.12).

k,s
3. Let |V;(y°)| = M for some j, 0 = 1 or 2 and y° € v;,. In this case, taking into account Eq. (23.9),
from the nonlocal conditions in (23.11) we obtain the inequality

M =|V;(y") < bios|Vi(Gjorst®)| < M (23.13)
k,s

for o = 1 or 2. Hence, the inequalities in Eq. (23.13) become equalities, but then
D bjoks =1, [Vi(Gjorsy”)| = M
k,s

at least for one pair (k, s). By the above, this is impossible since gjgksyo € K.

4. Finally, assume that there exists a sequence {y*}22, C K such that |V;(y®)] — M for some j
for |y*| = 0 or |y®| — oo.

Note that the function Vj is periodic with respect to Inr, i.e., the function V; is completely defined
by its values on the set

Kj=K;n{l1<r<emoy

Since the set K is compact, we see that there exists a sequence {§°}22, C K such that |V;(3°)] —
M for §° — 4, where § € Kj. It follows from the continuity of Vj(y) on the compact Kj that
|Vj(9)] = M. We again obtain a contradiction with the above.

5. It follows from items 1-4 of this proof that M = 0. Hence, V =0, i.e., o' (w) = p?(w) =0. [

Lemma 23.2. Let conditions 23.1 and 23.2 hold. Then the operator L : EX(K) — EY(K,7) is an
isomorphism.

Proof. 1. First, we prove that the operator £ : £2(K) — EY(K,~) is a Fredholm operator and
ind £ = 0. Consider the family of operators L; : E2(K) — EY(K,v) defined by the formula

EtU = {AUJ - Ujv Uj|’ng - tzbjUkSUk(gja‘kSy>"Yja}7 0 <t S 1.
k,s

Analogously to the operator L()\), we introduce operators £;(\). By Lemma 23.1 there are no eigen-
values of the operators £;(A) on the line ImA = 0. Hence, £; are Fredholm operators (see [24,
Theorem 9.1]). By virtue of the homotopic stability of the index of Fredholm operators, we have
ind £; = const, ¢t € [0,1]. Since the local operator Ly is an isomorphism (see, e.g., [24, Sec. 10.3]), we
have ind £ = ind £y = 0.
2. It remains to prove that dimker £ = 0. Let U € £2(K) be a real-valued solution of the problem
AU]‘ :Uj, yEKj; BjUUIO, Y € Yjo- (23.14)
By the theorem on the internal smoothness, the functions U; are infinitely differentiable in K;. Prove
that U, are continuous on K.

Since there are no eigenvalues £(\) on the line Im A = 0, it follows from [88] that there exists a
number ¢ € [0, 1] such that there is no more than a finite set of eigenvalues {\x} of the operator L(\)
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(at that, —1 — 0 < Im Ag < 0) on the strip —1 —§ < Im A < 0. Taking into account the fact that
U; € E}(K;) C H}(Kj) is a solution of problem (23.14) with the right-hand sides U; € E?(K;) C
H°(K;) and using [26, Theorem 2.2] (on the asymptotic behavior of solutions of nonlocal problems),
we obtain the relation

Jp Hqk— 1 m

m m, m, % 1 . v (m—v,
U Z Z Z ( q Q) _|_ U/ Wk( q) (W, 7") =r )\k Z ;(’I/ 1n,r.) 90’((”‘ q) (OJ)7 (2315)
k g=1 m=0 v=0 "
where cp(o’q), e ,go,(:t"k_l’q) € [[C*(|—wj,wj]) is a Jordan chain corresponding to the eigenvalue Ay,

c,(f ™9 are constants, and U; € H?4(K;). It follows from here and the Sobolev embedding theorem
that U; are continuous on K; and U;(0) = 0.

Now we show that

|Uj(y)| =0 as |y| — oo. (23.16)

IfU € E(K), then U € E)(K). This, the fact that U is a solution of homogeneous problem (23.14), and
[24, Theorem 3.2] imply that U € £3(K). Fixing arbitrary large a > 1 and repeating these reasonings,
we obtain U € £2(K). Assuming that V(w,r) = U(w,r~1) and using the Sobolev embedding theorem
and the arbitrariness of a, we see that the function Vj(y) is continuous at the origin and |V;(y)| — 0
as |y| — 0. Equation (23.16) follows from here.

3. Introduce the notation

M = max_sup |U;(y)|.
7=1,..., yéfj

Let us show that M = 0. Assume the contrary: let M > 0. By the properties of U; proved above,
any function |U;(y)| has a maximum at some point y° € K; \ {0}. If |U;(y°)| = M for some j and
y° € K, then U;(y) = const by the maximum principle. Using the differential equation in (23.14), we
obtain M = |U;| = |AU;| = 0.

If ]Uj(yo)\ = M for ¢° € Vjo, Where o =1 or 2, then, using the nonlocal conditions in (23.14) and
conditions (23.9), we obtain the inequality

= U5 < D bjoks|Uk(Gjonsy”)| < M. (23.17)
k,s

Thus, inequalities in Eq. (23.17) become equalities, and it follows from here that

> bjoks =1, [Uk(Gjorst®)| = M

at least for one pair (k, s). Nevertheless, gjgksyo € K, which is impossible by the above. O
Corollary 23.2. Let conditions 23.1 and 23.2 hold. Then there is §o > 0 such that the operator

L: gll——i-’—f 5(K) - gllJrl*(;(K?V)? l= 071727"-7

18 an isomorphism for 0 < § < 4p.
Proof. By Lemma 23.2, the operator £ : E2(K) — E)(K, ) is an isomorphism. On the other hand, by
Lemma 23.1 and the discontinuity of the spectrum L(\) (see [88]), there exists dg > 0 such that there

are no eigenvalues £(\) in the strip —dp < Im A < 0. Similarly (see [64, Chap. 6, Proposition 2.8]),
we can show that the operator £ : €2 (K) — &) s(K,v) is an isomorphism for 0 < § < §;. Then,

by [24, Theorem 9.2, 9.3], the operator L : 5;112 sK) — Ellﬂ_é(K, 7) is also an isomorphism. O

Proof of Theorem 23.2. The theorem follows from Corollary 23.2 and [41, Theorem 8.1]. O

390



23.4. Nonlocal problems in spaces of continuous functions. Take a number § € [0, 1] such
that there are no eigenvalues of the operator £(\) either in the strip —6 < Im A < 0 or on the line
Im A\ = —1— 9. The existence of such a number follows from Lemma 23.1 and the discreteness of the
spectrum of L()\) (see Lemma 6.1).

Let g1 be a number from Theorem 23.2. First, we construct an analog of a barrier function for
nonlocal problems. Consider the following auxiliary problem:

P(y,D)v —qv =0, yeG; vlp, -Biv=1, yely, i=1,...,N. (23.18)

Lemma 23.3. Let conditions 23.1 and 23.2 hold. Then problem (23.18) has a bounded solution

v e C®(G\K) such that inf wv(y) > 0.
yeG\K

Proof. 1. Consider the model problem
AW} =0, ye K5 Wl y) =D bjosWi(Gjorsy) = 1.y €75, (23.19)
ks
Find a solution of problem (23.19) in the form
Wi =9jw), |wl<w;, j=1,...,N. (23.20)
Obviously, the functions ¢1(w), ..., pn(w) satisfy the relations

Piw) =0, [wl<wi  @i((=1)7w5) = Y bjokser((—1)7wj + wioks) = 1, (23.21)
k,s

or, equivalently, £(0)p = {F}, Fj, }, where Fj; = 0 and Fj, = 1. By Lemma 23.1, the number A\ = 0
is not an eigenvalue £(A). Since L£(A) is a Fredholm operator and it has a zero index (see. [88]),

there exists a unique (real-valued) solution ¢ € [[ C*°([-wj,w;]) of problem (23.21). Obviously, the
J
functions ¢;(w) are linear. Using the nonlocal conditions in Eq. (23.21) and relation (23.9), it is easy

to verify that p;(w) > 0 for w € [—wj, wj].
2. Consider a function £ € C*°(R?) such that £(y) = 1 for y € O, »(K) and supp ¢ C O(K).
Find a solution v of the initial problem (23.18) in the form

v(y) =w'(y) +v'(y), yeGq, (23.22)

where wl(y) = f(y)le(y’(y)), y € O:g5), 95 € K, ¥ — y(g;) is a transformation inverse to the
transformation y — y/(g;) from Sec. 23.2, and the function w! is extended by zero to G \ O.(K); v!
is an unknown function.

It follows from Egs. (23.18) and (23.22) that v! satisfies relations
P(y, D)’ —quv' = f(y), yeG v, —Buw' =fi(y), yeT (23.23)
where
! =Py, D)w' + quw', fl=1—wlr, + Baw'|p,. (23.24)

Let Vii(y) = v'(y(¥), F5(y/) = f1(y(¥)), and Fjo(y) = fi (y(y)), ¥' € K, where y — 3/ (g;) is
the transformation from Sec. 23.2, g; € K NT;. Denote y' = y. Then by virtue of (23.19) and (23.24)
we have

Fi(y) = (A = Pj(y, D)W} + W}, ye K",
23.25
Fio@) = S (Bjoks () — bioks) Wi Gonst), v € K72, (23.25)
k,s

where P;(y, D) and Bjyis(y) are the same as in Eq. (23.7). Taking into account the fact that the
principal homogeneous parts of the operators P(y, D);(0, D) coincide with the Laplace operator and
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Bjsks(0) = bjois and using the Taylor expansion, from representation (23.20) and relations (23.25) we
obtain

2 143/2 , /2
Fj e Hz+1 5(K€/ ), Fjoc € Hz+1£5(ﬁé )

ie, {fl,fl} e Hl+1 s(G,0G). Hence, by Theorem 23.2, there exists a unique solution v! € Hllif 5(G)
of problem (23.23). Since [ > 0 is arbitrary, by the Sobolev embedding theorem, the function v defined
in Eq. (23.22) belongs to C*°(G \ K). Obviously, it is a solution of the initial problem (23.18).

3. We prove that v! € C(G) and v!(y) = 0 for y € K. By virtue of Eq. (23.23), the functions le (y)

satisfy the following relations:

AV} = F}(y) + Fy(y), ye K",
e 23.26
- Z bjaksvkl (gjcrksy) = Fjlo(y) + Fja(y), ye ,yj0/'27 ( )
k,s

where Fjl = (A =Py, D))le + qlel and

Fjla = Z(Bjaks(y) - bjaks)vkl (gjaksy)'
k,s

Taking into account the fact that the principal homogeneous parts of the operators P(y, D);(0, D)

coincide with the Laplace operator and Bjs1s(0) = bjors and using the Taylor expansion, we can
represent the right-hand side of problem (23.26) in the following form:
Fl+ Fj=F + F +r '), Fj,+ Fjo=Fj,+ F,+¥jor, (23.27)

where 1; € C*®([—wj, wj]), Fj1 + Fj2 € H%(K;/Q) and 9, € R, Fl + F2 € H3/2( %2)

Obtain the asymptotic expansions of the functions V}l We denote by {A\x} the finite set of eigen-
values £()\) concentrated in the strip —1 — 8§ < Im A < —§. Then, applying [26, Theorem 2.2] and [26,
Lemma 4.3] to problem (23.26) with right-hand side (23.27), we obtain

” Jp Hqk— 1
1
1_ 1/ (V) (mq m,q) 2 5/2
= 1 K 23.2
1% rygzoy(znr -I-Ek qélmgo + Ve ye (23.28)

where u*) € HC’ ([—wj,wj]), the functions Wém’q) have the same form as in Eq. (23.15), ¢ (m ) are

some constants and V2 € H? 5(KJ€-/ 2). It follows from formula (23.28) and the Sobolev embedding

theorem that V1 € C(K 5/2) and le (0) = 0. Hence, v! € C(G) and v!(0) = 0 for y € K. In particular,
it follows from here that the function v = v! + w! is bounded.

4. Tt remains to show that m > 0, where m = inf wv(y). Assume the contrary: let m < 0. Consider
yeG\K

a sequence {y¥} € G\ K such that v(y*) — m for k — co. Since the sequence {y*} is bounded, it
contains a convergent subsequence (which we denote {y*}). Let y* — 4° for k — oo, where 3° € G.

Using the maximum principle, the nonlocal conditions in Eq. (23.18), and relations (23.2), it is easy
to verify that y° ¢ G\ K. Assume that y° € K. By item 1, we can find a constant A > 0 such that
w'(y) > A in some neighborhood of a point 3° (except for a point y° where the function w! may not
be defined). On the other hand, we have proved in item 3 that v!(y°) = 0. Hence, v(y) > A/2 in
some neighborhood of y° (perhaps, except for the point y°). In this case, the sequence {v(yk)} cannot
converge to a nonpositive number m.

Let us consider the problem
P(y,D)u—qu=0, yce€GaG, ulp, — Biu=vi(y), yely, i=1,...,N. (23.29)

The following theorem is fundamental in the study of Feller semigroups.
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Theorem 23.3. Let conditions 23.1 and 23.2 hold and let ¢ > q1. Then for any ¢ = {1} € Cx(9G),

there exists a unique solution uw € C(G) N C*(G) of problem (23.29). Moreover, u(y) =0 fory € K
and the following estimate holds:

lullo@y < allllecoc) (23.30)
where ¢ > 0 is independent of ¥ and q.

Proof. 1. We prove the theorem for infinitely smooth functions 1; that vanish in some neighborhood
of the sets I'; N IC. Passing to the limit, we obtain the general case. For the functions 1; mentioned,

we have 1; € Hi/&z(l“i). Hence, by Theorem 23.2, there exists a unique solution u € H? 4(G) of
problem (23.29). By virtue (13.22), u € C®(G \ K). Let {\;} be a finite set of eigenvalues L£(\)
concentrated in the strip —1 — 0 < Im A < —d. Then, according to [26, Theorem 2.2] (theorem on
the asymptotic behavior of solutions of nonlocal problems), the function u can be re presented in the
following form near the point g; € £ (j =1,...,N):

Ji #q—1
u(y) =S5 ST MW 1 uly), Y e GOy,
k g=1 m=0

where c,(cm’q) are some constants, the functions W,g;n’q) (w, ) have the same form as the components of

the vector W,{Em’q) (w,r) in Eq. (23.15) (w and r are the polar coordinates with pole at the point g;),
and v’ € HEJ(G). Thus, applying the Sobolev embedding theorem, we see that u € C(G) and
u(y) =0, yekK. (23.31)

2. Prove estimate (23.30). Assume that M = [[¢[/¢,(aq) and M > 0.
Denote w4 (y) = Mv(y) £ u(y), where v(y) is the function from Lemma 23.3. By Egs. (23.18)
and (23.29), the functions w4 satisfy the following relations:

P(y7D)wi — qwt = M(Ql - q)v(y), ye Gv

w|p, — Biws = M +¢;(y), yely,, i=1,...,N.
Since ¢1 < ¢, v(y) >0, y € G (by Lemma 23.3) and M > +1;, we have
P(y,D)wy —qus <0, y€QG, wilr, —Biwy >0, yely, i=1,...,N. (23.32)
Let us show that my = e%{lC w4 (y) > 0. Assume the contrary: let my < 0. As well as in item 4 of
y

the proof of Lemma 23.3, we consider a sequence {y*} C G\ K such that y* — y° and w (yg) — m4+
as k — oo, where y° € G. The following three cases are possible: y° € G, y° € I'; for some i, and
Y0 € K.

Let ¢ € G. Since w4 (y) is continuous in G, we see that it has a negative minimum m inside the
domain. It follows from the first inequality in Eq. (23.32) and the maximum principle that w4 (y) = m4
as y € GG. Taking into account condition 23.1, we obtain

P(y, D)w+(y°) — quws(y°) = po(y°)ms — gm+ > —gm+ > 0,

which contradicts the first inequality in Eq. (23.32).
Let y° € T; for some i. Then from Eq. (23.32) and (23.2) we obtain the following inequality:

me = we(y?) =) bis(y ) w (Qus(y”) = me D bis(y®) > me. (23.33)
s=1 s=1

Hence, inequalities (23.33) become equalities, i.e.,
S;
D b)) =1, we(Qu(y°) = ma,
s=1
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for some s, i.e., the function w4 (y) has a negative minimum at an internal point of Q;(y°) € G.
However, this is impossible.

Finally, we assume that ¢ € K. By Lemma 23.3, m = inf v(y’) > 0, and we obtain the inequality
y'€eG\K

Muv(y) > Mm >0, yeG\K.
The last inequality and Eq. (23.31) imply that
w+(y) = Mu(y) £u(y) = Mm/2>0

in some neighborhood of 3° (except for the point 4°, where w4 (y) may not be defined). Hence, the
sequence {w+(y*)} cannot converge to a negative number m..
Hence, we have proved that inf w4 (y) > 0; therefore,

yEG\K
lu(y)| < Mo(y) <M sup v(y), yeG\K.
y'eG\K
Since the function u(y) is continuous in G, from the last inequality we obtain estimate (23.30), where
c1 = sup v(y'). Obviously, the constant ¢; > 0 is independent of ) and q. ]
Yy €G\K

Consider the nonlocal problem
The following result follows from Theorems 23.2 and 23.3 and the asymptotic properties of solutions

of nonlocal problems [26].

Corollary 23.3. Let conditions 23.1 and 23.2 hold. Then we can find a number g1 > 0 such that for
any fo € C(G), ¥ = {¢i} € Cx(9G), and q > q1, there exists a unique solution u € Ci(G) N W2 (G)

of problem (23.34). Moreover, if fo =0, then u € Cx(G) N C>®(G) and the following estimate holds:

lulloe@) < alldllec o), (23.35)
where ¢y > 0 is independent of 1 and q.

24. Bounded Perturbations of Diffusion Processes

24.1. Problems with nonlocal terms whose supports lie near conjugation points. In the
sequel, we will need the following maximum principle.

Maximum Principle 24.1 ( [22, Theorem 9.6]). Let D C R? be a bounded or unbounded domain
and let condition 23.1 hold for the domain D. If the function uw € C(D) has a positive mazimum at a
point y° € D and'® P(y, D)u € C(D), then P(y, D)u(y°) < 0.

Let us formulate some auxiliary results that will be helpful in the next sections.

Let u € C*°(G) N Cx(G) be a solution of problem (23.34) with fo = 0 and ¢ = {¢;} € Cx(9G).
Denote u = S,9. By Corollary 23.3, the operator
Sq : Ck(9G) = Ck(G), ¢ > ai,
is bounded and ||Sy|| < ¢1, where ¢; > 0 is independent of g.

Lemma 24.1. Let conditions 23.1 and 23.2 hold. Let Q1 and Q2 be closed sets such that Q1 C 9G,
Q2 C G, and Q1 NQy =, and let ¢ > q1. Then the following inequality holds for all ¥ € Cx(0G)
such that supp(Sq)|oc C Qu:

2
1Sq¥lle@.) < EWHC,C(aG)a q>aq,

13Tn what follows, the operator P(y, D) acts in the sense of generalized function.
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where co > 0 is independent of ¥ and q.

Proof. Using [19, Lemma 1.3]'* and Corollary 23.3. We obtain
k k kcy
1Se¥llciq,) < 5|’(SQ¢)‘8G|’C(6G) < EHSWHC@ < 7”%/}”%(5@), q>q, (24.1)

where the number ¢; from Corollary 23.3 is assumed to be sufficiently large (so large that [19,
Lemma 1.3] is valid for ¢ > ¢1); the number k = k(q1) is independent of ¢ and q. ]

Lemma 24.2. Let conditions 23.1 and 23.2 hold, Q1 and Q2 be the same as in Lemma 24.1, and let
q > q1. Assume that Qo N K = @. Then for all v € Cx(0G) such that suppy C Q1, the following
inequality holds:

ISatlleen < I¥lecns 42 an
where c3 > 0 is independent of ¥ and q.
Proof. 1. Consider a number ¢ > 0 such that
dist(Q1,Q2) > 30, dist(K, Q2) > 30. (24.2)

Introduce a function ¢ € C°°(R?) such that 0 < £(y) < 1, £(y) = 1 for dist(y,Q2) < o and &(y) = 0
for dist(y, Q2) > 20.
Consider the auxiliary problem

P(y,Djv—qu=0, yeG; vy =~Eyuly), yeaiq, (24.3)

where u = S;¢ € Cx(G). Applying Corollary 23.3 (with B; = 0), we see that there exists a unique

solution v € C*°(G) N Ck(G) of Problem (24.3). It follows from the maximum principle 24.1 and
definition of the function £ that

Ivlle) < Ieullowe) <, max, lelg, , s logs,nm: (24.4)

where (22, = {y € 0G : dist(y, Q2) < 20}.
Since supp ¥ N Q2,25 = I, we see that

u—Bu=0, yé€ Q2720— N E (24.5)
Since Bju = 0 for y ¢ O.(K), it follows from Eq. (24.5) that
u(y) =0, y€[Qa2 NTi\ O:(K). (24.6)

Using (24.4)—(24.6), the definition of the operators B;, and condition 23.2, we obtain the inequality

lvlle@) < max 14l gy 0 Tr000) | (e 20RO

S Mhax max, g, (@ sormno- i lot@u (@2 ponTinaz ) (

=1,...,04

24.7)

Since Q220 N K = @ (see Eq. (24.2)), it follows from the definition of the transformations €; that
Qis(Q2,20 NTi N O:(K))) C G.

Hence, using inequalities (24.7) and Lemma 24.1, where the sets G and Q;5(Q2.2, NT; N O-(K))) are
taken instead of ()1 and ()2, we have

C
Wlleg < fuwuc,daa). (24.8)

10 [19, Lemma 1.3], it was assumed that the boundary of the domain is infinitely smooth. This assumption was used
in the proof of the existence of classic solutions of elliptic equations with inhomogeneous boundary conditions. However,
if we know that a classic solution exists, we can omit the assumption on the smoothness of the boundary in the proof of
the first inequality in Eq. (24.1).
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2. Let w = u — v. Obviously, the function w satisfies the relations
Py, Dyjw—qu=0, yeG;  w(y)=uly)—v(y) =0, y€cQ-

Using Lemma 24.1 (with B; = 0), where the set 0G \ Q2,, is taken instead of @)1, and taking into
account the fact that w|sg = (1 — §)ulgg, we obtain the inequality
C2 C2
lwllcgs) < gllwlaallc(ac;) < ;IIUHC@-
It follows from the last inequality and Corollary 23.3 that

C2C1
lwllew@s) < T||¢||c,<(ac)-

Combining this estimate with Eq. (24.8), we complete the proof. O

24.2. Bounded perturbations of elliptic operators and their properties. Consider a linear
operator Py satisfying the following condition.

Condition 24.1. An operator Py : C(G) — C(G) is bounded and, if a function u € C(G) has a
positive mazimum at a point y° € G, then Pru(y°) <0.

Here, the operator P; is a bounded perturbation of an unbounded elliptic operator in spaces of
continuous functions (cf. [19, 20]).
The next result follows from conditions 23.1 and 24.1 and the maximum principle 24.1.

Lemma 24.3. Let conditions 23.1 and 24.1 hold. If a function uw € C(G) has a positive maximum at
a point y° € G and P(y, D)u € C(G), then P(y, D)u(y°) + P1u(y®) < 0.

In this paper, we consider the following nonlocal conditions in the nontransversal case:

bwuty) + [ luly) = u(luty.dn) =0,y € G, (24.9)

G

where b(y) > 0 and pu(y,-) is a nonnegative Borel measure at G.

Let N ={y € G : u(y,G) = 0} and M = 0G \ N. Assume that N and M are Borel sets.
Condition 24.2. £ C V.

Introduce the function by(y) = b(y) + u(y, G).
Condition 24.3. by(y) > 0 fory € 9G.

By 24.2 and 24.3, we can write condition (24.9) in the following form:

uly) ~ [uiplyedn) =0, yeTi  uly) =0, yek. (24.10)
el
where p;(y,-) = /ZEZZ;/)), y € I';. By the definition of the function by(y), we have

wi(y,G) <1, yely. (24.11)

For any set @, denote by xg(y) a function that equals 1 in @ and vanishes in R? \ Q.
Let bis(y) and ;5 be the same as above. Introduce the measures ;5 as follows:

e, Q) = {bw(y)xQ(szis(y)), y €T3 NO(K),

0, y € I\ O:(K),
where @) is an arbitrary Borel set.
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We study the measures p;(y, ) represented in the form
Si
,ui(ya ) = Zézs(y7) +ai(ya') +Bl(y7 ')a Yy e Fia (2412)

s=1

where «;(y, ) and 5;(y, -) are nonnegative Borel measures satisfying the following conditions.
For any Borel measure u(y, -), a closed set

sptu(y, ) =G\ J{V €T :u(y,VnG) =0},
VeT

where T is the set of all open sets in R?, is called the support of the measure u(y, -).

Condition 24.4. There exist numbers 31 > 39 > 0 and o > 0 such that

(1) sptai(y,-) C G\ O, (K) fory e Ty,

(2) sptai(y,-) C Go fory € ;)\ O,,(K),
where O, (K) = {y € R? : dist(y,K) < 31} and G, = {y € G : dist(y, 0G) < o}.
Condition 24.5. 5;(y, M) <1 foryel';NM,i=1,...,N.

Remark 24.1. Condition 24.5 is weaker than similar conditions 2.2 in [19] and 3.2 in [20]. It is
needed in these conditions that the inequality p;(y, M) < 1 hold for y € T'; N M.

Remark 24.2. One can show that if conditions 24.3-24.5 are valid, then
b(y) + u(y, G\ {y}) >0, ye€ G,

i.e., boundary condition (24.9) is given at every point of the boundary.

Using relations (24.12), we write nonlocal conditions (24.10) in the form
u(y) — Biu(y) — Baju(y) — Bgiu(y) =0, yely;  u(y) =0, yeKk, (24.13)

where the operators B; are defined in Sec. 23.2,

Byu(y) = / u(n)as(y, dn),  Bsuly) = / w(n)Bily,dn), y €T

G G
Let us introduce the space

Cp(G) = {u € C(G) : u satisfies (24.9)}.
Obviously, we can use conditions (24.10) or (24.13) in the definition of the space Cp(G). It follows

from the definition of the space Cp(G) and condition 24.2 that

Cg(G) C Cn(G) C Cx(G). (24.14)

Lemma 24.4. Let conditions 23.1, 23.2, and 24.1-24.5 hold. Let the function u € Cp(G) have a
positive mazimum at a point y° € G and let P(y, D)u € C(G). Then there is a point y' € G such that
u(y') = u(y®) and P(y, D)u(y') + Pru(y') < 0.

Proof. 1. If ° € G, then the lemma follows from Lemma 24.3. Let 3° € OG. Assume that the lemma
does not hold, i.e., u(y") > u(y) for all y € G.

Since u(y’) > 0 and u € Cp(G) C Cn(G), we have y° € M. Let y° € T; N M for some i. If
1i(y°, G) > 0, then, taking into account Eq. (24.11), we obtain

u(y”) —/U(n)m(yo,dn) > /[U(yo) — u(n)ps(y°, dn) > 0.

G G
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This contradicts Eq. (24.10). Hence, spt u;(y°,-) C 0G. Tt follows from here, Eq. (24.12), and
condition 24.4 (item 1) that

bis(y°) =0, sptai(y°,-) C G\ O,,(K), sptBi(y°,-) C OG. (24.15)
2. Assume that o;(y°,0G \ O, (K)) = 0. In this case, by Eq. (24.15), we have

ai(y?,G) = 0. (24.16)
Further, from Eqgs. (24.12), (24.15), and (24.16) and condition 24.5 we obtain
:U‘i(yoa ) = Bi(yo, ')a spt Bi(yoﬂ ) C an ﬁl(yO’M) <L

Hence the following relations hold for u € Cp(G) C Cyn(G):

u(y) ~ [l dn) = uw®) ~ [ B dn) 2 ul) a8 M) >0,
G M
This contradicts Eq. (24.10).
The contradiction means that a;(y°, 0G \ O, (K)) > 0. Thus, taking into account condition 24.4
(item 2), we have y° € O,,,(K).
3. Let us show that there is a point

y € 0G\ O,,(K) (24.17)

such that u(y’) = u(y®). Assume the contrary: u(y’) > u(y) for y € 0G \ O,,(K). Then, using
Egs. (24.11), (24.12), and (24.15), we obtain the inequalities

us)= [ usts®in) = [t —ult®dny = [ ) —uwleitsd) > 0, (218)
G G 9G\ O, (K)

since ;(y°,0G \ O,,,(K)) > 0. Inequality (24.18) contradicts Eq. (24.10). Hence, the function u has
a positive maximum at some point ¢y’ € 9G \ O, (K). Repeating reasonings of items 1 and 2 of the
proof, we obtain that ¢y € O,,,(K). This contradicts to Eq. (24.17).

Thus, we have proved the existence of a point ' € G such that u(y') = wu(y"). Applying
Lemma 24.3, we can also prove the inequality P(y, D)u(y') + Piu(y') < 0. O

Corollary 24.1. Let conditions 23.1, 23.2, and 24.1-24.5 hold. Let u € Cg(G) be a solution of the
equation

qu(y) — P(y, D)u(y) — Pru(y) = fo(y), yeGq,

where ¢ > 0 and fy € C(G). Then

1
||U||(J(é) < 5Hf0||c(6)- (24.19)
Proof. Let max |u(y)| = u(y®) > 0 for some y° € G. By Lemma 24.4, there exists a point y' € G such
yeG
that u(y') = u(y®) and P(y, D)u(y') + Pru(y') < 0. Hence
0 1y _ L 1 1 1 1
lullo@) =u”) =uly’) = 5(P(y,D)U(y )+ Pru(y’) + foly)) < gllfollc@-
If max |u(y)| = —u(y®) > 0, then, applying the above reasonings to the solution v(y) = —u(y) of
yeG
the equation qv — P(y, D)v — P1v = — fp, we again obtain (24.19). O
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24.3. Reducing to an operator equation on the boundary. In this section, we impose addi-
tional restrictions on nonlocal operators. These restrictions will allow us to reduce nonlocal elliptic
problems to operator equations on the boundary.

Note that if u € Cy(G), then the function B;u is continuous on I'; and can be extended to
a continuous function on T'; that belongs to Cy(T;); we will denote it by B;u. Assume that the
operators B,; and Bg,; have similar properties.

Condition 24.6. For any u € CN(G), the functions Bo;u and Bg;u can be extended to T; such that
the resulting functions (we will denote them by Boju and Bgu, respectively) belong to Car(T;).

The following lemma directly follows from the definition of nonlocal operators.

Lemma 24.5. Let conditions 6.3, 23.2, 24.2, 24.3, and 24.6 hold. Then the operators B; and B,
Bgi : Cn(G) — Cn (1) are bounded and
Biulley @) < lulley@)  IBatle, @ < llulley@o., w):
IBsitlly, i < lulley iy Baiw+ Bsaull < llulley @,
Biu + Baiu + Bgiul| < [lull¢, @)

Introduce the operators
B = {B;}: Cn(G) = Ci(0G), Bus ={Bai +Bgi} : Cx(G) — Cy(9G), (24.20)
where Cnr(0G) is defined in Eq. (5.1).
Using the operator S, defined in Sec. 24.1, we introduce the bounded operator
I-B.sS,:Cn(0G) = Cn(0G), q> qi. (24.21)

Since Sy¥ € O (G) for ¢ € Cpr(0G), we see that the operator in (24.21) is well defined.

Further, we will formulate sufficient conditions that guarantee the existence of a bounded operator
(I-— Baﬁsq)’l :Cn(0G) = Car(0G).

Let us represent the measures (3;(y, ) in the form
where 3} (y, ) and B2(y, -) are nonnegative Borel measures. Describe them. For any p > 0, we consider
a covering of the set M by p-neighborhoods of all its points. We denote by M,, some finite covering.
Obviously, Mp is an open Borel set. Further, for any p > 0, we consider a patch function Cp € C™(R?)

such that 0 < (,(y) < 1, {(y) = 1fory € M, /2, and Cp(y) = 0 for y ¢ M,. Let {, = 1—C,. Introduce
the operators

Bluly / GulnBi . dn), Bhu(y / Gomun) 5t (o). Bhuty) = [ uln)5F(v.dn).
G
Condition 24.7. For alli=1,..., N we have:

(1) the operators Eli, Béz : Cy(G) — On (1) are bounded;

(2) there exist a number p > 0 such that'®
1
—, if a;(y, )—OforallyEI’],j—l N,
o c1
BLI<{
_ otherwise,
c1(l+c1)

where ¢1 1s a constant from Corollary 23.3.

15Ttem 2 of condition 24.7 can be replaced by a stronger assumption “||]§}M|| — 0 as p — 0,” which is easier for
verification in concrete applications.
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Remark 24.3. The operators B}}w B};Z : On(G) — Cu(T;) are bounded if and only if the operator
Béz + B}, : On(G) — Cr(T) is bounded. This follows from the relations

Béiu = (B%ﬁ + Béi)(Cp“)» Béi“ = (Béi + Béi)(ép“)
and the continuity of the functions fp and C~p.
Condition 24.8. The perators B%i :Cn(G) = COn(Ty),i=1,...,N, are compact.

It follows from Eqs. (24.12) and (24.22) that the measures u;(y, ) can be represented in the form
Si
s=1
The measures J;5(y, ) correspond to nonlocal terms supported near the set K of conjugation points.
The measures «;(y,-) correspond to nonlocal terms supported outside the set K. The measures
B(y,-) and B2(y,-) correspond to nonlocal terms whose supports have arbitrary geometric structure
(in particular, it can intersect with the set K); however, the measure 8} (y, M,) of the set M,, must

be small for small p (condition 24.7), and the measure $?(y,-) must generate a compact operator
(condition 24.8).

Lemma 24.6. Let conditions 23.1, 23.2, 24.1-24.5, and 24.6-24.8 hold. Then there exists a bounded
operator (I —BagS,) ™! : Cn(0G) — Cur(0G), q > q1, where q1 > 0 is sufficiently small.

Proof. 1. Let us consider the bounded operators B}g = {B},}, E}g = {B},}, B% = {B%}, and
B, = {B.;} acting from Cy(G) to Cn(0G) (cf. (24.20)).
Prove that the operator I — B,S, : Cor(0G) — Car(0G) has a bounded inverse operator. Introduce
a function ¢ € C*°(G) such that 0 < ((y) <1, {(y) =1 for y € G,, and ((y) =0 for y ¢ Gy /2, Where
o > 0 is a number from condition 24.4.
We have
I-B,S,=1I-Bu(l-¢)S, - BalS,. (24.23)

la. First, we prove that the operator I-B,(1—()S, has a bounded inverse operator. By Lemma 24.5
and Corollary 23.3, we have

IBa(1—¢)Sqll < . (24.24)
Further, (1 — ¢)S,¥ = 0 in G, for any 1 € Cor(0G). Hence, by condition 24.4, we see that
supp B (1 — €)Sy¢ € G N O,,(K). (24.25)
Let us show that .
IBa(l = )Sq)?| < PR (24.26)

where ¢; > 0 is sufficiently large and ¢ > 0 is independent of q. Applying sequentially Lemma 24.5,
Lemma 24.2, relation (24.25), Lemma 24.5, and Corollary 23.3, we obtain the inequality

[Ba(1 - C)Sq B, (1- C)SqT/’HCN(aG) < HSqBa(l - C)Sq@DHCN(é\o}q(K))

C c3C
< IBa(l = O8e¥ll oy oroiey <~ IV lewea):

Equation (24.26) with ¢ = c3c; follows from here.
If ¢ > 2¢, then the operator I — [B,(1 — C)Sq]2 has a bounded inverse operator. Then the operator
I - B.,(1—¢)S, also has a bounded inverse operator and

1—Ba(1- 08, = [+ Ba(1— OS] - (Ba(1—)S,)% . (24.27)
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It follows from (24.27), Lemma 24.5, Corollary 23.3, and relations (24.24) and (24.26) that

I = Ba(1 =S = 14c1+0(™Y), g +oc. (24.28)
1b. Now let us estimate the norm of the operator B,(S,. Lemmas 24.5 and 24.2 yield
CQ
BalSq¥lleyoe) < Se¥llo, ) < ;H¢HCN(8G)- (24.29)

Hence, using representation (24.23), we see that the operator I — B,S, has a bounded inverse for all
sufficiently large ¢ and

(- BoS,) " = [I— (1-Ba(l - )Sy) 'BucS,] - Ba(l-OS,] . (24.30)
It follows from (24.28)—(24.30) that
[(I-BuSy) =14+ +0(q Y, ¢q— +oo. (24.31)

2. Let us prove that the operator I — (B, +]§é +]§é)Sq : Cn(0G) — Car(OG) has a bounded inverse
operator. ~ o
2a. It follows from the definition of the operator Bé and Lemma 24.1 (with @1 = M and Q2 =

G\ M,;) that
~ C
IBA:Sa¥llcy @) < IS¥llo@, ) < guwuwc), (24.32)

because (G \ M,,5) N M = @ and supp(S,¥)|ag € M for ¢ € Car(9G).
2b. Let a;(y, G) # 0 for some j and y € I';. By virtue of condition 24.7 (item 2) and Corollary 23.3
there is a number d such that 0 < 2d < 1/(1 + ¢;) and

1 2d 1
IBSqll ey ) < <01(1+01) >||Sq¢||cN(G (H—cl —2d>||1/1||cN(aG)- (24.33)

Inequalities (24.32) and (24.33) yields the inequality

|(BY +BYS | < —— —d (24.34)

1+
for all sufficiently large ¢. It follows from (24.31) and (24.34) that

|(1—B.S,) (B} +Bh)S,| <1
for sufficiently large q. Hence, there exists a bounded inverse operator
I— (Bo+Bj+BE)S, ]! = [I— (I-B,S,) (B} +B)S,] '[I-B,S, " (24.35)

2c. If aj(y,G) =0fory € I'j, j =1,..., N, then, by condition 24.7 (item 1), inequality (24.33) has
the form

. 1 2
IBE:Sq¥ll ey < (01 - ) I8¢l @ < (1= 2d)1¥lley (o6)-
Hence, inequality (24.34) has the form
I(B +Bp)S,l < 1—d. (24.36)

Since B, = 0 in this case, we see that Eq. (24.36) implies that the operator
I- (B, +Bj+Bj)S, =1- (B;+B})S,
has a bounded inverse operator.
3. It remains to prove that the operator I — B,gS, also has a bounded inverse operator. By

condition 24.8, the operator B% is compact. Hence, the operator B%Sq is also compact. Since the
index of a Fredholm operator is steady with respect to compact perturbations, we see that the operator
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I-B,s3S, is a Fredholm operator and ind(I-B,gS,) = 0. It suffices to show that dim ker(I-B,gS,) =
0 to prove that I — B,3S, has a bounded inverse operator.

Let ¢ € Car(0G) and (I—B,sS,)1» = 0. The the function u = Sy1p € C°(G) N Cu(G) is a solution
of the problem

P(y7D)u_qu:Oa y€G7
u(y) — Biu(y) — Baiu(y) — Bgiu(y) =0,  yely,
u(y) =0, yeK.
By Corollary 24.1, we have u = 0. Hence, v = B,3S,¢ = Bygu = 0. O

24.4. Existence of Feller semigroups. Here we prove that bounded perturbations of elliptic op-
erators with nonlocal terms which satisfy the conditions of Secs. 24.1-24.3 generate Feller semigroups.

Reducing nonlocal problems to the boundary and using Lemma 24.6, we prove that nonlocal prob-
lems are solvable in spaces of continuous functions.

Lemma 24.7. Let conditions 23.1, 23.2, 24.2-24.5, and 24.6-24.8 hold and let ¢1 > 0 be sufficiently

large. Then for any q > q1 and fo € C(G), the problem
qu(y) — Py, D)uly) = foly), y€G, (24.37)
u(y) — Biu(y) — Baiu(y) — Bgiu(y) =0, yeli;  u(y) =0, yeKk, (24.38)
has a unique solution u € Cg(G) N W (G).
Proof. Consider the following auxiliary problem:
qu(y) =Py, D)o(y) = foly), veG  v(y)—Bw(y) =0, yeli, i=1,...,N.  (24.39)

Since fo € C(G), we see that by Corollary 23.3 there exists a unique solution v € Ci:(G) of problem
(24.39). Hence, v € Oz (G).

2. Let w = u — v. The unknown function w belongs to Cyr(G) and, by Eqgs. (24.37)-(24.39), it
satisfies the relations

qu(y) — Py, D)w(y) =0, y €G,
w(y) — Baw(y) — Basw(y) — Bpw(y) = Baw(y) + Bgiv(y), yely, i=1...,N, (24.40)
w(y) =0, y e K.

By condition 24.6, problem (24.40) is equivalent to the operator equation ¢ —B,3S,¢ = B,gv with
respect to the unknown function ¥ € Cyr(0G). By Lemma 24.6, this equation has a unique solution
Y € Cnr(0G). Then problem (24.37), (24.38) also has a unique solution

u=v+w=0v+8 =v+S,(I-BusS,) 'Busv € Cp(G).

Moreover, by the theorem on the inner smoothness of solutions of elliptic equations, we have u €
Wio(G). O

Using Lemma 24.7 and condition 24.1, we prove that problems with bounded perturbations are also
solvable in spaces of continuous functions.

Lemma 24.8. Let conditions 23.1, 23.2, and 24.1-24.8 hold and let g1 > 0 be sufficiently large. Then

for any q > q1 and fo € C(G), the problem

qu — (P(y7 D) =+ Pl)u = fO(y)v Yy e G, (2441)
u(y) — Biu(y) — Baiu(y) — Bgiu(y) =0, yeli;  u(y) =0, yeKk, (24.42)

has a unique solution u € Cg(G) N W (G).
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Proof. Denote the identity operator in the space C (G) by I. Consider the operator ¢I — P(y, D) as
an operator acting from C(G) to C(G) with the domain

D(al —P(y, D)) = {u € Cp(G) NWigo(G) : P(y, D)u € C(G)}.

By Lemma 24.7 and Corollary 24.1, there exists a bounded operator (¢ —P(y, D))~!: C(G) — C(G)

and )
I(gI —P(y, D))~ < p

Introduce the operator ¢I — P(y, D) — Py : C(G) — C(G) with the domain

Since
¢l = P(y, D) = P1 = (I - Pi(¢] = P(y,D))"")(al — P(y, D)),
we see that the operator ¢I — P(y, D) — Py : C(G) — C(G) has a bounded inverse for ¢ > ¢;, where
q1 is so large that ||P1|| - ||(¢I — P(y,D))7 Y| < 1/2, ¢ > q1. O
Consider the unbounded operator Pg : D(Pg) C Cp(G) — Cp(G) defined by the formula
Ppu=P(y,D)u+ Pju,

_ ) _ (24.43)
u € D(Pp) ={ueCp(G)NW:.(G):P(y,D)u+ Piu € Cp(G)}.

Lemma 24.9. Let conditions 23.1, 23.2, and 24.1-24.8 hold. Then D(Pp) is dense in Cp(G).

Proof. We prove the lemma using the scheme described in [20].
1. Let u € Cp(G). Since Cp(G) C Cn(G) (by Eq. (24.14)), we see that there exists a function
u; € C°(G) N Cur(G) such that for any e > 0 and g > ¢1

lu = urll o) < min(e, e/ (2c1ky)), (24.44)
where k, = [|(I — BogS,) L.
Let
= qui1 — P(y, D)uq, €q,
Jo(y) (4, D)uy Y | (24.45)
Yi(y) =u (y) —Biui(y) = Baua(y) —Bgiwa(y), yeli, i=1,...,N.
Since u; € Cn(G), by condition 24.6 we have {;} € Cxr(0G). Using the relation
u(y) — Biu(y) — Baiu(y) — Bgiu(y) =0, yely,
inequality (24.44), and Lemma 24.5, we obtain the inequality
£
{¥itleyoc) < llu—wullog) + 1B+ Bag)(u — u1)lley oc) < ok (24.46)
q
Consider the following auxiliary nonlocal problem:
us — P(y, D)ug = , € G,
quz — P(y, D)uz = fo(y), v (24.47)

uz(y) — Biua(y) — Baiua(y) — Bgiuz(y) =0, y €T uz(y) =0, yek.

Since fo € C*(G), by Lemma 24.7 we see that problem (24.47) has a unique solution
Ug € CB(G) C C/\[(G)
Using Eqgs. (24.45), (24.47), and the relations u1(y) = u2(y) = 0, y € K, we see that the function
w1 = u1 — Uy satisfies the relations
quwi — P(y7 D)wl = 07 RS G)

wily) - Biwr(y) - Baiwr(5) - Bown(y) = is(y), yeTi  wiy) =0, yek. %)
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It follows from condition 24.6 that problem (24.48) is equivalent to the operator equation
¢ —BusSqp =9 in Cy(0G), where wi = Syp. By Lemma 24.6, this equation has a unique solu-
tion ¢ € Car(0G). Thus, using Corollary 23.3 and inequality (24.46), we obtain

loillog) < erll@ = BapSe) "I - i} lewoa) < crkqe/(crky) = <. (24.49)
2. Finally, we consider the problem
Auz — P(y, D)uz — Piuz = Aug, y € G,

24.50
us(y) — Brus(y) — Barus(y) — Brus(y) =0, yeTii  us(y) =0, yeK. (24.50)

Since ugy € Cp(G), we see (by Lemma 24.8) that problem (24.50) has a unique solution uz € D(Pp)
for all sufficiently large A.
Denote wa = uy — us. It follows from Eq. (24.50) that

Awz — P(y, D)wz — Prws = —P(y, D)uz — Prug = fo — qua — Prus.

Applying Corollary 24.1, we have

[fo — quz — Pruzll o)

> =

||w2||c(é) <
Choosing a sufficiently large A, we obtain
w2l o) < e (24.51)
It follows from inequalities (24.44), (24.49), and (24.51) that
<

lu —usllog) < llu—wullog + llve —vello@) + lluz — usllo@) < 3e-

Now we prove the main result of the paper.

Theorem 24.1. Let conditions 23.1, 23.2, and 24.1-24.8 hold. Then the operator

Pp: D(PB) C CB(G) — CB(G)
generates a Feller semigroup.

Proof. 1. By Lemma 24.8 and Corollary 24.1, there exists a bounded operator (¢ —Pg)~!: Cg(G) —

Cp(G) for all sufficiently large ¢ > 0 and
(el —Pp)~ | <1/q.

2. Since the operator (¢ — Pp)~! is bounded and is defined in the whole space Cp(G), it is

closed. Hence, the operator ¢/ — Pp : D(Pp) C Cp(G) — Cp(G) is closed. Therefore, the operator
Pp :D(Pp) C Cp(G) — Cp(G) is also closed.

3. Prove that the operator (¢ — Pg)~! is nonnegative. Assume the converse; then there exists
a function fy > 0 such that the solution u € D(Pp) of the equation qu — Ppu = fy has a negative
minimum at some point ° € G. In this case, the function v = —u has a positive maximum at the
point y°. By Lemma 24.4, there exists a point y' € G such that v(y') = v(y°) and Ppu(y') < 0.
Hence, 0 < v(y°) = v(y') = (Ppv(y') — fo(y'))/q < 0. This contradiction proves that u > 0.

Thus, all conditions of the Hille-Yosida theorem are fulfilled (Theorem 23.1), and the operator

Pp :D(Pp) C Cp(G) — Cp(G) generates a Feller semigroup. O

In the next subsection, we give examples of nonlocal operators that satisfy the conditions of Theo-
rem 24.1.
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24.5. Example. Let 0G =T'1 UT9 UK, where I'; and I'y are open and connected (in the topology
of G) curves of the class C°°; moreover, I'1 N 'y = & and T1 NIy = K; the set K consists of two
points g1 and go. Assume that the domain G coincides with a plane angle in an e-neighborhood of
the points g;, i = 1,2. Let Q;, j = 1,...,4, be continuous transformations given at I'; and satisfying
the following conditions (see Fig. 24.1):
(1) QL) Cc K, NT1NOA(K)) € G, 0T\ O:(K)) € GUT and Q4(y) is the composition of
operators of argument shift, rotation, and dilation when y € T'; N O.(K);
(2) there exist numbers s > 3 > 0 and 0 > 0 such that Q3(T;) € G\ 0,,(K) and
Qs(T1 \ 0,,(K)) C Gy; moreover, Qz(g1) € Ty and Qa(g2) € G;
(3) Qg(ﬁ) C GUT5 and Qg(’C) C I'g;
(4) Qu(T1) € GUTy and Qu(K) C K.

Iy
Fig. 24.1. Nontransversal nonlocal conditions

Let by € C(ﬁ) N Coo(ﬁﬂ 0O-(K)), ba, b3, by € C(ﬁ), and b; >0, j=1,...,4.

Let G1 be a bounded domain, G; C G, and I' C G be a curve of the class C'. Introduce nonnegative
functions ¢(y,n), y € 1, n € Gy, and d(y,n), y € [1, n e L.

Consider the following nonlocal conditions:

4
u(y) = S bi)u() - [ cw.mutndn ~ [ dwmutir, =0, yers,

Jj=1 & T (24.52)
u(y) =0, Yy e F72
Let Q C G be an arbitrary Borel set. Introduce the following measures u(y, ), y € 9G:
4
H. @) = S bixe@w) + [ cwmdnt [ dymumdr,,  yer,
j=1 G1NQ rnQ (2453)
n(y, Q) =0, yeTy.
Let A/ and M be defined as above. Assume that
( 4
wy: G) = bi(y) + /C(y,n) dn + /d(ym) dry <1, y€aaG,
J=1 G1 I
/ d(y,n)dl', < 1, ye M, (24.54)
Inm
ba(g1) = 0 or pu(Q22(91),G) =0,  ba(g2) =0,
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Setting b(y) = 1 — u(y, G), we can rewrite Eq. (24.52) in the following form (cf. (24.9)):

b(y)u(y) + / fu(y) — u()u(y, dn) =0, y € AC.

G

Introduce a patch function ¢ € C*°(R?) with support in O.(K). This function is equal to 1 on
O,/2(K) and is such that 0 < ((y) <1 fory € R2. Let y € T'1, and @ C G be an arbitrary Borel set;

we denote
t 6(y, Q) = C(Ybi1(y)xe(u(y)), ay, Q) = b2(y)xq(Q2(y)),

By, Q) = (1= CW)hi()xe @) + > biwxo(®)),
j=34 (24.55)

FwQ= [ cwnir+ [ dmumar,
G1NQ rnQ
It can be directly verified that these measures satisfy conditions 6.3, 23.2, and 24.2-24.8.

25. Unbounded Perturbations of Diffusion Processes

In this section, we prove the existence of a Feller semigroup generated by an unbounded in C(G)
perturbation of an elliptic operator.

25.1. Assumptions about unbounded perturbations and nonlocal operators. Consider the
same nonlocal conditions as in Sec. 24 (see (24.9), (24.10) or (24.13)). Let N' C 9G and M = G\ N
be the same sets as in Sec. 24. We fix a natural number [ and a real number a such that [ > 2,
a=10+1-9, where § € (0,1) is the same as in Sec. 23.4.

Remark 25.1. By Theorem 23.2 and Corollary 23.3, the operators
Sy HL2(0G) — HIYHG),  Sq: HY(0G) — HIF2(G)

are bounded in the corresponding norms || - | uniformly with respect to q, ¢ > q1, where ¢g; > 0 is a
sufficiently large number (the stated spaces are defined in Sec. 5.3).

Consider a linear bounded operator Py : H*2(G) — H!_,(G) satisfying the following condition.

Condition 25.1. (1) If the function u € HY2(G) has a positive mazimum at a point y° € G, then
Piu(y?) <O0.
(2) Ifu € C(G) N HF2(G), then the function Piu is bounded in the domain G.
(3) For all sufficiently small o > 0, the following representation holds:

P, =P}, + P},

where the operators P, P, : HY2(G) — H!_|(G) are such that

(a) ”P%QUHH(QA(G) < C(Q)||UHH‘11+2(G), where c(o) > 0 is independent of u and c(9) — 0 for
0—0;

(b) the operator P%g s compact.

Note that D(P;) € CY{(G \ K) € C?*(G) and R(P;) C C'=2(G \ K) € C(G) since [ > 2 and by the
Sobolev embedding theorem. Moreover, if u € C(G) N H*2(G), then the function Pyu is bounded in
the domain G, but it is not necessarily continuous on G.

Consider an example of the operator P;.

Example 25.1. 1. Let | > 2, 0<d < 1,and a =1+ 1 — § be the same as above. Let F be a space
with a o-algebra F and a Borel measure 7. Let us consider a vector-valued function z(y, n) with values
in R? and a scalar nonnegative function m(y,7n), where y € G and n € F.
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In the description of a motion of a particle with “jumps” in a domain G, the function z(y,n)
characterizes the direction of the jump and its length, and the function m(y,n) characterizes the
density of the jump.

Assume that z(-,n), m(-,n) € CY(G) for any fixed n € F and the functions Dy z(y,n) and Dym(y,n)
are bounded and m-measurable with respect to the variable n for |a| <1, y € G.

Let the function z(y,n) satisfy the following conditions:

y+0z(y,m)€eG VyeG, nekF, 0¢cl0,1], (25.1)
|Dyz(y,m)| < Z(m) Yyed, neF, o<l (25.2)

/ 22 () (dn) < e1(0), / w(dn) < ex(0), (25.3)

Z<o Z>0

where Z(n) is a nonnegative m-measurable function, ¢1(9),c2(0) > 0, and ¢1(0) — 0 as ¢ — 0.

In particular, condition (25.1) means that jumps outward the G are impossible. Condition (25.3)
characterizes the behavior of the measure 7 with respect to small and large jumps.

To prove estimates in weight spaces, we assume that

cdy—y | <[(y—9)+0(zy,n) -2, 0)| <Cly—v1l, yy G, neF, 0c[0,1], (254)

where ¢,C > 0. Using inequalities (25.4), it is easy to show that the change of variables
Yy y+0z(y,n) is a diffeomorphism of class C" (even of class C', since z(-,n) € CY(G) for any
n € F) mapping G to Y(G) C G for any n € F and 6 € [0, 1] and

? < Jno(y) < C% yeG, neF, #el01], (25.5)

where J; ¢(y) is the absolute value of the Jacobian of this change of variables.
Now we impose some restrictions on the size, amplitude, and density of jumps near the set K and
outside K. For any ¢ > 0, we assume that

Go=GNO,K), G\=G\G,

Fix sufficiently small numbers g; > g2 > 0. For y € G’gl, we assume that

!/

y+0z(y,n) € G'Q2 Vy € Gy,

neF, 60¢clo1l. (25.6)
To describe the functions z(y,n) and m(y,n) for y € Gy,, we fix an arbitrary point g; and assume
that it coincides with the origin: g; = 0. Let

y+0z(y,n) € Oz (K)\ Oy (K) Yy e GNOy(g5), meF, (25.7)
m(y,n) = M;j(n)r' 0 u;(w) Yy € GNOy(g;), neEF, (25.8)

where w and r are the polar coordinates of the point y, ;1;(w) is a nonnegative, [+ 2 times continuously
differentiable function, and x > x > 0, M;(n) is a nonnegative, bounded, m-measurable function.

We assume that p; is so small that the domain G coincides with a plane angle in a neighborhood
Ox01(95), 7 =1,..., N, and Oy, (i) N Ox0,(95) = D, @ # J.

Condition (25.6) means that a particle that is “far” from the set K (i.e., is outside G,,), cannot
“jump” to a small neighborhood of the set K (i.e., to G,,). Condition (25.7) means that a particle is
“near” the set IC (i.e., inside G, ), that it cannot “jump” far from the set K (i.e., it stays inside Gy, );
moreover, by condition (25.8), the density of such a “jump” tends to zero as y tends to the set K.
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Let us define the operators Py, P! . and P? on the set C°(G \ K) by the formulas
Lo lo 0

Pu(y) = / [y + 2 m)) — u(y) — (Vuly), 2(5, 7))}y, n)n(dn),

F

Pru(y) = / [u(y + 2(y,m) — u(y) — (Vu(y), z(y,n)m(y, n)m(dn),
Z<p

Plu(y) = / [u(y + 2(y,m) — u(y) — (Vu(y), z(y,n)m(y, n)m(dn),
Z>0

where (-, -) is the scalar product in R? (cf. [6, 20, 21, 102]). It will be shown below that the operators

Py, P%Q, P2 Hllilz s(G) = H_4(G) with the domain C§°(G \ K) are bounded. Hence, they can be

extended by the continuity to the whole space H, lljrrf 5(G).
2. Let us show that the operator P; satisfies condition 25.1.
2.1. First, we prove that

[P ullweey < @l g (25.9)

where ¢(p) > 0 is independent of u and ¢(9) — 0 as ¢ — 0.
Let us denote

Uly,n) =uly + 2(y,n) —u(y) — (Vu(y), z(y,n))

and write

Phulie = > [ | [ Di0wmm.m)wan| dy
o<l Gy |Z<0
2

+Z/ / (U (y,mm(y,n))m(dn)| dy. (25.11)

\04|SZG/p1 Z<p

Using the Schwartz inequality, Eq. (??), the explicit form of the function m(y,n) (see (25.8)), and
Eq. (25.10), we have

2

Z/ /D;”‘(U(y,n)m(y,n))ﬂ(dn) dy

lel<l@,, |z<e
1
a Y / 2(181-5-1) / a6 / 2o / (DB (y + 0 =(y. m)) > 22 (n)(dn) / 22 (m)m(dn),
\ﬁ|<l+2 G 0 Z<p Z<p

where p(y) = dist(y, K) and ¢;, ca, ... > 0 are independent of u and p. By virtue of Eq. (25.1), (25.4),
and (25.5), we can change the variables Y = y + 6'z(y,n); then, using (25.7), from the last inequality,
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we obtain
2 2

> [ ] swewmmnan| av< el o | [ 2oman| s
lol<l@, |z<o Z<p

Similarly, using Eq. (25.6), we obtain the inequality

2

3 / / Dy (U(y, mym(y,n))w(dn)| dy
lel<tar |z<e
) 2
§C3||U||12/vl+2(G;2) /Zg(n)ﬂ(dﬁ) §C4||u||fqz+2 ) /22(77)77(6177) . (25.13)

+1-6 02
Z<o Z<o

Equations (25.11)—(25.13) and the first inequality in Eq. (25.3) yield (25.9).
2.2. Dividing the domain G into two parts G,, and G’Q1 and using the estimate

DUy, )| <es | Y. [DSw)y+2y.m)|+ > [Diuly)]
1B1<lal 181<lal+1

and the second estimate in Eq. (25.3), we see that

||P%guHWl+1(G) < é(@)HUHHZlIf_S

© (25.14)

where ¢(p) > 0 are independent of w.

From Egs. (25.9) and (25.14) and the Sobolev embedding theorem (recall that [ > 2), we obtain
that the function Piu = P%gu + P%gu is continuous on G; hence, it is bounded on G. Thus, item 2 in
condition 25.1 is fulfilled.

Item 3 in Eq. 25.1 follows from estimates (25.9) and (25.14), the boundedness of the embedding
operator W{(G) C H} s(G) (see item 1 of Lemma 5.2), and the compactness of the embedding operator
wWHH(G) c WHG).

Item 1 in condition 25.1 follows from the nonnegativeness of the function m(y,n) and the measure 7.

Let Bai, Bgi, etc., be operators defined by the measures «;(y,-) and B;(y,-) (see Sec. 24). In this
section, in addition to conditions 23.1, 23.2, 24.2-24.6, and 25.1, we consider the following conditions.

Condition 25.2. Foru € H/l\J/ri(G) and q > q1, the following conditions hold:

|||Boziumel+3/2(pi) < CH’“|||H}L+2(G\@%1 (K))’ (25.15)
IBastlyrvsrz oy < bz, (25.16)
where q1 > 0 is sufficiently large, i = 1,..., N, the numbers s, 5, and o are the same as in

condition 24.4, and ¢ > 0 is independent of u and q.

Note that the norms in the weight spaces H-*2(G\ O, (K)), Ho™/*(I; \ 0., (K)), and H*2(G,)
are equivalent to the norms in the corresponding Sobolev spaces since the sets G\ O,,, (K), I';\ O,,, (K),
and G, are separated from the set K.

Condition 25.3. There exists qu > 0 such that fori=1,..., N and any sufficiently small p > 0, the
following statements are valid:
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(1) the operator Béz : HH,Z(G NMp) — Hlﬁi/Q(Fi) is bounded in the norms || - || if ¢ > q1 and

D1
IBsill riz2 oty - migzrzy = O

uniformly with respect to q as p — 0;
(2) the operator B}%  HYP2 (G My /2) — Hl+3/2( T';) is bounded in the norms || - || uniformly with
respect to q for g > qi.

Condition 25.4. The operators B%i : Hl+i(G) — HHi/Z(Fi), 1=1,...,N, are compact.

Conditions 25.2, 25.3 and 25.4 in weight spaces are analogs of conditions 24.4, 24.7, and 24.8,
respectively.

25.2. Reduction to the boundary. Introduce the operators
B = {B;} : H{{2(G) = Hir2/2(0G),
Bos = {Bai + By} : HY2(G) — HA*(9G).
Using the operator S, defined in Sec. 24.1, we introduce the bounded operator
BasS, : Hro 2(0G) = HiF22(0G), > au. (25.17)

By Remark 25.1, the operator (25.17) is well defined.
The following Lemma allows us to reduce nonlocal problems in bounded domains to operator equa-
tions on the boundary.

Lemma 25.1. For sufficiently large g1 > 0, there exists the bounded operator
(I—BagSy) L HYY2(0G) — HF2(0G), ¢ > q.
Proof. 1. Consider the bounded operators
B ={Bj}. Bj={Bj}, B}={B}}, Ba={Bu}

that act from HHQ(G) into Hl+3/2(8G).
Prove that the operator

I-B.S, : My 2(0G) — H\F 22 (00)

has a bounded inverse operator.
Introduce a function ¢ € C*°(G) such that 0 < ((y) < 1, {(y) = 1 for y € G, and ((y) = 0 for
y ¢ Go /2, where o > 0 is a number from conditions 24.4 and 25.2.
We have
I-B,S,=1-B,(1-{)S, —B.(S,. (25.18)
la. First, we prove that the operator I — B, (1 — ()S, has a bounded inverse operator.
Assume & = B, (1 — ¢)S,¢. It follows from condition 25.2 and Theorem 23.2 that

18ll 52 5y < Rl 072 5 (25.19)

where k1, ka,... > 0 are independent of ¢ and ).
Further, (1 —¢)S,¢ =0 in G, for any ¢ € 7—[”3/2(8G). Hence, by condition 24.4,

supp ® = supp B, (1 — {)S,¥ C 0G N O,,(K). (25.20)
We show that
Ball - S P6l v oy < kot Nilosiaey 2 a1 (25.21)
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where g1 > 0 is sufficiently large. By condition 25.2,
IBall — OS5 ) = IBall — Ol 5y < ISe®ltiznogmy)-  (25:22)
Using the local a priori estimate (Corollary 23.1), the relation
P(y,D)S,;® — ¢S,P =0,
and Remark 25.1, we have

N

18a®lls o) < k4<z; 1842, AYermmmya ] POl \O (g +329)/2(K))

~1/2
+q / |||Sqq)|||H(§+2(G\(W2)/2(’C))>

N
—-1/2
(Zl |||S (I)|F \@(%1+%2)/2 ||| l+3/2 (T \W) + q / |||(I)”|Hfl+3/2(8G)> . (2523)
7

Since the functions S,®|p, — B;S;® = ®; vanish on I'; \ O, 1.,)/2(K) by Eq. (25.20), we have

S &, — . e
184216l on 00

< kel @l 12

= |||Bisqq)|pi\o(%1 _‘_%2)/2(1@ ||| H(ll+3/2(Fi\io(%l+%2>/2(lC)) (G1)

where G C G. Using the local a priori estimate (Corollary 23.1), the relations P(y, D)S,® — ¢S,® = 0
and G1 N OG = @, and Remark 25.1, we obtain the following inequality:

< krq Sy ®l 2

< kag ™22 v

S P .
I8421r om0l oo am)

ey (25:24)

where G; C Gy and Gy C G.
Inequalities (25.22)—(25.24) and (25.19) yield estimate (25.21). From here and estimate (24.26) in
the proof of Lemma 24.6, we obtain the inequality

IBa(1 - C)Sq]2¢|||Hm/2(ag) < kgqfl/z\\\¢|”7{m/z(8@)' (25.25)
It follows from Eq. (25.25) that there exists a bounded operator
(I-Ba(l - 0)Sy) L HF2(0G) — 1G22 (06)

and
(T —Ba(l - C)Sq)&mﬂﬁf}/z(a@_}%ﬁgz(a@ < k1o (25.26)

(cf. Egs. (24.27) and (24.28)).
1b. Now let us estimate the norm of the operator B,(S,. Using condition 25.2, the local a priori
estimate (Corollary 23.1), the relation P(y, D)S,¢ — ¢Sq1 = 0, and Remark 25.1, we obtain

IBaCSatill oz o < kilSetlgrioge, ) < k2 IS0l ringe, ) < kisa™2Wbllgsor oy
From here and inequality (24.29) in the proof of Lemma 24.6, we have
IBaGSatlse oy < Faa™ Bl o
Hence, taking into account inequality (25.26), we see that there exists a bounded operator

(I-BaS,) 1 HEY2(06) — HFY 00)
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and

I(X—BaSg) < kis (25.27)

—1
”’Hj\‘;i/ 2(0G)~H 22 (06)

(cf. (24.30) and (24.31)).
2. Let us prove that the operator

I (B, + B} +BY)S, : #iE206) » 1 (06)

has a bounded inverse operator.
Let us fix arbitrary € > 0. Using condition 25.3 (item 1) and Remark 25.1, we have

IBES 0 02 0y < FroelSav gz < Rrrellbllyggora oy (25.2)

for sufficiently small p > 0 (recall that p presents in the definition of the operator Bé), where
k16, k17, ... > 0 are independent of 1, ¢, and &.
Now let us fix p. By condition 25.3 (item 2),

B8 sz ey < FishSabllgss om, oy (25.29)
Using the local a priori estimate (Corollary 23.1), the relations
P(yv D)Sqd} - qsqﬂ) =0, Sq¢|8G’\Op/4(M) = Oa
and Remark 25.1, we obtain the inequality
H’Squ’Hij(G\Mp/Q) < k’lE)(]_l/2 ”|Sf1¢“|7.[fl+2(g\Mp/4) < k20q_1/2|||1’/)”|Hfl+3/2(8G)' (25'30)
On the other hand, the following inequality follows from Lemma 24.1:
ISe¥llc@m,,) = 24 W lley e (25.31)
(cf. (24.32)). Combining (25.29)—(25.31), we obtain
IBSblgsv e < Ford™ 21l (25.32)
Inequalities (25.28) and (25.32) show us that the value
W(Bé + Bé)sq|||Hj\J/r’?;/2(8G)—>Hi\Jfri/2(3G)

can be made arbitrarily small if we first choose sufficiently small p > 0 and then sufficiently large
g > 0. Hence, taking into account (25.27), we see that there exists a bounded operator

[T (Bo +B}+BL)S, I~ HEY(06) — H\E2P(06).
3. Now we prove that the operator
I BogS, : My 2(0G) — HY2(06)

also has a bounded inverse operator. It follows from condition 25.4 and Remark 25.1 that the op-
erator B%Sq is compact. Using [56, Theorem 16.4] (theorem on compact perturbations of Fredholm
operators), we see that I — B,gS, is also a Fredholm operator and ind(I — B,gS;) = 0. It follows
from item 3 of the proof of Lemma 24.6 that dimker(I — B,3S;) = 0. This means that the operator
I - B,sS, has a bounded inverse operator. ]
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25.3. Existence of Feller semigroups. In this subsection, we assume that conditions 23.1, 23.2,
24.2-24.6, and 25.1-25.4 hold. We prove that unbounded perturbations of an elliptic operator with
nonlocal boundary condition described above are generators of Feller semigroups.

Lemma 25.2. If the function v € H.?(G) has a positive mazimum at a point y° € G, then
P(y, D)u(y°) + Pru(y°) < 0.

Proof. Let u € HT2(G) have a positive maximum at a point y° € G. Since P(y, D)u € H.(G) c C(G),
it follows from the maximum principle 24.1 that P(y, D)u(y®) < 0. From here and condition 25.1
(item 1), we obtain P(y, D)u(y°) + P1u(y®) < 0. O

Lemma 25.3. Let the function u € Cp(G) N H2(G) have a positive mazimum at a point y° € G.
Then there exists a point y' € G such that u(y') = u(y®) and P(y, D)u(y') + Pru(y') <O0.

The proof is similar to the proof of Lemma 24.4, where the references to Lemma 24.3 must be
replaced by the references to Lemma 25.2.

Corollary 25.1. Let u € Cg(G) N H2(G). Assume that

fo(y) = qu(y) = P(y, D)u(y) — Pruly), yeG,
where ¢ > 0. Then there exists a point y' € G such that

1
lullo@ < 4 [fo(yh)- (25.33)

The proof is similar to the proof of Corollary 24.1, where the references to Lemma 24.4 must be
replaced by the references to Lemma 25.3.

Reducing the problems to the boundary and using Lemma 25.1, we prove that the nonlocal problems
under consideration are solvable in spaces of continuous functions for a wide class of right-hand sides.

Lemma 25.4. Let q > ¢, where q1 is the same as in Lemma 25.1, and let fy € H(ll_l(G). Then the
problem

qu(y) - P(y?D)u<y) = fO(y)7 y €Gq, (2534)
u(y) — Biu(y) — Baiu(y) — Bgiu(y) = 0, yely, i=1,...,N, (25.35)
u(y) =0, y €K,
has a unique solution u € Cg(G) N HF2(G).
Proof. Consider the auxiliary problem
qu(y) — P(y,D)v(y) = fo(y), yE€G, (25.36)
v(y) — Bu(y) =0, yely,, i=1,...,N. (25.37)

Similarly to the proof of Lemma 24.7, using Theorem 23.2 and asymptotic formulas for solutions of
nonlocal problems, we can show that problem (25.36), (25.37) has a unique solution v € Hy2(G).
Assume that w = u — v. Obviously, the unknown function w belongs to the space Hﬁi(G’) if and

only if u € Hﬁi(G) and v is a solution of the problem
qu —P(y,D)w =0, ye€QGqG,
w(y) = Biw(y) = Baiw(y) — Bpiw(y) = Baiv(y) + Baiv(y), yeli, i=1,...,N,
w(y) =0, yek.

Using Remark 25.1 and the fact that the operator Bog : H\F2(G) — kar’iﬂ (0G) is bounded, we see

,a
that this problem is equivalent to the operator equation v —B,gS,¥ = B,gv for the unknown function
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(VRS 7'[5\—;?;/ 2((9G). It follows from Lemma 25.1 that this equation has a unique solution ) € ’Hk/ri/ 2 (0G).
Hence problem (25.34), (25.35) also has a unique solution

u=v+w=0v+8=0v+8,(I-BusSy) 'Bagv € Hy2(G).
Since u satisfy nonlocal condition (25.35), we see that u € C(G) N HF2(G). O
Note that the solution u of problem (25.34), (25.35) satisfies the inequality
[ull g2y < ellfoll () (25.38)

where ¢ > 0 is independent of v and f. This follows from Theorem 23.2 and the boundedness of the
embedding operator H. ,(G) C HL(G).

Using Lemma 25.5 and assumptions about unbounded perturbations (see condition 25.1), we prove
that the perturbed problem is also solvable in the space of continuous functions for a wide class of
right-hand sides.

Lemma 25.5. Let g > q1, where q1 is sufficiently large, and let fo € Héfl(G). Then the problem

qu— (P(y, D) +P1)u= fo(y), y€G, (25.39)
u(y) =0, y €K,

has a unique solution v € Cg(G) N HF2(G).

Proof. Denote by I the bounded operator acting from H.*2(G) to H!_,(G) by the formula Tu = u.
Let us consider the operator ¢I — P(y, D) as an operator acting from H."2(G) to H! | (G) with the
domain
D(ql = P(y, D)) = {u € Cp(G) N H;**(G) : qu — P(y, D)u € H},_1(G)}.
By Lemma 25.4 and inequality (25.38), there exists a bounded operator
(af =P(y, D))" : Hy_(G) = Hy(G).
In particular, this means that ¢/ — P(y, D) is a Fredholm operator and ind(¢/ — P(y, D)) = 0.
Introduce the operator
¢l —=P(y,D) — P1: H"}(G) = Hy_,(G)
with domain D(qI — P(y, D) — P1) = D(¢/ — P(y, D)). Rewrite this operator in the form
al —P(y, D) Py = [I — (PL, + P,)(al - P(y, D))"")(al — P(y, D)). (25.41)
It follows from condition 25.1 (item 3) that if o = p(q) > 0 is sufficiently small, then the operator
I— P%g(ql —P(y,D))"": H, (G) = H,_,(G)
is an isomorphism and the operator
P%g(ql —P(y,D)) : H,_1(G) = H,_,(G)

is compact. Hence, by virtue of the results of [56, Sec. 16] and [56, Theorem 12.2], the operator
qI —P(y,D) — Py : H*%(G) — H._,(G) is a Fredholm operator and ind(¢I — P(y, D) — P;) = 0.
If u € ker(qI — P(y, D) — Py), then u € C(G) N H{?(G) and

(¢I —P(y,D) —P1)u=0.

Hence, by Corollary 25.1, we have w = 0. Thus, dimker(¢/ — P(y, D) — P;) = 0 and the operator
qI — P(y,D) — Py has a bounded inverse operator. To complete the proof, we note that

R((qI —P(y,D) —P1)~") =D(ql — P(y, D)) C Cp(G) N HL(G).
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Consider the unbounded operator Pg : D(Pg) C Cp(G) — Cp(G) defined by the formula
Ppu=P(y,D)u+ Pju,
ueDPp) = {ueCp(G)NHG) : P(y,D)u+ Pru e C(G)}.
Note that, by the relation [ > 2 and the Sobolev embedding theorem, D(P ) € C*(G) N Cp(G).

Prove that the domain of the nonlocal operator is dense in Cp(G) (one of assumptions of the
Hille-Yosida theorem).

Lemma 25.6. The set D(Pg) is dense in Cp(G).
Proof. 1. Let u € Cg(G). By Eq. (24.14), we have Cg(G) C Cn/(G). Then for any € > 0 and ¢ > ¢,

there exists a function u; € C°(G) N Cy(G) such that
lu — urll o) < min(e, e/ (2c1ky)), (25.42)

where k; = ||(I— BaﬁSqu”CN(OG)%CN(@G)'
Assume that

fo(y) = qu1 — P(y,D)u1, y€Gq,
Yi(y) = wi(y) — Biui(y) — Bajui(y) — Bgiua(y), yely, i=1,...,N.

Since u; € Cyr(G), we see that {¢;} € Cyr(0G). Using the relation
u(y) — Biu(y) — Baiu(y) — Bgiu(y) =0, yely,
inequality (25.42), and Lemma 24.5, we obtain the following inequality:
H{Yitlewoe) < llu—wullo@ + 1B+ Bag)(u — wi)llcyoa) < €/ (cikg)- (25.44)
Consider the following auxiliary nonlocal problem:
quz —P(y, D)uz = fo(y), y € G,
u2(y) — Biua(y) — Baiua(y) — Bgiua(y) =0, yely, i=1,...,N, (25.45)
ug(y) =0, yek.
Since fo € C°(G) C H._;(G), we obtain, by Lemma 25.4, that problem (25.45) has a unique solution
us € Cg(G) N HF2(G).

Using (25.43), (25.45), and the relations u1(y) = ua(y) = 0 and y € K, we see that the function
w1 = u1 — Uy satisfies the relations

(25.43)

qwl_P(yv‘D)wl :07 y€G>
wi(y) — Biwi(y) — Baiw1(y) — Bgiwi(y) = ¥i(y), yely, i=1,...,N, (25.46)
wi(y) =0, yeK.

By Eq. (24.6), problem (25.46) is equivalent to the equation ¢ —B,5S,¢ = 9 in CAr(0G), where wy =
Sq¢. By Lemma 24.6, this equation has a unique solution ¢ € Cyr(0G). Hence, using Theorem 23.3
and inequality (25.44), we obtain the inequality

lwillo@ < all@ = BagSe) "I - [{vitller (oa) < cikqe/(ciky) = e (25.47)
2. Finally, we consider the problem
Aug — P(y, D)ug — Prus = Aug, y € G,
uz(y) — Bius(y) — Bajus(y) — Bgius(y) =0, yely, i=1,...,N, (25.48)
us(y) =0, yek.

Since uz € (Cp(G) N H2(G)) ¢ (Cp(G) N H._,(G)), using Lemma 25.5, we obtain that prob-
lem (25.48) has a unique solution ug € D(Pp) if A are sufficiently large.
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Denote wy = up — u3z € Cp(G) N HF2(G). Tt follows from Eqgs. (25.45) and (25.48) that
Awy — P(y, D)wy — Prwy = —P(y, D)us — Prug = fo — qua — Prus.
Using Corollary 25.1, we have

1
lwell o) < Y (’fOHC(G) + dlluzll o) + sup ’P1u2(y)’> .
yeG

By condition 25.1 (item 2), the value sup |Pjus(y)| is finite. Thus, choosing sufficiently large A, we
yeG
obtain the inequality

lwell o) < e (25.49)
It follows from Egs. (25.42), (25.47), and (25.49) that

lu—usll o) < llu—wllo@) + llur — v2llog) + llue — usllo@g) < 3e.

Let us verify that other assumptions of the Hille-Yosida theorem also hold.

Lemma 25.7. (1) The operator Pg : D(Pg) C Cg(G) — Cg(G) admits a closure Pp.
(2) Let q1 be sufficiently large. Then for any q > q1, the operator

ql —Pg :D(Pp) C Cp(G) — Cp(G)
has a bounded inverse operator (¢I — Pg)~': Cg(G) — Cp(G) and
I = B5) Y < 1/g.
(3) The operator (gI — Pg)~! is nonnegative.
Proof. 1. First, we consider the auxiliary operator
P :D(P) c C(G) — C(Q)

defined by the formula

Pu=P(y,D)u+ Pju,
u € D(P) = {u € Cp(G) NH.*(G) : P(y, D)u+ Pru € C(G)}.

Show that P is closable. Consider an arbitrary sequence {u,}2>; C D(P) such that uw, — 0 and

Pu, — v in C(G), where v € C(G). Assume that v # 0. Then there is a point y° € G and its
neighborhood U C G such that
Pu,(y) >e, yeUl, (25.50)

for some ¢ > 0. Consider a function h € C§°(G) such that h(y°) = 1 and h(y) = 0 for y € G\ U.
Introduce the functions

) eh(y)
" — n , ey 1, 27 “ e e e
U (y) U (y) + 1+ sup \Ph(y’)! n
y'eqG

We have e €

N 0y _ 0 >

ny") = un W)+ TS TBR G S 25 2 sup PR

y'EeG y'eG

for all sufficiently large n. Hence, for sufficiently large n, every function 4, has a positive maximum
at some point " € U, and by Lemma 25.2, P, (g") < 0.
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However, by Eq. (25.50) we have
Ph(g")

1+ sup |Ph(y")]
y'eG

Pu,(9") = Pun(y") + ¢

> Pu,(y") —e > 0.

This contradiction proves that v = 0 and that the operator P is closable.
2. Tt is known that C'(G) € H._;(G). Then, by Lemma 25.5, C'(G) C R(¢gI — P). Hence, the

image R(ql — P) is dense in C(G).
On the other hand, according to Corollary 25.1, we have

1 _
lullcy@) < 5”(‘]1— P)ullc@ (25.51)

for any u € D(P). It follows from here, the fact that the operator ¢I — P is closed, and the denseness
of R(qI — P) in C(G) that there exists a bounded operator (¢ — P)~!: C(G) — Cp(G) and for any
u € D(P) estimate (25.51) is valid.

3. Let us prove that the operator (¢I — P)~! is nonnegative. First, we take an arbitrary function
f € C(G) such that f(y) > 0, y € G. Since the image R(ql — P) is dense in C(G), we can find a
sequence f, € R(ql —P) such that f,,(y) >0,y € G, and f,, — f in C(G). Hence, using Lemma 25.3,
we obtain the relation

(¢f =P)~'f = lim (¢ —P)~"fy.

If f € C(G) and f(y) >0, y € G, then there exists a sequence F,, € C(G) such that F,(y) >0,y € G,
and F,, — f in C(G). Hence, (¢ —P)~1f >0 for any f € C(G) such that f(y) >0,y € G.

4. Now we consider the operator Pg. Since P C P, we see that Pp is closable (i.e., item 1 is
proved).

Since D(Pg) C C(G) N H (@) and, by Lemma 25.6, D(Pp) is dense in Cp(G), we see that the
set Cp(G) N H*2(G) is also dense in Cg(G). Therefore, by Lemma 25.5, the image R(qI — Pg) is

dense in Cp(G).
On the other hand, according to Corollary 25.1

1 _
lull oy @) < gll(qI —Pp)ulcg VueDPp).

Item 2 follows from here, the fact that the operator ¢ —Pp is closed, and the denseness of R(qI —Pg)

in CB (é) o
3. Item 3 follows from the nonnegativeness of (¢ — P)~! and the relation
(¢ =Pp)~" C (¢l -P)"".
The lemma is proved. O

Lemmas 25.6 and 25.7 and the Hille-Yosida theorem (Theorem 23.1) yield the main result of this
subsection.

Theorem 25.1. The operator P : D(Pp) C Cp(G) — Cp(G) generates a Feller semigroup.

Further, we give an example of nonlocal operators that satisfy the conditions of this subsection.

25.4. Example. Let 0G = I'UI';UK, where I'; and I'y are curves of class C°°, open in topology 9G,
'y NTy =@ and I'; N Ty = K; the set K consists of two points g; and go. Denote by Q,5=1,...,4,
nondegenerate transformations of class C'*2 defined in some neighborhood T and satisfying the
following conditions (see Fig. 25.1):
(1) UK) =K UT1Nn0(K)) Cc G, %I\ O(K)) C GUT'3 and Q4 (y) is the composition of an
argument shift, rotation, and dilation for y € T'; N O-(K);
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(2) there exist numbers s > 3¢5 > 0 and o > 0 such that
MW(l) C G\ 0, (K), Ql1\04(K)) C Gos
moreover, Qa(g1) € I'1 and Q2(g2) € G;
(3) Qg(&) cG UEQ and Qg(’C) C TI'sg;
(4) Q4(I'1) € GUTy and Q4(K) = K; the angle between rays tangent to I'; and €4(I'1) at the point
gj is not zero.

ba(g1) = ba(g2) =0

Iy

yroa > 0

Fig. 25.1. Nontransversal nonlocal conditions

Introduce the functions b; € CH2(Ty), bj >0,j5=1,...,4. Let G; be a bounded domain, G; C G,
and I' C G be a curve of class C!, and let ¢(y,7n) and d(y,n) be nonnegative functions,

Dyc(y,n) € C(G x Gy), Dyd(y,n) € C(GxT), l|af<I+2.
Consider the following nonlocal conditions:

4
um—;w@mmm—Lﬂwmwm—/mWwwm=myem

r
u(y) =0, yel.
Let Q C G be an arbitrary Borel set. Introduce the following measures j;(y, -):

4
m(y, Q) = ;bj(y)xcz(%(y)) + /ch c(y,n)dn + /mQ d(y,m)u(n)dly, yeTy,

p2(y, Q) =0, yeTls.
Define the sets A" and M as above. Assume that

(@) <1, ye Ty / dly,m)dly < 1, ye M;
I'nm

ba(g1) =0 or p(Q2(g1),G) =0, b2(g2) =0; balgj) =0; c(g;,)=0; d(gj,") =0.
Introduce a patch function ¢ € C*°(R?) with the support in O.(K), which is equal to 1 on O, /2(K)

and such that 0 < ((y) <1,y € R% Let y € I'; and let Q C G be an arbitrary Borel set. Then the
measures

6(y, Q) = C(Ybi1(y)xe(u(y)), oy, Q) = b2(y)xq(Qa(y)),
By, Q) = (1= C)bhi)xe@®) + > biwxo(©®)),

j=3,4

ﬁwwzﬁmgwmm+/ d(y, n)u(n)dTy,

Irne
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satisfy conditions 6.3, 23.2, 24.2-24.6, and 25.2-25.4.

26. Nonexistence of Feller Semigroup

26.1. Laplace operator in weight spaces. In this section, we construct examples in which the
closures of the operators corresponding to nonlocal problems do not generate Feller semigroups.
Obtain the asymptotic of solutions of the equation

Au= f(y), yeR*\{0} (26.1)
in the space H.(R?).
Writing Eq. (26.1) in the polar coordinates and applying the Mellin transform with respect to r,
we obtain the following auxiliary problem:

d*a(w, \)
dw?

a(0, ) = a(2m, \),

~ Na(w,\) = F(w,)), 0<w<2r,
da(0,)  du(2m, \)
dw —  dw

where F(w, \) is the Mellin transform of the function r2f(w,r), and X is a complex parameter.
Consider the corresponding eigenvalue problem:

" (W) — Mpw) =0, 0<w<2m,

p(0) = p(2m), ¢'(0) = ¢'(2m).
The numbers Ay, = si, s = 0,£1,%2,..., are eigenvalues. The eigenvector ¢o(w) = 1 corresponds
to the eigenvalue Ao = 0; moreover, there exists an adjoint vector ¢o(w) = 0. The eigenvectors
ws(w) = cos sw correspond to the eigenvalues \s, s = £1,+2,...; if s # 0, then there are no adjoint

vectors.
From [26, Theorem 5.1], we obtain the following result.

(26.2)

Lemma 26.1. Let f € HY(R*)NH? (R?). Assume that the number a’ is not an integer, a’ # a, and S
denotes the set of integers concentrated in the interval (min(a,a/),max(a,a/)). If u is a solution of
problem (26.1) from the space H2(R?), then

co+ éolnr + Z 7°(cs cos sw + dg sin sw) + ', if0eS,
seS\{0}

ZT‘S(CS cos sw + dg sin sw) + o', if0 ¢S,
sES

where ¢s and ds, s € S, and ¢ are some constants and u' is a solution of problem (26.1) from the
space H% (R?).

26.2. “Jumps” outside the neighborhood of termination points of the process with
nonzero probability.

26.2.1. Statement of nonlocal problem. Here we show that condition 24.6 is substantial.

Let G C R? be a bounded domain with smooth boundary 0G =I'y UTy U K, where I'; and I'y are
open and connected (in the topology of G) curves of class C™ such that 1Ny = @ and T1NTs = K.
Let the set K consist of two points g; and g2. Assume that in some neighborhood of the points g;,
i = 1,2, the domain G coincides with a plane angle .

Consider the problem (see Fig. 26.1)

Au(y) = fo(y), y€G, (26.3)
u(y) — bi(y)u(i(y)) =0, yel, (26.4)
u(y) =0, yeTy, (26.5)
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where the function b; € C*°(T'1) is such that
(1) 0<h(y) <1,
(2) bi(y) = b1 > 0 for y € O:(g1),
(3) bi(y) =0asy ¢ Ox(g1),
and Q; is a smooth nondegenerate manifold defined in some neighborhood of a curve I'y; moreover,
(1) 2 (T) € G, Qu(g1) € G, N(g2) = g,
(2) Qi(y) for y € O:(g1) is the composition of a rotation about the point g; and a shift by some
vector.

I'y

Fig. 26.1. Problem (26.3)—(26.5).

Assume that g = Q1(g1). Let € > 0 be so small that
O:(g91) N O:(g2) =@, Oc(9) NG =3, 0O:(9)NOc(g;) =2, j=1,2.
Introduce a measure a(y, ), y € G, such that for any Borel set Q C G,

a(y,Q) =bhi(y)xe(tuly)), wyely,
Then boundary conditions (26.4), (26.5) can be rewritten in the form

b(y)u(y) + /[U(y) —u(n)]a(y,dn) =0, yeaqG,

G
where b(y) =1 — a(y, G) (cf. (24.9)). Obviously, T's C N, Oc(g2) NT1 C N, and M C T’y \ Oc(g2).
Consider the operator

Boyu(y) = / u(naly, dn) = by (W)u(@ (), €Ty,

G
It is easy to verify that conditions 23.1, 23.2, 24.1-24.4, 24.7, and 24.8 hold (with P(y, D) = A,
P; = 0, and B(y,G) = 0). Show that condition 24.6 is violated. Indeed, Baiju € C(I'1) for any

u € Cy(G) since the function by and the transformation Q; are continuous. However, if u € Cy(G)
and u(€Q1(g1)) # 0, then ylLrI;l Boiu(y) = bju(Q1(g1)) # 0, i.e., Baru ¢ Car(I'y).

Consider the unbounded operator Pg : D(Pg) C Cg(G) — Cp(G) defined by the formula

Ppu = Au, u€ D(Pp) ={ueCp(G): Auc Cp(G)}, (26.6)

where Cp(G) is the set of functions from C(G) satisfying nonlocal conditions (26.4) and (26.5).
Lemma 26.2. If u € D(Pg), then u € W2(G') for any domain G' such that G’ C G \ K.
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Proof. Assume that

[ =Au. (26.7)
Since f € Lo(G), it follows from the theorem on the internal smoothness (see, e.g., [57, Chap. 2,
Theorem 3.2]) that u € W2 _(G). Hence, it remains to prove that u € W2(G N Or(y")), where y° is

an arbitrary point on I';, j = 1,2, R = R(y%), and Op(y°) NK = @.
Consider a domain G with a smooth boundary G g such that

GNOr(y°®) c Gg CG.

If 4° € 'y N Or(y°), then we consider a function v € W3/2(dGR) such that ¥(y) = b1 (y)u(Q(y)) for
y € T1NORHC). If y° € TyNORr(y°), then we consider a function 1 € W3/2(dGg) such that ¥ (y) = 0
for y € To N Or(y°).

Let v € W?(GR) C C(GR) be a solution of the problem

Av=f(y), y€Gr;
vloar = ¥(y),  y € IGr.
It follows from Eqgs. (26.7) and (26.8) that the function w = u — v € C(GR) satisfies the relations
Aw=0, yeGnOgr@y),
w(y) =0, ye€dGNOr®Y).
Applying the theorem on the internal smoothness to the Laplace equation in Eq. (26.9), we see that
w € C®°(GNOg(HY)) NC(GNOg(YY)). Further, applying [22, Lemma 6.18] to problem (26.9), we
obtain that w € C*(G'N B2 (y°)). Hence,
u=w+veW(GnN BR/Q(yO)).
Since y¥ € I'; is arbitrary, the lemma is proved. O

Lemma 26.3. The operator Pp : D(Pg) C Cp(G) — Cp(G) admits a closure Pp.
Proof. The operator Pp is a restriction of the operator P : C(G) — C(G) defined by the formula

Pu=Au, weDP)={ueC(G): Auec C(G)}.
Hence, it suffices to prove that the operator P admits a closure. Obviously, the inclusion C?(G) C D(P)

is valid; hence, the set D(P) is dense in C(G). Moreover, if u € D(P) has a positive maximum at the
point »°, then by the maximum principle 24.1 we see that Pu(y°) < 0. It follows from here and [101,

Theorem 9.3.3] that the operator P admits a closure. O

(26.8)

(26.9)

Here we will prove the following result.

Theorem 26.1. Let Pp : D(Pg) C Cp(G) — Cg(G) be a closure of the operator (26.6). Then Ppg
1s not a generator of a Feller semigroup.

By the Hille-Yosida theorem (Theorem 23.1), it suffices to show that the image R(Pp — ¢I) does

not coincide with Cg(G) for some ¢ > 0.

26.2.2.  Proof of Theorem 26.1. To prove Theorem 26.1, we obtain an asymptotic of the solution
u € D(Pp) of problem (26.3)—(26.5).
Consider the following model problem with a complex parameter A\, corresponding to the point gi:

(W) = Mpw)=0, 0<w<m, (26.10)

¢(0) = () =0,, (26.11)

where w and r are the polar coordinates with pole at the point ¢g; such that (0,7) € I'y and (7, 7) € 'z as
0 < r < e. Eigenvalues of this problem have the form A\ , = ki, K = £1,£2,..., and the corresponding

eigenvectors are @1 = sin kw. There are no adjoint vectors.
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Since by (y) = 0 near the point go, we see that the same model problem corresponds to the point go.
In this example, we use the weight spaces

Hi(G) = H(G,K U {g}),
HclL(G N Os(gj)) = H(lz(G N Os(gj)v {gj})a Hcll(oa(g)) = Hzlz(os(g)a {g})a

and the corresponding trace spaces. We emphasize that the space H(G) (unlike spaces from previous
sections) consists of functions that can have power singularities not only near the set K, but also near
the point g.
Let us fix a number ¢ such that
0<odo< 1l (26.12)

Lemma 26.4. Let u € D(Pg). Then u € Hi 4(G).

Proof. Tt follows from Lemma 26.2 that v € W?2(G’) for any domain G’ such that G’ ¢ G\ K. Since
u(g) = u(g1)/b; = 0, by Lemma 5.2 we obtain that u € H? 5(O.(g)). Hence, using (26.4) and (26.5)
and the fact that the transform €2 is a smooth and nondegenerate, we obtain

Au € C(G) C HY 5(GNO(q1)), (26.13)

3/2
ule,r0.(a) € HyY 501N 0:(01), ulrano.(g) = 0. (26.14)
Using (26.13) and (26.14) and the relation u € C(G) € H? | 5(GNO:(g1)), we obtain from Lemma 14.2
that

u € HY 5(GNO(g1)). (26.15)
According to Eq. (26.12), the strip —0 < ImA < 6 does not contain eigenvalues A;j of
problem (26.10), (26.11). It follows from relation (26.13)—(26.15) and [26, Theorem 2.2] that

u € HE ((GNOA(q1)).
It can be proved similarly that u € H? (G N O:(g2)). O

Introduce the bounded operator L,(q) : H2(G) — HY(G,0G) by the formula

Lo(9)u = {Au = qu, ulr, = bi(y)u((y))[r,, wlr}, ¢ >0
We also denote L, = L,(0).

Lemma 26.5. Let ¢ > 0 be sufficiently small; then dimker Li_s(q) = 0.

Proof. First, we assume that ¢ = 0 and prove that dimker L;_5 = 0. Let u € ker Lj_5. Without loss of
generality, we assume that the function w is real-valued. Lemma 26.1 yields the following asymptotic
of the function u near the point g:

u(y) = r(cicosw + dy sinw) +v(y), y € O:(g), (26.16)

where w and r are the polar coordinates with pole at the point g such that (0,7) € Q(I'1) for 0 < r < ¢,
c1 and d; are some constants, and v € H?;(O(g)). In particular, it follows from Eq. (26.16) and

the Sobolev embedding theorem that u € C'(G \ K). Applying relations (26.3)—(26.5) and (26.16), we

obtain
Au=0, yeGNO:(q1),

N (26.17)
u|F1ﬂOE(g1) = b1617‘ + ’U)(T‘), U|F2005(g1) = 07
where w € Hi/éz(f‘l NO:(g1))-
Hence, applying [26, Theorem 2.2, Lemma 4.3], we see that
u(y) =r(w) +oy), yeGNO(q), (26.18)
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where w and r are the polar coordinates with pole at the point g1, 1 € C*([0,7]), and v € H? 3(G N
O-(91)) € WG N O:(g1)). Thus, taking into account the Sobolev embedding theorem, we have
ue C(GNOg1)).

Similarly, we can show that v € C(G N O:(g2)). Hence, u € C(G), and we can apply the maximum
principle 24.1; this yields v = 0, i.e., dimker Ly _5 = 0.

According to [85, Theorem 3.4], the operator L;_s(q) is a Fredholm operator for any g. On the other
hand, the dimension of the kernel of a Fredholm operator does not increase for small perturbations
(see [56, Sec. 16]). Therefore, dimker L;_5(q) = 0 for all sufficiently small ¢ > 0. O

Lemma 26.6. Let ¢ > 0 be sufficiently small. Then dimker Ly 5(q) < 1.

Proof. 1. First, we assume that ¢ = 0 and prove that dimker ;s < 1. Let v € ker Lj45. Without
loss of generality, we assume that the function u is real-valued. Lemma 26.1 yields the following
asymptotic of the function u near the point g:

u(y) =co+ éolnr +r(cicosw+dysinw) +v(y), vy e O(9), (26.19)

where w and r are the polar coordinates with pole at the point g such that (0,7) € Q1(I'1) for 0 < r < ¢,
co, Co, c1, and dy are some constants, and v € H2;(O:(g)). Using Eqgs. (26.3)-(26.5) and (26.19), we
obtain the relations

AUZO, yGGﬁog(gl)>

e (26.20)
ulp,n0. (1) = bi(co + Colnr +c1r) +w(r), ulryno.(g) =0,
where w € HY2(T1 1 O(g1)).
Hence, applying [26, Theorem 2.2, Lemma 4.3], we see that
u(y) = cobjp(w) + éob] Inrp(w) + rp(w) +v(y), y € GNO(g1), (26.21)

where w and r are the polar coordinates with pole at the point g; such that (0,r) € I'; for 0 < r <e,
0, ¢, € C>([0,7]), the functions ¢ and ¢ are independent of u, v, cg, and ¢y, and v € H?5(G N
O-(g91)) C W3(GNO:(g1)). In particular, ¢(w) is a function depending only on the polar angle w and
is a solution of the problem

Ayp=0, >0, O0<w<m,
p(0) =1, ¢(m)=0,

i.e., ¢(w) has the form
pw)=1-2, (26.22)
T

Consider the behavior of the function u near the point go. We have

AUZO, yGGﬁOg(m),

(26.23)
u|F2ﬂ05(91) = 07 u|l—‘zﬂ(’)g(91) =0.
Hence, using [26, Theorem 2.2|, we obtain that
u(y) =crsinw+ov(y), y€ GNOA(g2), (26.24)

where w and r are the polar coordinates with pole at the point go and v € HEJ(G N O:(g2)) C
W2(GNO:(g2)). Thus, u € W?(G N O(go)).

Equations (26.19), (26.21), and (26.24) yield that any function u € ker Ly,s can be written in the
form

u(y) = couo(y) + éoto(y) + U(y), vy <G, (26.25)
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where ug, g € C®(G \ {g1,9}) are such that'6

y € O:(9), Inr, y € O:(9),
{ y € O:(q1), tp(y) = < bilnro(w), vy € O:(q1), (26.26)
y € O:(92), 0, y € Oc(92),
UecW*G) Cc C(G) and U(g1) = U(g2) = U(g) = 0. Tt follows from here and Lemma 5.2 (item 2)
that U € H ( ).

It follows from representation (26.25) and Lemma 26.5 that dimker Ly 15 < 2.

2. Let us prove that dimker L5 < 1. Assume the contrary: let there exist two linearly independent
functions vy, vy € ker Li1s. Since each of these functions can be presented in the form of Eq. (26.25),
we see that some of their nontrivial linear combinations (let us denote it by u) have the form

u(y) = uo(y) + U(y). (26.27)
Equations (26.22), (26.26), and (26.27) yield u € C(G \ {g1}) and
M= sup Ju(y)| < oc.
y€G\{g1}
Let us show that M = 0. For this, we consider a sequence {y"}°°; C G \ {g1} such that
u(y™) = M, n— oco.

Since the sequence {y"} is bounded, we can extract a subsequence converging to a point y"; we denote
this subsequence also by {y"}, i.e.,
y* =10, n— .
If y° € G, then, by the continuity of u in the domain G, we have |u(y")| = M. Hence, by the maximum
principle 24.1, we have u = const. This is impossible since ¢(w) # const.
Let y° € ToU{ga}. Using the continuity of u on I'sU{g2} and boundary condition (26.5), we obtain

0=lu(y’)| = lim |u(y")| =M
n—oo
If 4° € T'y, then, by the continuity of 4 on I'; and boundary condition (26.4), we have
M = lim [u(y")] = u(y”)| = bilu(Q(y°))].
n—oo

Hence |u(21(y"))| = M/b; > M. This is possible only if b} = 1. But in this case, |u(Q1(y°))] = M
This contradicts the relation Q4 (y") € G.

Finally, we consider the case where y° = g;. Without loss of generality, we assume that y" € O-(g1),
n =1,2,.... Denote the polar coordinates near the point y" by (w™,r™). Let 2™ € I'y be the point
with coordinates (0,r™). It follows from Eqs. (26.26) and (26.22) that

uo(z™)| = [b1p(0)] = [bT(w™)] = [uo(y™)]-
Hence, taking into account the fact that U € C(G), U(g1) = 0, and the functions u and ug are
continuous on I'y, we have

M > lim |u(z")| = lim |ug(z™)| > lim |up(y™)| = lim |u(y"™)| = M.

n—oo n—oo n—oo n—o0
Thus,
lim |u(z™)| = M. (26.28)
n—o0

Using the fact that 2™ € 'y, the continuity of €, the continuity of the function u in the domain G,
and relations (26.4) and (26.28), we obtain

ju(g)] = lim_Ju(@(a™)| = lim fu(a™)|/b; = M/b{ > M.

16For (26.26), we assume that in any e-neighborhood, a different coordinate system w,r is given. This coordinate
system is such that the point r = 0 corresponds to the center of the neighborhood.
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This is impossible since g € G. Thus, we have proved that u = 0, i.e., functions v; and vy are linearly
independent and dimker L 15 < 1.

3. According to [85, Theorem 3.4], Li4s(q) is a Fredholm operator for any g. On the other hand,
the dimension of the kernel of a Fredholm operator does not increase for small perturbations (see [56,
Section 16]). Hence, dimker L;5(q) < 1 for all sufficiently small ¢ > 0. O

Lemma 26.7. Let ¢ > 0 be sufficiently small. Then codim R(Li_s(q)) > 1.

Proof. The strip —9 < Im A < § does not contain eigenvalues of model problem (26.10), (26.11) but
contains the unique eigenvalue Ay = 0 of model problem (26.2); moreover, the algebraic multiplicity of
the eigenvalue \g = 0 is equal to 2. Hence, according to [31, Theorem 4.1], ind L1 45(¢) = ind Ly _5(q)+
2, 1.e.,

dimker Ly 15(¢) — codim R(L14s(q)) = dimker Ly _5(g) — codim R(L1_s(q)) + 2.

From here and Lemmas 26.5 and 26.6, we obtain that

codimR(L;_5(¢)) = codim R(L14s(q)) — dimker Ly y5(¢) +2 > 1.

Now we fix a number ¢ > 0 for which codimR(L;_5(¢)) > 1. Consider the set
RY_5(G) = {fo € HY_5(G) : (fo0.0,0) € R(L1-5(q))}-
Obviously, R} ;(G) is a closed subset in H{ ;(G) since the image R(Lj_s(q)) is a closed subset in
HY 4(G,0G).
Lemma 26.8. codim R} ;(G) > 1.
Proof. Assume the contrary: let
RY_5(G) = HY_4(G). (26.29)

We show that in this case

R(L1-5(q)) = H_s(G, 9G). (26.30)
Consider an arbitrary function f = (fo, f1, f2) € H}_s(G,0G). By Lemma 11.1, there exists a function
v E H12_5(G) such that v\pj = fj, 7 = 1,2, and the support of the function v is located in an arbitrarily

small neighborhood 0G. Let this neighborhood be so small that b;(y)v(21(y)) =0, y € I'y. Then the
function v satisfies the following nonlocal conditions:

vlpy, = 01()u(@1(y))lr, = f1, vlp, = fo (26.31)

On the other hand, it follows from Eq. (26.29) that there exists a function w € H? 4(G) such that
Aw — quw = fo — (Av — qu), (26.32)

wlp, — b1 (y)w(Q(y))|r, =0, w|r, =0. (26.33)

Equations (26.31)(26.33) yield Ly_s(q)u = f, where u = v + w € H? 4(G). Thus, Eq. (26.30) is
valid; this contradicts Lemma 26.7. O

Now, using the Hille-Yosida theorem (Theorem 23.1) and Lemmas 26.4 and 26.8, we prove Theo-
rem 26.1.

Proof of Theorem 26.1. 1. Assume the contrary: let Pg be a generator of a Feller semigroup. Then
by the Hille-Yosida theorem (Theorem 23.1) we have R(Pg — ¢qI) = R(Pp — ¢qI) = Cp(G). Hence
R(Pp — qI) = Cg(G). By Lemma 26.4, this means that every function from Cg(G) can be approxi-
mated by functions from R} s(G) N Cp(G).

2. Show that in this case

R} 5(G)=H) 5(G) (26.34)
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(this contradicts Lemma 26.8). For this, we choose an arbitrary function fo € H{ ;(G). Since the
set C§°(G \ (K U {g})) is dense in HY (@), we see that for any x > 0, we can find a function
fh e C°(G\ (KU {g})) such that

| fo — f(l)HH?_é(G) < K. (26.35)
Since f) € La(G), there exists a function fY € C*(G) that vanishes near dG'U Q;(T1) such that
I1fo = follee_,(a) < Fullfo — follae) < 5, (26.36)

where k1 > 0 is independent of f) and f{.
Since [l € Cp(G), it follows from item 1 of the proof that there exists a function f’ € R} 5(G)N
Cp(G) such that

H " pelit

o ) < k2l = e < & (26.37)

where k2 > 0 is independent of fj and f{".
The following inequality follows from Egs. (26.35)—(26.37):

1o = flar_ ) < 3

Hence, taking into account the fact that the set RY_(G) is closed in HY (G), we obtain Eq. (26.34).
Thus, we arrive at the contradiction with Lemma 26.8. ]

Remark 26.1. Let 133 : Og(G) — Cp(G) be a reduction of the operator Pg. Obviously, the
following embedding holds:

R(Pp —qI) € R(Pp — qI).
Since R(P5 — ¢I) does not coincide with C5(G), we see that R(Pp — ¢I) also does not coincide with

Cg(G). Hence, by the Hille-Yosida theorem (Theorem 23.1), the operator Pp is not a generator of a
Feller semigroup.

26.3. “Jumps” from conjugation points that are not termination points of the process.

26.3.1. Statement of a nonlocal problem. In this example, we show that condition 24.2 is substantial.
Let G, g1, g2, and K be the same as in Sec. 26.2. Consider the following nonlocal problem (see
Fig. 26.2):

Auly) = fo(y), yeaG, (26.38)
u(y) = bi(y)u(@i(y)) =0, yeTu, (26.39)
u(y) = ba(y)u(Q2(y)) =0, y €Ty, (26.40)

where b; € C=(T;), j = 1,2, are such that
(1) 0 <bi(y) <1,
(2) bj(y) =b* > 0 for y € Oc(gn),
(3) bj(y) =0 for y ¢ Orc(g1),

and €2, j = 1,2, is a smooth nondegenerate transformation defined in a neighborhood of a curve T';
such that

(1) 9;(T;) C G, Qj(g1) € G, Qj(g2) = g2, and1(g1) # Da(g1),
(2) for y € O(g1), Q(y) is the composition of a rotation about the point g; and a shift by some
vector.
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Fig. 26.2. Problem (26.38)—(26.40).

Assume that g = Q(g1) and h = Q2(g1); by the assumption, g,h € G and g # h. Let £ > 0 be so

small that 2e-neighborhoods of the points ¢g; and g2 and g and h do not intersect and
02:(9) NOG =2, O2(h)NIG = @.
Introduce measures a(y, ) and y € OG as follows: for any Borel set Q C G, we assume
(v, Q) =bi(y)xe((y), yeT,
a(y, Q) = ba(y)xe(R(y)),  yeT
)
)

«

Then boundary conditions (26.39) and (26.40) can be rewritten in the form

b(y) y+/[ y) — u(m)aly.dg) =0, y € dC,
G

where b(y) =1 — a(y, G).

Obviously, g2 € N, but g1 ¢ N. Hence, condition 24.2 is violated. It easy to verify that conditions
23.1, 23.2, 24.1, and 24.3-24.8 hold (with P(y, D) = A, P; =0, and B;(y,G) = 0).

Consider the unbounded operator P : D(Pg) C Cp(G) — Cp(G) defined by the formula

Ppu=Au, ueD(Pp)={uecCp(G): Auc Cp(G)}, (26.41)

where Cp(G) is the set of functions from C(G) that satisfy nonlocal conditions (26.39) and (26.40).
The following two results are proved similarly to Lemmas 26.2 and 26.3.

Lemma 26.9. If u € D(Pg), then u € W2(G") for any domain G’ such that G’ C G\ K.
Lemma 26.10. The operator P : D(Pg) C Cp(G) — Cp(G) admits a closure Pg.
We will prove the following result.

Theorem 26.2. Let P : D(Pg) C Cg(G) — Cp(G) be the closure of operator (26.41). Then Pg is
not a generator of a Feller semigroup.

By the Hille-Yosida theorem (Theorem 23.1), it suffices to show that the image R(Pp — qlI) does
not coincide with C'5(G) for sufficiently small ¢ > 0.

26.3.2.  Proof of Theorem 26.2. In this example, we will use the weight spaces
Hy(G) = Ho(G,KU{g, h}),  Hy(GNO:(g))) = Hy(G N O:(g5) {9;}):
Hy(Oc(9)) = Ho(O:(9).{g}),  Hq(O=(h)) = Ho(O:(h), {h})

and the corresponding trace spaces. We emphasize that the space H.(G) consists of functions that
can have power singularities not only near the set K, but also near points g and h.
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To prove Theorem 26.2, let us obtain asymptotics of solutions u € D(Ppg) of problem (26.38)—
(26.40).
Let us fix a number ¢ such that

0<odo<l (26.42)

Lemma 26.11. Let u € D(Pp). Then u = cwy + wy, where ¢ is a constant, the function wy is
independent of u,

wo € CB(G) n Coo(é)7 A’LU()(y) =0, ye OS/Z(IC) U 05/2(9) U OS/Z(h)7
and wy € Cp(G) N HE_4(G).

Proof. 1. 1t follows from Lemma 26.9 that u € W?(G’) for any domain G’ such that G’ € G\ K.
Since u € W?(O(g)), by Lemma 5.2 we see that u € H} 5(O:(g)). Since fy € C(G) c H?(O:(g)),
similarly to Eq. (26.19), we obtain the equality

uw(y) = cg + égInr 4+ r(cg1 cosw + dgr sinw) +v(y), y € O(9),

where w and r are polar coordinates with pole at the point g such that (0,7) € Q;(I';) for 0 < r <e,
cg, Cg, Cg1, and dg1 are constants, and v € HE(;(OE(g)). Applying the Sobolev embedding theorem, we
have

v e H?5(O:(g)) € W?(0:(g)) C C(O:(g)), w(g) =0.

Taking into account the fact that u € C(O.(g)), we see that ¢, = 0 and

u(y) = ¢cg + 1(cg1 cosw + dgi sinw) +v(y), vy € O:(g), (26.43)
u(g) = ¢q. (26.44)
Replacing g by h, we similarly obtain the equality
u(y) = cp + r(cpi cosw + dpr sinw) +v(y), y € O:(h), (26.45)
u(h) = cp, (26.46)

where w and r are polar coordinates with pole at the point h such that (0,r) € Qy(T'2) for 0 < r < ¢,
Chy ¢h1, and dp; are constants, and v € H? ;(O(h)) C W?(0:(g)) C C(O:(g)).

Since the function w € C(G) satisfies nonlocal conditions (26.39), (26.40), we see that
u(g) = u(g1)/b* = u(h), i.e., by Egs. (26.44) and (26.46), we have ¢4 = ¢j,. Assume that

c=cg=cp. (26.47)

2. Applying (26.38)-(26.40), (26.43), (26.45), (26.47), and the fact that the transformations ©; and
)y are smooth and nondegenerate, we obtain

Au—b*c) = Au € C(G) C HY 4(GNO(g1)), (26.48)
(u—b¢)p,n0.(0) € HY 5T N0(q1)), j=1,2. (26.49)

Using Eqs. (26.48) and (26.49) and the relation u—b*c € C(G) € H? | ;(GNO.(g1)), from Lemma 14.2
we obtain

u—b*ce Hi, 5(GNO(q1)). (26.50)

By Eq. (26.42), the strip —d < Im A < § does not contain eigenvalues of problem (26.10), (26.11).
Hence, from Egs. (26.48)—(26.50) and [26, Theorem 2.2] we obtain the following embedding:

u—b*c € H s(GNO:(q1)).
Since b1(y) = ba(y) = 0 near the point go, we see that u € HZ (G N O.(g2)) (cf. the proof of
Lemma 26.4).
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3. Introduce a patch function & € C*°([0,00)) such that £(r) = 1 for r < /2 and supp§ C [0, ¢€).
Consider the function wy € C°°(G) defined by the formula!?

b'y(r),  ye Og1),

¥(r), y € O:(9),
w = 26.51
W= 0, yeo.m), (26:51)
0, Yy §é Oz—:(gl) U Os(g) U Os(h)a
and the function w; = v — cwq. It is easy to see that wy and w; are the required functions. ]

Introduce the bounded operator L, (q) : H2(G) — HY(G,0G) by the formula

Lo(q)u = {Au — qu, ulr, — bi(y)u(@1(y)Ir,, ulr,}, ¢=0.
We also denote L, = L, (0).

Lemma 26.12. Let ¢ > 0 be sufficiently small. Then dimkerL;_s(q) = 0.
The proof is similar to the proof of Lemma 26.5.
Lemma 26.13. Let g > 0 be sufficiently small. Then dimker L1 s(q) < 2.

Proof. 1. First, we assume that ¢ = 0 and prove that dimker Ly s < 2. Let u € ker L, 5. Without
loss of generality, we assume that the function w is real-valued.
As in the proof of Lemma 26.11, we have

u(y) =cg+ cglnr +1r(cg1 cosw + dgy sinw) +v(y), vy € O:(g), (26.52)

where w and r are the polar coordinates with pole at the point g such that (0,7) € Q1(T'1) for 0 < r < ¢,
cg» Cgy cq1 and dgy are constants, and v € H?5(O.(g)).
Similarly, replacing the point g by the point h, we obtain the equality
uw(y) = cp + épInr + r(cp1 cosw + dpy sinw) +v(y), vy € O:(h), (26.53)

where w and r are the polar coordinates with pole at the point A such that (0,7) € Qy(T'2) for 0 < r < ¢,
ch, ¢, cp1 and dp; are constants, and v € HE5(O€(h)).
Using Eqgs. (26.38)—(26.40), (26.52), and (26.53), we obtain

Au=0, yeGNO(g1),
Ulp, M0, (g1) = b (cg + EgIn7 + cg17) + wi(r), (26.54)
Ulryno.(g1) = 0" (ch + e InT + cp1r) + wa(r),
where w; € HY2(T; N O(g1)).
Hence, applying [26, Theorem 2.2, Lemma 4.3], we see that
u(y) = coipg() + cnpn(w) + & Irpe(w) + & ren(w) + () + o), yECNOuar), (26.55)

where w and r are the polar coordinates with pole at the point g; such that (0,7) € I'y for 0 < r < ¢,
©gs Py Pgr Phy ¥ € C([0,7]), the functions g4, @p, Py, and ¢, are independent of u, v, ¢g, cn, ¢},
én, and v € H2 (G N O:(g1)) C WG N O:(g1)). In particular, ¢g4(w) is a function that depends only
on the polar angle w and is a solution of the problem

Aypg =0, r>0, 0<w<m,
pg(0) =1, pg(m) =0,
i.e., ¢4(w) has the form

pg(w) =1—w/m. (26.56)

For Eq. (26.51), we assume that a specific polar coordinate system w,r is given for any e-neighborhood. The
coordinate system is such that the point » = 0 corresponds to the center of the neighborhood.
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The function ¢, (w) depends only on the polar angle w and is a solution of the problem
Ay, =0, r>0, 0<w<m,
on(0) =0, @p(m) =1,
i.e., pp(w) has the form
on(w) = % (26.57)
Similarly to the proof of Lemma 26.6, we have
ue WG NOA(g2) C C(GNOAg2))-

It follows from Egs. (26.52), (26.53), and (26.55) that any function u € ker Lj ;s can be rewritten
in the form

w(y) = cqug(y) + chun(y) + éqtg(y) + éntn(y) +U(y), yeG, (26.58)

where ug, up, g, tn, € C°(G\ {91,9,h}),

1, y e Oa(g)a L, Y€ Oa(h)7
ug(y) = ¢ b'pg(w),  y € O:(gn), up(y) = { b on(w), v € O(g1),

0, y € Oc(g2) U O:(h), 0, y € O:(g2) U Oc(g),

Inr, y € OA(g), Inr, y € O:(h),
Gg(y) = { 0" Inrgg(w), y € OAq), tp(y) = { 0" Inrep(w), y € O:q1),

0, y € Oc(g2) U Oc(h), 0, y € Oc(92) U Oc(g),
U e W?G) C C(G) and U(gy) = U(g2) = U(g) = U(h) = 0. The embedding U € HZ 4(G) follows

from here and Lemma 5.2 (item 2).

It follows from Eq. (26.58) and Lemma 26.12 that dimker L5 < 4.

2. Prove that dimkerLi,s < 2. Assume the contrary: let there exist three linearly indepen-
dent functions wv1,vg,v3 € ker Lij1s. Since each of these functions can be represented in the form of
Eq. (26.58), we see that some of their nontrivial linear combinations (we denote it by u) have the form

u(y) = cqug(y) + chun(y) + U(y). (26.59)

Using (26.59), the explicit form (26.56) and (26.57) of the functions ¢, and ¢}, (which describe the

behavior of functions u, and uy, near the point g1 ), and reasoning similarly to the proof of Lemma 26.6,

we obtain u = 0. Hence, the functions vy, ve, and vs are linearly independent and dim ker Ly 5 < 2.
3. Similarly to the proof of Lemma 26.6 we can show that

dimker Ly 5(q) < 2
for sufficiently small g > 0. O
Lemma 26.14. Let g > 0 be sufficiently small. Then codimR(L;_5(q)) > 2.

Proof. The strip —d < Im A < § does not contain eigenvalues of model problem (26.10), (26.11), but
contains the unique eigenvalue Ao = 0 of model problem (26.2) that corresponds to the point g, and
contains the unique eigenvalue \g = 0 of the same model problem (26.2) that corresponds to the point
h (recall that g # h). The algebraic multiplicity of the eigenvalue Ao = 0 is 2 for both cases. Hence,
according to [31, Theorem 4.1], we have ind L145(q) = ind L1 _s5(q) + 4, i.e.,

dimker Ly y5(¢q) — codim R(Lj45(q)) = dimker Ly _5(q) — codim R(L1_5(q)) + 4.

The relation
codimR(Li_5(¢q)) = codim R(L14+5(q)) — dimker Ly 5(q) +4 > 2
follows from here and Lemmas 26.12 and 26.13 O

430



Let us fix a number ¢ > 0 for which codim R(L;_5(q)) > 2. Consider the set
RY_5(G) = {fo € H)_5(G) : (f0,0,0) € R(L1-5(¢q))}-
Obviously, R} (@) is a closed subspace in HY (G) since the image R(L1_s(q)) is a closed subspace
in 7Y _5(G,0G).
Lemma 26.15. codim R (@) > 2.
Proof. 1. According to Lemma 26.14, it suffices to prove that
codim RY_5(G) = codim R(L;_5(q)).
Let fo € RY 5(Q), i.e., f = (f0,0,0) € R(L1_5(g)). This is equivalent to the relations
(f, Fl)H?_(s(G,aG) =0, l=1,...,codimR(Li_5(q)), (26.60)

where I} € ’H(l]_(;(G, 0G) are linearly independent functions from the orthogonal complement to the
subspace R(L1_s(q)) in the space HY_;(G,dG). It follows from Eq. (26.60) and the Riesz theorem on
the general form of linear continuous functionals in Hilbert spaces that

codim RY_4(G) < codim R(L;_5(q)).

2. Now we prove the inverse inequality. Let f = (fo, f1, f2) € R(L1-5(q)), i.e., Li_s(q)u = f for
some function u € Hf §(G). By Lemma 11.1, there exists a function v € H} ;(G) such that v|r, = f;,
j = 1,2, the support v is located in an arbitrarily small neighborhood O(9G) of the boundary G, and

ol < k(L1 oy + Il grn ) (26.61)

where k > 0 depends on a neighborhood O(JG), but is independent of f; and fo.
Assume that a neighborhood O(9G) is such that b;(y)v(©2;(y)) = 0, y € I';. Then the function v
satisfies the nonlocal conditions
vlr, — bj(y)u(Qi(w)r; = fi, J=1,2.

Hence, the function w = u — v € H} 5(G) satisfies the relation

Li_s(¢)w = (fo — (Av — qv),0,0). (26.62)
It follows from Eq. (26.62) that fo — (Av — quv) € R)_s(G). This is equivalent to relations
(fo — (Av — qu), (bl)H?,(;(G) =0, I=1,...,codimR? 4(@), (26.63)

where ®; € H?f(;(G) are linearly independent functions from the orthogonal complement to the
subspace RY ;(G) in the space HY  (G). Using (26.61) and (26.63) and the Riesz theorem on
the general form of linear continuous functionals in Hilbert spaces we obtain codim R(Lj_s(q)) <
codim Ry 4(G). O

Let us prove Theorem 26.2 applying the Hille-Yosida theorem (see Theorem 23.1) and Lemmas 26.11
and 26.15.

Proof of Theorem 26.2. 1. Assume the contrary: let Pz be a generator of a Feller semigroup. Then,
by the Hille-Yosida theorem (Theorem 23.1),

R(Pp —ql) = R(Pg — qI) = Cp(G).

Hence, R(Pp — gI) = Cp(G). According to Lemma 26.11, this means that any function from Cg(G)
can be approximated by functions from the set

Span(R)_s(G), Awy) N Cp(G),

where wy is a function from Lemma 26.12.
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2. Similarly to the prove of Theorem 26.2, we obtain from item 1 of the proof of this theorem that
Span(RY_5(G), Aw) = HY 4(G). (26.64)

It follows from here that codim R} ;(G) < 1. This contradicts Lemma 26.15. O
Remark 26.2. Similarly to Sec. 26.2, we see that no reduction Pg : Cp (G) = Cp(G) of the opera-

tor Pp is a generator of a Feller semigroup.

26.4. “Jumps” with probability 1 inside a neighborhood of a termination point of the
process.

26.4.1.  Statement of nonlocal problem. Let us show that Eq. (23.3) in condition 23.2 is substantial.
Let G, g1, g2, and K be the same as in Sec. 26.2. Consider the nonlocal problem (see Fig. 26.3)

Au(y) = foly), y€G, (26.65)
u(y) = bi(y)u(Q;(y)) =0, yely, j=12, (26.66)
u(y) =0, yek, (26.67)

where the functions b; € C*(T;) are such that

(1) 0<b;(y) <1,

(2) bj(y) =1fory € O-(qn),

(3) bj(y) =0 for y ¢ Oz(g1),
and €, j = 1,2, is a smooth nondegenerate transformation defined in a neighborhood of the curve 1“7
such that

(1) (L) € G, Q5(g1) = g1, Q5(92) = g2,
(2) Q;(y) for y € O:(g1) is the rotation by angle 7/2 degrees inward the domain G.

Fig. 26.3. Problem (26.65)—(26.67).

Further, we consider € > 0 so small that

O2:(g1) N O2:(g2) = 2.
Introduce the measure 6(y, -), y € 9G, as follows: for any Borel set Q C G, we assume that
5y, Q) =bj(Wxe(Q(), yel;, j=12,
(y,Q) =0, yek.
Then boundary conditions (26.66), (26.67) can be rewritten in the form

b(y)uly) + /[u(y) —u(n)]o(y,dn) =0, y € IG,

G

432



where b(y) =1 — d(y, G).

It is easy to verify that conditions 23.1 and 24.1-24.8 hold (with P(y,D) = A, P; = 0
and «;(y,G) = Bi(y,G) =0). Obviously, relation (23.3) in condition 23.2 is not fulfilled since
bi(g1) + ba2(g1) = 2. - -~

Consider the unbounded operator Pp : D(Pg) C Cp(G) — Cp(G) defined by the formula

Ppu=Au, ueD(Pp)={uecCp(G): Auc Cg(G)}, (26.68)

where C'5(G) is the set of functions from C(G) satisfying nonlocal conditions (26.66) and (26.67).
The following two results are proved similarly to Lemmas 26.2 and 26.3.

Lemma 26.16. If u € D(Ppg), then u € W2(G') for any domain G' such that G’ C G\ K.
Lemma 26.17. The operator Pg : D(Pg) C Cp(G) — C(G) admits a closure Pg.
We prove the following result.

Theorem 26.3. Let P : D(Pg) C Cg(G) — Cg(G) be the closure of operator (26.68). Then Pg is
not a generator of a Feller semigroup.

By the Hille-Yosida theorem (Theorem 23.1), it suffices to show that the image R(Pg — ¢I) does

not coincide with Cp(G) for some ¢ > 0.

26.4.2. Proof of Theorem 26.3. To prove Theorem 26.3, we obtain the asymptotic of a solution
u € D(Pp) of problem (26.65)—(26.67).
Consider the following model problem corresponding to the point g1 with a complex parameter A:

(W) = Mpw)=0, 0<w<m, (26.69)

p(=m/2) = p(0) =0, o(m/2) —¢(0) =0, (26.70)

where w and r are the polar coordinates with pole at the point g; such that (0,7) € I'y and (7, r) € T'y
for 0 < r < &. The eigenvalues of this problem have the form A\ = 2ki, k = 0,4+1,£2,.... Further,

we will be interested in the eigenvalue A\g = 0. The eigenvector corresponding to it has the form
vo(w) = 1. There exists an adjoint vector ¢o(w) = 0. There is no second adjoint vector.
Since b1 (y) = 0 near the point ga, problem (26.10), (26.11) corresponds to the point ga (see Sec. 26.2).
Here, similarly to Secs. 23-25), we use the weight spaces

Hy(G) = Hy(G,K), Ha(GNO:(g))) = Hy(G N O:(g5), {9;})

and the corresponding trace spaces.
Fix a number ¢ such that
0<d<1. (26.71)

Lemma 26.18. Let u € D(Pp). Then u € H? 4(G).

Proof. Tt follows from Lemma 26.16 that v € W?(G") for any domain G’ such that G’ ¢ G\ K. Further,
using Egs. (26.66) and (26.67), we obtain

Au € C(G) c H (G N O(q1)), (26.72)
U’ijoa(gl) - U(Qj(y))‘rjﬁog(gﬂ = 07 j = 172 (2673)

Using Eqs. (26.72) and (26.73), the relation v € C(G) € H%, ;(G N O:(g1)), and Lemma 14.2, we
obtain
u € Hi 5(GNOA(q1)). (26.74)

According to (26.71), the strip —1 — § < Im A < § contains the unique eigenvalue A\g = 0 of
problem (26.69), (26.70). Hence, applying Eqgs. (26.72) and (26.73) and [26, Theorem 2.2], we obtain

u(y) = copo(w) + éo(Po(w) + po(w)InT) +v(y) = co + ¢lnr +o(y), y € GNO(q1),
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where ¢; and ¢y are constants and v € H? (G N Og(g1)). Since H? 3(G N O:(g1)) C W2(G N Oc(g1)),
using the Sobolev embedding theorem, we obtain v € C(G N O(g1)) and v(g1) = 0. It follows from
here and the relation u € C(G N Og(g1)) that ¢y = 0. Taking into account Eq. (26.67) and the relation
v(g1) = 0, we obtain
co = u(g1) —v(g1) = 0.

Thus, u € H25(GNO:(q1)) C H? 5(GNO:(qh)).

Similarly to Lemma 26.5, we prove that u € H? (G N O:(g2)). O

Introduce the bounded operator L,(q) : H2(G) — HY(G,0G) by the formula

La(q)u = {Au — qu, ulp, = bi(y)u(Q(y))lr,, vlr.}, ¢=0.
We also denote L, = L, (0).
Lemma 26.19. Let ¢ > 0 be sufficiently small. Then dimkerL;_s(q) = 0.

Proof. Suppose ¢ = 0 and prove that dimker L;_s = 0. Let u € ker L;_5. Without loss of generality,
we assume that the function w is real-valued. Using Eqs. (26.65)—(26.67), we obtain

Au=0, yeGNO(g1),
ulr;n0. (1) — W2 (¥)Ir;n0.) =0, J=1,2.
Hence, reasoning similarly to the proof of Lemma 26.4, we obtain the embedding u € C(G N O:(g1)).

It is easy to show (similarly to Lemma 26.5) that v € C(G N O:(g2)). Then u € C(G), and, according
to maximum principle 24.1, we have u = 0, i.e., dimker L;_s = 0.
Similarly to Lemma 26.5, we prove that dimker Li_s(q) = 0 for sufficiently small g > 0. O

Lemma 26.20. Let g > 0 be sufficiently small. Then dimker Li s(q) < 1.

Proof. 1. First, we prove that dimkerLi,s < 2. Let u € kerLiys. Without loss of generality, we
assume that the function u is real-valued. Using Egs. (26.65)—(26.67), we obtain

Au=0, yeGNO:Ag1), (26.75)
ulr;n0.(g) — w2 (Y)Ir;n0. (1) =0, J=1,2. (26.76)

By (26.71), the strip —1 — 6 < Im A < 4 contains only one eigenvalue Ay = 0 of problem (26.69),
(26.70). Hence, using Egs. (26.75) and (26.76), and [26, Theorem 2.2], we obtain

u(y) = copo(w) + Co(Po(w) + @o(w) Inr) +v(y) = co + elnr +o(y), y€GNO(g1),  (26.77)
where ¢; and ¢ are constants,
v e H25(GNO(g1)) C WHGENO:(1)) € C(G N O:(g1)),

and v(g) = 0.
As in the proof of Lemma 26.20, we have

u € W?*(GNOg2)) C C(GNOc(qn)).
Hence, taking into account (26.77), we see that
u(y) = couo(y) + Coto(y) + U(y), y€G, (26.78)
where ug, iig € C*°(G \ {g1}),

( ) 17 Yy e Oé‘(gl)a N ) hl?”, ye 06(91)7
(7 — U =
o 0, y€O0:(g), o 0, y € O:(g2),

UeW?G) C C(G) and U(gy) = U(gz2) = U(g) = 0. It follows from here and Lemma 5.2 (item 2)
that U € H{_4(G).
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From Eq. (26.78) and Lemma 26.19 we obtain that dimker L5 < 2.

2. Prove that dimkerLiys < 1. Assume the contrary: let there exist two linearly independent
functions v1, ve € ker Ly, 4. Since each of these functions can be represented in the form of Eq. (26.78),
we see that some of their nontrivial linear combinations (that we denote by u) have the form

u(y) = uo(y) + U(y), (26.79)

i.e., u € C(G). Using maximum principle 24.1, we have u(y) = 0. Hence, the functions v; and v are
linearly dependent and dimker L5 < 1.
3. Similarly to the proof of Lemma 26.6, we can show that

dimker Ly 45(q) <1
for sufficiently small g > 0. O
Lemma 26.21. Let ¢ > 0 be sufficiently small. Then codim R(Ly_s5(q)) > 1.

Proof. The strip —0 < Im A < ¢ does not contain eigenvalues of the model problem (26.10), (26.11)
(see Sec. 26.2) corresponding to the point g, and contains the unique eigenvalue A\g = 0 of the model
problem (26.69), (26.70). Moreover, the algebraic multiplicity of the eigenvalue \g = 0 is 2. Hence,
according to [31, Theorem 4.1],

indLy4s(q) = indLy_s(q) + 2,
that is,
dimker Ly 45(¢) — codim R(L14s(q)) = dimker L;_5(g) — codim R(L1_s(q)) + 2.
The relation
codimR(Li_5(¢q)) = codim R(L14s(q)) — dimker Ly y5(¢) +2 > 1
follows from here and Lemmas 26.19 and 26.20 O

Fix a number ¢ > 0 for which
codimR(Li_5(q)) > 1.
Consider the set
RY_5(G) = {fo € HY_5(G) : (fo0.0,0) € R(L1-5(q))}-

Obviously, R} (@) is a closed subspace in HY (G) since the image R(L1_s(q)) is a closed subspace
in #Y_;(G,0G).

The following result can be proved similarly to Lemma 26.8 (here, Lemma 26.7 must be replaced
by Lemma 26.21).

Lemma 26.22. codim R} ;(G) > 1.

Now, repeating the proof of Theorem 26.1 and applying Lemmas 26.18 and 26.22 instead of Lem-
mas 26.4 and 26.8, respectively, we obtain the conclusion of Theorem 26.3.

Remark 26.3. As in Sec. 26.2, we see that no reduction Pg : C5(G) — Cp(G) of the operator Pg
is a generator of a Feller semigroup.
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